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Abstract—Properties of the idempotently convex hull of a two-point set in a free semimodule
over the idempotent semiring Rmax min and in a free semimodule over a linearly ordered
idempotent semifield are studied. Construction algorithms for this hull are proposed.
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Some asymptotic physical problems (such as quasiclassical approximation in quantum mechan-
ics [1]), as well as many problems of optimization theory, mathematical economics, etc., admit a
natural and simple formulation in terms of algebraic structures involving the operations of mini-
mization or maximization [2, 3]. Such algebraic structures are the object of the actively developing
field of idempotent mathematics [3–5]. Interesting, important and useful constructions and re-
sults of traditional mathematics over number fields and similar structures have counterparts over
idempotent semifields and semirings formulated in the spirit of Bohr’s correspondence principle
in quantum theory [6, 7]. This correspondence can be far from obvious, though. In this paper,
we consider the simplest problem of idempotent convex geometry (developed, in particular, in [8]
and [7]), the construction of the convex hull of a two-point set in an idempotent semimodule, and
prove that the algorithmic complexity of its solution increases with the growth of the semimodule’s
dimension.

We consider the number line with the operations ⊕ = max and � = + and the additional
element −∞ , which plays the part of 0 , i.e., is assumed to have the properties −∞ ⊕ a = a ,
−∞�a = −∞ . The ⊕ operation is commutative, associative, and idempotent (a⊕a = a), the �
operation is commutative and distributive with respect to ⊕ . In idempotent analysis, the above-
mentioned properties are considered to be the axioms of an idempotent semiring. The structure
defined above has also the property of invertibility of the � operation and, for that reason, is
called the idempotent semifield Rmax + .

The idempotent semiring Rmax min is an important example of a semiring which is not a semi-
field. It includes the entire number line with the additional elements −∞ and +∞ and has
two operations ⊕ = max and � = min. The elements −∞ and +∞ are considered to be
the elements 0 and 1 of the semiring, i.e., are assumed to have the properties −∞ ⊕ a = a ,
a � (+∞) = a .

In any idempotent semiring, the ⊕ operation induces a partial order: a � b if and only if
a ⊕ b = b ; a ≺ b if and only if a � b and a �= b . In both semirings considered above, this order is
linear, because for any elements a and b , we have a � b or b � a ; therefore, for any elements a
and b of these semirings the operation a ∧ b of taking the lower bound is also defined.

In the paper, we consider semimodules Sn of column vectors of the form (a1 , . . . , an) , ai ∈ S ,
with coordinatewise operations of generalized addition and multiplication by a scalar from the
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semiring S . They are idempotent analogs of vector spaces. The ⊕ operation induces a partial
order in these semimodules.

It is easy to carry the notion of convexity over to semimodules of this kind. A set C ⊂ Sn

is said to be idempotently convex if for any x, y ∈ C and λ, µ ∈ S such that λ ⊕ µ = 1 , the
combination λx ⊕ µy also belongs to C . A point y is called an idempotently convex combination
of points x1 , . . . , xm if y =

⊕m
i=1 λixi , with

⊕m
i=1 λi = 1 . From now on we omit the symbol �

in the notation of the generalized multiplication of a “vector” from Sn by a scalar from S .
The idempotently convex hull of points x1 , . . . xm ∈ Sn is the set of their idempotently convex
combinations.

In what follows, wherever it does not lead to misunderstanding, we shall call idempotently
convex sets, combinations, and hulls simply convex. All the following results are formulated for
semimodules Sn , where S is the linearly ordered idempotent semifield or the semiring Rmax min .

In semimodules over these semirings, convex combinations of points x1 and x2 can be linearly
ordered as follows: y �x1 ,x2 z if z belongs to the convex hull of {y, x2} . It is readily seen
that this relation satisfies all the order relation axioms. Now it is natural to give the following
definition: a sequence of convex combinations y1 , . . . , ym of points x1 and x2 is called monotone
if yi �x1 ,x2 yi+1 for i = 1, . . . , m − 1 . The proof of the following lemma is obvious.

Lemma 1. Let y1 , . . . , ym ∈ Sn be a monotone sequence of convex combinations of points y0

and ym+1 , and let z be any other convex combination of y0 and ym+1 . Then for a certain unique
i ∈ {0, . . . , m} , the point z is a convex combination of the points yi and yi+1 .

Let us introduce one more notion. Let S be the idempotent semifield or the semiring Rmax min .
The set of pairwise distinct points y1 , . . . , ym+1 ∈ Sn will be called the vertex sequence of the
convex hull of the points y1 and ym+1 if it meets the following three requirements:

(1) all yi belong to the convex hull of y1 and ym+1 ;
(2) for any i ∈ {1, . . . , m} , the points yi and yi+1 belong to the line specified by the equations

yj = cj = const for j ∈ Ii and yj = λ � yj
i for j /∈ Ii if S is the idempotent semifield,

and the equations yj = cj = const for j ∈ Ii and yj = λ for j /∈ Ii if S is the
semiring Rmax min ;

(3) for any i ∈ {1, . . . , m − 1} , the sets Ii and Ii+1 do not coincide.

Lemma 2. The vertex sequence y1 , . . . , ym+1 ∈ Sn is monotone and unique.

Proof. If m = 1, 2 , then the statement is trivial. Now suppose that m > 2 . Let us prove by
induction that the vertex sequence is monotone. The base of induction is also trivial: y1 �y1 ,ym+1

y2 . Now suppose that y1 �y1 ,ym+1 · · · �y1 ,ym+1 yk . Let us prove that yk �y1 ,ym+1 yk+1 by
contradiction. Then the vertex yk+1 , by Lemma 1, belongs to either {yk−1 , yk} (then the third
requirement of the definition is not true) or {yi−1 , yi} , where i < k (then the second requirement
of the definition is not true). Thus, yk �y1 ,ym+1 yk+1 , and the vertex sequence is monotone by
induction.

Let us prove the uniqueness of the sequence of distinct vertices. Suppose that this is not true,
and their exists another vertex sequence z1 , . . . , zs . Then this sequence of points cannot be a
subsequence of y1 , . . . , ym , because in that case, for zl = yi and zl+1 = yi+k , where k > 1 , the
second requirement of the definition is violated. It remains to assume that, e.g., the point zj does
not coincide with any of the vertices y . Then, by Lemma 1, this point belongs to the convex
hull of one of the pairs {yi , yi+1} . The points zj−1 and zj+1 must belong to the same convex
hull, otherwise they do not satisfy the second requirement of the definition. But in this case
the points zj−1 , zj , and zj+1 do not satisfy the third requirement of the definition. Hence the
sequence z1 , . . . , zs coincides with y1 , . . . , yk . �

Let us construct the vertex sequence of the convex hull of the points x1 and x2 . We shall
consider two cases: x1 ≺ x2 and the case in which x1 and x2 are incomparable. Notice that
without loss of generality we can assume that xi

1 �= xi
2 for all i .
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In the case x1 ≺ x2 , we shall prove the following theorem:

Theorem 1. Suppose that x1 , x2 ∈ Sn and xi
1 ≺ xi

2 for all i . Then the vertex sequence yi of
the convex hull of x1 and x2 exists, and the following statements hold up to coincident vertices:

(1) if S is the linearly ordered idempotent semifield, then i = 1, . . . , n + 1 , yn+1 = x2 , and
yi = x1 ⊕ λix2 for i �= n + 1 , where λi is the ith term of the sequence

xl1
1 � (xl1

2 )−1 � · · · � xln
1 � (xln

2 )−1 ,

and {l1 , . . . , ln} is the suitable permutation of {1, . . . , n} ;
(2) if S is the semiring Rmax min , then i = 1, . . . , 2n and yi = x1 ⊕ λix2 , where λi is the ith

term of the sequence
x

l(1)
1 � · · · � xl(i)

ui
� · · · � x

l(2n)
2

and i �→ (ui , l(i)) is the suitable bijection of {1, . . . , 2n} onto {1, 2} × {1, . . . , n} .

Proof. By choosing a representative from each equivalence class of coincident convex combinations
of yj and arranging them in order of increasing parameter λ , we obtain a sequence z1 , . . . , zl+1 ,
where z1 = x1 , zl+1 = x2 , and zj = yr(j) , where r(j) is the corresponding map of the set
{1, . . . , l + 1} to the set {1, . . . , n + 1} in the case of a semifield and to the set {1, . . . , 2n} in
the case of a semiring Rmax min . Now the statement of the theorem reduces to the fact that the
sequence z1 , . . . , zl+1 is the vertex sequence of the convex hull of x1 = z1 and x2 = zl+1 .

Let us prove this statement in the case of a semimodule over the idempotent semifield.
First, since xi

1 ≺ xi
2 for any i , we have λi ≺ 1 , and so all yi and zi are convex combinations

of the points x1 and x2 .
Let us prove the second and third requirements of the definition of a vertex sequence. We

introduce the index sets

N+(λ) = {i | xi
1 � (xi

2)
−1 � λ},

N0(λ) = {i | xi
1 � (xi

2)
−1 = λ},

N−(λ) = {i | xi
1 � (xi

2)
−1 ≺ λ},

and set y(λ) = x1 ⊕ λx2 . Then for i ∈ N+(λ) ∪ N0(λ) , we have yi(λ) = xi
1 , and for i ∈

N−(λ)∪N0(λ) , we have yi(λ) = λ�xi
1 . This yields the second requirement of the definition with

Ij = N+(λr(j)+1)∪N0(λr(j)+1) for any j = 1, . . . , l . Notice that the index lr(j) belongs to Ij−1 ,
but does not belong to Ij ; therefore, the third requirement is also satisfied.

Let us prove the statement of the theorem for a semimodule over the semiring Rmax min .
Since none of the elements of the semiring Rmax min exceeds 1 , the first requirement of the

definition of vertices of the convex hull is trivially true.
Let us verify the second and third requirements. We introduce the index sets

N+
1 (λ) = {i | xi

1 � λ}, N0
1 (λ) = {i | xi

1 = λ}, N−
1 (λ) = {i | xi

1 ≺ λ},

N+
2 (λ) = {i | xi

2 � λ}, N0
2 (λ) = {i | xi

2 = λ}, N−
2 (λ) = {i | xi

2 ≺ λ}.
Then for i ∈ N−

2 (λ) ∪ N0
2 (λ) , we have yi(λ) = xi

2 ; for i ∈ (N+
2 (λ) ∪ N0

2 (λ)) ∩ (N+
1 (λ) ∪ N0

1 (λ)) ,
we have yi(λ) = xj

1 ; and for j ∈ (N+
2 (λ) ∪ N0

2 (λ)) ∩ (N−
1 (λ) ∪ N0

1 (λ)) , we have yi(λ) = λ . This
yields the second requirement with

Ij = (N−
2 (λr(j)) ∪ N0

2 (λr(j))) ∪ ((N+
2 (λr(j)+1) ∪ N0

2 (λr(j)+1)) ∩ (N+
1 (λr(j)+1) ∪ N0

1 (λr(j)+1)))

for any j=1, . . . ,l. The index l(r(j)) cannot belong to both I(j − 1) and I(j) ; hence the third
requirement is true as well.

Lemma 2 ensures the uniqueness of the sequence z1 , . . . , zl+1 . �
Now we shall prove a similar theorem for the second case. We shall use the notation

M0 = {i | xi
1 = xi

2}, M1 = {i | xi
2 ≺ xi

1}, M2 = {i | xi
1 ≺ xi

2}.
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Theorem 2. Suppose that points x1 , x2 ∈ Sn are incomparable and M0 = ∅ . Then the vertex
sequence of their convex hull exists and is unique.

Proof. In the case x1 ≺ x2 , the statement has already been proved. It remains to prove it for the
case in which x1 and x2 are incomparable. In this case, {1, . . . , n} = M1 ∪ M2 . Notice that the
point x1 ⊕ x2 is a convex combination of the points x1 and x2 distinct from them. By Lemma 1,
all convex combinations of the points x1 and x2 belong either to the convex hull of {x1 , x1 ⊕ x2}
or to the convex hull of {x1 ⊕ x2 , x2} . Since x1 ≺ x1 ⊕ x2 and x2 ≺ x1 ⊕ x2 , for each of the two
convex hulls there exists the sequence of intermediate vertices. Joining the two vertex sequences
together by the point x1 ⊕ x2 , we obtain a vertex sequence of the convex hull of x1 and x2 . All
the vertices except x1 ⊕ x2 automatically satisfy all the requirements of the definition, and the
point x1⊕x2 automatically satisfies the first two requirements. Let us verify the third requirement
for this point. The convex hull of {x1 , x1 ⊕ x2} belongs to the plane xi = xi

1 , i ∈ M1 , and the
convex hull of {x1 ⊕ x2 , x2} belongs to the plane xi = xi

2 , i ∈ M2 ; in addition, M1 ∩ M2 = 0.
This means that the sets I for the point x1 ⊕ x2 and its neighboring vertices coincide.

The uniqueness is guaranteed by Lemma 2. �

In what follows, using Theorems 1 and 2, we propose algorithms for the construction of the
sequence of distinct vertices of the convex hull of points x1 and x2 in the semimodule Sn over
the idempotent semifield and over the semiring Rmax min .

Both algorithms begin with dividing the initial index set {1, . . . , n} into the three subsets M1 ,
M2 , and M0 . Further, if S is a semifield, then for the indices i from M1 , we sort the products
xi

1 � (xi
2)

−1 in ascending order to obtain the sequence λ1 � · · · � λm , where λi = xli
1 � (xli

2 )−1 .
For the i from M2 , we sort xi

2 � (xi
1)

−1 to obtain the sequence µ1 � · · · � µk , where µi = xmi
2 �

(xli
1 )−1 . If S is the semiring Rmax min , then for the indices i from M1 , we perform simultaneous

ascending sorting of xi
1 and xi

2 , which results into the sequence λ1 � · · · � λ2m , where λi = x
l(i)
ui .

For the i from M2 , we perform similar sorting to obtain the sequence µ1 � · · · � µ2k , where
µi = x

m(i)
si . Then we construct the vertex sequences of the convex hulls of {x1 , x1 ⊕ x2} and

{x1 ⊕ x2 , x2} . We shall give the construction algorithms for the vertex sequence of the first of
these convex hulls. The construction algorithm for the second one can be obtained by replacing x1

by x2 , M1 by M2 , and (in the case of the semiring Rmax min) N+,−,0
1 by N+,−,0

2 .

CONSTRUCTION ALGORITHM FOR THE VERTEX SEQUENCE
OF THE CONVEX HULL OF x1 AND x1 ⊕ x2

IN A SEMIMODULE OVER THE IDEMPOTENT SEMIFIELD

State of the computation process. The set {1, . . . , n} is partitioned into disjoint sets M1 , M2 ,
and M0 , the first of which is partitioned into disjoint sets N− , N0 , and N+ . The coordinates of
vertices are computed depending on the membership of the corresponding indices to these sets.

Initial state: N0 = {l1} , N+ = M1\{l1} .
Standard step of the algorithm. If λi+1 � λi , then the index li+1 is placed in N0 , the index li

is placed in N− , and the coordinates of the vertices yi+1 are computed by the following rules:
yj

i+1 = λi+1 � xj
2 if j ∈ (N− ∪ N0) , and yj

i+1 = xj
1 if j ∈ N+ ∪ M2 ∪ M0 .

If λi+1 = λi , then the index li+1 is placed in N0 and no other actions are performed.

CONSTRUCTION ALGORITHM FOR THE VERTEX SEQUENCE
OF THE CONVEX HULL OF x1 AND x1 ⊕ x2

IN A SEMIMODULE OVER THE SEMIRING Rmax min

State of the computation process. The set {1, . . . , n} is partitioned into the disjoint sets M1 ,
M2 , and M0 , the first of which is partitioned into disjoint sets N−

1 , N0
1 , and N+

1 , as well as

MATHEMATICAL NOTES Vol. 74 No. 6 2003



852 S. N. SERGEEV

into N−
2 , N0

2 , and N+
2 . The coordinates of vertices are computed depending on the membership

of the corresponding indices to these sets.
Initial state: N0

1 = {l1} , N+
1 = M1\{l1} , N0

2 = 0, N+
2 = M1 .

Standard step of the algorithm. If λi+1 � λi , then the index l(i + 1) is placed in N0
ui+1

, the
index l(i) is placed in N−

ui+1
, and the coordinates of the vertex yi+1 are computed by the following

rules: yj
i+1 = λi+1 if j ∈ (N−

1 ∪ N0
1 ) ∩ (N+

2 ) , yj
i+1 = xj

2 if j ∈ (N−
2 ∪ N0

2 ) , and yj
i+1 = xj

1 if
j ∈ (N+

2 ∩ N+
1 ) ∪ M2 ∪ M0 .

If λi+1 = λi , then the index l(i + 1) is placed in N0
ui+1

and no other actions are performed.
The algorithms thus constructed are of computational complexity n2 . This follows from the

fact that the number of vertices (not counting the initial points) can be as large as n − 1 for the
semifield and 2n − 2 for Rmax min .

In conclusion, let us mention the connection between the vertex sequence of a convex hull and
the theory of (idempotently) linear functionals in idempotent semimodules developed in [7]. In
this paper, the functional defined by the formula

y �−→ x∗(y) = inf{k ∈ S | kx � y},

where S is an idempotent semiring, and x , y are elements of a semimodule over this semiring,
is called the x-functional. It is proved that if S is an idempotent semifield and the semimodule
satisfies some natural conditions, then the x-functional is linear and any linear functional is rep-
resentable in the form of an x-functional. Now we notice that in the semimodule Sn , where S
is an idempotent semifield, we have x∗(y) =

⊕
i(x

i)−1 � yi . Then, if xi
1 ≺ xi

2 for any i , then
yn = x1 ⊕ x∗

2(x1)x2 = x∗
2(x1)x2 . One of the coordinates of yn coincides with the corresponding

coordinate of x1 ; hence all the other vertices inherit it automatically. Considering x1 and yn as
points on the (n − 1)-dimensional plane, we find that yn−1 = y∗

n(x1)yn . All other vertices are
found similarly.

ACKNOWLEDGMENTS

The author wishes to express his thanks to A. N. Sobolevskii for his permanent attention and
valuable remarks.

This research was supported by the Russian Foundation for Basic Research under grant no. 02-
01-01062.

REFERENCES

1. V. P. Maslov, Asymptotic Methods of Solution of Pseudodifferential Equations [in Russian], Nauka,
Moscow, 1987.

2. F. L. Bacelli, G. Cohen, G. J. Olsder, and J. P. Quadrat, Synchronization and Linearity: an Algebra
for Discrete Event Systems, John Wiley & Sons Publ., New York, 1992.

3. V. P. Maslov and V. N. Kolokol′tsov, Idempotent Analysis and Its Application in Optimal Control [in
Russian], Nauka, Moscow, 1994.

4. V. P. Maslov and S. N. Samborskii (editors), Idempotent Analysis, Adv. Sov. Math, vol. 13, Amer.
Math. Soc., Providence, RI, 1992.

5. J. Gunawardena (ed.), Idempotency, Publ. of the Newton Institute, Cambridge Univ. Press, Cambridge,
1998.

6. G. L. Litvinov and V. P. Maslov, Correspondence Principle for Idempotent Calculus and Some Com-

puter Applications, (IHES/M/95/33), Institut des Hautes Études Scientifiques, Bures-Sur-Yvette, 1995.
7. G. L. Litvinov, V. P. Maslov, and G. B. Shpiz, “Idempotent Functional Analysis. Algebraic Approach,”

Mat. Zametki [Math. Notes], 69 (2001), no. 5, 758–797.
8. K. Zimmermann, “A general separation theorem in extremal algebras,” Ekonomicko-matematicky obzor

(Prague), 13 (1977), no. 2, 179–201.

M. V. Lomonosov Moscow State University

MATHEMATICAL NOTES Vol. 74 No. 6 2003


