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Abstract Feature selection is a mechanism used in Machine Learning to re-
duce the complexity and improve the speed of the learning process by using
a subset of features from the data set. There are several measures which are
used to assign a score to a subset of features and, therefore, are able to com-
pare them and decide which one is the best. The bottle neck of consistence
measures is having the information of the different examples available to check
their class by groups. To handle it, this paper proposes the concept of an al-
gorithmic cache, which stores sorted tables to speed up the access to example
information. The work carries out an empirical study using 34 real-world data
sets and four representative search strategies combined with different table
caching strategies and three sorting methods. The experiments calculate four
different consistency and one information measures, showing that the proposed
sorted tables cache reduces computation time and it is competitive with hash
table structures.

Keywords Feature selection · Attribute selection · Consistency measures ·
Information theory · Data Reduction · Algorithmic cache

1 Introduction

Feature selection (FS) is a common dimensionality reduction technique used in
Machine Learning. Its objective is to choose a subset of the available features
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2 Antonio Arauzo-Azofra et al.

which, when used, allows the learning process to obtain better or acceptable
results. Using less features speeds up the learning process and increases its
comprehensibility.

Having n as the number of features in a data set, there are 2n possible
subsets (including the full set and the empty set). Given that large amount
of possibilities, one way of addressing FS is by scoring features individually
and selecting them based on these scores (Arauzo-Azofra et al, 2011). This is
the fastest approach but it is worse at considering multi-feature dependencies.
Advanced techniques combine this approach with clustering (Song et al, 2013)
to perform a more effective feature selection.

Other approaches analyze all features at once. Some examples are spec-
tral feature selection (Zhao and Liu, 2007) and graph-based feature selec-
tion (Chen et al, 2011). These approaches are specially useful in feature selec-
tion when many dimensions are considered, like in information retrieval (Bharti
and Singh, 2015), ranking problems (Geng et al, 2007) and clustering prob-
lems (Gui et al, 2017). Furthermore, sparse feature selection (Liu and Zhang,
2016) is specially suited for very high dimensional data.

In any case, addressing FS as a search problem also allows to consider de-
pendencies of several features, since feature sets are evaluated together as a
whole. This approach is adequate for multi-class classification problems and is
considered as the state of the art, for example, in time series prediction (Ko-
prinska et al, 2015). Methods based on this approach use some strategies to
search among these sets and some measures to compare them and choose the
best one, as shown in Fig. 1. In this modularized approach, the measure is
computed many times, so its efficiency is very important.

Feature set Goodness
Search method 

Feature set measure

Generation of next feature set Stopping criterion Starting feature set

Fig. 1 Feature selec-
tion approached with a
search process

Many measures have been proposed to evaluate feature sets. Considering
the supervised learning problem of classification, Dash and Liu (2003) identi-
fied the following types:

– Accuracy: the accuracy of a learning algorithm using the selected feature
set against test data.

– Dependence: quantifies the ability to predict the class with some corre-
lation measures.

– Distance: the difference between the class conditional probabilities when
using the selected features.

– Information: information gained according to Shannon’s Information The-
ory.

https://link.springer.com/article/10.1007/s10618-019-00620-8
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Algorithmic cache of sorted tables for feature selection 3

– Consistency: proximity to the nonexistence of examples which share the
same feature values but belong to different classes.

Each type of measure has its advantages and disadvantages. For example,
using the accuracy of the same learning algorithm that will later be used in
the learning process as a measure is known as the wrapper approach (Kohavi
and John, 1997). It is considered to be the most exact. However, it could be
slow or even non-applicable if the learning algorithm cannot handle a large
number of features. On the other hand, consistency measures are currently
used (Onan, 2015) because they are fast and can provide very good results.

There are several consistency measures but, in all of them, its calculation
process is similar. Examples (data set instances) with identical values for the
selected features form groups and the class distribution in each group is ana-
lyzed somehow. This process can calculate information measures as well. To
make this process faster, the examples can be stored in hash tables (Arauzo-
Azofra et al, 2008).

Recently, Shin and Miyazaki (2016) proposed CWC, a highly efficient al-
gorithm for FS. To calculate the binary consistency measure for CWC, they
compared it by using hash tables with sorted tables as data structures. Their
paper clearly showed that sorted tables are faster when used inside the CWC
algorithm. This efficient performance is partly due to CWC removing features
in a predictable order. This allows the sorted table to be reused or resorted
just by one feature, heavily reducing computing time. However, it is not known
how these data structures compare in practice while calculating consistency
in a more general search context.

Motivated by the idea of reusing sorted tables with the goal of improving
performance, not only for CWC, but for any method that repeatedly evaluates
consistency or information theory measures as well, e.g. (Zheng and Wang,
2018), in this paper we aim to:

– Compare hash tables and sorted tables with other search approaches to
FS.

– Generalize the reuse of sorted tables, saving them in an algorithmic cache
system, to improve the performance of FS methods that use different search
strategies.

– Evaluate how this improvement in performance depends on the number
of features, the consistency or information measure used and the search
algorithm applied.

– Study several strategies to choose the order in which features will be used
to sort the table to improve its re-usability.

Besides feature selection, feature set evaluation is also used in another
contexts like discretization, or instance selection (Garćıa et al, 2016).

The rest of the paper is organized as follows. Section 2 explains the mea-
sures, how they can be calculated and how they can be optimized. Section 3
describes the cache system proposal and its variations. Sections 4 and 5 de-
scribe the empirical study and its results, respectively. Finally, the conclusions
are summarized in section 6.

https://link.springer.com/article/10.1007/s10618-019-00620-8


h
t
t
p
s
:
/
/
l
i
n
k
.
s
p
r
i
n
g
e
r
.
c
o
m
/
a
r
t
i
c
l
e
/
1
0
.
1
0
0
7
/
s
1
0
6
1
8
-
0
1
9
-
0
0
6
2
0
-
8

D
R
A
F
T
.
P
le
a
se
,
ci
te

fi
n
a
l
v
er
si
o
n
:

4 Antonio Arauzo-Azofra et al.

2 Calculation of feature set evaluation measures

This section, first, introduces the measures, and then, explains how to imple-
ment fast algorithms to calculate them. Table 1 introduces the notation and
symbols used along the paper.

Table 1 Notation

Symbol Definition

F = {f1, f2, ..., fn} The set of all features considered in the data set.
S ⊆ F A set of selected features.
P(F ) Power-set, set of all possible subsets of F .
n = |F | The number of features available.
s = |S| The number of selected features.
fj The finite set of values the jth feature may take.
E = {e1, e2, ..., em} The set of all examples (data instances) in the data

set.
m = |E| The number of examples in the data set.
ei = 〈vi1, vi2, ..., vin〉, vij ∈ fj An example, the feature values of an observed ob-

ject.
Class or C The set of possible class values,
vi,(n+1) The class assigned to example i.
T = 〈e1, e2, ..., em〉 A table, a sequence of all examples in the data set.
ΠS(E) The relational projection of examples in T onto S

features (remove columns of the other features)
O = 〈fσ(1), fσ(2), ..., fσ(s)〉, s ≤ n Order index, a sequence of features.
σ(j) A permutation or a partial permutation that maps

the position j in an ordered sequence to the index
of an element (feature).

TO = 〈eπ(1), eπ(2), ..., eπ(m)〉 An ordered table of all examples in the data set,
sorted considering the values of the features in O.

π(i) A permutation that maps the position i in an or-
dered sequence to the index of an element (exam-
ple).

〈...〉⌢〈...〉 Concatenation of two sequences.
Variable’ Modified state of the Variable after step.

tail〈...〉 Sequence without the first element.

2.1 Consistency measures

According to Cambridge English Dictionary, consistency is ”the quality of
always behaving or performing in a similar way”. In feature selection literature,
consistency refers to the absence of examples (data set instances) that share the
same selected feature values but belong to different classes. These examples are
likely to confuse classifiers so, the lower the presence of this kind of examples,
the better.

In this way, consistency can be used to evaluate and compare feature sets.
Looking at equation (1), if the projection operation from relational algebra

https://link.springer.com/article/10.1007/s10618-019-00620-8
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Algorithmic cache of sorted tables for feature selection 5

applied to a data set (E) with just some selected features (S) is more consistent
than the projection with another set of features(R), the first set is considered
a better feature set.

S is better than R ↔ Consistency
(

ΠS(E)
)

> Consistency
(

ΠR(E)
)

(1)

As an illustration, Figure 2a defines a dataset of ten examples, which belong
either to class A or B, characterized by features f1, f2 and f3. If only f1 and f3
are selected it remains consistent (Figure 2b). However, if only f2 and f3 are
selected, it becomes inconsistent (Figure 2c). All these measures only handle
discrete values; if continuous values are present, they need to be discretized
first. By applying discretization, these measures could also be used for feature
selection in approximation or regression but they are defined for classification
problems.

Using this idea, several measures estimate the distance that separates a
data set from the state of being fully consistent. An intuitive description of
some of them follows, for a formal definition and a discussion about their
properties see (Shin et al, 2011).

The consistency measures calculated in this paper are:

– Binary consistency measure (BIN): First used in FOCUS (Almuallim
and Dietterich, 1991), as a stop criteria (called “Sufficiency test”), this is
the simplest consistency measure.

BIN =

{

0 if data set contains any inconsistency

1 if data set is fully consistent
(2)

– Rough Sets measure (RSM): Proposed by Pawlak (1982), it counts
how many examples are in the positive region (examples with the same
values and assigned to the same class), disregarding the rest of examples
as inconsistent. This value can be regarded as an estimate to the probability
of an example belonging to a consistent group.

RSM =
number of fully consistent examples

number of examples
(3)

– Inconsistent Examples measure (IE): Proposed by Dash and Liu
(2003). In addition to all the RSM consistent examples, IE considers con-
sistent examples those that belong to the majority class, in each group
of examples with the same values for the selected features. The rest are
considered inconsistent.

IE =
number of inconsistent examples

number of examples
(4)

– Inconsistent Example Pairs measure (IEP): Used as an heuristic to
guide the search in a greedy algorithm presented with FOCUS-2 (Almual-
lim and Dietterich, 1994). Defining a conflict as a pair of examples with

https://link.springer.com/article/10.1007/s10618-019-00620-8
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6 Antonio Arauzo-Azofra et al.

the same values but different class, IEP counts how many of such pairs can
be formed in the data set.

IEP =
number of pairs of inconsistent examples

number of pairs of examples
(5)

IE and IEP are measuring inconsistency. As it is measured in range [0, 1],
being 0 the absence of inconsistency, it can be converted to consistency
with:

Consistency = 1− Inconsistency (6)

2.2 Information measures

There are several evaluation measures for feature sets based on the Informa-
tion Theory of Shannon (Cover and Thomas, 1991). For this reason, they are
usually identified in its own category (Dash and Liu, 2003; Molina et al, 2002).
Nevertheless, they can also be considered as consistency measures according
to the definition and properties identified by Shin et al (2011). Thanks to these
properties, all these measures can benefit from a similar implementation with
a first step analyzing the set of examples. In this way, they can benefit from
the algorithmic cache proposed in this paper. The cache is tested with the
following representative of these measures:

– Information measure (INF): Widely used in FS (Qian and Shu, 2015),
it is defined as the difference between the entropy of the class and the
entropy of the class conditioned to know the values of the selected features.

I(C, S) = H(C)−H(C|S) (7)

2.3 Data structures for fast consistency evaluation

In order to measure consistency, it is necessary to check which class each
example belongs to. This information can be stored in two data structures:

– Hash table. This kind of structure, also known as dictionary, is con-
structed by going through the list of examples and, for each example, stor-
ing the class it belongs to in a list using their feature values as a key for
quick grouping of identical examples (considering the selected features). As
an illustration, Figures 2b and 2c are hash tables created from the set of
examples of table from Figure 2a, selecting features f1 and f3 in the first
case and f2 and f3 in the second.

– Sorted table. This structure is a regular table with one row for each
example, which has as many columns as features plus an extra column for
the class value. It is sorted by the feature values so that elements with
the same values are contiguous. Figures 2d and 2e are the sorted tables
created from the set of examples of Figure 2a, selected and ordered only
by features f1 and f3 in the first case and f2 and f3 in the second.

https://link.springer.com/article/10.1007/s10618-019-00620-8
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Algorithmic cache of sorted tables for feature selection 7

f1 f2 f3 Class

1 1 1 A
3 2 2 A
3 3 2 A
3 2 2 A
2 1 1 A
1 2 2 B
2 3 3 B
2 2 2 B
3 3 3 B
1 1 2 B

(a) Example of elements
table

f1 f3 Classes

1 1 [ A ]
3 2 [ A,A,A ]
2 1 [ A ]
1 2 [ B,B ]
2 3 [ B ]
2 2 [ B ]
3 3 [ B ]

(b) Consistent hash table

f2 f3 Classes

1 1 [ A, A ]
2 2 [ A,A,B,B ]
3 2 [ A ]
3 3 [ B,B ]
1 2 [ B ]

(c) Inconsistent hash table

f1 f3 Class

1 1 A
1 2 B
1 2 B
2 1 A
2 2 B
2 3 B
3 2 A
3 2 A
3 2 A
3 3 B

(d) Consistent sorted
table

f2 f3 Class

1 1 A
1 1 A
1 2 B
2 2 A
2 2 A
2 2 B
2 2 B
3 2 A
3 3 B
3 3 B

(e) Inconsistent
sorted table

Fig. 2 Example with data structures for fast consistency evaluation

By using hash tables, the lack of consistency is detected when, for a given
key, the stored list contains different classes (see in Figure 2c the inconsistency
marked in bold) whereas, by using sorted tables, the lack of consistency is
detected when, going through the table rows, two examples have the same
values in their feature columns but different values in their class (see Figure 2e,
sorted by f2 and f3, with the inconsistency marked in bold).

In both cases, having the data structure built, the cost of calculating any
of the identified measures is just the cost of going through the data structure,
whose size is the number of examples by the number of selected features.
Therefore, the efficiency of calculating the measures is O(sm), which seems
hard to reduce if all examples are being considered, plus the efficiency of
building the data structure. Then, having the data structure available is the
bottle neck and here is where the efforts should be made.

– Building the hash table for measure evaluation has a worst case efficiency
of O(sm2) and a best case efficiency of O(sm). The expected efficiency
when the hash table has enough space available is near the best case.

– Sorting the table for measure evaluation using Tim sort Auger et al (2015)
has a worst case efficiency of O(sm logm) and a best case efficiency of
O(sm). The sort algorithm chosen has an expected efficiency near the
best case when the tables are partially ordered.

https://link.springer.com/article/10.1007/s10618-019-00620-8
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8 Antonio Arauzo-Azofra et al.

This article focus on avoiding the cost of re-sorting for the sort-based algo-
rithms or, at least, reduce its cost by reusing previously sorted tables as much
as possible. If new features are added to (or removed from) the set of selected
features, the hash table needs to be completely rebuilt. However, when using
sorted tables, if the selected features are part of the indexes by which the table
is already sorted, there is a chance that we can skip or reduce the example
sorting phase by reusing the table.

Our cache proposals increase the probabilities of finding a table which can
be reused without resorting it or, at least, provide a partially reusable table in
which a few resorting operations must be performed. Nevertheless, adding the
required table storing, copying and selection operations to the process may
suppose an extra cost which, according to our experiments, is worth it.

Our sorting strategies follow two different philosophies:

– To keep the table fully sorted by performing as less sorting operations as
possible

– To reduce the amount of sorting operations by sorting the table only by
the needed features.

3 Algorithmic cache of sorted tables

In the computing context, a cache is a hardware or software component that
stores some data so that they can be served faster in future requests. For
example, a CPU cache memory keeps some parts of the main memory that
are frequently accessed and a web browser cache keeps web pages to avoid
having to download them again. Cache systems are used between different
system components (CPU ↔ memory, web browser ↔ Internet web servers).
The cache memory size is usually very limited compared with the large space
being cached (main memory, Internet). For this reason, any cache system faces
uncertainty about which data to store and which data to drop. To alleviate
this, the cache systems try to make the best predictions to improve its hit ratio.
On the other hand, there are cache-aware algorithms designed to take profit of
a known underlying cache (Kowarschik and Weiß, 2003) and cache-oblivious
algorithms designed to improve performance over any cache system (Frigo
et al, 2012).

Cache systems are also used to reduce computing effort by avoiding the
repetition of some tasks. For example, there are several plug-ins for well known
web server frameworks that keep the generated web pages to avoid recreating
them from the data base. A similar idea is used in evolutionary algorithms
that keep the evaluation result of an individual to avoid reevaluating it, as it
is done, for example, in DEAP (Fortin et al, 2012). In these cases, the space
being cached is not a physical memory but a virtual space of solutions that
can even be larger and more costly to access.

Within an algorithm, if you save some limited data from a large space of
computation result data, which may be used again but there is uncertainty
about its reuse, this can be modeled as a cache system. If this is studied inside

https://link.springer.com/article/10.1007/s10618-019-00620-8
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Algorithmic cache of sorted tables for feature selection 9

the logic structure of an algorithm, we think it can be called an algorithmic

cache.
In FS, modularization (see Fig. 1) allows specialization by focusing on some

parts of the algorithms. Besides, it allows creating many different algorithms by
means of the combination of different search methods and measures (Arauzo-
Azofra et al, 2008). However, a module may have to repeat some computations
or recreate data structures. This happens with the feature set evaluation mod-
ule. Still, with search algorithms where no feature set is evaluated twice, some
data structures can be reused when evaluating other feature sets.

Instead of analyzing the whole set of examples and sorting them by the
selected features on each iteration, CWC (Shin and Miyazaki, 2016) stored
the sorted table used in the previous iteration so that it could be reused,
if possible. Inspired by this idea, we propose to define an algorithmic cache
keeping several sorted tables, used for consistency evaluation of feature sets.
The evaluation module can be combined with several search strategies. This
introduces uncertainty about which feature sets will be evaluated in the future.
Besides, the space is limited, as saving all the orders of the examples needed
for the possible 2n feature sets is not feasible.

Next, the algorithmic cache proposed is structured in two areas: table
caching strategy (how many and what tables are stored) and sorting method
(by which features the table is sorted).

3.1 Table caching strategies

The cache system is better described with an object-oriented design, as it will
be an object that stores previous knowledge in instance variables and has a
method to compute the consistency measure. Figure 3 shows the class diagram
of the cache system.

Two specializations are considered: keeping a number of tables given by a
parameter (k) and adapting to algorithms that follow an order based on the
levels of the search space (sets with the same number of features).

Algorithm 1 describes the general process of the system. First, it selects the
best cached table. Then, it completes the sort process as needed and updates
the cache. Finally, it evaluates the measure using the sorted table.

Algorithm 1 evaluate(S)

〈Obest, πbest〉 ← selectCachedTable(S) ⊲ O(1)
if suitability(O,S) < |S| then ⊲ If the table needs some sorting
〈Onew, πnew〉 ← sortMethod (〈Obest, πbest〉, S, E) ⊲ O(sm logm)
updateSortedTables(〈Onew, πnew〉) ⊲ O(1)

for ei in TOnew
do ⊲ Calculate one of the measures O(sm)

— Compute measure —

return — computed measure —

https://link.springer.com/article/10.1007/s10618-019-00620-8
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10 Antonio Arauzo-Azofra et al.

CacheEvaluator

unsortedTable ← E

sortedTables ← 〈〉 — sequence storing cached tables

+ init(E) : void
+ evaluate(S) : R
# selectCachedTable(S) : 〈O, π〉
# updateSortedTables(...) : void

K-tables

sortedTables ←
〈

〈O1, π1〉, ..., 〈Ok, πk〉
〉

— FIFO, store up to k elements —

# selectCachedTable(S) : 〈O, π〉
# updateSortedTables(〈O, π〉) : void

Level

sortedTables ←
〈

〈O1, π1, S1〉, ..., 〈Ok, πk, Sk〉
〉

# selectCachedTable(S) : 〈O, π〉
# updateSortedTables(〈O, π, S〉) : void

Fig. 3 UML2 Class diagram of the cache evaluators

3.1.1 k-tables

This cache strategy stores up to k tables using the First-Input-First-Output
(FIFO) approach. Algorithm 2 describes how the most suitable cached table
is selected. It uses the functions defined in equations (8) and (9).

suitability : P(O)× P(F ) → Z

suitability(O,S) = max16i6jscore(i, O, S)
(8)

score : Z× P(O)× P(F ) → Z

score(i, O, S) =

{

i if ∀j6iOj ∈ S
0 otherwise

(9)

Algorithm 2 selectCachedTable(S) ⊲ K-tables object
bestSuitability ← -1
for 〈O, π〉 in sortedTables do ⊲ Choose the best table to reuse

suitGrade ← suitability(O,S)
if suitGrade > bestSuitability then

Obest ← 0
πbest ← π

bestSuitability ← suitGrade

return 〈Obest, πbest〉

Algorithm 3 describes how the cache system is updated. As k increases,
the probability of finding a suitable, reusable table increases but, logically,
memory usage grows as well. Moreover, extra computation time is needed to
choose the most suitable one among the cached tables.

https://link.springer.com/article/10.1007/s10618-019-00620-8
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Algorithm 3 updateSortedTables(〈O, π〉) ⊲ K-tables object

if |sortedTables| 6 k then
sortedTables’ ← tail sortedTables

sortedTables” ← sortedTables’ ⌢
〈

〈O, π〉
〉

3.1.2 Level

Sequential algorithms such as SFS or SBS (see Section 4.4) evaluate many
feature sets generated by adding a feature to (or removing a feature from) the
current set of selected features. Consequently, several candidate sets with the
same cardinality are evaluated before confirming which feature to add (or to
remove).

This strategy consists in storing only the sorted table of the current set
of selected features (parent set) and the sorted tables of the candidate sets
that are being evaluated (child sets). The child sets are those whose selected
features are of the same size, with one feature more or one feature less than
the parent. In this way, when a feature is definitely added or removed from the
set of selected features, the table used in the evaluation of such set is already
stored in memory. Algorithm 4 describes how the best table is selected in this
specialization.

Algorithm 4 selectCachedTable(S) ⊲ Level object

〈Oparent, πparent, Sparent〉 ← sortedTables[0] ⊲ The first cached table is the parent
if abs(|Sparent| − |S|) > 1 then ⊲ If the algorithm has jumped to the next level

bestSuitability ← -1
for 〈O, π, Schild〉 in sortedTables[1:] do ⊲ Search for the new parent table

suitGrade ← suitability(Schild, S)
if suitGrade > bestSuitability then

Oparent ← O

πparent ← π

Sparent ← Schild

bestSuitability ← suitGrade

sortedTables’ ←
〈

〈Oparent, πparent, Sparent〉
〉

⊲ Restart cache

return 〈Oparent, πparent〉

Algorithm 5 describes how the cache system is updated in the typical case
(storing new table). Note that the cache gets reset when algorithm 4 detects
a change in level.

Algorithm 5 updateSortedTables(〈O, π, S〉) ⊲ Level object

sortedTables’ ← sortedTables ⌢
〈

〈O, π, S〉
〉

https://link.springer.com/article/10.1007/s10618-019-00620-8
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12 Antonio Arauzo-Azofra et al.

3.2 Sorting methods

The order index sequence O denotes the order in which features are considered
when sorting the examples in the table. In this way, considering that it exists
a total order relation among the example values (numerical, alphabetical or
any other), the order relation between two elements of the table is defined by
equations (10-12):

ei < ej ↔ ∃fσ(k) ∈ O : vi,σ(k) < vjσ(k) ∧ ∀m < k, vi,σ(m) = vj,σ(m) (10)

ei = ej ↔ ∀fσ(k) ∈ O, vi,σ(k) = vjσ(k) (11)

ei > ej ↔ ei � ej (12)

If the number of elements in O is the total number of features, we can
stand that the table is fully ordered. This may be a desirable property, as the
chances that the table can be reused increase due to the fact that the table is
already ordered by all the features (selected or not).

The sorting algorithm will arrange examples in the sorted table (TO) ac-
cording to the order relation defined above (this is ∀i, j ∈ {1..m}, i < j ↔
eπ(i) < eπ(j)). The algorithm used is TimSort (Auger et al, 2015), imple-
mented in Python standard library. It is an adequate algorithm because it is
stable (it allows sorting by one feature while keeping the table ordered by some
others and it is more efficient in partially ordered sequences, as it is the case
with previously ordered tables by other features.

With this algorithm, a sort operation denoted by sort(fi), sorting a table
ordered by O = 〈fσ(1), ...〉 considering now fi, will keep the table ordered by
the features behind it i.e. T ′

O will have examples ordered by O′ = 〈fi, fσ(1), ...〉.
For convenience, in the following examples the features will be denoted

by letters, using the mapping of (13). Table 2 is provided to illustrate these
examples.

Rename : F → LowerCaseLetters

Rename(fi) = ith lower case letter in alphabetical order
(13)

The ordered table (TO) can be used to evaluate the set of selected features
(S) if all the selected features are contained in the index of order of the table
and there is no an unselected feature before any selected feature, i.e. if equation
(14) is true. Otherwise, it will be necessary to sort it again, to make the initial
order positions correspond to the selected features.

∀fσ(j) ∈ S,
(

fσ(j) ∈ O ∧ ∄fσ(k) ∈ O \ S : k < j
)

(14)

In this way, if a feature fj is removed from the index of order, the table will
not be ordered by the features behind it, i.e. if fj = b and O = 〈a, b, c〉 then
O′ = 〈a〉

https://link.springer.com/article/10.1007/s10618-019-00620-8
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Table 2 Example of sorted table TO

a b c d e f g h Class
eπ(1) 9 1 1 7 1 6 2 1 A
eπ(2) 2 1 2 4 3 5 0 4 B
eπ(3) 5 4 2 7 2 2 1 2 A
eπ(4) 6 5 3 2 4 2 2 5 B
eπ(5) 2 2 4 7 5 1 3 2 B
eπ(6) 8 7 4 7 3 1 2 9 B
eπ(7) 9 6 5 1 2 3 1 4 A
eπ(8) 9 3 5 1 5 4 1 2 A
eπ(9) 2 8 5 1 7 4 5 2 A
eπ(10) 1 8 6 0 4 7 3 2 B
eπ(11) 6 7 7 2 7 8 2 1 A
eπ(12) 4 4 9 6 4 0 0 5 A

F = {a, b, c, d, e, f, g, h} O = 〈c, d, f, h, g, a, e, b〉

3.2.1 The Lazy Sort Method

The aim of this proposal is to reorder the table only by the selected features,
reusing the current order when possible. The order of the rest of features is
undetermined.

As an example, the sort operations needed to be able to use the sorted table
represented by Table 2 for S = {c, a, b} using the lazy sort method would be:

〈c, d, f, h, g, a, e,b〉 −−−−→
sort(a)

〈a, c, d, f, h, g〉

〈a, c, d, f, h, g〉 −−−−→
sort(b)

〈b,a, c, d, f, h, g〉
(15)

3.2.2 Basic Full Sort Method

This is a simple proposal: when the table cannot be reused, first, sort the table
by the unselected features and then the selected features so that it remains
fully ordered.

3.2.3 Smart Full Sort Method

The smart full sort method tries to reuse the current order to perform as few
sort operations as possible while keeping the table fully ordered. If fσ(j) is the
first selected feature which is preceded by an unselected feature in the order
index (16):

fσ(j) ∈ O, fσ(j) ∈ S, fσ(j−1) /∈ S ∧∄fσ(i) ∈ O :
(

i < j ∧ fσ(i) ∈ S ∧ fσ(i−1) /∈ S
)

(16)
We can find the following situations:

– If there is no selected feature preceded by an unselected feature (∄fσ(j))
and the table needs to be resorted, it means that the table is partially

https://link.springer.com/article/10.1007/s10618-019-00620-8
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ordered and it has not been sorted by one or more of the selected features.
The smart method will sort it by the selected features which are not present
in O.
For example, the sort operations needed to be able to use the sorted table
whose order is represented by O = 〈e, b, a, d, f, h, g〉 for S = {c, e, b} using
the smart sort method would be:

〈e,b, a, d, h, g, f〉 −−−−→
sort(c)

〈c, e,b, a, d, h, g, f〉 (17)

– If fσ(j) exists and the following features are all selected features, that is,
∀ fσ(k) ∈ 〈fσ(j), ..., fσ(n)〉, fσ(k) ∈ S, the smart full sort method will sort
the table by the features in the interval 〈fσ(j), ..., fσ(n)〉.
For instance, the sort operations needed to be able to use the sorted table
represented by Table 2 for S = {c, e, b} using the smart sort method would
be:

〈c, d, f, h, g, a, e,b〉 −−−−→
sort(e)

〈e, c, d, f, h, g, a〉

〈e, c, d, f, h, g, a〉 −−−−→
sort(b)

〈b, e, c, d, f, h, g, a〉
(18)

– If fσ(j) exists and there is at least one unselected feature among the fol-
lowing selected features, that is, ∃ fσ(k) ∈ 〈fσ(j), ..., fσ(n)〉, fσ(k) /∈ S, the
procedure will depend on whether the first index, fσ(0), is a selected fea-
ture:
– If fσ(0) /∈ S smart sort method will sort the table by the unselected

features in the interval 〈fσ(j), ..., fσ(n)〉 and then by the selected features
in the same interval. This way the order 〈fσ(0), fσ(j−1)〉 is reused.
As an example, the sort operations needed to be able to use the sorted
table represented by Table 2 for S = {g, e, b} using the smart sort
method would be:

〈c, d, f, h,g, a, e,b〉 −−−−→
sort(a)

〈a, c, d, f, h,g〉

〈a, c, d, f, h,g〉 −−−−→
sort(g)

〈g, a, c, d, f, h〉

〈g, a, c, d, f, h〉 −−−−→
sort(e)

〈e,g, a, c, d, f, h〉

〈e,g, a, c, d, f, h〉 −−−−→
sort(b)

〈b, e,g, a, c, d, f, h〉

(19)

– If fσ(0) ∈ S, we will need to sort the entire table the same way the
basic full sort method does.

https://link.springer.com/article/10.1007/s10618-019-00620-8


h
t
t
p
s
:
/
/
l
i
n
k
.
s
p
r
i
n
g
e
r
.
c
o
m
/
a
r
t
i
c
l
e
/
1
0
.
1
0
0
7
/
s
1
0
6
1
8
-
0
1
9
-
0
0
6
2
0
-
8

D
R
A
F
T
.
P
le
a
se
,
ci
te

fi
n
a
l
v
er
si
o
n
:

Algorithmic cache of sorted tables for feature selection 15

4 Empirical study

The main goal of this empirical study is to confirm if the proposed cache
system improves the performance of consistency measures computation, in
the context of a feature selection search. In addition, we want to know which
of the strategies applied in the cache system perform better. The options are
summarized in the following schemata.

Cache
strategies















1-table: caches the last used table.
k-tables: caches the last k used tables.
level: caches all tables with the same number of selected
features.

Sort
methods























Basic: sorts by all features to keep the table fully ordered.
Smart: performs the least sort operations to keep the table fully
ordered.
Lazy: performs the least sort operations to keep the table
ordered by the selected features.

In order to formally answer those questions, the following hypotheses are
tested:

H1. Hash tables perform faster than sorted tables without cache. Our in-
tuition from previous experience is that FS algorithms based on hash
tables calculate the measures faster. We aim at testing whether this
is generally true or it depends on the size of the feature set.

H2. When using sorted tables, using cache increases performance. As the
sorted table can sometimes be reused when using cache, we expect
this method to perform faster.

H3. Having more cached tables increases performance. We expect that the
benefits of increasing table reuse chances overcome the cost of using
multiple cache tables, up to a certain point. As we deal with more
tables, there are more table copy operations and the number of tables
to look up for the most suitable one to reuse increases and so does
processing time.

H4. Level cache strategy is the best cache strategy for sequential search

algorithms. As it is specifically designed for this kind of algorithms,
we expect its performance to be better than the other generic cache
strategies.

H5. Some sort methods perform better than the others. We compare the
different sorting options available when using sorted tables with cache.
We expect to improve performance of the cache system.

H6. The best sorted table cache implementation performs better than hash

tables. Sorted tables have already been proved faster in CWC algo-
rithm (Shin and Miyazaki, 2016), which uses a list of features sequen-
tially. We want to know if this can be generalized to other FS methods
with different search strategies.

https://link.springer.com/article/10.1007/s10618-019-00620-8


h
t
t
p
s
:
/
/
l
i
n
k
.
s
p
r
i
n
g
e
r
.
c
o
m
/
a
r
t
i
c
l
e
/
1
0
.
1
0
0
7
/
s
1
0
6
1
8
-
0
1
9
-
0
0
6
2
0
-
8

D
R
A
F
T
.
P
le
a
se
,
ci
te

fi
n
a
l
v
er
si
o
n
:

16 Antonio Arauzo-Azofra et al.

4.1 Experimental design

Two types of experiments have been designed. The first type of experiment
tests the measures independently. For a given dataset, n feature sets of each
size are generated and the time taken by the measure is recorded. The empty
set and the set with all features are discarded as non-representative.

The second type of experiment tests the measures inside the search pro-
cess. We have performed a set of feature selection experiments combining the
sort and cache strategies proposed with different data sets, search algorithms
and consistency measures. A full factorial experimental design has been ap-
plied. The 15 implementations for each of the 5 consistency measures, created
by combining the five cache strategies (including using no cache, 10-tables
and 100-tables) with the three sort methods, are applied with the 4 search
strategies identified below over the 34 data sets described below. This leads
to 10200 feature selection scenarios. In order to obtain more reliable results,
a 10-fold cross validation has been applied in every scenario run. The times
considered are the averages of the ten runs. Only the time taken for feature se-
lection is recorded, discarding previous table loading and splitting times. The
table with all data from these experiments is published in an OSF project:
https://osf.io/zkhnr/.

4.2 Computing environment

The code was written in Python using Orange Data Mining Toolbox (Demšar
et al, 2013). This constitutes a stable and extensively used platform, assuring
that the code and data structures used are well proven and optimized. To
obtain the most accurate results, depending on the algorithm and not on
implementation inefficiencies, our code has been passed through Pylint code
analyzer and several revisions with Python profilers (Lanaro, 2013): cProfile
and line profiler (Kern, 2016). The source code can be provided upon request.

The hardware platform has been a cluster consisting of 8 identical Intel
Xeon E5420 (2.50GHz, 12 MB Cache) nodes, with 8 GB RAM each. Each
execution thread has had its own execution core and no other processes have
been run in those machines during the execution phase in order to reduce
the influence of external factors and keep the execution conditions between
threads as similar as possible .

4.3 Data sets

In this experimentation, we have used diverse data sets —with different num-
bers of classes, examples and features; and different type of features. They
are taken from these public repositories: UCI (Newman and Merz, 1998), ESL
(Hastie et al, 2001) and Org (Demšar et al, 2013). The sample is composed by

https://link.springer.com/article/10.1007/s10618-019-00620-8
https://osf.io/zkhnr/
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Table 3 Data sets used

Dataset Examples Features Type of features Classes
Adult 32561 14 Mixed 2
Anneal 898 38 Mixed 5
Audiology 226 69 Discrete 24
Balance-Scale 625 4 Discrete 3
Breast-cancer 286 9 Mixed 2
Bupa 345 6 Continuous 2
Car 1728 6 Discrete 4
Credit 690 15 Mixed 2
Echocardiogram 131 10 Mixed 2
Horse-colic 368 26 Mixed 2
House-votes84 435 16 Discrete 2
Ionosphere 351 32 Continuous 2
Iris 150 4 Continuous 3
Labor-neg 57 16 Mixed 2
Led24-10000 10000 24 Discrete 10
Lung-Cancer 32 56 Discrete 3
Lymphography 148 18 Discrete 4
Mushrooms 8416 22 Discrete 2
Parity3+3 500 12 Discrete 2
Pima 768 8 Continuous 2
Post-operative 90 8 Mixed 3
Primary-tumor 339 17 Discrete 21
Promoters 106 57 Discrete 2
Saheart 462 9 Mixed 2
Shuttle-landing-control 253 6 Discrete 2
Splice 3190 60 Discrete 3
Tic-tac-toe 958 9 Discrete 2
Vehicle 846 18 Continuous 4
Vowel 90 10 Continuous 11
Wdbc 569 20 Continuous 2
Wine 178 13 Continuous 3
Yeast 1484 8 Continuous 10
Yeast-class-RPR 186 79 Continuous 3
Zoo 101 16 Discrete 7

Table 4 Data set used in the high-dimensionality experiment

Dataset Examples Features Type of features Classes
CNAE-9 1080 857 Discrete 9

34 regular data sets and a high-dimensional data set, used to study the influ-
ence of a large number of features. Their characteristics are listed in Tables 3
and 4:

– Dataset: Data set name.
– Examples: Number of examples (tuples) in the data set.
– Features: Number of features.
– Type of features: they can be: all discrete, all continuous or mixed, if

both types of features appear.
– Classes: Number of classes.

https://link.springer.com/article/10.1007/s10618-019-00620-8
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Consistency measures can only handle discrete features. Although dis-
cretization should be fitted to each data set and learning algorithm, as a
compromise to obtain something which is common for all our experiments, con-
tinuous features have been discretized using six equal width intervals, as this
method has worked well in previous experiments with these data sets (Arauzo-
Azofra et al, 2011).

4.4 Feature selection search algorithm

We have chosen four different well-known search strategies to study the influ-
ence of our proposal in their performance. These are common strategies used
inside many other recent feature subset selection methods, so we think they
are appropriate to cover diversity and generalize the results. For each, we have
chosen a representative algorithm:

– Incremental: the set of selected features starts from the empty set and
then it expands by including features. The algorithm chosen is Sequential
Forward Selection (SFS), introduced by Whitney (1971).

– Decremental: inverse to the incremental one. It starts from the full set of
features and then reduces it by removing features. The algorithm chosen
is Sequential Backward Selection (SBS) (Marill and Green, 1963).

– Probabilistic: it generates random feature sets and keeps the one with
the best score. The algorithm chosen is Las Vegas Filter (LVF) (Atallah
and Fox, 1998).

– Meta-heuristic: uses an heuristic to obtain another heuristic which op-
timizes the search process. The algorithm chosen is Simulated Annealing
(SA), proposed by Kirkpatrick et al (1983).

These search algorithms are combined with the consistency measures de-
scribed in Section 2 to perform FS. The cache implementations of these mea-
sures may have different performance depending on the different search algo-
rithms.

5 Experimental results

This section shows the most relevant experimental results organized by the
hypotheses established in section 4. For each one, the conclusions reached are
explained and justified. At the end, the relative performance of all approaches
is compared and the influence of a large number of features is studied.

H1 Hash tables perform faster than the Sorted tables without cache

The first experiment assesses the implementation of the measures indepen-
dently of the search in which it may be integrated. No cache effect is con-

https://link.springer.com/article/10.1007/s10618-019-00620-8
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sidered yet. Two implementations of measures are compared, one using hash
tables and the other using sorted tables. As the tables will not be reused, the
sorted tables implementation uses the lazy sort method (as there is no future
benefit in sorting by the other features). We have run both implementations
of all measures over a sample of feature sets of all sizes.
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Fig. 4 Average CPU time taken to calculate IE measure over feature sets of every size for
each data set

Fig. 4 shows the CPU time taken for every possible size of feature set by
both implementations of the inconsistent examples (IE) measure, over four
of the largest data sets from Table 3. Hash tables version is faster for small
feature sets while sorted tables version outruns hash tables in large feature sets.
All the other measures have similar results, except for the binary consistency
measure.

The case for the binary consistency measure is shown in figure 5. Although
the tendency is similar, the sorted tables version is not able to outrun hash
tables or, in the case of anneal data set, it needs a higher number of features.

https://link.springer.com/article/10.1007/s10618-019-00620-8


h
t
t
p
s
:
/
/
l
i
n
k
.
s
p
r
i
n
g
e
r
.
c
o
m
/
a
r
t
i
c
l
e
/
1
0
.
1
0
0
7
/
s
1
0
6
1
8
-
0
1
9
-
0
0
6
2
0
-
8

D
R
A
F
T
.
P
le
a
se
,
ci
te

fi
n
a
l
v
er
si
o
n
:

20 Antonio Arauzo-Azofra et al.

The reason behind this is that, as the hash table is populated using the selected
features, it can be stopped when two examples with different classes are found
(an inconsistency is detected and the binary consistency value becomes 0). It
does not need to scan the whole set of examples. However, this is not possible
when sorting, as the features are taken one by one and the rest of the features
may have a different value for the conflicting examples. The other data sets
exhibit similar results.
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Fig. 5 Average CPU time taken to calculate Binary measure over feature sets of every size

As there are situations in which sorted tables perform better, it is inter-
esting to test them inside the search process of FS algorithms. These searches
which evaluate feature sets of whichever sizes are useful in a FS scenario using
real-world data sets. Fig. 6 shows a comparison of both implementations for
all the measures and with all the searches considered.

The CPU time taken by the algorithms is strongly related to the data
set, so the obtained results are not commensurable among data sets. For this

https://link.springer.com/article/10.1007/s10618-019-00620-8
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reason, on each data set, the methods applied are ranked from the best to worst
performance. As a proper aggregate value that allows comparing algorithms,
all the ranking figures (6-12) show the average ranking position for each factor
value among all data sets.

In order to discard the influence of external factors and reinforce our con-
clusions, statistical tests are applied following the methodology recommended
by Demsar (2006). In this way, Wilcoxon test is applied when comparing two
valued factors. Associated with each figure which illustrates the ranking re-
sults, table 5 indicates the Wilcoxon test p-value of every case.

1.0 1.2 1.4 1.6 1.8
Ranking average

BIN

IE

IEP

RSM

INF

Hash
Sorted

Hash
Sorted

Hash
Sorted

Hash
Sorted

Sorted
Hash

(a) Grouped by consistency measure

1.0 1.2 1.4 1.6 1.8
Ranking average

SFS

SBS

LVF

SA

Hash
Sorted

Sorted
Hash

Hash
Sorted

Sorted
Hash

(b) Grouped by search algorithm

Fig. 6 Average ranking of implementations using hash tables and sorted tables without
cache

When grouping by consistency measure (Fig. 6a), for the binary consis-
tency, the hash implementation has been faster in most cases (in around 90%
of the cases, as it can be deduced by the ranking values). The average includes
all data sets combined with all search algorithms. This difference is significant
(see Table 5), so the hypothesis is confirmed in the case of binary consistency.
However, for the rest of measures, sorted tables without cache tend to be faster
(in around 60% of the cases) but the differences are not significant according
to Wilcoxon test.

When grouping by the search algorithm used (Fig. 6b), there are more
significant differences. While there is no significant difference for Simulated
Annealing (SA), the hash implementation is faster for SFS and LVF and the
sorted tables implementation is faster for SBS. The reason for this difference
seems to be that SBS works with larger feature set where, as we have just seen
in figure 4, sorted tables implementation is faster.

At some situations, the use of sorted tables is already faster. This increases
the motivation for the introduction of the cache system, because even a mini-
mal improvement will improve the best performing implementation.

https://link.springer.com/article/10.1007/s10618-019-00620-8
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Table 5
Wilcoxon test p-values for the results illustrated in each figure

Search 6b 7b

SFS 1.3e-09 1.8e-30
SBS 3.9e-11 1.8e-30
LVF 4.2e-08 1.8e-30
SA 0.15 1.8e-30

Measure 6a 7a

BIN 1.3e-16 1.0e-24
IE 0.10 1.0e-24
IEP 0.68 1.0e-24
RSM 0.13 1.0e-24
INF 0.11 1.0e-24

H2 Using cache increases performance

For every combination of search and measures, on each data set, caching just
one table has lead to faster FS. Ranking and significance reach their maximal
values, as shown in Fig. 7 and Table 5, so this hypothesis is clearly confirmed.
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Ranking average
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No cache
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(a) Grouped by consistency measure
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No cache
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(b) Grouped by search algorithm

Fig. 7 Average ranking of implementations not using cache and using one cache table when
using sorted tables

H3 Having more cached tables increases performance

Fig. 8 shows the comparison of three cache sizes (1, 10 and 100). When com-
paring multiple elements, we use the statistical test by Iman and Davenport,
which is stronger than the original Friedman χ2 test (Demsar, 2006). In all
multiple ranking figures (figures 8-12), the null hypothesis (all methods behave
similarly) has been rejected with p-value < 0.01.

Once the null hypothesis is rejected, we focus on finding which ones behave
better by using Nemenyi post-hoc test (non-parametric Tukey). The critical
distance will be calculated according to the equation (20), where k is the
number of factor values and n the number of paired samples. Graphically, a
rectangle is used to represent the critical distance in these figures. For the sake

https://link.springer.com/article/10.1007/s10618-019-00620-8
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Fig. 8 Average ranking of cache strategies

of simplicity, just the rectangle from the first method is represented but all
the differences between any pair of methods whose value is bigger than the
critical distance are significant.

DC = qα,∞,k ·

√

k(k + 1)

12n
(20)

When grouped by consistency measure (Fig. 8a), the pattern is similar
among measures so the result does not seem to depend on the measure used.
We observe that, the larger the cache size, the worst its performance is. We
have also tested with cache sizes of 3 and 5 tables but no conclusions can be
reached with statistical significance. It seems to depend heavily on the data
set. Nevertheless, using just one table is the best performer in most of those
cases.

When grouped by the search algorithm used (Fig. 8b), results are similar
among search methods as well but it can be noted that the differences are
clearer on random path methods than on sequential search methods. In order
to investigate this result in depth, we divided the data sets into two groups
according to the number of features, using the median of the number of features
as threshold. We can observe the results in Figures 9a and 9b.

It can be concluded that in most cases, the cost of using multiple cache
tables outweighs the benefits of increasing the chances of table reuse. So, H3
is rejected.

H4 Level cache strategy is the best cache strategy for sequential algorithms

In figure 10, the combinations of the cache strategies and the sequential algo-
rithms (SFS and SBS) are illustrated separated by the sort method because
there is a dependence on it. Level is the best cache option for both SFS and
SBS, except for the lazy sort, in which SBS in combination with level cache
performs poorly.

https://link.springer.com/article/10.1007/s10618-019-00620-8
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(a) Data sets with 15 or less features
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(b) Data sets with more than 15 features

Fig. 9 Average ranking of cache strategies grouped by search algorithm
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Fig. 10 Average ranking of combinations of search algorithms and cache strategies grouped
by sorting methods

Level cache strategy uses the table from the current set of selected features
(also known as the parent table) to evaluate the candidate sets of measures.
For ascending algorithms such as SFS, this has shown to be a clear advantage
(it only needs to sort the table by the new feature).

On the other hand, for descending algorithms such as SBS, the number of
required sort operations is the number of selected features before the removed
one in the feature order. This seems to work well with basic and smart sort
methods but, as the lazy sort does not keep the tables sorted by many features,
the effort of keeping the tables that the level strategy saves is not compensated
because of the low reuse.

H5 Some sort method performs better than the others

The results are similar when grouped by consistency measure (Fig. 11a) and
search algorithm (Fig. 11b). As expected, both the lazy and smart sort meth-
ods perform better than the basic sort method. The lazy method has been the
fastest in most experiments. This lets us deduce that it is better to save time

https://link.springer.com/article/10.1007/s10618-019-00620-8
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by not sorting the table by unselected features than to increase re-usability by
keeping it fully ordered.
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IEP
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Smart
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(a) Grouped by consistency measure

1.0 1.5 2.0 2.5 3.0
Ranking average

SFS

SBS

LVF

SA

Basic
Smart

Lazy

Basic
Smart

Lazy

Basic
Smart

Lazy

Basic
Smart

Lazy

(b) Grouped by search algorithm

Fig. 11 Average ranking of sorting methods

H6 The best sorted tables cache implementation performs better than the hash

tables

The results of all implementations are shown grouped by consistency measure
(Fig. 12a) and search algorithm (Fig. 12b).

Sorted tables using one cached table and the lazy sort method seem to
be the best implementation, except for SFS in which the lazy sort with level
cache is more effective. Nevertheless, hash tables implementation has been
the slowest in most runs, except for the binary measure, where hash outruns
sorted tables using basic order and cache of 10 tables. Therefore the hypothesis
is confirmed.

5.1 Relative performance of cache implementations

Using a ranking has given statistical soundness but the magnitude of the dif-
ferences has been laid aside. Here, the time taken by the original hash imple-
mentation is set as the reference time for each run. The time taken by the
other implementations is calculated relative to it and then, averaged among
all runs. This relative performance of the implementations is shown in Figures
13-16, one figure for each search method. The results shown belong to the IE
measure implementations. Nevertheless, the figures for IEP, Inf or RSM are
quite similar.

These figures show that the use of any of the cache implementations reduces
more than 50% the time needed for FS. Moreover, the use of the best cache
options for each search escalates the reduction into between 84% and 89%.

https://link.springer.com/article/10.1007/s10618-019-00620-8
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Fig. 12 Comparison of hash and all combinations of sorting methods and cache strategies

In sequential forward search (SFS, figure 13), the best implementation
reduces the time to 89% by using the level strategy and the lazy sort method.
In this case, the level strategy reduces the time relative to the non-level based
strategies to 30%.

In sequential backward search (SBS, figure 14), the same reduction (89%)
is achieved by keeping 10 cached tables with the lazy sort method. In this case,

https://link.springer.com/article/10.1007/s10618-019-00620-8
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Fig. 13 SFS with IE measure feature selection times, relative to the time using hash

No cache LevelOne table 100 tables10 tables

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Hash

1
1
8
.1
5

3
0
.2
9

3
1
.7
6

3
2
.9
7

3
2
.0
1

1
1
2
.8
7

2
8
.3
1

2
9
.2
2

3
1
.9
2

2
8
.8
2

2
2
.9
7

1
0
.5
9

1
4
.0
3

1
0
.5
7

8
3
.9
1

C
P
U

ti
m
e
re
la
ti
v
e
to

H
a
sh

(%
)

Basic Smart Lazy

Fig. 14 SBS with IE measure feature selection times, relative to the time using hash

keeping more tables worsened the results, even doubling the time when using
the level strategy.

In simulated annealing (SA, figure 16) and Las Vegas filter (LVF, figure 15)
the best implementation keeps just one table with the lazy sort. However, while
the level strategy slows the times in SA, in LVF the level strategy achieves
results similar to the best ones.

For the binary consistency measure, the cache strategies and sorting meth-
ods which produce the best results are the same. However, the hash algorithm

https://link.springer.com/article/10.1007/s10618-019-00620-8
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Fig. 15 LVF with IE measure feature selection times, relative to the time using hash
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Fig. 16 SA with IE measure feature selection times, relative to the time using hash

performs better than all cache strategies using smart sort or basic sort in
SFS, LVF and SA. Nevertheless, the reduction achieved with the best cache
in binary consistency consists on 41%, 21% and 68% respectively (SFS, fig-
ure 17, SA and LVF perform similarly). In sequential backward search (SBS,
figure 18), all cache strategies achieve some reduction, being 86% the maxi-
mum achieved.

https://link.springer.com/article/10.1007/s10618-019-00620-8
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Fig. 17 SFS with BIN measure feature selection times, relative to the time using hash
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Fig. 18 SBS with BIN measure feature selection times, relative to the time using hash

5.2 Scaling the cache system to high dimensional datasets

In order to study the influence of a larger number of features, two additional
experiments have been carried out comparing Hash tables and two variants
of sorted tables: lazy sort without cache (No cache) and the best performing
cache, lazy sort with one cache table (1-Lazy), over the CNAE-9 dataset, which
has a higher number of features than the datasets we have used before.

The first experiment consisted in the evaluation of 50 sets of random fea-
tures of every possible size using IE measure (figure 19a).

https://link.springer.com/article/10.1007/s10618-019-00620-8
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Similarly to previous experiments, Hash initially performs better than No

cache but, as the number of features increase, so does its CPU time whereas
No cache barely changes its performance. In 1-Lazy graph, we can see an
initial peak which corresponds to the generation of the first sorted table. As
the first table gets re-used, its CPU time gets reduced as well and it keeps
growing along with the number of features, but within small values.

The second experiment consisted in performing executions of the full fea-
ture selection process using three different search algorithms (LVF, GA and
SA) with the IE measure, and analyzing the time dedicated to feature selection
(figure 19b).

We can observe that Hash performs poorly when compared to No cache and
1-Lazy. Using the profiling tools, we have learned that, on large feature sets,
Hash spends most of the time building the hash table, as it has to calculate
the hash for each element, whereas the creation of the sorted table in No cache

or 1-Lazy was remarkably faster.

Finally, we can conclude that enabling cache strongly speeds up the feature
selection process in high dimensional data sets, even more than in data sets
with less features. In this case, the computation time gets reduced one order of
magnitude. This opens the research question of whether the presented cache
system can be extended for big data sets. Given present results, it seems a
promising idea.
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Fig. 19 Experiments over CNAE dataset, with 856 features
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6 Conclusion

This paper has proposed a novel algorithmic cache storing sorted tables inside
FS algorithms. It enables faster computation of widely used feature set mea-
sures. An empirical study has been conducted to clarify when sorted tables
based on implementations are faster than hash tables for computing consis-
tency measures. From this study, we can conclude that:

– Results vary depending on: the number of features of the data set, the
search algorithm or the consistency measure considered but, when com-
pared to hash tables, the use of the proposed sorted tables cache results in
better performance in most cases.

– As the number of tables stored increases, the benefits of the higher proba-
bility of finding a suitable table to reuse get overcome by the increment of
computational load, so it is recommended to keep the number of cached ta-
bles low. On the other hand, if used with sequential search algorithms, the
probability of reusing tables is higher and the level cache method keeping
up to 100 tables is a better choice.

– As to sorting choice methods, the lazy sort method is, by far, the best
performer. This means that it is better to save time by not sorting the
table by the non-selected features than to spend time sorting it completely
to increase its chances of being reused.

– The sorted table implementation, even without cache, runs faster than hash
tables when the percentage of selected features is high, but it varies for each
data set. It would be interesting to determine the influence of factors like
the number of features, complexity of attributes or number of examples in
order to estimate a threshold value to choose the implementation to run.

For future work, we think that the algorithmic cache idea can be applied
to several other Machine Learning related algorithms. The algorithmic cache
can also be improved by borrowing many ideas from hardware cache systems.
Besides, we feel interest in studying how this proposal can be scaled to dis-
tributed big data sets.
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Arauzo-Azofra A, Aznarte JL, Beńıtez JM (2011) Empirical study of feature
selection methods based on individual feature evaluation for classification
problems. Expert Systems with Applications 38(7):8170 – 8177, DOI http://
dx.doi.org/10.1016/j.eswa.2010.12.160, URL http://www.sciencedirect.

com/science/article/pii/S095741741001523X

Atallah MJ, Fox S (eds) (1998) Algorithms and Theory of Computation Hand-
book, 1st edn. CRC Press, Inc., Boca Raton, FL, USA

Auger N, Nicaud C, Pivoteau C (2015) Merge Strategies: from Merge
Sort to TimSort, URL https://hal-upec-upem.archives-ouvertes.fr/

hal-01212839, working paper or preprint
Bharti KK, Singh PK (2015) Hybrid dimension reduction by integrating fea-
ture selection with feature extraction method for text clustering. Expert
Systems with Applications 42(6):3105–3114

Chen X, Fang T, Huo H, Li D (2011) Graph-based feature selection for object-
oriented classification in vhr airborne imagery. IEEE Transactions on Geo-
science and Remote Sensing 49(1):353–365

Cover TM, Thomas JA (1991) Elements of Information Theory. Wiley-
Interscience, New York, NY, USA

Dash M, Liu H (2003) Consistency-based search in feature selection. Artif
Intell 151(1-2):155–176, DOI 10.1016/S0004-3702(03)00079-1, URL http:

//dx.doi.org/10.1016/S0004-3702(03)00079-1

Demsar J (2006) Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research 7:1–30
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