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Abstract

This paper is a survey of concepts and results related to simple Kol-
mogorov complexity, prefix complexity and resource bounded complexity.
We consider also a new type of complexity - statistical complexity closely
related to mathematical statistics.

Unlike other discoverers of algorithmic complexity A.N.Kolmogorov’s
leading motive was developing on its basis a mathematical theory more
adequately substantiating applications of the probability theory, mathe-
matical statistics and information theory. Kolmogorov wanted to deduce
properties of random object from its complexity characteristics without
use the notion of probability. In the first part of this paper we present
several results in this direction.

Though the following development of algorithmic complexity and ran-
domness was different algorithmic complexity has successful applications
in the traditional probabilistic framework. The second part of the pa-
per is a survey of applications to parameters estimation and definition of
Bernoulli sequences.

All considerations have finite combinatorial character.

1 Introduction

In the 60-s A.N.Kolmogorov [13] (see also [14]) proposed a program of developing
the theory of information and the theory of probability based on the general
theory of algorithms. Under this approach, the principal concept is that of
complexity, or entropy, of finite objects. By means of it Kolmogorov defined
the concept of amount of information in a finite object about another finite
object. The need to define randomness for individual objects was the leading
motive to introduce the notion of complexity. A thorough historical analysis of
Kolmogorov’s ideas is given in [7].
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Independently, R.J.Solomonoff [35] published analogous ideas on the exis-
tence of an optimal, to within an additive constant, way of encoding of finite
objects (but he did not introduced complexity as an original notion). Similar
ideas were published by G.Chaitin [2], [3].

Since that time several surveys and books on related topics were published.
We distinguish [47], [45], [17], [25], [37], [39] and monographs [6], [18], [27].
This paper contains well known results as well as results not covered by these
publications.

The concept of algorithmic entropy, or complexity, is applicable to finite
objects, such as words in a finite alphabet, finite sequences of integer numbers,
etc. The complexity K(x) of a finite object x equals to the length of the shortest
binary program that describes x. This is a principal difference from the concept
of probabilistic entropy

H(ξ) = −
∑
x

p(ξ = x) log p(ξ = x),

which is applicable to “random” objects (random variables) or, equivalently, to
probability distributions in classes of objects. The probabilistic entropy H(ξ)
is the quantity of information sufficient to describe random variable ξ on the
average.

Assertions about probabilities are usually interpreted statistically, so in prac-
tice, the definition of H(ξ) can be used when applied to bulks of objects large
enough for statistical laws to manifest themselves. The need to use concepts
of entropy and mutual information (defined via entropy) in case of individual
objects not considered as realizations of random variables requires theoretical
study of the corresponding concept of entropy - complexity.

Kolmogorov [13], [14] proposed to develop probability theory on the basis of
information theory. This means that the algorithmic complexity is the leading
concept and that laws of probability theory, or asymptotic properties of conver-
gence to special limiting distributions and other probabilistic properties must
hold for individual objects with maximal possible value of their complexity.

By the very essence of this discipline, the foundations of information theory
have a finite combinatorial character [12].

2 Kolmogorov complexity

Kolmogorov [13] proposes to measure the conditional complexity of a finite
object x given a finite object y by the length of the shortest sequence p (a
program for computing x) which consists of 0s and 1s and makes it possible to
reconstruct x given y. Mathematically, this is explicated as

KB(x|y) = min{l(p) | B(p, y) = x},
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where l(p) is the length of the sequence p, B(p, y) is some function, maybe
partial - a way of decoding, for which there is an algorithm computing its values
(we mean also that min ∅ =∞).

This definition of complexity is very natural, but depends on the choice of the
computable function B(p, y), a “mode of description” of finite objects [39]. But
using the idea of universality from the general theory of algorithms Kolmogorov
managed to define the concept of complexity independent of the choice of the
mode of description B(p, y). So, the notion of complexity becomes an intrinsic
property of finite object independent of the ways of its description.

We need some elements of the general theory of algorithms. This theory
is systematically treated in Rogers [32]. We make only some remarks in this
connection. Algorithms are fed with constructive (finite) objects and produce
also constructive objects. A thorough analysis of all these notions is given in
Uspensky and Semenov [38]. We will consider the following sets of constructive
objects – the set Ξ of all finite sequences consisting of 0s and 1s (the empty
sequence ∅ is also considered), the sets Z and N of all integer numbers and all
non-negative integer numbers, respectively, the set Q of all rational numbers
(but not the set of all real numbers). We also will generate additional sets of
constructive objects – sets of all finite subsets of any previously defined set and
Cartesian products of such sets. We will consider constructive real numbers as
follows. A real number θ is called computable if there is an algorithm computing
some its rational approximation r such that |θ− r| < ε given positive rational ε.

As usual, we consider the natural ordering of the set Ξ such that all sequences
of the same length are ordered lexicographically and all sequences of the smaller
length precede to all sequences of greater length. The natural structure of the
set Ξ is determined by the relation x ⊆ y which means that the sequence y
continues the sequence x, sequences x and y are incomparable if x 6⊆ y and
y 6⊆ x. We will consider also a discrete structure on Ξ. When it is convenient
we will identify Ξ and N according to their natural orderings.

If x ∈ Ξ then l(x) is the length of the sequence x, for each 1 ≤ i ≤ l(x)
xi is the i-th bit of x. For any two sequences x = x1 . . . xn and y = y1 . . . ym
we denote xy = x1 . . . xny1 . . . ym the concatenation of x and y. We also define
z = z1z1 . . . znzn for each sequence z = z1 . . . zn of the length n. Let Ξn be the
set of all finite binary sequences of the length n.

We encode the ordered pair of finite binary sequences (x, y) by the sequence
l(x)01xy. Evidently, there is an algorithm computing x and y given the code of
the pair (x, y). So we can identify Ξ× Ξ and Ξ.

The integer part of a number r is denoted as brc, dre is the least integer
number n such that n ≥ r. log r denotes the binary logarithm of r, by ln r we
mean the natural logarithm of r.

There are several explications of the intuitive idea of an algorithm. We will
not need the details of any of them, besides the conventional one (with the
exception of Section 14). Following tradition, we call partial (i.e. not neces-
sary everywhere defined) computable functions partial recursive (in accordance
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with the well-known explication, see [32]). Everywhere defined partial recursive
functions are called recursive functions. A set is called recursively enumerable
if it is the range of some partial recursive function.

The following well-known theorem on the existence of an universal function
is the main distinctive feature of the general theory of algorithms. Let X and
Y be sets of constructive objects. This theorem asserts that there exists a
partial recursive function U(i, x) called universal such that each partial recursive
function f from X to Y can be represented as f(x) = U(i, x) for some i. The
proof is based on the possibility to arrange all programs (which are words in some
finite alphabet; the meaningless words are considered as programs of everywhere
undefined functions) like elements of Ξ. Then the algorithm computing U(i, x)
goes to the program with ordinal number i (for convenience we can identify
the program and its ordinal number) and apply this program to input x by
simulating the work of this program on x. The explicit construction is based on
a specific formalization of the concept of algorithms, see [38].

Kolmogorov’s definition of complexity is based on the invariance property,
which says that the notion of algorithmic complexity can be made independent
of the choice of the mode of description.

Theorem 1 There exists a partial recursive optimal function A(p, y) such that
for each partial recursive function B(p, y) a positive integer constant c exists
such that inequality

KA(x|y) ≤ KB(x|y) + c

holds.

Proof. As follows from the universality of U(i, x, y), for each partial recursive
function B(p, y) there exists a program q such that B(p, y) = U(q, p, y) (recall,
that we identify Ξ and N then it is convenient). We can define the mode of
description A(u, y) such that for any p,q,y

A(l(q)01qp, y) = U(q, p, y).

Then KA(x|y) ≤ KB(x|y) + l(q) + 2 log l(q) + 2 for all x. This means that
KA(x|y) ≤ KB(x|y) + c for any partial recursive function B. 2

The code l(q)01qp is similar to a self-extracting archive. The algorithm A
when fed with a complex code l(q)01qp simulates the work of a program q (of
the algorithm B) on its inputs p and y.

In the sequel f(x1, . . . , xn) ≤+ g(x1, . . . , xn) will mean that there exists a
non-negative constant c such that

f(x1, . . . , xn) ≤ g(x1, . . . , xn) + c

for all x1, . . . , xn. If f(x1, . . . , xn) ≤+ g(x1, . . . , xn) and g(x1, . . . , xn) ≤+

f(x1, . . . , xn) we write f(x1, . . . , xn) =+ g(x1, . . . , xn).
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Analogously f(x1, . . . , xn) ≤· g(x1, . . . , xn) means that there exists a pos-
itive constant c such that f(x1, . . . , xn) ≤ cg(x1, . . . , xn) for all x1, . . . , xn.
f(x1, . . . , xn) =· g(x1, . . . , xn) means that f(x1, . . . , xn) ≤· g(x1, . . . , xn) and
f(x1, . . . , xn) ≥· g(x1, . . . , xn). In particular, f(x1, . . . , xn) ≤· 1 means that
there is a positive constant c such that f(x1, . . . , xn) ≤· c for all x1, . . . , xn.

Any function A(p, y) satisfying this Theorem is called optimal (mode of de-
scription). As follows from this theorem KA(x|y) =+ KB(x|y) for any two
optimal functions A and B. Hence, the complexity of finite object x does not
depend in any way of the decoding of finite objects up to additive constant.
This is an intrinsic property of x.

Let us fix some optimal function A(p, y) and denote by K(x|y) the corre-
sponding complexity function KA(x, y). We call it the conditional complexity of
x. The function K(x) = K(x|∅) is called (unconditional) complexity of x.

We have K(x) ≤+ l(x), since we can consider the mode of description
F (x, y) = x. Obviously,

K(x) ≤+ KF (x|∅) = l(x).

By definition the complexity of an object α = α1 . . . αn having some regularity
may be essentially less than its length. For instance,

K(α1 . . . αn) ≤+ log n and K(α1 . . . αn|n) ≤+ 0

if there is an algorithm computing i-th bit of α given i.
Comparing the modes of description we obtain K(x|y) ≤+ K(x). On the

other hand, we have

K(x) ≤+ K(x|y) +K(y) + 2 logK(y),

since we can define a partial recursive function B such that

B(l(q)01qp, ∅) = A(p, q) = x,

where A is the optimal mode of description, p is the shortest program for com-
puting x given y, and q is the shortest program for computing y. From this it
follows that

K(x) ≤+ KB(x|∅) ≤+ l(p)+l(q)+2 log l(q)+2 = K(x|y)+K(y)+2 logK(y)+2.

This inequality implies

K(x) ≤+ K(x|n) + log n+ 2 log log n

for each x ∈ Ξn. For any recursive function ψ(x) we have

K(ψ(x)) ≤+ K(x),
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since we can consider the function B(p, y) = ψ(A(p, y)) as a mode of description,
where A is the optimal function.

Comparing modes of description we obtain

K(x|y) ≤+ K(x|ψ(y)) (1)

for any recursive function ψ(y). Indeed, a function B(p, y) = A(p, ψ(y)) defines
the needed mode of description.

As follows from the definition, the complexity function K(x) is unbounded,
i.e. lim inf

n→∞
K(n) = ∞. The function K(x) is not computable. Moreover (see

[47]),

Theorem 2 There is no unbounded computable function ψ(n) such that
K(n) ≥ ψ(n) for all n.

Proof. Suppose that the contrary statement holds. Since ψ(n) is unbounded,
the function t(m) = min{n | ψ(n) ≥ m} is also computable. By definition of t
we have K(t(m)) ≥ ψ(t(m)) ≥ m. On the other hand, K(t(m)) ≤+ K(m). We
have also, K(m) ≤+ l(m) =+ logm. Hence, m ≤ logm+ c for all m, where c is
some constant. This contradiction proves the statement. 2

Nevertheless, K(x) possesses the property of enumerability from above. As
follows from the definition, the set of all pairs (m,x), such that m > K(x) (or
m ≥ K(x)) and m is an integer number, is recursively enumerable. In other
words, if m > K(x) (or m ≥ K(x)) this fact will sooner or later be learned,
whereas, if m < K(x) we may be for ever uncertain.

Kolmogorov’s following theorem [15] shows that Shannon’s entropy is a com-
putable upper bound for algorithmic complexity K(x).

Let a binary sequence x = x(1)x(2) . . . x(n) be divided in n blocks x(i) of
equal length m. Let pk be the frequency of occurrence in x of the block with
ordinal number k (under the lexicographical ordering of all binary sequences of
the length m), k = 1, 2, . . . , 2m.

Let Dn
p1,p2,...p2m

be a set of all sequences y of the length nm such that any
block of the length m with an ordinal number k occurs in y with the frequency
pk, where k = 1, 2, . . . 2m.

The Shannon entropy of a random block of the length m is defined as

H = −
2m∑
k=1

pk log pk.

Theorem 3 For any sequence x ∈ Dn
p1,p2,...p2m

K(x) ≤ n

(
−

2m∑
k=1

pk log pk + α(n)

)

holds, where α(n) = C(m) logn
n .
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Proof. Let x have an ordinal number t among all elements of the set
Dn
p1,p2,...p2m

. The total number of occurrences in x of a block with ordinal
number k is sk = pkn. We have

∑2m

k=1 sk = n. Then

K(x) ≤+ K(x|Dn
p1,p2,...p2m

) +
K(Dn

p1,p2,...p2m
) + 2 logK(Dn

p1,p2,...p2m
) ≤+

l(t) + 2(log s1 + . . .+ log s2m).

By definition sk ≤ n for each k. The number t cannot exceed the total number
of elements of Dn

p1,p2,...p2m
, which is equal to

(
n

s1...s2m

)
.

By Stirling’s formula n! =
√

2πn(ne )ne
θn
12n , where |θn| ≤ 1, we obtain

K(x) ≤+ nH + 2m+1(log n+ c),

where c is a constant. 2

In the particular case, when the length m of the block is equal to 1 and k is
the total number of 1s in x of the length n, we have

K(x|n, k) ≤+ log
(
n

k

)
=+ nH(

k

n
)− 1

2
log

k(n− k)
n

,

where H(p) = −p log p− (1− p) log(1− p).
As will be noted in Section 4 K(x) ≥ n(−

∑2m

k=1 pk log pk +α(n))− r− 1 for
a portion (1− 2−r) of all sequences x ∈ Dn

p1,p2,...p2m
, see (8).

3 Information, I

Using the concept of algorithmic complexity K(x|y) Kolmogorov [13], [14] de-
fined the amount of information in a sequence y about a sequence x analogously
to the probabilistic notion

I(ξ : θ) = H(θ)−H(θ|ξ),

namely,
I(y : x) = K(x)−K(x|y).

The value K(x) can be interpreted as the amount of information needed to
produce x, and K(x|y) can be interpreted as the amount of information which
must be added to y to produce x. So we interpret the difference between these
two quantities as the amount of information in y about x.

By definition I(x : y) ≥+ 0, I(y : x) ≤+ K(x) and I(x : x) =+ K(x).
In contrast to the probabilistic concept, function I(x : y) is not commutative,

even up to an additive constant. To show this we reproduce here an example
from [47]. For each m we can find x of length m such that K(x|m) ≥ m.
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Indeed, if such x does not exist then for each y of length m there exists p
such that A(p,m) = y and l(p) < m. The number of such p is ≤ 2m − 1.
This is in contradiction with the fact that the total number of sequences of
length m is equal to 2m. Analogously, there exist arbitrarily large m such that
K(m) ≥ l(m). It is easy to see that K(l(z)|z) ≤+ 0. For any such m and any
x of length m such that K(x|m) ≥ m we obtain

I(x : m) = K(m)−K(m|x) ≥+ l(m), (2)

and
I(m : x) = K(x)−K(x|m) ≤+ l(x)−m = 0. (3)

The function I(y : x) is commutative up to the logarithm of K(x, y).
It is proved in [47] that

|I(y : x)− (K(x) +K(y)−K(x, y))| = O(logK(x, y)).

From this it follows

|I(y : x)− I(x : y)| = O(logK(x, y)).

By this reason I(y : x) is called the mutual information of y and x.
These inequalities are analogous to the equalities

I(ξ : θ) = I(θ : ξ)

and
I(ξ : θ) = H(ξ) +H(θ)−H(ξ, θ),

which hold for the probabilistic mutual information and entropy.
We will prove analogous properties for a slightly different notion of the

amount of information considered in Section 6.
The following natural problem was considered by Gács and Körner [9]: can

we materialize the mutual information I(y : x)? More correctly, we shall say
that z represents some common information of x and y if K(z|x) ≈ 0 and
K(z|y) ≈ 0, where by ≈ we mean equality up to an additive term O(K(z, x)),
O(K(z, y)) or O(K(x, y, z)). In this case

I(x : z) ≈ K(z) (4)

and
I(y : z) ≈ K(z). (5)

Then the question was whether

K(z) ≈ I(x : y) (6)
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for some common information z of x and y? In [9] a negative answer was
obtained using probabilistic methods. An. Muchnik [29] obtained a complexity-
theoretic proof of the result of Gács and Körner and gave its generalization. We
present the corresponding result without proof.

We call a pair (x, y) bad if there is no z satisfying (4)-(6). The following
theorem shows that there are bad (x, y) with arbitrary large K(x), K(y) and
arbitrary ratios I(x : y)/K(y), I(x : y)/K(x) belonging to the interval (0, 1).

Theorem 4 Let 0 ≤ α, β ≤ 1 and 0 < γ < α, β. Then for all sufficiently large
j there is a bad pair (xj , yj) such that K(xj) =+ αj, K(yj) =+ βj,
|I(xj : yj)− γj| ≤+ 14 log j.

4 Randomness of finite objects

Kolmogorov wanted to use algorithmic complexity to eliminate the need for a
direct interpretation of probabilities. He proposed the notion of randomness
of an element x with respect to a finite set D containing it. Given D we can
effectively generate all its elements. The corresponding ordinal number under
this generation can serve as a code of any x ∈ D. Therefore, we need ≤ dlog #De
bits to encode any x ∈ D, where #D is the number of elements of D. Then by
definition,

K(x|D) ≤+ log #D. (7)

Let the optimal function A(p,D) define the conditional complexity K(x|D).
Then the total number of x ∈ D for which we can find p such that l(p) <
dlog #De −m − 1 and A(p,D) = x, does not exceed the total number of all p
such that l(p) < log #D−m, i.e. 2−m#D− 1. The portion of such x in D does
not exceed

2−m#D − 1
#D

< 2−m. (8)

In other words, for each m there are at least (1− 2−m)#D sequences x ∈ D
for which K(x|D) ≥ log #D−m−1. This property is called the incompressibility
property.

The inequalities (7) and (8) show that for most elements of D the complexity
K(x|D) is close to log #D. Kolmogorov’s idea is that randomness of a finite
sequence x ∈ D manifests itself in the absence of regularities in x, which can be
interpreted as the absence of a description of x much shorter than the description
of a “typical” element of D. Of course, for finite sequences the concept of
randomness is relative. The degree of randomness of x ∈ D can be measured
by the value

d(x|D) = log #D −K(x|D).
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We call this value the deficiency of randomness of a finite object (binary se-
quence) x with respect to a finite set D [17].

Kolmogorov [15] wrote that finite binary sequences with sufficiently small
deficiency of randomness with respect to D = Ξn must possess the property of
stability of the frequency of 1s in their subsequences. We present a theorem of
Asarin [1] realizing this hypothesis.

It is naturally to consider subsequences of a finite sequence selected by com-
putable selection rules. A selection rule R is three partial recursive functions f , g
and h on Ξ defined as follows ([12] and [37], Section 6.1). Let x = x1 . . . xn. The
process of selection starts with empty sequence ∅. The function f makes choice
of the following element: f(∅) = i1 and if elements xi1 , . . . , xik are formed we
compute the index of the following examined element f(xi1 . . . xik) = i, where
i 6∈ {i1, . . . , ik} (notice, that maybe i < ij , 1 ≤ j ≤ k). The two-valued func-
tion g selects this element xi in the subsequence as the next element if and
only if g(xi1 . . . xik) = 1. The two-valued function h decides when this process
must be terminated. The selection process terminates if h(xi1 . . . xik) = 1 or
f(xi1 . . . xik) > n. Let R[x] denote the selected subsequence.

If in the process of selection one of these functions will be undefined then
selected subsequence is also undefined. We put R[x] = ∅ in this case.

By K(R|n) we mean the length of the shortest program computing values
of f , g and h given n. Let d(x|n) = n−K(x|n).

Theorem 5 For each ε > 0 a positive integer number N and 0 < µ < 1 exist
such that for each n and x ∈ Ξn, and selection rule R, such that the selection

process terminates on x, l(R[x]) = n1,
n1∑
i=1

R[x]i = m and

n1 > N, d(x|n) +K(R|n) + 2 logK(R|n) < µn1, (9)

the following inequality holds∣∣∣∣mn1
− 1

2

∣∣∣∣ < (d(x|n) +K(R|n) + 2 logK(R|n) + (3 + ε) log n1

2n1(1− ε) log e

) 1
2

. (10)

The proof of this theorem is given in Section 15.1.
As follows from the proof of Theorem 3 K(x|n, k) ≤+ log

(
n
k

)
, where n is the

length of x and k is the total number of 1s in x. Kolmogorov mentioned that
the property of stability of frequencies in subsequences must hold also for any
finite m-Bernoulli sequence x, i.e. such that K(x|n, k) ≥+ log

(
n
k

)
−m [15].

In [1] a class of finite sets has been defined such that each x from a set of
this class has probabilistic properties of normal distribution.

This approach has no essential development (with the exception [26], [27],
Section 2.6). But Dawid’s and Vovk’s prequential (martingale or game theoretic)
approach to probability theory it should be noted which does not use algorithms
but arose on ideas of algorithmic approach [41], [8].
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5 Non-stochastic finite sequences

Let α and β be non-negative integer numbers. By Kolmogorov a finite binary
sequence x of the length n is called (α, β)-stochastic if there is a finite set D
such that x ∈ D, K(D|n) ≤ α and

K(x|n,D) ≥ log #D − β.

(A difference with [34] and Section 4 is that n is assumed to be given in advance,
i.e. all complexities are conditional with respect to n.) This means that in the
case, where α and β are sufficiently small, x is an element of the “general
position” of a “simple” set D. Such elements can be interpreted as the objects
appearing as results of random experiments.

The following Shen’s [34] theorem is a part of the answer for a correspond-
ing problem posed by Kolmogorov in 1982 at Seminar in the Moscow State
University. It shows that “absolutely non-random” objects exist.

Theorem 6 For any positive α and β satisfying

2α+ 2 logα+ β ≤ n− c,

where c is some positive constant, there exists a finite binary sequence x of length
n which is not (α, β)-stochastic.

Proof. For any n let D1, . . . Ds be all finite sets D consisting of finite binary
sequences such that K(D|n) ≤ α and #D ≤ 2n−α−1. To compute the list of all
such sets we can fix n, α and the program p, l(p) ≤ α such that the computation
of A(p, n) = Di requires the maximal number of steps among such computations
for all D1, . . . Ds. By definition s < 2α+1. Then #

⋃s
i=1Di < 2α+12n−α−1 = 2n

and there exists x 6∈
⋃s
i=1Di of length n. To encode the minimal such x we

need n, α and the list of all D as above. Hence, K(x|n, α) ≤+ α and

K(x|n) ≤+ α+ 2 logα. (11)

Suppose that x is (α, β)-stochastic. Then there exists a finite D such that
K(D|n) ≤ α, K(x|n,D) ≥ log #D−β and x ∈ D. By definition #D > 2n−α−1,
and so, K(x|n,D) > n − α − 1 − β. Combining this inequality with (11) and
K(x|n,D) ≤+ K(x) we obtain β+2α+2 logα > n−c for some positive constant
c. Now the assertion of the theorem follows immediately. 2

As noted in [7], Kolmogorov proposed in 1973 at Information Theory Sym-
posium, Tallin, Estonia a variant of the function

βx(α) = min
x∈D,K(D|n)≤α

d(x|n,D),

where n is the length of x and d(x|n,D) = log #D−K(x|n,D) is a conditional
variant of the deficiency of randomness.

11



The function βx(α) characterizes stochastic properties of a finite object x.
(A difference with [7] is that n is assumed to be given in advance.)

For any x the function βx(α) is non-increasing and βx(α) ≥+ 0. It repre-
sents the tradeoff between the size of the explanation of x and its value. If x
of the length n is some sequence of experimental results, then the set D can be
considered to be extraction of all features in x that point to non-random regular-
ities. Let k0 be some non-negative integer number. At the minimal point k∗(x)
where βx(k∗(x)) ≤ k0, we can say that it is useless to explain x in greater detail
than by giving D such that d(x|n,D) = βx(k∗(x)) and K(D|n) = k∗(x), see
[7], Section 3. Evidently, k∗(x) ≤ K({x}|n) =+ K(x|n) (since we can consider
D = {x}).

The set D plays the role of a “universal minimal sufficient statistics’ for x
and can be considered as an analog of the corresponding concept in statistics
[7], [27]. The set D defined above is such that x is conditionally maximally
random given D, that is, K(x|n,D) ≥ log #D − k0.

For any sequence x we evidently have βx(α) ≤+ l(x) for each α. A more
refined estimate is

βx(α) ≤ n− α+ c

for all positive α ≤ n, where n = l(x) and c is a non-negative constant. To
prove this inequality we divide the set of all binary sequences of length n into
2α equal parts, each of 2n−α elements. The conditional complexity of the part
D containing x is K(D|n) ≤+ α and d(x|D,n) = n− α−K(x|n,D) ≤+ n− α.

Usually in statistics, given a data x and a critical value β of a test we try to
find a simple model D explaining x, i.e. such that x ∈ D and d(x|n,D) ≤ β.

Kolmogorov asked whether for any non-increasing function f(k) there are
objects x for which βx(k) is close to f(k), and whether there are “absolutely
non-random” strings x, for which k∗(x) is close to K(x), see [7].

As follows from the proof of Theorem 6 for any positive α, such that 2α +
2 logα < n − k0 − c, there exists an x such that K(x|n) ≤+ α + 2 logα and
βx(α) ≥ n− 2α− 2 logα− c > k0. From this it follows that k∗(x) ≥ α, and so,

k∗(x)− c ≤ K(x|n) ≤ k∗(x) + 2 log k∗(x) + c,

for some non-negative constant c. We have also d(x|n, {x}) ≤ 0. Hence, βx(α+
2 logα) ≤ 0 and α ≤ k∗(x) ≤ α+ 2 logα.

For any finite set J of parameters we define

βx(α|J) = min
x∈D,K(D|J)≤α

d(x|J,D),

where d(x|J,D) = log #D −K(x|J,D).
The following result in slightly different form at first time was obtained by

Levin and discussed with Kolmogorov in the seventies. Levin never published
his proof (Levin’s (1998) personal communication). Independently, the function
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βx(α) was considered later by V’yugin [44] and the corresponding result was
obtained.

We present the general description of all possible forms of the function βx(α).
We prove that for any finite simple function f(α) (i.e. function, whose domain
is a union of finite number of intervals, and the function is constant on each of
them) there is a finite binary sequence x such that βx(α) is close to f(α).

Theorem 7 For any finite sequence of positive integer numbers

J = (n, α1, . . . , αk, β1 . . . , βk),

such that k ≥ 1,
c1 ≤ α1 < . . . < αk

and
n > β1 > . . . > βk,

there exists a binary sequence x of the length n such that for 1 ≤ j ≤ k+ 1 and
all α satisfying the inequality

αj−1 + 2 log j + c2 ≤ α ≤ αj

the following estimate holds

βj − 7αk − k log k − c3 ≤ βx(α|J) ≤ βj + j,

where we put α0 = 0, αk+1 =∞, βk+1 = 0, c1, c2, c3 are positive constants.

The proof of this theorem is given in Section 15.2.
We can learn the asymptotic behaviour of βx(α), l(x) = n, in the rectangle

0 ≤ α ≤ α(n) and 0 ≤ β ≤ β(n) in the case where α(n) = o(β(n)) as n tends to
infinity.

Let ν(n) and µ(n) be two non-negative non-decreasing unbounded integer-
valued functions such that µ(n) < n for all n and ν(n) = o(µ(n)) as n tends to
infinity. Then we can consider the family of “normed” functions

fx(t) =
βx(ν(n)t+ c)

µ(n)
,

where n = l(x), c is a positive constant and 0 ≤ t ≤ 1.
We consider a space L∞ = L∞([0, 1]) with a norm ||f || = max

x∈[0,1]
|f(x)|.

Then from Theorem 7 it follows
Corollary 1. Each non-increasing function whose graph is in the unit square

is a limit point in metrics L∞ of the family functions {fx}, where x ∈ Ξ.
The interesting case in statistics is ν(n) = c blog nc for arbitrary positive

rational number c.
Notice, that Theorem 7 cannot explain the situation in the case where ν(n) =

o(µ(n)) does not hold.

13



6 Prefix complexity

In this section we consider a special type of complexity based on some specific
way of encoding of finite objects. This complexity was introduced at first time
by Levin in the beginning of the seventies (first publication was later in [22], see
also [10], [23]), and by Chaitin [4], [5]. This definition involves a prefix encoding
of all finite binary sequences, i.e. the decoding functions are required to respect
the discrete structure of the set Ξ.

A partial recursive function B(p, y) is called prefix with respect to the first
argument if it satisfies the following condition: B(p, y) = B(p′, y) if p ⊆ p′ and
(p, y), (p′, y) are in the domain of B. The second argument y is a parameter.
Such a function defines complexity

KPB(x|y) = min {l(p)|B(p, y) = x} .

The invariance property also takes place. The following theorem on the existence
of an optimal prefix function holds.

Theorem 8 There exists an optimal partial recursive prefix function A(p, y)
such that for each partial recursive prefix function B(p, y) the inequality

KPA(x|y) ≤+ KPB(x|y)

holds.

The proof of this theorem is given in Section 15.3.
Any two optimal prefix complexities are equal up to an additive constant.

As usual, we fix any such optimal A and denote KP (x|y) = KPA(x|y).
The connection between simple Kolmogorov complexity K(x) and prefix

complexity KP (x) is given by the following inequalities:

K(x) ≤+ KP (x) ≤+ K(x) + logK(x) + 2 log logK(x). (12)

The first inequality follows from comparison of the definitions of K(x) and
KP (x). To prove the second inequality it is sufficient to improve the way of
encoding generating K(x) to be prefix. Let A(p, ∅) = x, where A(p, y) defines
complexity K(x|y). Then it is easy to reconstruct this function to a computable
function B(q), which on code l(l(p))01l(p)p computes x. The last way of coding
is prefix. From this the right-hand side inequality (12) follows.

7 Algorithmic probability and prefix complexity

Prefix complexity can be also described in terms of probability distributions
enumerable from below in the set Ξ with discrete structure.

R.J.Solomonoff [35] proposed the thoughtful philosophical ideas on defining
of the a priory probability distribution on the basis of the general theory of
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algorithms. A procedure of optimal inductive inference can be constructed using
this distribution.

We briefly describe these ideas as follows. Let us attribute to any sequence
x the probability M(x) = L{p | U(p) = x} that an universal computer U will
print out x when fed a random program p. Here L(p) = 2−l(p) is the uniform
probability of a finite binary sequence p.

According to general conception, such a priory probability distribution M(x)
must be in some sense maximal among analogous probability distributions.
Solomonoff [35] defined the shortest description of x as the shortest string p
such that U(p) = x. Then the probability M(x) will be approximately 2−l(p)

(see Section 8).
More correctly, M(x) is not a probability distribution because

∑
2−l(p) di-

verges, which Solomonoff did notice. Solomonoff did not have the tool of prefix
less algorithms but he tried to correct the problem in other ways. Probably
it is impossible to combine the two features he insisted on: the normalization
of measures and optimality [36]. However the intuitive concept was clear and
important.

Levin gives a precise form of these ideas in [47] in a concept of the maximal
semimeasure enumerable from below. We give an exposition for set Ξ with
discrete structure and prefix machine U .

Let P (x|y) be a function defined on the set Ξ × Ξ and taking non-negative
real values. We will consider the second argument y as parameter. A function
P (x|y) is called enumerable from below if the set{

(r, x, y) | r < P (x|y), r is rational
}

is recursively enumerable. A function P (x|y) is called (conditional) semimeasure
if ∑

x

P (x|y) ≤ 1

for each y.
Levin’s theorem on the existence of a maximal (up to a multiplicative con-

stant) factor semimeasure enumerable from below also holds.

Theorem 9 There exists a semimeasure P enumerable from below such that
for each semimeasure Q enumerable from below a positive constant c exists such
that the inequality

cP (x|y) ≥ Q(x|y)

holds for all x and y.

The proof of this theorem is given in Section 15.4.
Choose some semimeasure P enumerable from below satisfying Theorem

9. We will call it a priory probability in the set Ξ. For any other maximal
semimeasure P ′ enumerable from below we have P (x) =· P ′(x).
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The following Levin’s [23] theorem shows that prefix entropy and the a priory
probability are closely connected.

Theorem 10 KP (x|y) =+ − logP (x|y).

Proof. For simplicity we omit parameter y. If x 6= y then KP (x) and KP (y)
are lengths of two incomparable finite sequences. This implies Kraft inequality
[27] (Section 1.11.2) ∑

x

2−KP (x) ≤ 1.

The function Q(x) = 2−KP (x) is enumerable from below, and so we have

cP (x) ≥ 2−KP (x)

for some positive constant c. Therefore,

− logP (x) ≤+ KP (x).

.
To prove the converse inequality we will define a prefix function B such that

KPB(x) ≤+ − logP (x). We will use the fact that P is enumerable from below.
Let us enumerate without repetition all pairs (m, y) of m ∈ N and y ∈ Ξ such
that 2−m < 1

2P (y). Let (mk, yk) be the k-th pair under this enumeration. Then
we have ∑

k

2−mk =
∑
y

∑
yk=y

2−mk ≤
∑
y

2−s(y)+1 ≤
∑
y

P (y) ≤ 1,

where
s(y) = min{mk | yk = y}.

By definition,
1
4
P (y) ≤ 2−s(y) <

1
2
P (y).

We will use well known extension of Kraft inequality condition for the existence
of an instantaneous code

Lemma 1 Let l1, l2, . . . be recursively enumerable sequence of positive integer
numbers such that

∑
2−lk ≤ 1. Then there exists a recursively enumerable

sequence of pairwise incomparable binary sequences x1, x2, . . . such that l(xk) =
lk for all k.

Notice, that analogous assertion also holds for finite sequence l1, l2, . . ..
The proof of this lemma is given in Section 15.5.
Lemma 1 can be found in [4], where its proof is attributed to N.J.Pippenger.
(The situation in the case of finite sequence l1, l2, . . . is much simpler: the

proof can be based on the well known construction of the Shannon – Fano (or
Huffman) codes [27], Section 1.11.)
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We will also use the relativized variant of Lemma 1, in which the sequence
l1, l2, . . . is replaced with ln,1, ln,2, . . ., where n is a parameter. The resulted
sequence xn,1, xn,2, . . . will also effectively depend on parameter n.

By Lemma 1 for l1 = m1, l2 = m2 . . . there exists a recursively enumerable
sequence of pairwise incomparable sequences x1, x2, . . . such that l(xk) = mk for
all k. Now we can define partial recursive prefix function B such that B(xk) = yk
for all k and B(x) is undefined for all other x. Then

KPB(y) = min{mk | yk = y} = s(y).

The above bound for 2−s(y) can be rewritten as

− logP (y) + 1 < s(y) ≤ − logP (y) + 2.

Then
KP (y) ≤+ KPB(y) =+ − logP (y).

2

Now we can show that the average code-word KP (x|n) is equal to the Shan-
non entropy of the corresponding probability distribution [19] and [7].

For any n let Qn be a computable probability distribution in Ξn. The
computability means that there is an algorithm computing Qn(x) given n and
a finite sequence x ∈ Ξn with arbitrary degree of accuracy.

The mathematical expectation of a real function f(x) on Ξn with respect to
a measure Qn is defined as

EnQn(f(x)) =
∑
l(x)=n

f(x)Qn(x).

The Shannon entropy H(Qn) of probability distribution Qn is defined as

H(Qn) = EnQn(− logQn(x)) = −
∑
l(x)=n

Qn(x) logQn(x).

Theorem 11 For any computable measure Qn in Ξn it holds

EnQn(KP (x|n)) =+ H(Qn).

Proof. Since KP (x|n) satisfies
∑

l(x)=n

2−KP (x|n) ≤ 1 the left half of the

inequality holds
H(Qn) ≤ EnQn(KP (x|n)).

To prove the right half of the inequality define Q(x|n) = Qn(x) if l(x) = n, and
Q(x|n) = 0, otherwise. By definition,

∑
x
Q(x|n) = 1 for each n. Then we have
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P (x|n) ≥· Q(x|n), where P (x|n) is the a priory probability. From this it follows
that

H(Qn) = −
∑

l(x)=n

Qn(x) logQn(x) ≥+ −
∑

l(x)=n

Qn(x) logP (x|n) =+

∑
l(x)=n

Qn(x)KP (x|n) = EnQn(KP (x|n)).

2

8 Computational model

A set consisting of finite binary sequences is called prefix-free if each two se-
quences from it are pairwise incomparable. Notice, that the function B from
the second part of the proof of Theorem 10 has a prefix-free domain. This
shows that we can define prefix complexity starting from a narrower class of
prefix functions, viz, from the functions whose domains are prefix-free. As in
Theorem 8 it can be proved that among such functions there is an optimal one.
The proof of the second part of Theorem 10 shows that KP ′(x) ≤+ KP (x),
where KP ′ is the complexity defined in this way. The converse inequality follows
from the definition of KP (x). Hence, we have

KP ′(x) =+ KP (x).

The type of encoding used in the definition of KP ′(x) is well known in the
classical theory of information. This unique decodable code is called Huffman
code or prefix-code [27] (Sections 1.4, 1.11).

There is a convenient computational model, viz, a special class of multitape
Turing machines such that KP ′(x) is equal to the length of the shortest program
from which an optimal machine in this class can calculate x. Any machine of
this class has three tapes: on the first tape the program is written (any symbol
of the end of program do not used), the second is the work tape, and on the
third tape the result is printed. The heads of the first and the third tapes can
move only to the right. The initial position of the first head is on the leftmost
symbol of the program. The peculiar feature of a machine in this class is that
if this machine finishes a computation and prints out the result, the head of
the first tape (moving only rightward during the computation) never intersects
the right bound of the program. In other words, the machine does not use any
special mark for the end of the program and decides itself when to stop reading
the program. Any program for machine of this class is also called self-delimiting
program. Additional input tapes may be used when we consider conditional
prefix complexity. These tapes have no restriction on reading information.

It is easy to see that each function computable on such machine is a func-
tion with prefix-free domain and each partial recursive function with prefix-free
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domain can be computed on such machine. To prove the last assertion, sup-
pose that a function B(p) with prefix-free domain is computed on some Turing
machine T . We proceed in stages. At each stage we use some initial segment
p1 . . . pi of the argument p (we start with empty sequence ∅ on the first stage)
and simulate on the work tape all computations of machine T for all q, where
p1 . . . pi ⊆ q, until one of these computations will terminate. Such terminated
computation exists since B(p) is defined. If p1 . . . pi = q then the process is
finished, p = q and T (q) = B(p) is a result. Otherwise, we replace p1 . . . pi on
p1 . . . pipi+1 and go to the next stage. Evidently, such computation terminates
when p1 . . . pi = p for i = l(p) (the detailed algorithm is given in [27], Section
3.1). So the defined machine does not use any right bound on the program p.

Now, we can make more precise informal considerations to the beginning of
Section 7.

Theorem 12 Let F be an optimal machine with prefix-free domain defining
complexity KP (x). Then the probability that F will output x when fed with an
uniformly distributed program p is 2−KP (x) up to a multiplicative constant.

Proof. This probability is

M(x) = L{p | F (p) = x} =
∑

F (p)=x

2−l(p).

We have M(x) ≤· P (x) =· 2−KP (x) since M(x) is the semimeasure enumerable
from below . Evidently, M(x) ≥ 2−KP (x). 2

Notice, that this theorem also holds for an arbitrary machine defining prefix
function F (we could take the sum in the proof only for all shortest p such that
F (p) = x).

From this theorem and estimates below it will follow

M(x) ≥· 1
n log n log log2 n

,

where n = l(x).

9 Inequalities for prefix complexity

There are very convenient inequalities for the prefix complexity. In this section
we shall prove the most widely used of them.

To illustrate using of the model from the previous section, we prove an
inequality [23]

KP (φ(x, y)) ≤+ KP (x) +KP (y),

where φ(x, y) is an arbitrary recursive function (for instance, some effective
enumeration of all pairs (x, y)). Let B be an optimal machine with prefix-free
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domain, p be the shortest program for x, q be the shortest program for y.
Then we describe a machine with prefix-free domain which, when applied to the
program pq, acts as follows. First it simulates the work of B on pq. By the
choice of p, machine B outputs B(p); moreover, the head of its input tape stops
over the last symbol of p and thus indicates the first symbol of q. After that
our machine simulates the work of B on q, and computes and prints out φ(x, y)
on the output tape. We have

KP (φ(x, y)) ≤+ l(pq) = l(p) + l(q) =+ KP (x) +KP (y).

Analogously we can prove

KP (x|z) ≤+ KP (x|z, y) +KP (y|z) (13)

Theorem 10 also allows us to construct various upper bounds for the com-
plexity KP (x) using slowly convergent series. Thus we can obtain estimate
from [5]

KP (x) ≤+ l(x) +KP (l(x)). (14)

Indeed, since there are 2m different x of length m, there holds∑
x

2−l(x)−KP (l(x)) =
∑
m

2−m−KP (m)2m =
∑
m

2−KP (m) ≤ 1.

Since the function Q(x) = 2l(x)−KP (l(x)) is enumerable from below we have
P (x) ≥· Q(x), where P is the a priory probability. Then inequality (14) follows
immediately from Theorem 10.

In prefix machines language we can explain inequality (14) as follows. To
compute x on some machine with prefix-free domain it is sufficient to take as a
program the shortest program for l(x) concatenated with all symbols of x.

Analogously we can obtain the following estimate for any positive integer
number n: for each ε > 0 there holds

KP (n) ≤+ log n+ (1 + ε) log log n.

Inequality (12) between simple Kolmogorov complexityK(x) and prefix com-
plexity KP (x) can be improved in the following form: for each ε > 0

KP (x) ≤+ K(x) + logK(x) + (1 + ε) log logK(x).

It is sufficient to show that the series∑
x

2−K(x)/K(x) log1+εK(x)

is convergent. Since the number of x satisfying K(x) = m does not exceed 2m,
we have∑

x

2−K(x)/K(x) log1+εK(x) ≤
∑
m

2−m

m log1+εm
2m =

∑
m

1
m log1+εm

<∞.
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Analogously we can obtain estimate

KP (x) ≤+ K(x) + logK(x) + log logK(x) + (1 + ε) log log logK(x),

and so on.
The additional term in the right of the inequality for KP (x) appears since

we must add to the information about x additional information about the final
position of the head on input tape.

Since
∑
n

2−KP (n) < ∞ for any function f(n) such that
∑
n

2−f(n) = ∞ we

have KP (n) > f(n) for infinitely many n. So, for instance, we have

KP (n) > log n+ log log n

for infinitely many n.
The following nontrivial and fundamental result is due to Levin (see Gács

[10]).

Theorem 13 KP (x, y) =+ KP (x) +KP (y|x,KP (x)).

Proof. The proof of the first inequality (≤+) is based on the inequality (13)
and the following elegant lemma of Gács [10].

Lemma 2 KP (x,KP (x)) =+ KP (x).
Proof. Let p be the shortest code for x. Obviously, both x and KP (x) = l(p)

are computable from p. Therefore, KP (x,KP (x)) ≤+ KP (x). The converse
inequality KP (x) ≤+ KP (x,KP (x)) is trivial. 2

By (13) and Lemma 2 we have

KP (x, y) ≤+ KP (y, x,KP (x)) ≤+

KP (x,KP (x)) +KP (y|x,KP (x)) =+

KP (x) +KP (y|x,KP (x)).

To prove the converse inequality we shall use an equivalent representation of the
prefix complexity by semimeasures enumerable from below. So, we must prove
that

P (y|x,KP (x)) ≥· P (x, y)/P (x) =· 2KP (x)P (x, y),

where P is the a priory probability. Since the function Q(x) =
∑
y
P (x, y)

is a semimeasure enumerable from below (recall the correspondence between
Ξ⊗Ξ and Ξ), c12−KP (x) ≥

∑
y
P (x, y) for some positive constant c1 (recall that

P (x) =· 2−KP (x)).
By definition, the set

W = {(r, x, z)|r ∈ Q, r < P (x, z)}
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is recursively enumerable. Let W t be a finite subset of W enumerated within t
steps. Define

P t(x, z) = max({r|(r, x, z) ∈W t}
⋃
{0}).

To continue the proof we must get over some technical problem, since KP (x)
is not computable function. To avoid this difficulty let us define a conditional
semimeasure Q(y|x,m) enumerable from below as follows. Given x,m for any
positive integer number s define the maximal t ≤ s such that

c−1
1 2m

∑
z≤t

P t(x, z) ≤ 1.

Define
Qs(y|x,m) = c−1

1 2mP t(x, y)

if y ≤ t and Qs(y|x,m) = 0, otherwise. By definition, Qs(y|x,m) ≤
Qs+1(y|x,m) for all s. Then we can define

Q(y|x,m) = sup
s
Qs(y|x,m).

As follows from the definition,∑
y

Q(y|x,m) ≤ 1

and, since Q is enumerable from below, we have P (y|x,m) ≥· Q(y|x,m).
Let us compute Q(y|x,m) for m = KP (x). Since

c−1
1 2KP (x)

∑
z≤t

P t(x, z) ≤ c−1
1 2KP (x)

∑
z≤t

P (x, z) ≤ 1

for each t, we have

Q(y|x,KP (x)) = c−1
1 2KP (x)P (x, y).

Hence, we have

P (y|x,KP (x)) ≥· 2KP (x)P (x, y) =·
P (x, y)
P (x)

.

2

Corollary 2. KP (x) + KP (y|x) − logKP (x) − 2 log logKP (x) ≤+

KP (x, y) ≤+ KP (x) +KP (y|x).
Proof. Using inequality (13) we obtain

KP (y|x,KP (x)) ≤+ KP (y|x) ≤+ KP (y|x,KP (x)) +KP (KP (x)) ≤+

KP (y|x,KP (x)) + logKP (x) + 2 log logKP (x).

Now we can apply Theorem 13. 2
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10 Information, II

The amount of information in y about x also can be defined on the base of prefix
complexity

IP (y : x) = KP (x)−KP (x|y).

As follows from Theorem 13

KP (y)−KP (y|x,KP (x)) =+ KP (x)−KP (x|y,KP (y)).

This equality can be rewritten as an equality of strict symmetry of information
[10]

I((x,KP (x)) : y) =+ I((y,KP (y)) : x).

We have connection of IP (x : y) with the symmetric expression

IP ∗(x : y) = KP (x) +KP (y)−KP (x, y).

By Theorem 13 we have

|IP ∗(x : y)− IP (x : y)| = |KP (x)−KP (x, y) +KP (y|x)| ≤+

logKP (x) + 2 log logKP (x).

Analogously we obtain an estimate

|IP ∗(x : y)− IP (y : x)| ≤+ logKP (y) + 2 log logKP (y).

These inequalities also lead to the symmetry estimate of IP (x : y)

|IP (x : y)− IP (y : x)| ≤+

logKP (x) + 2 log logKP (x) + logKP (y) + 2 log logKP (y).

As proved by Gács [10] (see also [27], Section 3.9) IP (x : y) is no commuta-
tive up to an additive constant.

11 Statistical complexity, I

The systematic variation within a set of data, as represented by some statistical
model, may be used to encode the data using a way of generating data in the
model and description of this model. An estimate

KP (x) ≤+ KP (x|A) +KP (A) (15)

based on a model A, becomes trivial then A = ∅ or A = {x}. Normally, A
is selected from a limited set of possible hypotheses. In statistics we usually
confine ourselves to parametric models.
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The upper estimate (15) is impractical since KP (x|A) and KP (A) are non-
computable. Wallace’s and Freeman’s MML (Minimum Message Length) [46]
and Rissanen’s MDL (Minimum Description Length) [30], [31] principles avoid
this drawback by considering computable upper bounds of these complexities
based on Shannon information theory and arithmetical encoding.

Vovk [42], [43] considered a similar combined upper bound. Although his
upper bound is non-computable, for some parametric families its minimum is
attained at the parameter computable by the data. Besides, this minimum
is very close to Kolmogorov complexity of the data generated by an arbitrary
Bernoulli probability distribution.

In this section we present the main results from [42] and [43]. Let, according
to the traditional statistical framework, for any n a finite sequence x ∈ Ξn be
generated by a computable measure Pn in Ξn. The computability means that
there is an algorithm computing the value Pn(x) given n and x with arbitrary
degree of accuracy. By definition

∑
l(x)=n

Pn(x) = 1 for each n. Then by Lemma

1 (relativized with respect to n) we can define a computable function C(x|n)
such that for any x and x′ of the length n the sequence C(x|n) is incomparable
with the sequence C(x′|n) and

l(C(x|n)) =+ − logPn(x), (16)

where x ∈ Ξn. Then by definition

KP (x|n) ≤+ l(C(x|n)) (17)

and by the Kraft inequality for KP (x|n)

EnPn2l(C(x|n))−KP (x|n) ≤· 1, (18)

where EnPn denotes the mathematical expectation with respect to Pn, namely,
EnPn(f(x)) =

∑
l(x)=n

f(x)Pn(x).

By Chebyshev’s inequality, (18) implies

Pn {x ∈ Ξn|KP (x|n) ≤ l(C(x|n))−m} ≤ 2−m, (19)

so we can be practically sure that the length of code C(x|n) is close to the length
of the optimal code KP (x|n).

Let us consider a case, where the probability distribution depends on a real
parameter θ. For simplicity we assume that θ is a computable real number.
In this case for each parameter value θ we can efficiently encode x using about
− logPnθ (x) bits, namely, there exists a computable function C(x|n, θ) such that
the inequalities (16)-(18) are transformed to

l(C(x|n, θ)) =+ − logPnθ (x), (20)
KP (x|n, θ) ≤+ l(C(x|n, θ)), (21)

EnPn
θ

2l(C(x|n,θ))−KP (x|n,θ) ≤· 1, (22)
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where n = l(x). Strictly speaking, these functions depend not on θ but on a
program computing parameter θ, which is a finite binary sequence.

In the following we will consider the standard Bernoulli statistical model
{Bnθ (x) | θ ∈ [0, 1]}. The Bernoulli measure in Ξn with parameters (n, θ) is

defined as Bnθ (x) = θk(1 − θ)n−k, where x ∈ Ξn and k =
n∑
i=1

xi is the total

number of 1s in x.
We are given data x ∈ Ξn, and we suppose that for some θ the probability

distribution Bnθ in Ξn is a good description of x. As we know, KP (x|n) is all
information contained in x. The main problem of parametric statistics, is what
we can learn from x about θ? We shall extract from x all “useful information”
it contains. In other words, we shall split all the information in x into the useful
information and useless noise.

The total code length of x ∈ Ξn corresponding to θ is defined as

DLθ(x) = − logBnθ (x) +KP (θ|n). (23)

According to [43] the statistical coding scheme is defined as follows. Each code-
word for x ∈ Ξn, consists of two parts: the preamble, which is description of
some θ, and the body, C(x|n, θ). The preamble encodes the useful information,
and the body is the noise, which is incompressible. The minimal possible code
length under this coding scheme is defined as

DL(x) = inf
θ
DLθ(x).

This function is analogous to the minimum description length (MDL) function
for Rissanen’s ([30], [31]) coding scheme and is called statistical complexity.

A connection with KP (x|n) can be easily obtained. By (13) we have

KP (x|n) ≤+ KP (x|n, θ) +KP (θ|n).

Then by (20) and (21) any parametric computable statistical model Pθ(x) for
any θ provides an upper bound for complexity KP (x|n), since we have the
inequality

KP (x|n) ≤+ − log2 Pθ(x) +KP (θ|n).

Taking minimum by θ we obtain

KP (x|n) ≤+ DL(x).

By MDL/MML principle, given a data x, we select a model Pθ giving a minimum
to

− log2 Pθ(x) +KP (θ|n).

The following Vovk’s [43] theorem (given here without proof) shows that
statistical complexity on average is close to the prefix complexity.
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Theorem 14 There exists a positive constant c such that

EnBθ2
DL(x)−KP (x|n) ≤ c

for each n and θ.

This theorem strengthens inequality (18). By Jensen’s inequality, this theo-
rem implies

Corollary 3. EnBθKP (x|n) =+ EnBθDL(x).
Simplest example shows that, for some x, DL(x) and KP (x|n) can be very

different: when x is the sequence 0101 . . . of alternating 0s and 1s of length n,
we have DLθ(x) ≥ − log(θ

n
2 (1− θ)n2 ) ≥+ n for each θ. From this it follows

DL(x) ≥+ n, KP (x|n) =+ 0

(this sequence is untypical in the highest degree under the Bernoulli model).
A point estimator is a real-valued function E(x) defined on Ξ such that

0 ≤ E(x) ≤ 1, for all finite binary sequences x. It is computable if there
exists an algorithm which transforms each x into a program computing rational
approximation of the real number E(x) with given degree of accuracy.

Although DL(x) is non-computable (since KP (θ|n) is non-computable) the
infinum inf

θ
DLθ(x) can be attained (to within an additive constant) for θ effi-

ciently computed by the data x. Vovk [42] proved the existence of such estima-
tors for some parametric models: Bernoulli and two Gauss families.

The next Vovk’s [43] theorem asserts that in the case of the Bernoulli family
the useful information in x can be extracted efficiently.

Theorem 15 There exists a computable point estimator E such that

DL(x) =+ DLE(x)(x).

Proof. The scheme of the proof is as follows. The main purpose is to minimize
the sum (23). The maximum likelihood estimate θ̂(x) = k

n minimizes only the
first addend. Since by Lemma 5 (Section 15.5) the changes of likelihood function
near an extremum are small, we can decrease the sum (15) using not the whole
θ̂(x) but only the most significant digits of θ̂(x).

The estimator E(x) is defined on the base of the following net in the interval
[0, 1] of the real line

θn(a) = sin2(an−1/2), a = 1, . . . ,
⌊
πn1/2/2

⌋
− 1. (24)

The choice of this net is justified by Lemmas 4, 5 and Corollary 4 (Section 15.6).
Let x be a sequence of the length n and k be the total number of 1s in it.

Then En(k) = E(x) is defined as the element of the net sin2(an−1/2) closest
to k

n (we need also some convention to avoid a contradiction when k
n is exactly
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halfway between two adjacent elements of the net, but it is a simple technical
problem, see [43]).

We use the notation Gn,k for the log-likelihood function expressed through
the variable a (which will no longer be assumed to be integer) introduced by
θn(a) = sin2(an−1/2):

Gn,k(a) = ln
(

sin2k(an−1/2) cos2(n−k)(an−1/2)
)
,

a ranging over [0, πn1/2/2].
We use the notation â(n, k) for the maximum likelihood estimate of the

parameter a:
â(n, k) = arg max

a
Gn,k(a)

(therefore, sin2(â(n, k)n−1/2) = k/n). By definition â(n, k) is a computable (by
n and k) real number.

When k = 0 the assertion of the theorem reduces to 0 =+ − log((1 −
sin2 n−1/2)n) which is easy to validate. The case k = n is considered analo-
gously.

The remaining part of proof of the theorem is based on notations and lemmas
from Section 15.6. We must prove that for any computable θ

− log((En(k))k(1− En(k))n−k) +KP (En(k)|n) ≤+ (25)
− log(θk(1− θ)n−k) +KP (θ|n). (26)

It is easy to see that

KP (En(k)|n) =+ KP (bâ(n, k)c |n)
≤+ KP (bâ(n, k)c , θ|n) ≤+ KP (θ|n) +KP (bâ(n, k)c |n, θ) ,

so to ensure (25) and (26) it suffices to prove

− log(En(k)k(1− En(k))n−k) +KP (bâ(n, k)c |n, θ) ≤+ − log(θk(1− θ)n−k).

Lemma 5 (Section 15.6) asserts thatGn,k(a) =+ Gn,k(â(n, k)) if |a−â(n, k)| < 1.
Then, using the parameterization θ = θn(a), we must prove

KP (bâ(n, k)c |n, a) ≤+ (ln−1 2)(Gn,k(â(n, k))−Gn,k(a)).

This inequality immediately follows from Lemma 7 (Section 15.6). 2

MDL-principle is based on a straightforward coding scheme for θ.

Θn = [ε, 1− ε]
⋂
{an−1/2|a ∈ Z} (27)

with a description of length at most d 1
2 log ne (other θ may have no description).

Replacing KP (θ|n) with this coding scheme in the definition of the statistical
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coding scheme Rissanen’s (see, e.g., [30]) a coding scheme is obtained. The
minimum description length function for Rissanen’s coding scheme is within an
additive constant from

DL∗(x) = min
θ∈Θn

(
− logBnθ {x}+

1
2

log n
)
,

n being the length of x.
It is easy to see that

KP (x|n) ≤+ DL(x) ≤+ DL∗(x), (28)

The right-hand inequality of (28) is not an equality even on the average, as
the next Vovk’s [43] theorem shows.

Theorem 16

EnBn
θ
DL(x) =+ Hn(θ) +KP (θn|n), (29)

EnBn
θ
DL∗(x) =+ Hn(θ) + 1

2 log n, (30)

where θn is an element of Θn closest to θ and Hn(θ) is the entropy of Bnθ :

Hn(θ) = EnBn
θ

(− logBnθ {x}) .

We have
KP (θn|n) ≤+ 1

2
log n;

besides, for the most θ KP (θn|n) is close to 1
2 log n. However, it is easy to find

θ for which KP (θn|n) is very different from 1
2 log n: say, for θ = 1

2 we have
KP (θn|n) =+ 0.

Theorems 14, 15, and 16 immediately imply

EnBn
θ
KP (x|n) + d(θn|Θn) ≥+ Hn(θ) +

1
2

log n ≥+ EnBn
θ
DL∗(x),

where
d(θn|Θn) = log #Θn −KP (θn|n)

(notice that #Θn =· n1/2) is the prefix randomness deficiency of θn in Θn.

12 Bernoulli sequences

Let us consider the notion of randomness of an individual object with respect
to computable probability distribution Pn in the set Ξn.
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Recall, that with any probability distribution Pn in Ξn an efficient code
C(x|n), where x ∈ Ξn, is associated such that inequalities (16)–(18) hold. In-
equality (18) can be rewritten as

EnPn2l(C(x|n))−KP (x|n,p) ≤· 1

(where we add in the condition a program p computing the measure Pn).
These inequalities and Chebyshev’s inequality (19) show that the quantity

d(x|n, Pn) = − logPn(x)−KP (x|n, p), (31)

can be considered as deficiency of randomness (or test of randomness) of the
sequence x of the length n with respect to Pn. Here p denotes a program
computing Pn (more correctly, this notion is defined with respect to a program
p).

By (16) and (31) we have

EnPn(2d(x|n,Pn)) ≤· 1.

This inequality and (19) show that deficiency of randomness d(x|n, Pn) is small
for most (with respect to Pn) sequences of the length n. This value can be
considered as a measure of disagreement between the measure Pn and an out-
come x. Outcomes x with large value of d(x|n, Pn) are interpreted as almost
impossible from the viewpoint of the holder of the measure Pn.

In the case of the Bernoulli family a transition from this notion to the notion
of the deficiency of randomness with respect to a finite set will be given by
theorems 18 and 19 below.

The Bernoulli measure Bnθ (x) in Ξn with parameters (n, θ) was defined in
Section 11.

Let bn,θ(x) be corresponding deficiency of randomness with respect to Bnθ

bn,θ(x) = − logBnθ (x)−KP (x|n, θ).

As in the previous section we suppose that θ is a computable real number
(strictly speaking, we must replace θ with its program).

Usually in statistics a precise probability distribution generating data is un-
known. We have only information that this probability distribution belongs to
some class of similar distributions. We will use a concept of randomness with re-
spect to a class of probability distributions. In [21] a definition of the deficiency
of randomness of an object x with respect a class Φ of probability distribution
was defined

dΦ(x) = inf
P∈Φ

d(x|P ),

where d(x|P ) is a deficiency of randomness with respect to a probability distri-
bution P .
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The class of Bernoulli measures is very natural class of probability distri-
butions, which realizes the hypothesis that our data are generated in a process
of independent trials with the same probability distribution (like coin flipping).
We consider a concept of randomness with respect to the this class of probability
distributions.

The concept of Bernoulli sequence at first was introduced in [14] and studied
in [28] (see Section 4) and [21].

The Bernoulli deficiency is the function

bn(x) = inf
θ
bn,θ(x),

where x is a finite sequence of the length n.
The binomial measure in the set {0, 1, . . . , n} with parameters (n, θ) is de-

fined as

Binn,θ(k) =
(
n

k

)
θk(1− θ)n−k.

The corresponding deficiency of randomness is defined as

binn,θ(k) = − logBinn,θ(k)−KP (k|n, θ)

and has the analogous properties

KP (k|n, θ) ≤+ − logBinn,θ(k)

and
EnBinn,θ2

binn,θ(k) ≤· 1.

The binomial deficiency is defined as

binn(k) = inf
θ
binn,θ(k).

Vovk’s net (24) (Section (11)) explains the definition of the binomial deficiency
[40]. The definitions of the net θn(a) and corresponding estimator En(k) are
given in the proof of Theorem 15.

Theorem 17 binn(k) =+ binn,En(k)(k).

Proof. The case where k = 0 or k = n is considered analogously to the proof
of Theorem 15. When 1 ≤ k ≤ n− 1 it is sufficient to prove that

− log(θk(1− θ)n−k)−KP (k|n, θ) ≥+ (32)
− log((En(k))k(1− En(k))n−k)−KP (k|n,En(k)), (33)

where θ is a computable real number. By Lemma 5 (Section 15.6)

− log((En(k))k(1− En(k))n−k) =+ (ln−1 2)Gn,k(â(n, k)).

30



Then inequality (32)-(33) can be rewritten as

(ln−1 2)(Gn,k(â(n, k))−Gn,k(a)) ≥+ KP (k|n, θ)−KP (k|n,En(k)).

By Corollary 2 (Section 9) and Lemma 7 (Section 15.6) we have

KP (k|n, θn(a))−KP (k|n,En(k)) ≤+

KP (k|En(k), n, θn(a)) +KP (En(k)|n, θn(a))−KP (k|n,En(k)) ≤+

KP (En(k)|n, θn(a)) =+ KP (bâ(n, k)c |n, a) ≤+

(ln−1 2)(Gn,k(â(n, k))−Gn,k(a)).

2

As mentioned at the end of Section 2 for most sequences x of the length n
with k ones the difference log

(
n
k

)
−KP (x|n, k) is small (here we replace com-

plexity K with KP ). Vovk’s [40] following theorem shows that the Bernoulli
deficiency of x can be decomposed into the sum of this difference and the bino-
mial deficiency of k.

Theorem 18 For any x ∈ Ξn with k 1s

binn(k) ≤+ bn(x)− (log
(
n

k

)
−KP (x|n, k)) ≤+

binn(k) + 2 log |binn(k)|.

Proof. From

KP (x|θ, n) ≤+ KP (x|k, n) +KP (k|n, θ)

we obtain

bn(x) ≥+ log
(
n

k

)
−KP (x|n, k) + binn(k).

The proof of the converse inequality is based on Theorem 17 and results of
Section 15.6.

Since k = k(x) is a computable function KP (x, k(x)|n, θ) =+ KP (x|n, θ)
and by Theorem 13

bn,θ(x) =+ − logBnθ (x)−KP (x|n, θ) =+

log
(
n

k

)
−KP (x|n, k,KP (k|n, θ), θ)− logBinn,θ(k)−KP (k|n, θ).

Since KP (k|n,En(k)) is computed by
⌊
binn,En(k)(k)

⌋
, n and k we have by (1)

KP (x|n, k,KP (k|n,En(k)), En(k)) ≥+ KP (x|n, k,
⌊
binn,En(k)(k)

⌋
).
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Hence,

bn(x) ≤+ log
(
n

k

)
−KP (x|n, k,

⌊
binn,En(k)(k)

⌋
) + binn,En(k)(k).

From this by Corollary 2 (Section 9) we obtain

bn(k) ≤+ log
(
n

k

)
−KP (x|n, k) +

binn,En(k)(k) + 2 log |binn,En(k)(k)|.

Now, the needed inequality follows from Theorem 17. 2

The randomness of k with respect to the binomial measure can be also
arranged in layers according to different finite sets [40]. Let us consider the
net (24) from Section 11 and corresponding division of the set {0, 1, . . . , n}
on subsets [nθn(s), nθn(s + 1))

⋂
{0, 1, . . . , n}, where θn(s) = sin2(sn−1/2), s =

1, . . . ,
⌊
πn1/2/2

⌋
−1, and θn(

⌊
πn1/2/2

⌋
) = +∞. For any 0 < k < n denote U(k)

the element of the division containing k. By Corollary 4 (Section 15.6)

#U(k) =+
√
k(n− k)/n

(This value is an estimate of the standard deviation of the number of 1s in x).

Theorem 19 For 0 < k < n

binn(k) =+ log #U(k)−KP (k|n,U(k)).

Proof. By Stirling’s formula we obtain

− logBinn,En(k)(k) = − log
(
n
k

)
− log((En(k))k(1− En(k))n−k)

=+ − 1
2 log n− n log n

e + 1
2 log k + k log k

e + 1
2 log(n− k) + (n− k) log n−k

e

−k logEn(k)− (n− k) log(1− En(k))

= 1
2 log k(n−k)

n + k log k
n + (n− k) log n−k

n

−k logEn(k)− (n− k) log(1− En(k)).

By Lemma 5 (Section 15.6), we further obtain

− logBinn,En(k)(k) =+ 1
2

log
k(n− k)

n
.

Now, the theorem follows from Corollary 4 and Theorem 17. 2

By Theorem 19 binn(k) ≤+ 1
2 log n.

Following the general approach of this section we can consider a new defi-
nition of m-Bernoulli sequence, namely, a sequence x of the length n is called
m-Bernoulli if bn(x) ≤ m. Theorem 18 shows the difference between this defi-
nition and Kolmogorov’s definition of m-Bernoulli sequence from Section 4. It
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says that the Bernoulli sequence x with unknown parameter θ must have not
only complexity close to log

(
n
k

)
, where k is the total number of 1s in x, but also

k must have sufficiently large complexity.
This difference is based on two different underlaying statistical models.

Kolmogorov’s approach is based on the assumption that most sequences x =

x1 . . . xn of the same length n and with the same number k =
n∑
i=1

xi of 1s have

identical statistical properties. The independence of x1, . . . , xn is not assumed.
Levin’s definition formalizes the requirements to a sequence x = x1 . . . xn be

typical with respect to some random experiment consisting in repetition of n
independent trials x1, . . . , xn, i.e. some i.i.d model is considered.

Vovk (personal communication (1998)) mentioned that Kolmogorov’s defi-
nition of the Bernoulli sequence is equivalent to the notion of randomness with
respect to a natural class of exchangeable measures.

A probability distribution Pn in the set Ξn is called exchangeable if

Pn(x1x2 . . . xn) = Pn(xπ(1)xπ(2) . . . xπ(n)) (34)

for any x = x1x2 . . . xn ∈ Ξn and for any permutation π on the set {1, 2 . . . n}
(see [33]).

Let Φexn be the class of all computable exchangeable measures in the set Ξn.
The deficiency of exchangeability is defined as

en(x) = inf
P∈Φexn

d(x|n, P ).

The following version of Vovk’s theorem for binary case shows that Kolmogorov’s
deficiency and deficiency of exchangeability are coincide up to an additive con-
stant.

Theorem 20 en(x) =+ log
(
n
k

)
−KP (x|n, k), where n = l(x) is the length of x

and k =
n∑
i=1

xi is the total number of 1s in x.

Proof. By (34) k = k(x) is a sufficient statistics for Φexn and there is one to one
correspondence between computable exchangeable measures Pn and computable
probability distributions r(n, k) in the set {1, 2 . . . n} such that

n∑
k=0

r(n, k) = 1. (35)

This correspondence is defined by the following equality

Pn(x) =
r(n, k)(

n
k

) , (36)
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where x is a binary sequence of the length n and k is the total number of 1s in
x. By (36)

d(x|n, Pn) =+ log
(
n

k

)
− log r(n, k)−KP (x|n, r(n, 0), . . . , r(n, n)),

and then for any x ∈ Ξn

en(x) = log
(
n

k

)
+ inf

r
{− log r(n, k)−KP (x|n, r(n, 0), . . . , r(n, n))} , (37)

where k =
n∑
i=1

xi is the total number of 1s in x.

For any x ∈ Ξn let k =
n∑
i=1

xi. There is an exchangeable mea-

sure Pn such that r(n, k) = 1 and r(n, k′) = 0 for all k′ 6= k. Then
KP (x|n, r(n, 0), . . . , r(n, n)) =+ KP (x|n, k) and we have by (37)

en(x) ≤+ log
(
n

k

)
−KP (x|n, k).

To obtain the converse inequality we must prove that for any computable func-
tion r(n, k) satisfying (35)

log r(n, k) +KP (x|n, r(n, 0), . . . , r(n, n)) ≤+ KP (x|n, k).

By Theorem 10 we rewrite this inequality as

P (x|n, r(n, 0), . . . , r(n, n)) ≥· r(n, k)P (x|n, k), (38)

where P is the a priory probability.
To prove (38) we define a conditional semimeasure Q semicomputable from

below satisfying

Q(x|n, r0, r1, . . . rn) =
n∑
i=0

P (x|n, i)ri,

for each sequence r0, r1, . . . rn of computable non-negative real numbers such

that
n∑
i=0

ri ≤ 1. We omit technical details of this definition.

Then by Theorem 9

P (x|n, r0, r1, . . . rn) ≥· Q(x|n, r0, r1, . . . rn).

In particular, for any computable function r(n, k) satisfying (35) we have

P (x|n, r(n, 0), . . . , r(n, n)) ≥·
n∑
i=0

P (x|n, i)r(n, i) ≥ r(n, k)P (x|n, k),
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where k =
n∑
i=1

xi. This completes the proof of the theorem. 2

By theorems 18 and 20 we have

bn(x) =+ en(x) + binn(k) +O(log |binn(k)|).

13 Statistical complexity, II

In this section we present a connection between KP (x|n) and DL(x) in a point-
wise form.

Theorem 21 For x ∈ Ξn

KP (x|n) + bn(x) ≤+ DL(x) ≤+

KP (x|n) + 2 logKP (x|n) + bn(x) + 2 log |bn(x)|.

Proof. Comparing definitions of DLθ(x) and bn,θ(x) we have

DLθ(x)− bn,θ(x) = KP (x|n, θ) +KP (θ|n). (39)

By (13) we have
KP (x|n) ≤+ KP (x|n, θ) +KP (θ|n).

Hence, taking minimum by θ in (39), we obtain

DL(x) ≥+ bn(x) +KP (x|n).

To obtain the converse inequality we put θ = E(x) = En(k) and obtain from
(39)

DL(x) = DLE(x)(x) = bn,En(k)(x) +KP (x|n,En(k)) +KP (En(k)|n).

As follows from Theorem 18 and its proof

bn,En(k)(x) ≤+ (log
(
n

k

)
−KP (x|n, k)) + binn(k) + 2 log |binn(k)| ≤+

bn(x) + 2 log |binn(k)| ≤+ bn(x) + 2 log |bn(x)|.

Since k = k(x) is computable function, KP (x|n) =+ KP (x,En(k)|n) and
KP (En(k)|n) ≤+ KP (x|n). Then by Corollary 2 we obtain

KP (x|n) ≥+ KP (En(k)|n) +KP (x|n,En(k))− 2 logKP (En(k)|n)

Hence,

DL(x) ≤+ bn(x) + 2 log |bn(x)|+KP (x|n) + 2 logKP (x|n).
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2

This theorem asserts that the corresponding minimal upper bound DL(x)
for complexity KP (x|n) is almost the best possible, since it holds

min
θ
{− log2Bθ(x)+KP (θ|n)} = KP (x|n)+bn(x)+O(log2KP (x|n)+log2 |bn(x)|).

We must suppose that the value bn(x) is small if we believe that some probability
distribution from the class Bn,θ(x) generates x.

14 Time of decoding and descriptional complex-
ity

The speed of computing of decoding algorithms was ignored in this paper. Let
us consider an example from [24]. Let A(p) be an optimal algorithm defining
the Kolmogorov complexity K(x):

K(x) = min{l(p)|A(p) = x},

and let f(p) = (A(p), l(p)). Then for any x there is an p such that f(p) =
(x,K(x)). Exhaustive search for such p takes exponential time, even when f(p)
is fast. Levin in [20] proposed a fastest algorithm finding p. The corresponding
complexity was defined by Levin in the beginning of the seventies and used in
his optimal search algorithm, see [20], [24], Section 1.3, and [27], Section 7.5.

Let A(p, y) be an optimal function (machine) and TA(p, y) be the time
of computation of the value A(p, y), if such computation is terminated, and
TA(p, y) =∞, otherwise. Define

KtA(x|y) = min {l(p) + log TA(p, y) | A(p, y) = x} . (40)

A theorem on the existence of an optimal complexity holds.

Theorem 22 There exists a partial recursive optimal function A(p, y) such that
for each partial recursive function B(p, y) the inequality

KtA(x|y) ≤+ KtB(x|y)

holds.

The scheme of the proof is analogous to that of Theorem 1. The logarithmic
term in (40) requires a linear time of simulation.

To prove Theorem 23 below we also need to specify the model of computa-
tion. It is not known and probably not true that this theorem holds in Turing
model (see a popular discussion in [11]). Usually, it is used the Kolmogorov
– Uspensky machines, which are algorithms with semi-local transformation of
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information, see [16], [38], Section 1.2. An additional requirement is that any
machine from this class does not use any special mark for the end of the pro-
gram and decide itself when to stop reading the program, i.e. it must never even
read the digits following the program. In Section 8 these programs are called
self-delimiting. Any machine from this class has a prefix-free domain.

It can be proved that Theorem 22 holds for Kolmogorov – Uspensky ma-
chines of this type. We fix some optimal complexity KtA(x|y) and omit index
A.

Using Levin’s complexity Kt(x|y) it is possible to solve any problem of a
certain class of inverting problems in time that is optimal up to a constant
factor. Let f(x) be a partial recursive function of the type Ξ→ Ξ. The search
problem uses a recursive f(x) computable in polynomial time. An algorithm
A inverts the function f , if given y it computes an x such that f(x) = y, if
y is in the range of f , and this algorithm diverges, otherwise. An example of
such problem is the following: given positive integer number to find some its
factorization. To solve the inverting problem naively often requires exhaustive
search through exponentially many candidates, that takes exponential time.

Now we can present the main result of this section. The following theorem
was proved by Levin in the beginning of the seventies (see [20]).

Theorem 23 An algorithm U (described below) exists such that the following
holds. Let f be an arbitrary recursive function (not necessary polynomial time
computable), and assume that a self-delimiting program q inverts the function
f on any y and checks the result in time t(y), i.e. produces an x, and finds out
whether f(x) = y, actually applying the given algorithm for f to check the result
(it is not permitted to use a faster algorithm to compute f).

Then the algorithm U inverts f on y and checks the result in time c2l(q)t(y),
where c is a constant.

Proof. We slightly modify the definition of Kt -

Kt(x|y, f) = min {l(p) + log TA(p, y) | A(p, y)) = x, f(x) = y} ,

where A(p, y) is an optimal Kolmogorov – Uspensky machine.
Given y the algorithm U runs all self-delimiting programs in succession ac-

cording to the value of Kt(x|y, f) for all possible candidates x. More correctly,
for each i = 1, 2, . . ., this algorithm lexicographically runs all self-delimiting
programs p such that

l(p) + log T (p, y) ≤ i, (41)

and checks for x = A(p, y), whether y = f(x) (applying the given algorithm for
f), until a positive answer will be found.

The crucial point here is that we must check the inequality (41) in time
O(T (p, y)), i.e. to solve the bounded (by time t) halting problem in time O(t).
A solution for Turing machines is unknown now. For Kolmogorov – Uspensky
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machines the bounded (by time t) halting problem can be easily solved in time
O(t) by creating a clock and running it simultaneously with the computation.

Since the domain of A(p, y) is prefix-free by p, we have for any y∑
A(p,y) terminates

2−l(p) ≤ 1.

By (41) we have T (p, y) ≤ 2i−l(p) for all i. Therefore, the total time of termi-
nated computation for any y is bounded by

c
∑
i≤k

∑
l(p)≤i,A(p,y) terminates

2i−l(p) ≤

c
∑
i≤k

2i
∑

l(p)≤i,A(p,y) terminates

2−l(p) ≤ c2k+1,

where k = min{l(p) + log T (p, y) | f(A(p, y)) = y} and c is a positive constant.
Let some self-delimiting program q for an universal Kolmogorov – Uspensky

machine B inverts f on y and finds out whether f(x) = y in time t(y) = TB(q, y).
Then by Theorem 22 we have

k ≤+ {l(q) + log TB(q, y) | f(A(q, y)) = y},

and 2k ≤· t(y)2l(q). Therefore, the time of computation of the algorithm U on
y is ≤ c2l(q)t(y) for some positive constant c. 2

15 Some proofs and auxiliary results

15.1 Proof of Theorem 6

Let x1 = R[x], n1 = l(x1) and x2 be the remaining part of the x represented
as concatenation of two binary sequences x2 = uv. Here u are examined (but
not selected in x1) elements of x put in order in accordance with the examining
procedure, v are the elements of x not examined put in order according their
indices in x. Then the sequence x can be restored by n, x1, x2 and by the
program computing R given n. Indeed, f(∅) = i1 gives the number of the
first examined bit of x, and by the value of g(∅) we define where this element
locates, in x1, or in u. So, we can define the i1-th bit of x (and the first examined
element). Analogously, using previously defined bits of x, say, xi1 , xi2 , . . . xik ,
we can define the following examined bit and its ordinal number in x (replacing
∅ on xi1 , xi2 , . . . xik in the previously defined part of procedure). The remaining
bits of x can be taken from v in consecutive order. From this it follows

K(x|n) ≤ K(x1) + logK(x1) + 2 log logK(x1) + n− n1 +
K(R|n) + 2 logK(R|n) + c,

38



for some constant c. For all sufficiently large n1 this inequality can be simplified

K(x|n) ≤ K(x1) + n− n1 + (1 +
1
2
ε) log n1 +K(R|n) + 2 logK(R|n). (42)

Let

An1,m =

{
x ∈ Ξn1 |

n1∑
i=1

xi = m

}
.

Since x1 ∈ An1,m we can encode x1 by m,n1 and its ordinal number in this set,

K(x1) ≤ logm+ 2 log logm+ log n1 + 2 log log n1 + log #An1,m + c1,

where c1 is a constant. For all sufficiently large n1 we have

K(x1) ≤ (2 +
1
2
ε) log n1 + log

(
n1

m

)
. (43)

From (42) and (43) we obtain

n1 − log
(
n1

m

)
≤ d(x|n) +K(R|n) + 2 logK(R|n) + (3 + ε) log n1. (44)

By Stirling’s formula we obtain

log
(
n1

m

)
=+ n1H(

m

n1
)− 1

2
log

m(n1 −m)
n1

, (45)

where H(p) = −p log p− (1− p) log(1− p). Then by (44)

n1(1−H(
m

n1
)) +

1
2

log
m(n1 −m)

n1
≤+

d(x|n) +K(R|n) + 2 logK(R|n) + (3 + ε) log n1.

If m = 0 or m = n1 then for 0 < µ < 1 we obtain a contradiction with (44) for
all sufficiently large n1 (we put

(
n1
0

)
= 1). Then if 1 ≤ m ≤ n1 − 1 and n1 ≥ 2

log

√
m(n1 −m)

n1
≥ −1

2
.

By (9), (44) and (45) we have

n1(1−H(
m

n1
)) +

1
2

log
m(n1 −m)

n1
≤+ (3 + ε) log n1 + µn1. (46)

Then by properties of the function H(p) nearby its maximum for each ε′ > 0
there is sufficiently small µ such that for all sufficiently large n1 inequality (46)
implies |mn1

− 1
2 | < ε′.
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Since ln(1 + r) ≥ r− (1 + ε)r2 for all r with sufficiently small absolute value,
we have

n1(1−H(
m

n1
)) ≥ 4n1(1− ε) log e

(
m

n1
− 1

2

)2

.

Hence, for all sufficiently large n1

4n1(1− ε) log e(
m

n1
− 1

2
)2 ≤ d(x|n) +K(R|n) + 2 logK(R|n) + (3 + ε) log n1.

From this we obtain (10). 2

15.2 Proof of Theorem 8

Suppose that a finite sequence of positive integer numbers

J = (n, α1, . . . , αk, β1 . . . , βk),

where c1 ≤ α1 < . . . < αk and n > β1 > . . . > βk, is given. We suppose also
that α0 = 0, αk+1 =∞ and βk+1 = 0. Let us define an auxiliary function

P̃j(U) = t−1
j

∑
K(D|J)≤αj

#(U
⋂
D)

#D
,

where 1 ≤ j ≤ k, tj is the number of all addends in the sum and U ⊆ Ξn. By
definition

P̃j(U
⋃
V ) = P̃j(U) + P̃j(V )

for each U, V ∈ Ξn such that U
⋂
V = ∅.

We will define for any 1 ≤ s ≤ k the set Us ⊆ Ξ such that the following hold

• (i) K(Us|s, J) ≤ αs + c, where c is a constant;

• (ii) P̃j(Us) < 2−l
s
j+1, where lsj = βj − βs+1 − s log s− s, 1 ≤ j ≤ s.

• (iii) #Us = 2n−(β1−βs+1).

To define U1 we represent Ξn =
⋃
Vi, where #Vi = 2n−(β1−β2) and Vi

⋂
Vi′ =

∅ for each i and i′ 6= i. There are < 2β1−β2 of i such that P̃1(Vi) > 2−(β1−β2).
Then there is an Vi such that

P̃1(Vi) < 2−(β1−β2)+1 < 2−l
1
1+1.

Put U1 = Vi.
Let qs, s = 1, 2, . . . k, be a program of the length ≤ αs such that time of

computation of A(q, J) = D is maximal among all programs q of the length ≤ αs
on which this computation is terminated (A is an optimal mode of description).
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We have K(U1|J) ≤ α1 + c, since using q1 we can compute all finite sets D
such that K(D|J) ≤ α1 and then run algorithm computing Vi.

Let us show how to reduce the construction of Us, s ≥ 2, to the construction
of Us−1 satisfying (i)-(iii). We will also use s, J and the program qs. To
construct Us−1 we use qs−1 which can be easy computed by J , s and qs.

Let us represent Us−1 =
⋃
Vi, where #Vi = 2n−(β1−βs+1) and Vi

⋂
Vi′ = ∅

for each i and i′ 6= i The number of such Vi is equal to 2βs−βs+1 , since #Us−1 =
2n−(β1−βs). Let for 1 ≤ j ≤ s the number kj is equal to the number of i such
what P̃j(Vi) ≥ 2−l

s
j . By (ii) for Us−1 we have for 1 ≤ j < s

kj2−(βj−βs+1)+s log s+s ≤ P̃j(Us−1) < 2−(βj−βs)+(s−1) log(s−1)+s.

Then kj < 2βs−βs+1−log s. Besides, ks2−l
s
s ≤ P̃s(Us) ≤ 1, and from (ii) we have

ks < 2βs−βs+1−log s. The total number of such Vi is equal to

k1 + . . .+ ks < s2βs−βs+1−log s ≤ 2βs−βs+1 .

From this it follows that there exists Vi such that P̃j(Vi) < 2−l
s
j for all 1 ≤ j ≤ s.

Put Us = Vi. It is easy to verify that properties (i)-(iii) are satisfied.
Let 1 ≤ j ≤ k and D be an arbitrary finite set such that K(D|J) ≤ αj .

Then by (ii) for Uk

#D
⋂
Uk < 2αj+1#DP̃j(Uk) ≤ #D2−lj+αj+2,

where lj = βj − k log k − k.
By (i) we have K(Us|J) ≤ αs + 2 log s+ c2, where c2 is a positive constant.
We need the following
Lemma 3 If V ⊆ D and x ∈ V then d(x|J,D) ≥· log #D

#V − 2K(V |J).
Proof. We have K(x|V ) ≤+ log #V , and so, K(x|J) ≤+ log #V + 2K(V |J).

By definition

d(x|J,D) = log #D −K(x|J,D) ≥+ log #D − log #V − 2K(V |J).

2

By Lemma 3 for all 1 ≤ j ≤ k, K(D|J) ≤ αj , and x ∈ Uk
⋂
D

d(x|D,J) ≥ log #D

#D
⋂
Uk
− 2K(D

⋂
Uk|J) ≥ (47)

lj − αj − 2− 6αk − c = lj − 7αk − c = (48)
βj − 7αk − k log k − k − c3, (49)

where c, c3 are positive constants. Here we useK(D
⋂
Uk|J) ≤+ αj+2αk ≤ 3αk.

As noted earlier, in Section 4

#{x | x ∈ A, d(x|A, J) > m} ≤ 2dlog #Ae−m
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for each finite set A. Since #Uk = 2n−β1 , there is a set W1 ⊆ Uk such that

#W1 ≥ 2n−β1−1

and
d(x|J,Ξn) ≤ β1 + 1

for each x ∈W1.
Since the number of x ∈W1 such that

d(x|U1, J) = log #U1 −K(x|U1, J) > β2 + 2

is less or equal to

2−β2−2#U1 = 2−β2−22n−(β1−β2) = 2n−β1−2 ≤ 1
2

#W1,

we can choose the set W2 ⊆W1 such that

#W2 ≥ 2n−β1−2

and
d(x|U1, J) ≤ β2 + 2

for all x ∈W2.
Continuing this process, we choose Wk ⊆Wk−1 such that

#Wk ≥ 2n−β1−k

and
d(x|Uk−1, J) ≤ βk + k

for all x ∈ Wk. We can do it since the number of x ∈ Wk−1 such that
d(x|Uk−1, J) > βk + k is less or equal to

2−βk−k#Uk−1 = 2−βk−k2n−(β1−βk) = 2n−β1−k ≤ 1
2

#Wk−1.

At the end of the process we choose the set Wk+1 ⊆ Wk such that #Wk+1 ≥
2n−β1−k−1 and d(x|Uk, J) ≤ k + 1 for all x ∈Wk+1.

We prove that any x ∈ Wk+1 satisfies the conclusion of the theorem. Since
Wk+1 ⊆ Uk, for any x ∈ Wk+1 and for all 1 ≤ j ≤ k + 1 by (47)-(49) the
following inequality

βx(α|J) ≥ βj − 7αk − k log k − k − c3 (50)

holds for α ≤ αj .
For each x ∈Wj we have

d(x|Uj−1, J) ≤ βj + j
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and
K(Uj−1|J) ≤ αj−1 + 2 log j + c2,

where U0 = Ξn end 1 ≤ j ≤ k + 1. Then for all x ∈ Wk+1 ⊆ Wj and
α ≥ αj−1 + 2 log j + c2

βx(α|J) ≤ βj + j.

Choose a constant c1 such that K(Ξn|n, J) ≤ c1 for each J . We take c1 ≤ α1.
Then (50) also holds for all c1 ≤ α ≤ α1. 2

15.3 Proof of Theorem 9

Proof. In this proof we will omit the parameter y for simplicity of exposition.
Let U(q, p) be the universal function as in the proof of Theorem 1. Define
Us(q, p) = U(q, p) if l(p) ≤ s, l(q) ≤ s and the right hand-side value was
computed within ≤ s steps, and Us(q, p) undefined, otherwise. Let

s(q) = sup{s | Us(q, p) is a prefix with respect to p function}

(may be s(q) = ∞ and we suppose that in this case Us(q)(q, p) = U(q, p)). So,
Us(q)(q, p) is a prefix with respect to p function.

Let us define partial recursive function A such that

A(l(q)01qp) = Us(q)(q, p).

By definition, for each partial recursive function B(p) there exists a program q
such that B(p) = U(q, p). If B(p) is a prefix function then s(q) = ∞. From
this KPA(x) ≤ KPB(x) + l(q) + 2 log l(q) + 2 holds for all x. This means that
KPA(x) ≤+ KPB(x) for any partial recursive prefix function B. 2

15.4 Proof of Theorem 10

The proof is based on the possibility to effectively enumerate all semimeasures
enumerable from below. More accurately, we can define a sequence {Pi} of
semimeasures such that

• {(i, r, x, y) | r < Pi(x|y), r ∈ Q} is a recursively enumerable set;

•
∑
x Pi(x|y) ≤ 1 for each i and y;

• for each semimeasure Q enumerable from below there is an i such that
Q = Pi.

Such a sequence can be defined as follows. Each conditional semimeasure
Q(x|y) enumerable from below defines a recursively enumerable set

{(r, x, y) | r ∈ Q, r < Q(x|y)}.
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We will effectively enumerate all such sets as follows. Let U(i, n) be a function
universal for all partial recursive functions of the type N → Q ⊗ Ξ ⊗ Ξ, i.e.
taking as values triples (r, x, y), where r ∈ Q and x, y ∈ Ξ.

Let Wi be the range of the function n → U(i, n), and W k
i be the finite

subset of Wi consisting of the values U(i, n), n ≤ k, which are computed in ≤ k
steps. Then W k

i ⊆ W k+1
i and Wi =

⋃
kW

k
i . Further, we will pick out of Wi

the maximal subset defining semimeasure. Define

P ki (x|y) = max({r | (r, x, y) ∈W k
i }
⋃
{0});

Pi(x|y) = sup
k
{P ki (x|y) |

∑
z

P ki (z|y) ≤ 1}.

Let Q be any semimeasure enumerable from below and U(i, n), n = 1, 2, . . .
enumerate the set {(r, x, y) | r ∈ Q, r < Q(x|y)}. Then this set is equal to Wi

and Pi(x|y) = Q(x|y) for all x, y.
Define

P (x|y) =
∑
i

1
2i2

Pi(x|y).

Evidently, this function is enumerable from below. Besides,∑
x

P (x|y) =
∑
x

∑
i

1
2i2

Pi(x|y) =

∑
i

1
2i2
∑
x

Pi(x|y) ≤
∑
i

1
2i2

< 1.

Let Q(x|y) be an arbitrary semimeasure enumerable from below such that∑
x
Q(x|y) ≤ 1 for each y. Then Q = Pi for some i. This implies 2i2P (x|y) ≥

Q(x|y) for each x, y. 2

15.5 Proof of Lemma 1

This proof is due to Shen (see [45], Lemma 2.1, see also [39], Section 3.4 and
[27], Section 4.3.3).

For any finite binary sequence x we consider an interval

Γx = {ω|ω ∈ Ω, x ⊆ ω}

in the Cantor space Ω of all infinite binary sequences. The Lebesgue measure
of such interval is L(Γx) = 2−l(x).

Suppose x1, x2 . . . , xn are already chosen and satisfy the following property:
the set

Ω− (Γx1

⋃
Γx2 . . .

⋃
Γxn)
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can be represented as the union of pairwise disjoint intervals Γt1 ,Γt2 , . . . ,Γtq ,
where lengths of all ti are distinct. Since this property holds for n = 0, we must
only prove that it is possible to find xn+1 of length kn+1 which is incompara-
ble with all x1, x2 . . . , xn and such that x1, x2 . . . , xn+1 satisfy above property.
There is a sequence of length at most kn+1 among t1, t2 . . . , tq since otherwise
we would have

L(Γt1
⋃

Γt2 . . .
⋃

Γtq ) <
∑

s>kn+1

2−s = 2−kn+1

and
L(Γx1

⋃
Γx2 . . .

⋃
Γxn) > 1− 2−kn+1 ,

which would contradict to ∑
n

2−kn ≤ 1.

Without loss of generality we assume that l(t1) ≤ kn+1 and that t1 is the longest
such sequence. If l(t1) = kn+1 we put xn+1 = t1 and have representation

Ω− (Γx1

⋃
. . .
⋃

Γxn
⋃

Γxn+1) = Γt2
⋃
. . .
⋃

Γtq .

If l(t1) < kn+1 we represent Γt1 as the union of pairwise disjoint intervals
Γa1 , . . . ,Γas such that among ai, i = 1, . . . , s, there are two sequences, say a1

and a2, of length kn+1, one sequence of length kn+1−1, one of length kn+1−2 . . .,
and one of length l(t1) + 1. Putting xn+1 = a1 we get the representation

Ω− (Γx1

⋃
. . .
⋃

Γxn+1) = Γt2
⋃
. . .
⋃

Γtq
⋃

Γa2

⋃
. . .
⋃

Γas .

There are no two sequences of the same length among t2, . . . , tq, a2, . . . , as since
the lengths of t2, . . . , tq and the lengths of a2, . . . , as are pairwise distinct and
the lengths of a2, . . . , as are in the interval between l(t1) + 1 and kn+1 whereas
the lengths of t2, . . . , tq are outside this interval. 2.

15.6 Some properties of the log-likelihood function for the
Bernoulli family

In this section we reproduce several technical lemmas on the Bernoulli family
from [43].

Lemma 4 When n ∈ N, α ∈ [1/2, πn1/2/2 − 1/2], and a, b ∈ [0, πn1/2/2]
range so that a ≤ α ≤ b and 1/2 ≤ b− a ≤ 2, we have

sin2(bn−1/2)− sin2(an−1/2) =· n−1/2 sin(αn−1/2) cos(αn−1/2). (51)
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Proof. Equivalent transformations of (51) yield:(
sin(bn−1/2)− sin(an−1/2)

) (
sin(bn−1/2) + sin(an−1/2)

)
=· n−1/2 sin(αn−1/2) cos(αn−1/2);

cos
(
b+a

2 n−1/2
)

sin
(
b−a

2 n−1/2
)

sin
(
b+a

2 n−1/2
)

cos
(
b−a

2 n−1/2
)

=· n−1/2 sin(αn−1/2) cos(αn−1/2).

Our task has reduced to proving that

cos
(
b+a

2 n−1/2
)

=· cos(αn−1/2), (52)

sin
(
b−a

2 n−1/2
)

=· n−1/2, (53)

sin
(
b+a

2 n−1/2
)

=· sin(αn−1/2), (54)

cos
(
b−a

2 n−1/2
)

=· 1. (55)

Equalities (53) and (55) immediately follow from 1/2 ≤ b−a ≤ 2; (52) and (54)
reduce, in view of a ≤ α ≤ b and α ∈ [1/2, πn1/2/2− 1/2], to

cos
(
π

2
− 1

2
n−1/2

)
=· cos

(
π

2
− 1

4
n−1/2

)
and

sin
(

1
2
n−1/2

)
=· sin

(
1
4
n−1/2

)
,

respectively; these two relations are equivalent, and the second of them is obvi-
ously true. 2

Corollary 4 When k ∈ {1, . . . , n− 1},

#E−1
n (En(k)) =·

√
k(n− k)

n
. (56)

Proof. For simplicity, we shall assume that E−1
n (En(k)) always consists of

consecutive elements of the set {0, . . . , n}. Define a, α, b by the conditions

sin2(an−1/2) = 1
n inf E−1

n (En(k)),

sin2(bn−1/2) = 1
n supE−1

n (En(k)),

sin2(αn−1/2) = k/n.

We can see that a ≤ α ≤ b, α ∈ [1, πn1/2/2− 1], and 1/2 ≤ b− a ≤ 2. Since

#E−1
n (En(k)) =· n

(
sin2(bn−1/2)− sin2(an−1/2)

)
and √

k(n−k)
n =

√
n kn
(
1− k

n

)
=
√
n sin2(αn−1/2) cos2(αn−1/2) =

√
n sin(αn−1/2) cos(αn−1/2),
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we can rewrite (56) as

sin2(bn−1/2)− sin2(an−1/2) =· n−1/2 sin(αn−1/2) cos(αn−1/2),

which coincides with (51). 2

The following two lemmas describe important properties of the log-likelihood
function for the Bernoulli model. We use the notation Gn,k for the log-likelihood
function expressed through the variable a (which will not longer be assumed to
be integer) introduced by θn(a) = sin2(an−1/2):

Gn,k(a) = ln
(

sin2k(an−1/2) cos2(n−k)(an−1/2)
)
,

a ranging over [0, πn1/2/2].
We use the notation â(n, k), for the maximum likelihood estimate of the

parameter a:
â(n, k) = arg max

a
Gn,k(a)

(therefore, sin2(â(n, k)n−1/2) = k/n).
Lemma 5 When n ≥ 1, a ∈ [1, πn1/2/2 − 1], and k ∈ {1, . . . , n − 1} range

so that |a− â(n, k)| < 1,

Gn,k(a) =+ Gn,k(â(n, k)).

Proof. Denote â = â(n, k). It suffices to prove that the values

sup
a

∣∣∣∣d2Gn,k(a)
da2

∣∣∣∣ , (57)

where a ranges over

[1, πn1/2/2− 1] ∩ [â− 1, â+ 1],

do not exceed some bound. Calculating the second derivative, we rewrite (57)
as

2 sup
a

(
k/n

sin2
(
an−1/2

) +
1− k/n

cos2
(
an−1/2

)) .
Note that

k/n = sin2
(
ân−1/2

)
, 1− k/n = cos2

(
ân−1/2

)
,

so it suffices to prove that

sup
a

sin2
(
(a+ 1)n−1/2

)
sin2

(
an−1/2

) and sup
a

cos2
(
(a− 1)n−1/2

)
cos2

(
an−1/2

)
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are bounded above by some constant. It is easy to see that both suprema are
equal to

sin2
(
2n−1/2

)
sin2

(
n−1/2

) → 4 (n→∞),

so they are indeed bounded. 2

It follows from Lemma 5 that

ln((En(k))k(1− En(k))n−k) =+ Gn,k(â(n, k))

(we can see that if sin2(an−1/2) = k/n and 1 ≤ k ≤ n−1 then a ∈ [1, πn1/2/2−
1]).

Lemma 6 Let n ≥ 1, a ∈ [0, πn1/2/2], and k ∈ {1, . . . , n − 1}. For some
constant ε > 0,

Gn,k(â(n, k))−Gn,k(a) ≥+ ε|a− â(n, k)|.

Proof. Denote â = â(n, k). By the symmetry of the problem, we can suppose
a > â. Furthermore, we can consider only the case a ≥ â+ 1/2. Since G′′k(a) is
negative everywhere, it is sufficient to prove that −G′k(â+ 1/2) is greater than
some constant ε > 0. We find

−G′k(a) = 2n−1/2

(
(n− k)

sin
(
an−1/2

)
cos
(
an−1/2

) − k cos
(
an−1/2

)
sin
(
an−1/2

)) ,
so we are required to prove

(n− k) sin2
(
(â+ 1/2)n−1/2

)
− k cos2

(
(â+ 1/2)n−1/2

)
> ε

2n
1/2 sin

(
(â+ 1/2)n−1/2

)
cos
(
(â+ 1/2)n−1/2

)
.

This inequality is equivalent to

n sin2
(
(â+ 1/2)n−1/2

)
− k

> ε
2n

1/2 sin
(
(â+ 1/2)n−1/2

)
cos
(
(â+ 1/2)n−1/2

)
,

or

sin2
(
(â+ 1/2)n−1/2

)
− sin2

(
ân−1/2

)
> ε

2n
−1/2 sin

(
(â+ 1/2)n−1/2

)
cos
(
(â+ 1/2)n−1/2

)
.

The last inequality immediately follows from Lemma 4.
The following inequalities

Gn,k(â)−Gn,k(a) ≥ Gn,k(â+ 1/2)−Gn,k(a) =
−G′(ã)(a− â− 1/2) ≥ ε(a− â)− ε/2,
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where â+ 1/2 < ã < a, complete the proof. 2

Lemma 7. Let n ≥ 1, a ∈ [0, πn1/2/2], and k ∈ {1, . . . , n− 1}. Then

KP (bâ(n, k)c |n, a) ≤+ (ln−1 2)(Gn,k(â(n, k))−Gn,k(a)).

Proof. By Lemma 6 Gn,k(â(n, k))−Gn,k(a)) ≥+ ε|a−â(n, k)| for some ε > 0.
Then the assertion of the lemma follows from

KP (bâ(n, k)c |n, a) ≤+ KP (bâ(n, k)c |n, bac) ≤+

KP (bâ(n, k)c − bac |n) ≤+ 2 log | bâ(n, k)c − bâc | ≤+ ε(ln−1 2)| bâ(n, k)c − bâc | =+

ε(ln−1 2)|â(n, k)− a|.
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