Algorithmic Complexity of a Problem of Idempotent Convex Geometry

S. N. Sergeev
Received July 15, 2002; in final form, December 13, 2002

Abstract

Properties of the idempotently convex hull of a two-point set in a free semimodule over the idempotent semiring $R_{\max \min }$ and in a free semimodule over a linearly ordered idempotent semifield are studied. Construction algorithms for this hull are proposed.

Key words: idempotent geometry, convex hull, semimodule, idempotent semiring, idempotent semifield, algorithmic complexity.

Some asymptotic physical problems (such as quasiclassical approximation in quantum mechanics [1]), as well as many problems of optimization theory, mathematical economics, etc., admit a natural and simple formulation in terms of algebraic structures involving the operations of minimization or maximization $[2,3]$. Such algebraic structures are the object of the actively developing field of idempotent mathematics [3-5]. Interesting, important and useful constructions and results of traditional mathematics over number fields and similar structures have counterparts over idempotent semifields and semirings formulated in the spirit of Bohr's correspondence principle in quantum theory $[6,7]$. This correspondence can be far from obvious, though. In this paper, we consider the simplest problem of idempotent convex geometry (developed, in particular, in [8] and $[7]$), the construction of the convex hull of a two-point set in an idempotent semimodule, and prove that the algorithmic complexity of its solution increases with the growth of the semimodule's dimension.

We consider the number line with the operations $\oplus=\max$ and $\odot=+$ and the additional element $-\infty$, which plays the part of 0 , i.e., is assumed to have the properties $-\infty \oplus a=a$, $-\infty \odot a=-\infty$. The \oplus operation is commutative, associative, and idempotent $(a \oplus a=a)$, the \odot operation is commutative and distributive with respect to \oplus. In idempotent analysis, the abovementioned properties are considered to be the axioms of an idempotent semiring. The structure defined above has also the property of invertibility of the \odot operation and, for that reason, is called the idempotent semifield $R_{\max +}$.

The idempotent semiring $R_{\max \min }$ is an important example of a semiring which is not a semifield. It includes the entire number line with the additional elements $-\infty$ and $+\infty$ and has two operations $\oplus=\max$ and $\odot=\min$. The elements $-\infty$ and $+\infty$ are considered to be the elements $\mathbf{0}$ and $\mathbf{1}$ of the semiring, i.e., are assumed to have the properties $-\infty \oplus a=a$, $a \odot(+\infty)=a$.

In any idempotent semiring, the \oplus operation induces a partial order: $a \preceq b$ if and only if $a \oplus b=b ; a \prec b$ if and only if $a \preceq b$ and $a \neq b$. In both semirings considered above, this order is linear, because for any elements a and b, we have $a \preceq b$ or $b \preceq a$; therefore, for any elements a and b of these semirings the operation $a \wedge b$ of taking the lower bound is also defined.

In the paper, we consider semimodules S^{n} of column vectors of the form $\left(a^{1}, \ldots, a^{n}\right), a^{i} \in S$, with coordinatewise operations of generalized addition and multiplication by a scalar from the
semiring S. They are idempotent analogs of vector spaces. The \oplus operation induces a partial order in these semimodules.

It is easy to carry the notion of convexity over to semimodules of this kind. A set $C \subset S^{n}$ is said to be idempotently convex if for any $x, y \in C$ and $\lambda, \mu \in S$ such that $\lambda \oplus \mu=\mathbf{1}$, the combination $\lambda x \oplus \mu y$ also belongs to C. A point y is called an idempotently convex combination of points x_{1}, \ldots, x_{m} if $y=\bigoplus_{i=1}^{m} \lambda_{i} x_{i}$, with $\bigoplus_{i=1}^{m} \lambda_{i}=\mathbf{1}$. From now on we omit the symbol \odot in the notation of the generalized multiplication of a "vector" from S^{n} by a scalar from S. The idempotently convex hull of points $x_{1}, \ldots x_{m} \in S^{n}$ is the set of their idempotently convex combinations.

In what follows, wherever it does not lead to misunderstanding, we shall call idempotently convex sets, combinations, and hulls simply convex. All the following results are formulated for semimodules S^{n}, where S is the linearly ordered idempotent semifield or the semiring $R_{\max \min }$.

In semimodules over these semirings, convex combinations of points x_{1} and x_{2} can be linearly ordered as follows: $y \preceq_{x_{1}, x_{2}} z$ if z belongs to the convex hull of $\left\{y, x_{2}\right\}$. It is readily seen that this relation satisfies all the order relation axioms. Now it is natural to give the following definition: a sequence of convex combinations y_{1}, \ldots, y_{m} of points x_{1} and x_{2} is called monotone if $y_{i} \preceq_{x_{1}, x_{2}} y_{i+1}$ for $i=1, \ldots, m-1$. The proof of the following lemma is obvious.
Lemma 1. Let $y_{1}, \ldots, y_{m} \in S^{n}$ be a monotone sequence of convex combinations of points y_{0} and y_{m+1}, and let z be any other convex combination of y_{0} and y_{m+1}. Then for a certain unique $i \in\{0, \ldots, m\}$, the point z is a convex combination of the points y_{i} and y_{i+1}.

Let us introduce one more notion. Let S be the idempotent semifield or the semiring $R_{\max \min }$. The set of pairwise distinct points $y_{1}, \ldots, y_{m+1} \in S^{n}$ will be called the vertex sequence of the convex hull of the points y_{1} and y_{m+1} if it meets the following three requirements:
(1) all y_{i} belong to the convex hull of y_{1} and y_{m+1};
(2) for any $i \in\{1, \ldots, m\}$, the points y_{i} and y_{i+1} belong to the line specified by the equations $y^{j}=c^{j}=$ const for $j \in I_{i}$ and $y^{j}=\lambda \odot y_{i}^{j}$ for $j \notin I_{i}$ if S is the idempotent semifield, and the equations $y^{j}=c^{j}=$ const for $j \in I_{i}$ and $y^{j}=\lambda$ for $j \notin I_{i}$ if S is the semiring $R_{\text {max min }}$;
(3) for any $i \in\{1, \ldots, m-1\}$, the sets I_{i} and I_{i+1} do not coincide.

Lemma 2. The vertex sequence $y_{1}, \ldots, y_{m+1} \in S^{n}$ is monotone and unique.
Proof. If $m=1,2$, then the statement is trivial. Now suppose that $m>2$. Let us prove by induction that the vertex sequence is monotone. The base of induction is also trivial: $y_{1} \preceq_{y_{1}, y_{m+1}}$ y_{2}. Now suppose that $y_{1} \preceq_{y_{1}, y_{m+1}} \cdots \preceq_{y_{1}, y_{m+1}} y_{k}$. Let us prove that $y_{k} \preceq_{y_{1}, y_{m+1}} y_{k+1}$ by contradiction. Then the vertex y_{k+1}, by Lemma 1, belongs to either $\left\{y_{k-1}, y_{k}\right\}$ (then the third requirement of the definition is not true) or $\left\{y_{i-1}, y_{i}\right\}$, where $i<k$ (then the second requirement of the definition is not true). Thus, $y_{k} \preceq_{y_{1}, y_{m+1}} y_{k+1}$, and the vertex sequence is monotone by induction.

Let us prove the uniqueness of the sequence of distinct vertices. Suppose that this is not true, and their exists another vertex sequence z_{1}, \ldots, z_{s}. Then this sequence of points cannot be a subsequence of y_{1}, \ldots, y_{m}, because in that case, for $z_{l}=y_{i}$ and $z_{l+1}=y_{i+k}$, where $k>1$, the second requirement of the definition is violated. It remains to assume that, e.g., the point z_{j} does not coincide with any of the vertices y. Then, by Lemma 1, this point belongs to the convex hull of one of the pairs $\left\{y_{i}, y_{i+1}\right\}$. The points z_{j-1} and z_{j+1} must belong to the same convex hull, otherwise they do not satisfy the second requirement of the definition. But in this case the points z_{j-1}, z_{j}, and z_{j+1} do not satisfy the third requirement of the definition. Hence the sequence z_{1}, \ldots, z_{s} coincides with y_{1}, \ldots, y_{k}.

Let us construct the vertex sequence of the convex hull of the points x_{1} and x_{2}. We shall consider two cases: $x_{1} \prec x_{2}$ and the case in which x_{1} and x_{2} are incomparable. Notice that without loss of generality we can assume that $x_{1}^{i} \neq x_{2}^{i}$ for all i.

In the case $x_{1} \prec x_{2}$, we shall prove the following theorem:
Theorem 1. Suppose that $x_{1}, x_{2} \in S^{n}$ and $x_{1}^{i} \prec x_{2}^{i}$ for all i. Then the vertex sequence y_{i} of the convex hull of x_{1} and x_{2} exists, and the following statements hold up to coincident vertices:
(1) if S is the linearly ordered idempotent semifield, then $i=1, \ldots, n+1, \quad y_{n+1}=x_{2}$, and $y_{i}=x_{1} \oplus \lambda_{i} x_{2}$ for $i \neq n+1$, where λ_{i} is the i th term of the sequence

$$
x_{1}^{l_{1}} \odot\left(x_{2}^{l_{1}}\right)^{-1} \preceq \cdots \preceq x_{1}^{l_{n}} \odot\left(x_{2}^{l_{n}}\right)^{-1}
$$

and $\left\{l_{1}, \ldots, l_{n}\right\}$ is the suitable permutation of $\{1, \ldots, n\}$;
(2) if S is the semiring $R_{\max \min }$, then $i=1, \ldots, 2 n$ and $y_{i}=x_{1} \oplus \lambda_{i} x_{2}$, where λ_{i} is the ith term of the sequence

$$
x_{1}^{l(1)} \preceq \cdots \preceq x_{u_{i}}^{l(i)} \preceq \cdots \preceq x_{2}^{l(2 n)}
$$

and $i \mapsto\left(u_{i}, l(i)\right)$ is the suitable bijection of $\{1, \ldots, 2 n\}$ onto $\{1,2\} \times\{1, \ldots, n\}$.
Proof. By choosing a representative from each equivalence class of coincident convex combinations of y_{j} and arranging them in order of increasing parameter λ, we obtain a sequence z_{1}, \ldots, z_{l+1}, where $z_{1}=x_{1}, \quad z_{l+1}=x_{2}$, and $z_{j}=y_{r(j)}$, where $r(j)$ is the corresponding map of the set $\{1, \ldots, l+1\}$ to the set $\{1, \ldots, n+1\}$ in the case of a semifield and to the set $\{1, \ldots, 2 n\}$ in the case of a semiring $R_{\max \min }$. Now the statement of the theorem reduces to the fact that the sequence z_{1}, \ldots, z_{l+1} is the vertex sequence of the convex hull of $x_{1}=z_{1}$ and $x_{2}=z_{l+1}$.

Let us prove this statement in the case of a semimodule over the idempotent semifield.
First, since $x_{1}^{i} \prec x_{2}^{i}$ for any i, we have $\lambda_{i} \prec \mathbf{1}$, and so all y_{i} and z_{i} are convex combinations of the points x_{1} and x_{2}.

Let us prove the second and third requirements of the definition of a vertex sequence. We introduce the index sets

$$
\begin{aligned}
N^{+}(\lambda) & =\left\{i \mid x_{1}^{i} \odot\left(x_{2}^{i}\right)^{-1} \succ \lambda\right\} \\
N^{0}(\lambda) & =\left\{i \mid x_{1}^{i} \odot\left(x_{2}^{i}\right)^{-1}=\lambda\right\} \\
N^{-}(\lambda) & =\left\{i \mid x_{1}^{i} \odot\left(x_{2}^{i}\right)^{-1} \prec \lambda\right\}
\end{aligned}
$$

and set $y(\lambda)=x_{1} \oplus \lambda x_{2}$. Then for $i \in N^{+}(\lambda) \cup N^{0}(\lambda)$, we have $y^{i}(\lambda)=x_{1}^{i}$, and for $i \in$ $N^{-}(\lambda) \cup N^{0}(\lambda)$, we have $y^{i}(\lambda)=\lambda \odot x_{1}^{i}$. This yields the second requirement of the definition with $I_{j}=N^{+}\left(\lambda_{r(j)+1}\right) \cup N^{0}\left(\lambda_{r(j)+1}\right)$ for any $j=1, \ldots, l$. Notice that the index $l_{r(j)}$ belongs to I_{j-1}, but does not belong to I_{j}; therefore, the third requirement is also satisfied.

Let us prove the statement of the theorem for a semimodule over the semiring $R_{\max \min }$.
Since none of the elements of the semiring $R_{\max \min }$ exceeds $\mathbf{1}$, the first requirement of the definition of vertices of the convex hull is trivially true.

Let us verify the second and third requirements. We introduce the index sets

$$
\begin{array}{lll}
N_{1}^{+}(\lambda)=\left\{i \mid x_{1}^{i} \succ \lambda\right\}, & N_{1}^{0}(\lambda)=\left\{i \mid x_{1}^{i}=\lambda\right\}, & N_{1}^{-}(\lambda)=\left\{i \mid x_{1}^{i} \prec \lambda\right\} \\
N_{2}^{+}(\lambda)=\left\{i \mid x_{2}^{i} \succ \lambda\right\}, & N_{2}^{0}(\lambda)=\left\{i \mid x_{2}^{i}=\lambda\right\}, & N_{2}^{-}(\lambda)=\left\{i \mid x_{2}^{i} \prec \lambda\right\}
\end{array}
$$

Then for $i \in N_{2}^{-}(\lambda) \cup N_{2}^{0}(\lambda)$, we have $y^{i}(\lambda)=x_{2}^{i}$; for $i \in\left(N_{2}^{+}(\lambda) \cup N_{2}^{0}(\lambda)\right) \cap\left(N_{1}^{+}(\lambda) \cup N_{1}^{0}(\lambda)\right)$, we have $y^{i}(\lambda)=x_{1}^{j}$; and for $j \in\left(N_{2}^{+}(\lambda) \cup N_{2}^{0}(\lambda)\right) \cap\left(N_{1}^{-}(\lambda) \cup N_{1}^{0}(\lambda)\right)$, we have $y^{i}(\lambda)=\lambda$. This yields the second requirement with

$$
I_{j}=\left(N_{2}^{-}\left(\lambda_{r(j)}\right) \cup N_{2}^{0}\left(\lambda_{r(j)}\right)\right) \cup\left(\left(N_{2}^{+}\left(\lambda_{r(j)+1}\right) \cup N_{2}^{0}\left(\lambda_{r(j)+1}\right)\right) \cap\left(N_{1}^{+}\left(\lambda_{r(j)+1}\right) \cup N_{1}^{0}\left(\lambda_{r(j)+1}\right)\right)\right)
$$

for any $\mathrm{j}=1, \ldots, \mathrm{l}$. The index $l(r(j))$ cannot belong to both $I(j-1)$ and $I(j)$; hence the third requirement is true as well.

Lemma 2 ensures the uniqueness of the sequence z_{1}, \ldots, z_{l+1}.
Now we shall prove a similar theorem for the second case. We shall use the notation

$$
M_{0}=\left\{i \mid x_{1}^{i}=x_{2}^{i}\right\}, \quad M_{1}=\left\{i \mid x_{2}^{i} \prec x_{1}^{i}\right\}, \quad M_{2}=\left\{i \mid x_{1}^{i} \prec x_{2}^{i}\right\}
$$

Theorem 2. Suppose that points $x_{1}, x_{2} \in S^{n}$ are incomparable and $M_{0}=\varnothing$. Then the vertex sequence of their convex hull exists and is unique.

Proof. In the case $x_{1} \prec x_{2}$, the statement has already been proved. It remains to prove it for the case in which x_{1} and x_{2} are incomparable. In this case, $\{1, \ldots, n\}=M_{1} \cup M_{2}$. Notice that the point $x_{1} \oplus x_{2}$ is a convex combination of the points x_{1} and x_{2} distinct from them. By Lemma 1, all convex combinations of the points x_{1} and x_{2} belong either to the convex hull of $\left\{x_{1}, x_{1} \oplus x_{2}\right\}$ or to the convex hull of $\left\{x_{1} \oplus x_{2}, x_{2}\right\}$. Since $x_{1} \prec x_{1} \oplus x_{2}$ and $x_{2} \prec x_{1} \oplus x_{2}$, for each of the two convex hulls there exists the sequence of intermediate vertices. Joining the two vertex sequences together by the point $x_{1} \oplus x_{2}$, we obtain a vertex sequence of the convex hull of x_{1} and x_{2}. All the vertices except $x_{1} \oplus x_{2}$ automatically satisfy all the requirements of the definition, and the point $x_{1} \oplus x_{2}$ automatically satisfies the first two requirements. Let us verify the third requirement for this point. The convex hull of $\left\{x_{1}, x_{1} \oplus x_{2}\right\}$ belongs to the plane $x^{i}=x_{1}^{i}, \quad i \in M_{1}$, and the convex hull of $\left\{x_{1} \oplus x_{2}, x_{2}\right\}$ belongs to the plane $x^{i}=x_{2}^{i}, \quad i \in M_{2}$; in addition, $M_{1} \cap M_{2}=0$. This means that the sets I for the point $x_{1} \oplus x_{2}$ and its neighboring vertices coincide.

The uniqueness is guaranteed by Lemma 2 .
In what follows, using Theorems 1 and 2, we propose algorithms for the construction of the sequence of distinct vertices of the convex hull of points x_{1} and x_{2} in the semimodule S^{n} over the idempotent semifield and over the semiring $R_{\max \min }$.

Both algorithms begin with dividing the initial index set $\{1, \ldots, n\}$ into the three subsets M_{1}, M_{2}, and M_{0}. Further, if S is a semifield, then for the indices i from M_{1}, we sort the products $x_{1}^{i} \odot\left(x_{2}^{i}\right)^{-1}$ in ascending order to obtain the sequence $\lambda_{1} \preceq \cdots \preceq \lambda_{m}$, where $\lambda_{i}=x_{1}^{l_{i}} \odot\left(x_{2}^{l_{i}}\right)^{-1}$. For the i from M_{2}, we sort $x_{2}^{i} \odot\left(x_{1}^{i}\right)^{-1}$ to obtain the sequence $\mu_{1} \preceq \cdots \preceq \mu_{k}$, where $\mu_{i}=x_{2}^{m_{i}} \odot$ $\left(x_{1}^{l_{i}}\right)^{-1}$. If S is the semiring $R_{\max \min }$, then for the indices i from M_{1}, we perform simultaneous ascending sorting of x_{1}^{i} and x_{2}^{i}, which results into the sequence $\lambda_{1} \preceq \cdots \preceq \lambda_{2 m}$, where $\lambda_{i}=x_{u_{i}}^{l(i)}$. For the i from M_{2}, we perform similar sorting to obtain the sequence $\mu_{1} \preceq \cdots \preceq \mu_{2 k}$, where $\mu_{i}=x_{s_{i}}^{m(i)}$. Then we construct the vertex sequences of the convex hulls of $\left\{x_{1}, x_{1} \oplus x_{2}\right\}$ and $\left\{x_{1} \oplus x_{2}, x_{2}\right\}$. We shall give the construction algorithms for the vertex sequence of the first of these convex hulls. The construction algorithm for the second one can be obtained by replacing x_{1} by x_{2}, M_{1} by M_{2}, and (in the case of the semiring $R_{\max \min }$) $N_{1}^{+,-, 0}$ by $N_{2}^{+,-, 0}$.

CONSTRUCTION ALGORITHM FOR THE VERTEX SEQUENCE OF THE CONVEX HULL OF x_{1} AND $x_{1} \oplus x_{2}$ IN A SEMIMODULE OVER THE IDEMPOTENT SEMIFIELD

State of the computation process. The set $\{1, \ldots, n\}$ is partitioned into disjoint sets M_{1}, M_{2}, and M_{0}, the first of which is partitioned into disjoint sets N^{-}, N^{0}, and N^{+}. The coordinates of vertices are computed depending on the membership of the corresponding indices to these sets.

Initial state: $N^{0}=\left\{l_{1}\right\}, \quad N^{+}=M_{1} \backslash\left\{l_{1}\right\}$.
Standard step of the algorithm. If $\lambda_{i+1} \succ \lambda_{i}$, then the index l_{i+1} is placed in N^{0}, the index l_{i} is placed in N^{-}, and the coordinates of the vertices y_{i+1} are computed by the following rules: $y_{i+1}^{j}=\lambda_{i+1} \odot x_{2}^{j}$ if $j \in\left(N^{-} \cup N^{0}\right)$, and $y_{i+1}^{j}=x_{1}^{j}$ if $j \in N^{+} \cup M_{2} \cup M^{0}$.

If $\lambda_{i+1}=\lambda_{i}$, then the index l_{i+1} is placed in N^{0} and no other actions are performed.

CONSTRUCTION ALGORITHM FOR THE VERTEX SEQUENCE
 OF THE CONVEX HULL OF x_{1} AND $x_{1} \oplus x_{2}$ IN A SEMIMODULE OVER THE SEMIRING $R_{\text {max min }}$

State of the computation process. The set $\{1, \ldots, n\}$ is partitioned into the disjoint sets M_{1}, M_{2}, and M_{0}, the first of which is partitioned into disjoint sets N_{1}^{-}, N_{1}^{0}, and N_{1}^{+}, as well as
into N_{2}^{-}, N_{2}^{0}, and N_{2}^{+}. The coordinates of vertices are computed depending on the membership of the corresponding indices to these sets.

Initial state: $N_{1}^{0}=\left\{l_{1}\right\}, \quad N_{1}^{+}=M_{1} \backslash\left\{l_{1}\right\}, \quad N_{2}^{0}=0, \quad N_{2}^{+}=M_{1}$.
Standard step of the algorithm. If $\lambda_{i+1} \succ \lambda_{i}$, then the index $l(i+1)$ is placed in $N_{u_{i+1}}^{0}$, the index $l(i)$ is placed in $N_{u_{i+1}}^{-}$, and the coordinates of the vertex y_{i+1} are computed by the following rules: $y_{i+1}^{j}=\lambda_{i+1}$ if $j \in\left(N_{1}^{-} \cup N_{1}^{0}\right) \cap\left(N_{2}^{+}\right), \quad y_{i+1}^{j}=x_{2}^{j}$ if $j \in\left(N_{2}^{-} \cup N_{2}^{0}\right)$, and $y_{i+1}^{j}=x_{1}^{j}$ if $j \in\left(N_{2}^{+} \cap N_{1}^{+}\right) \cup M_{2} \cup M_{0}$.

If $\lambda_{i+1}=\lambda_{i}$, then the index $l(i+1)$ is placed in $N_{u_{i+1}}^{0}$ and no other actions are performed.
The algorithms thus constructed are of computational complexity n^{2}. This follows from the fact that the number of vertices (not counting the initial points) can be as large as $n-1$ for the semifield and $2 n-2$ for $R_{\text {max min }}$.

In conclusion, let us mention the connection between the vertex sequence of a convex hull and the theory of (idempotently) linear functionals in idempotent semimodules developed in [7]. In this paper, the functional defined by the formula

$$
y \longmapsto x^{*}(y)=\inf \{k \in S \mid k x \succeq y\},
$$

where S is an idempotent semiring, and x, y are elements of a semimodule over this semiring, is called the x-functional. It is proved that if S is an idempotent semifield and the semimodule satisfies some natural conditions, then the x-functional is linear and any linear functional is representable in the form of an x-functional. Now we notice that in the semimodule S^{n}, where S is an idempotent semifield, we have $x^{*}(y)=\bigoplus_{i}\left(x^{i}\right)^{-1} \odot y^{i}$. Then, if $x_{1}^{i} \prec x_{2}^{i}$ for any i, then $y_{n}=x_{1} \oplus x_{2}^{*}\left(x_{1}\right) x_{2}=x_{2}^{*}\left(x_{1}\right) x_{2}$. One of the coordinates of y_{n} coincides with the corresponding coordinate of x_{1}; hence all the other vertices inherit it automatically. Considering x_{1} and y_{n} as points on the $(n-1)$-dimensional plane, we find that $y_{n-1}=y_{n}^{*}\left(x_{1}\right) y_{n}$. All other vertices are found similarly.

ACKNOWLEDGMENTS

The author wishes to express his thanks to A. N. Sobolevskii for his permanent attention and valuable remarks.

This research was supported by the Russian Foundation for Basic Research under grant no. 02-01-01062.

REFERENCES

1. V. P. Maslov, Asymptotic Methods of Solution of Pseudodifferential Equations [in Russian], Nauka, Moscow, 1987.
2. F. L. Bacelli, G. Cohen, G. J. Olsder, and J. P. Quadrat, Synchronization and Linearity: an Algebra for Discrete Event Systems, John Wiley \& Sons Publ., New York, 1992.
3. V. P. Maslov and V. N. Kolokol'tsov, Idempotent Analysis and Its Application in Optimal Control [in Russian], Nauka, Moscow, 1994.
4. V. P. Maslov and S. N. Samborskii (editors), Idempotent Analysis, Adv. Sov. Math, vol. 13, Amer. Math. Soc., Providence, RI, 1992.
5. J. Gunawardena (ed.), Idempotency, Publ. of the Newton Institute, Cambridge Univ. Press, Cambridge, 1998.
6. G. L. Litvinov and V. P. Maslov, Correspondence Principle for Idempotent Calculus and Some Computer Applications, (IHES/M/95/33), Institut des Hautes Études Scientifiques, Bures-Sur-Yvette, 1995.
7. G. L. Litvinov, V. P. Maslov, and G. B. Shpiz, "Idempotent Functional Analysis. Algebraic Approach," Mat. Zametki [Math. Notes], 69 (2001), no. 5, 758-797.
8. K. Zimmermann, "A general separation theorem in extremal algebras," Ekonomicko-matematicky obzor (Prague), 13 (1977), no. 2, 179-201.

M. V. Lomonosov Moscow State University

