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Abstract—The capacity of a channel can usually be charac-
terized as a maximization of certain entropic quantities. From
a practical point of view it is of primary interest to not only
compute the capacity value, but also to find the corresponding
optimizer, i.e., the capacity-achieving input distribution. This
paper addresses the general question of whether or not it
is possible to find algorithms that can compute the optimal
input distribution depending on the channel. For this purpose,
the concept of Turing machines is used which provides the
fundamental performance limits of digital computers and there-
with fully specifies which tasks are algorithmically feasible in
principle. It is shown for discrete memoryless channels that it
is impossible to algorithmically compute the capacity-achieving
input distribution, where the channel is given as an input to the
algorithm (or Turing machine). Finally, it is further shown that
it is even impossible to algorithmically approximate these input
distributions.

Index Terms—Capacity-achieving input distribution, Turing
machine, computability, approximability.

I. INTRODUCTION

The capacity of a channel describes the maximum rate
at which a sender can reliably transmit a message over a
noisy channel to a receiver. Accordingly, the capacity is a
function of the channel and is usually expressed by entropic
quantities that are maximized over all possible input distri-
butions. To this end, a (numerical) evaluation of the capacity
and a characterization of the optimal input distribution that
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maximizes the capacity expression are important and common
tasks in information and communication theory. To date, for
discrete memoryless channels (DMCs) no general closed form
solutions for the capacity expressions or the corresponding
optimal input distribution as a function of the channel are
known. Therefore, several approaches have been proposed
to algorithmically compute the capacity and also (implicitly)
the corresponding optimizer. Such a numerical simulation and
computation on digital computers has been already proposed
by Shannon, Gallager, and Berlekamp in [2] and Blahut in
[3]. This is an interesting and challenging task for digital
computers which can be seen already for the binary symmetric
channel with rational crossover probability p whose capacity
is a transcendental number1 in general except for the trivial
case p = 1

2 (see also the appendix for a detailed discussion on
this). Thus, an exact computation of the capacity value is not
possible on a digital computer as any practical algorithm must
stop after a finite number of computation steps and, therefore,
only an approximation of the capacity value is possible. From
a practical point of view, this is not a problem since there are
algorithms that take the rational crossover probability p and a
given approximation error 1

2n with n ∈ N as inputs and stop
when a rational number is calculated whose approximation
error to the corresponding capacity is smaller than the required
approximation error 1

2n .
A famous iterative algorithm for the computation of the

capacity of an arbitrary DMC was independently proposed in
1972 by Blahut [3] and Arimoto [4], where the former further
presented a corresponding algorithm for the computation of
the rate-distortion function. This iterative algorithm is now
referred to as the Blahut-Arimoto algorithm. It was further
studied by Csiszár [5] and later generalized by Csiszár and
Tusnády [6]. The Blahut-Arimoto algorithm also appears in
introductory textbooks on information theory such as [7]
and [8]. Since then, the Blahut-Arimoto algorithm has been
extensively studied and extended to various scenarios, cf. for
example [9–16]. It further has served as the basis for the
computation of the optimal input distribution in various patents
such as [17] and [18].

Blahut motivated his studies in [3] by the desire to use
digital computers, which were becoming more and more
powerful at this time, for the numerical computation of the
capacity of DMCs. Since the seminal works [3] and [4],
digital computers have been extensively used in information
and communication theory to simulate and evaluate the per-

1An algebraic number is a number that is a root of a non-zero polynomial
with integer coefficients. A transcendental number is a number that is not
algebraic, i.e., it is not a root of any non-zero integer polynomial.
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formance of communication systems. Not surprisingly, higher-
layer network simulations on high performance computers has
become a commonly used approach for the design of practical
systems. A critical discussion on this trend is given in [19].

In this paper, we address the issue of computing the optimal
input distribution from a fundamental algorithmic point of
view by using the concept of a Turing machine [20–22]
and the corresponding computability framework. The Turing
machine is a mathematical model of an abstract machine that
manipulates symbols on a strip of tape according to certain
given rules. It can simulate any given algorithm and therewith
provides a simple but very powerful model of computation.
Turing machines have no limitations on computational com-
plexity, unlimited computing capacity and storage, and execute
programs completely error-free. They are further equivalent to
the von Neumann-architecture without hardware limitations
and the theory of recursive functions, cf. also [23–27]. Ac-
cordingly, Turing machines provide fundamental performance
limits for today’s digital computers and are the ideal concept
to study whether or not such computation tasks can be done
algorithmically in principle.

Communication from a computability or algorithmic point
of view has attracted some attention recently. In [28] the
computability of the capacity functions of the wiretap channel
under channel uncertainty and adversarial attacks is studied.
The computability of the capacity of finite state channels
is studied in [29] and of non-i.i.d. channels in [30]. These
works have in common that they study capacity functions of
various communication scenarios and analyze the algorithmic
computability of the capacity function itself. While for DMCs
the capacity function is a computable continuous function
and therewith indeed algorithmically computable [31, 32], this
is no longer the case for certain multi-user scenarios or
channels with memory. However, they do not consider the
computation of the optimal input distributions which, to the
best of our knowledge, has not been studied so far from
a fundamental algorithmic point of view. In addition, even
if the capacity is computable, it is still not clear whether
or not the corresponding optimal input distributions can be
algorithmically computed.

We consider finite input and output alphabets. Due to the
properties of the mutual information, the set of capacity-
achieving input distributions is mathematically well defined
for every DMC and so are all functions that map every channel
to a corresponding capacity-achieving input distribution. A
practically relevant question is now whether or not these
functions are also algorithmically well defined. With this we
mean whether or not it is possible to find at least one function
that can be implemented by an algorithm (or Turing machine).
This is equivalent to the question of whether or not a Turing
machine exists that takes a computable channel as input and
subsequently computes an optimal input distribution of this
channel.

In this paper, we give a negative answer to the question
above by showing that it is in general impossible to find
an algorithm (or Turing machine) that is able to compute
the optimal input distribution when the channel is given as
an input. To this end, we first introduce the computability

framework based on Turing machines in Section II. The com-
munication system model and the Blahut-Arimoto algorithm
are subsequently introduced in Section III. In Section IV
we study the computability of an optimal input distribution
and show that all functions that map channels to their cor-
responding optimal input distributions are not Banach-Mazur
computable and therewith also not Turing computable. As a
consequence, there is no algorithm (or Turing machine) that
is able to compute the optimizer, i.e., the capacity-achieving
input distribution. Subsequently, it is shown in Section V that
it is further not even possible to algorithmically approximate
the optimizer, i.e., the capacity-achieving input distribution,
within a given tolerated error. Finally, a conclusion is given
in Section VI.

Notation

Discrete random variables are denoted by capital letters and
their realizations and ranges by lower case and calligraphic
letters, respectively; all logarithms and information quantities
are taken to the base 2; N, Q, and R are the sets of
non-negative integers, rational numbers, and real numbers;
P(X ) denotes the set of all probability distributions on X
and CH(X ;Y) denotes the set of all stochastic matrices
(channels) X → P(Y); the binary entropy is denoted by
h2(p) = −p log p − (1 − p) log(1 − p) and I(X;Y ) denotes
the mutual information between the input X and the output Y
which we interchangeably also write as I(p,W ) to emphasize
the dependency on the input distribution p ∈ P(X ) and the
channel W ∈ CH(X ;Y); the ℓ1-norm is denoted by ∥ · ∥ℓ1 .

II. COMPUTABILITY FRAMEWORK

We first introduce the computability framework based on
Turing machines which provides the needed background.
Turing machines are extremely powerful compared to state-
of-the-art digital signal processing (DSP) and field gate pro-
grammable array (FPGA) platforms and even current super-
computers. It is the most general computing model and is
even capable of performing arbitrary exhaustive search tasks
on arbitrary large but finite structures. The complexity can
even grow faster than double-exponentially with the set of
parameters of the underlying communication system (such as
time, frequencies, transmit power, modulation scheme, number
of antennas, etc.).

In what follows, we need some basic definitions and
concepts of computability which are briefly reviewed. The
concept of computability and computable real numbers was
first introduced by Turing in [20] and [21].

Recursive functions f : N → N map natural numbers
into natural numbers and are exactly those functions that
are computable by a Turing machine. They are the smallest
class of partial functions that includes the primitive functions
(i.e., the constant function, successor function, and projection
function) and is further closed under composition, primitive
recursion, and minimization. For a detailed introduction, we
refer the reader to [31] and [33]. With this, we call a sequence
of rational numbers (rn)n∈N a computable sequence if there
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exist recursive functions a, b, s : N → N with b(n) ̸= 0 for all
n ∈ N and

rn = (−1)s(n)
a(n)

b(n)
, n ∈ N; (1)

cf. [33, Def. 2.1 and 2.2] for a detailed treatment. A real
number x is said to be computable if there exists a computable
sequence of rational numbers (rn)n∈N and a recursive function
φ such that we have for all M ∈ N

|x− rn| < 2−M (2)

for all n ≥ φ(M). Thus, the computable real x is represented
by the pair ((rn)n∈N, φ). Note that a computable real number
usually has multiple different representations. For example,
there are multiple algorithms known for the computation of 1

π
or e−1. This form of convergence (2) with a computable con-
trol of the approximation error is called effective convergence.

For the definition of a computable sequence of computable
real numbers we need the following definition as in [31].

Definition 1. Let (xnk)n,k∈N be a double sequence of real
numbers and (xn)n∈N a sequence of real numbers such that
xnk → xn for each n as k → ∞. We say that xnk → xn effec-
tively in k and n if there is a recursive function φ : N×N → N
such that for all n,N we have k ≥ φ(n,N) implies

|xnk − xn| ≤ 2−N .

With this, we get the following definition.

Definition 2. A sequence of computable real numbers
(xn)n∈N is a computable sequence if there is a computable
double sequence of rational numbers rnk such that rnk → xn

as k → ∞, effectively in k and n.

This can alternatively be stated as follows, cf. also [31].
A sequence of computable real numbers (xn)n∈N is a com-
putable sequence if there is a computable double sequence of
rational numbers (rnk)n,k∈N such that

|rnk − xn| ≤ 2−k, for all k and n.

Note that if a computable sequence of computable real
numbers (rn)n∈N converges effectively to a limit x, then x
is a computable real number, cf. [31]. Furthermore, the set
Rc of all computable real numbers is closed under addition,
subtraction, multiplication, and division (excluding division by
zero). We denote the set of computable real numbers by Rc.
Based on this, we define the set of computable probability
distributions Pc(X ) as the set of all probability distributions
PX ∈ P(X ) such that PX(x) ∈ Rc for all x ∈ X . Further, let
CHc(X ;Y) be the set of all computable channels, i.e., for a
channel W : X → P(Y) we have W (·|x) ∈ Pc(Y) for every
x ∈ X .

Definition 3. A function f : Rc → Rc is called Borel-Turing
computable if there exists an algorithm or Turing machine Tf

such that Tf obtains for every x an arbitrary representation
((rn)n∈N, φ) for it as input and then computes a representation
((r̂n)n∈N, φ̂) for f(x).

Remark 1. Borel-Turing computability characterizes exactly
the behavior that is expected when functions are simulated

and evaluated on digital hardware platforms. A program
for the computation of f(x) must receive a representation
((rn)n∈N, φ) for the input x. Based on this, the program com-
putes the representation ((r̂n)n∈N, φ̂) for f(x). This means
that if f(x) needs to be computed with a tolerated approxi-
mation error of 1

2M
, then it is sufficient to compute the rational

number r̂φ̂(M) and the corresponding Turing machine outputs
r̂φ̂(M). For example, this is done and further discussed for the
function f(x) = e−x, x ∈ [0, 1], x ∈ Rc in Appendix A.

Remark 2. A practical digital hardware platform and also a
Turing machine must stop after finitely many computation
steps when computing a value of a function. Thus, the com-
puted value of the function must be a rational number. As
a consequence, a Turing machine can only compute rational
numbers exactly. However, it is important to note that in in-
formation and communication theory, the relevant information-
theoretic functions are in general not exactly computable even
for rational channel and system parameters. For example,
already for |X | = 2 and rational probability distribution
p ∈ P(X ), p ̸=

(
1
2 ,

1
2

)
, the corresponding binary entropy

h2(p) is a transcendental number and therewith not exactly
computable. Even if this would be done symbolically with al-
gebraic numbers, the binary entropy would not be computable.
As a consequence, already for the binary symmetric channel
(BSC) with rational crossover probability ϵ ∈ (0, 1

2 ) ∩ Q, the
capacity CBSC(ϵ) = 1 − h2(ϵ) is a transcendental number
and therewith an exact computation of the capacity is not
possible. A proof for this statement is given in Appendix B
for completeness.

There are also weaker forms of computability including
Banach-Mazur computability. In particular, Borel-Turing com-
putability implies Banach-Mazur computability, but not vice
versa. For an overview of the logical relations between differ-
ent notions of computability we refer to [23] and, for example,
the introductory textbook [22].

Definition 4. A function f : Rc → Rc is called Banach-
Mazur computable if f maps any given computable sequence
(xn)n∈N of computable real numbers into a computable se-
quence (f(xn))n∈N of computable real numbers.

We further need the concepts of a recursive set and a
recursively enumerable set as, for example, defined in [33].

Definition 5. A set A ⊂ N is called recursive if there exists
a computable function f such that f(x) = 1 if x ∈ A and
f(x) = 0 if x /∈ A.

Definition 6. A set A ⊂ N is recursively enumerable if there
exists a recursive function whose range is exactly A.

We have the following properties which will be crucial later
for proving the desired results; cf. also [33] for further details.

• A is recursive is equivalent to A is recursively enumer-
able and Ac is recursively enumerable.

• There exist recursively enumerable sets A ⊂ N that are
not recursive, i.e., Ac is not recursively enumerable. This
means there are no computable, i.e., recursive, functions
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f : N → Ac where for each m ∈ Ac there exists an x
with f(x) = m.

III. SYSTEM MODEL AND BLAHUT-ARIMOTO ALGORITHM

Here, we introduce the communication scenario of interest
and discuss the Blahut-Arimoto algorithm.

A. Communication System Model

We consider a point-to-point channel with one transmitter
and one receiver which defines the most basic communi-
cation scenario. Let X and Y be finite input and output
alphabets. Then the channel is given by a stochastic matrix
W : X → P(Y) which we also equivalently write as
W ∈ CH(X ;Y). The corresponding DMC is then given by
Wn(yn|xn) :=

∏n
i=1 W (yi|xi) for all xn ∈ Xn and yn ∈ Yn.

Definition 7. An (Mn, En, Dn)-code Cn(W ) of blocklength
n ∈ N for the DMC W ∈ CH(X ;Y) consists of an encoder
En : Mn → Xn at the transmitter with a set of messages
Mn := {1, ...,Mn} and a decoder Dn : Yn → Mn at the
receiver.

The transmitted codeword needs to be decoded reliably at
the receiver. To model this requirement, we define the average
probability of error as

ēn :=
1

|Mn|
∑

m∈Mn

∑
yn:Dn(yn )̸=m

Wn(yn|xn
m)

and the maximum probability of error as

emax,n := max
m∈Mn

∑
yn:Dn(yn )̸=m

Wn(yn|xn
m)

with xn
m = En(m) the codeword for message m ∈ Mn.

Definition 8. A rate R > 0 is called achievable for the DMC
W if there exists a sequence (Cn(W ))n∈N of (Mn, En, Dn)-
codes such that we have 1

n logMn ≥ R and ēn ≤ ϵn (or
emax,n ≤ ϵn, respectively) with ϵn → 0 as n → ∞. The
capacity C(W ) of the DMC W is given by the supremum of
all achievable rates R.

The capacity of the DMC has been established and goes
back to the seminal work of Shannon [34].

Theorem 1. The capacity C(W ) of the DMC W under both
the average and maximum error criteria is

C(W ) = max
X

I(X;Y ) = max
p∈P(X )

I(p,W ). (3)

The capacity of a channel characterizes the maximum
transmission rate at which the users can reliably communicate
with vanishing probability of error. Note that for DMCs, there
is no difference in the capacity whether the average error or
the maximum error criterion is considered.

Remark 3. Capacity expressions such as (3) for the point-
to-point channel have further been established for various
multi-user communication scenarios, cf. for example [35] and
references therein. They all have in common that these are
characterized by entropic quantities.

B. Blahut-Arimoto Algorithm

The Blahut-Arimoto algorithm as initially proposed in [3]
and [4] tackles the problem of numerically computing the
capacity of DMCs with finite input and output alphabets. This
algorithm is an alternating optimization algorithm, which has
become a standard technique of convex optimization. It has
the advantage that it exploits the properties of the mutual
information to obtain a simple method to compute the capacity.

For a DMC W , the algorithm computes the following two
quantities at the n-th iteration:

1) an input distribution pn = pn(W )
2) an approximation to the capacity given by the mutual

information I(pn,W ) for this input distribution.
This means that the algorithm computes a sequence p0(W ),
I(p0,W ), p1(W ), I(p1,W ), ... , pn(W ), I(pn,W ), ... where
each element in the sequence is a function of the previous
ones except the initial input distribution p0(W ) which is
arbitrarily chosen. It is clear that the sequence (pn(W ))n∈N
of computable input distributions is a function of the initial
input distribution p0(W ). The same is true for the sequence
(I(pn(W ),W ))n∈N.

For the sequence p0(W ), p1(W ), ... it is shown in [3–
5] that it always contains a convergent subsequence and
that all these convergent subsequences converge to a corre-
sponding optimal input distribution. First, the existence of a
limit p∗ = p∗(W ) ∈ P(X ) of this subsequence is shown
by the Bolzano–Weierstraß theorem, cf. for example [36].
Subsequently, it is shown that this limit must be an optimal
input distribution, i.e., p∗ ∈ Popt(W ) with

Popt(W ) =
{
p ∈ P(X ) : I(p,W ) = C(W )

}
(4)

the set of optimal input distributions. The Bolzano-Weierstraß
theorem is a simple technique to show the existence of
solutions of certain problems, but, in general, it does not
provide an algorithm to compute this solution; in this case
the optimal input distribution as a function of the channel.

For the capacity, a stopping criterion is provided, i.e., we
can choose a certain approximation error 1

2M
> 0, M ∈ N,

and the algorithm stops if this tolerated error is satisfied so
that the computed value I(pn,W ) is within this error to the
actual capacity C(W ), i.e.,∣∣C(W )− I(pn,W )

∣∣ < 1

2M
,

see [4, Corollary 1] for a stopping condition for iterations of
the capacity estimation.

On the other hand, although it has been studied in [3–5],
a stopping criterion for the optimizer, i.e., the optimal input
distribution, has not been given in [3–5], i.e., we cannot control
when the algorithm should stop for a given maximum tolerable
error. Such a stopping criterion could similarly be defined, e.g.,
when ∥∥p∗ − pn(W )

∥∥
ℓ1

<
1

2M
(5)

is satisfied with p∗ ∈ Popt(W ) a capacity-achieving input dis-
tribution and further a computable upper bound for the speed
of convergence is given. Surprisingly, to date such a stopping
criterion has not been found although it has been studied
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n

<latexit sha1_base64="sUvF+HHRq2G5YO5vazRSoR7Sg/E="></latexit>

pn 2 Pc with kp(W ) � pnk`1 <
1

2n
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n
<latexit sha1_base64="x4NMfTfMnA4fFhyOFwlCOjtby7M="></latexit>

TW (n)

<latexit sha1_base64="sUvF+HHRq2G5YO5vazRSoR7Sg/E="></latexit>

pn 2 Pc with kp(W ) � pnk`1 <
1

2n

Fig. 1. Computation of the optimal input distribution. The Turing machine
T obtains a description of the channel W as input and outputs a description
of an optimal input distribution p(W ) (as an implementation of the function
G).

extensively and further has played a crucial role in various
patents such as [17] and [18]. In particular, our results even
show that such a stopping criterion cannot exist! We will come
back to this issue in more detail in the following subsection.
We will also show that the optimization over possible starting
points, i.e., the computable choice of a suitable starting point
for the iterating algorithm depending on the input channel W
does not yield a solution, i.e., a computable stopping criterion
such as (5).

In fact, both seminal papers [3] and [4] do not only aim at
computing the capacity, but also propose an algorithm for the
computation of a sequence of input distributions pn ∈ P(X )
and study the convergence to a maximum p∗ ∈ Popt(W ) for
a fixed channel W , i.e.,

I(p∗,W ) = C(W ) = max
p∈P(X )

I(p,W ). (6)

They state that a suitable subsequence (pnl
)l∈N converges to

an optimizer, but without providing a stopping criterion. That
this is problematic has been realized afterwards by Csiszár
who explicitly states in [5] that there is no stopping criterion
for the computation of the optimizer. In particular, Arimoto
considered the problem of estimating the convergence speed
for the calculation of the input distribution. However, only
under certain conditions on the input distribution was he able
to show monotonicity [4, Theorem 2] and properties of the rate
of convergence [4, Theorem 3]. From an algorithmic point of
view, these results are not useful, since i) [4, Theorem 2] shows
only monotonicity, ii) [4, Theorem 3] shows only the existence
of certain parameters, but no explicit construction of them so
that the result is non-constructive, and iii) there is no algorithm
known to test these conditions, i.e., it is not verifiable whether
[4, Theorem 2] and [4, Theorem 3] are applicable. Csiszár
studied in [5] the question of understanding and calculating
the convergence speed of the input distribution. However, he
was only able to show convergence but not to calculate the
rate of convergence. Accordingly, the corresponding proof of
existence is non-constructive.

IV. COMPUTABILITY OF AN OPTIMAL INPUT
DISTRIBUTION

The capacity C(W ) = maxp∈P(X ) I(p,W ) of the DMC
W , cf. (3), is given by a maximization problem, where the
mutual information I(p,W ) is maximized over all possible
input distributions p ∈ P(X ). Since I(p,W ) is continuous in
(p,W ), concave in the input distribution p, and convex in the
channel W , there exists for every channel W ∈ CH(X ;Y) at
least one optimal input distribution p∗(W ) ∈ Popt(W ). Note
that the set Popt(W ) is a convex set for each channel W .
Now, we can choose for every channel W ∈ CH(X ;Y) such

a capacity-achieving input distribution p∗ = p∗(W ). Then
F (W ) = p∗(W ) is a mathematically well defined function
of the form

F : CH(X ;Y) → P(X ) (7)

which maps every channel to an optimal input distribution for
this channel. We call F an optimal assignment function and
denote by Mopt(X ;Y) the set of all these functions. The set
Mopt(X ;Y) is of crucial practical importance and, in particu-
lar, it would be interesting to find functions F ∈ Mopt(X ;Y)
that can be described algorithmically. Note that in general,
this function F does not need to be unique and there can
be infinitely many such functions. Further, for computable
channels W ∈ CHc(X ;Y) we always have F (W ) ∈ Pc(X ).

Remark 4. From a practical point of view it is interesting
to understand whether or not there exists a function F
with F (W ) ∈ Popt(W ) for all W ∈ CHc(X ;Y) that is
Borel-Turing computable. Since exactly in this case there
is an algorithm (or Turing machine) that takes the channel
W ∈ CHc(X ;Y) as an input and computes a corresponding
capacity-achieving input distribution F (W ) = p∗(W ) ∈
Popt(W ). It is clear that we consider only computable channels
W ∈ CHc(X ;Y) as inputs for the Turing machine as it can
operate work only with such inputs. More specifically, for
W ∈ CHc(X ;Y) such a Turing machine takes an arbitrary
representation of W as input, i.e., W (y|x) is given by a
representation ((rn(x, y))n∈N, φ

(x,y)) for all x ∈ X , y ∈ Y .
This means that for all x ∈ X , y ∈ Y we have for all N ∈ N∣∣W (y|x)− rn(x, y)

∣∣ < 1

2N

for all n ≥ φ(x,y)(N). As a result, the Turing ma-
chine computes a representation of F (W ) ∈ Popt(W ), i.e.,
((r∗n(x))n∈N, φ

(∗,x)) is a representation of p∗(x), x ∈ X , with
F (W ) = p∗ =

(
p∗(1), . . . , p∗(|X |)

)
. Thus, for all x ∈ X it

holds that for all N ∈ N∣∣p∗(x)− r∗n(x)
∣∣ < 1

2N
(8)

for all n ≥ φ(∗,x)(N).

Accordingly, in the following we will address this question
in detail and study whether or not it is possible to find such
a Turing machine that computes a capacity-achieving input
distribution for a given channel.

Question 1: Let X and Y be finite input and output
alphabets. Is there an algorithm (or Turing machine)
T that takes an arbitrary representation of W ∈
CHc(X ;Y) as an input and computes a description of
p∗(W ) ∈ Popt(W )?

Remark 5. Question 1 is visualized in Fig. 1 and formalizes
exactly what we would require from an algorithmic construc-
tion of optimal input distributions on digital hardware plat-
forms. From a practical point of view, a simulation on digital
hardware must stop after a finite number of computations.
Usually, it should stop if for W ∈ CHc(X ;Y) the computed
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approximation of an input distribution p∗(W ) ∈ Popt(W )
satisfies a given but fixed approximation error. This constraint
on the approximation error is exactly modeled by the repre-
sentation of p∗(W ). If the representation ((r∗n(x))n∈N, φ

(∗,x)),
x ∈ X , of p∗(W ) has been computed for a tolerated er-
ror 1

2N
and r being the smallest natural number such that

2r > |X |, then the approximation process can be stopped after
N∗ = maxx∈X φ(∗,x)(N + r) steps, since we have∑

x∈X

∣∣p∗(x)− r∗N∗(x)
∣∣ < ∑

x∈X

1

2N+r
=

|X |
2N+r

<
1

2N
.

This would provide us a stopping criterion as discussed in
Section III-B for the Blahut-Arimoto algorithm.

Now we can state the following result which provides a
negative answer to Question 1 above.

Theorem 2. Let X and Y be arbitrary but finite alphabets
with |X | ≥ 3 and |Y| ≥ 2. Then there is no function F ∈
Mopt(X ;Y) that is Banach-Mazur computable.

Proof: The proof is given below in Section IV-B.
From this, we can immediately conclude the following.

Corollary 1. There is no Turing machine T that takes a
channel W ∈ CHc(X ;Y) as an input and computes an
optimal input distribution p ∈ Popt(W ) for this channel.

Proof: If such a Turing machine would exist, then the cor-
responding function F would be Banach-Mazur computable.
This is a contradiction to Theorem 2 so that such a Turing
machine cannot exist.

A. Preliminary Considerations

Before we present the proof of Theorem 2, we first need
to define and discuss specific channels and their optimal input
distributions.

Let X and Y be arbitrary but finite alphabets with |X | = 3
and |Y| = 2. We define the channel

W∗ =

(
1 0 0
0 1 1

)
(9)

and further consider the channels

W1,µ =

(
1 0 µ
0 1 1− µ

)
and W2,µ =

(
1 µ 0
0 1− µ 1

)
for µ ∈ (0, 1). We define the distance between two channels
W1,W2 ∈ CH(X ;Y) based on the total variation distance as

D(W1,W2) := max
x∈X

∑
y∈Y

∣∣W1(y|x)−W2(y|x)
∣∣

and observe that

lim
µ→0

D(W∗,W1,µ) = lim
µ→0

D(W∗,W2,µ) = 0.

We consider the set

P1 =
{
p = (p1, p2, p3) ∈ P(X ) : p1 =

1

2
and p2 + p3 =

1

2

}
.

Then we have

max
p∈P(X )

I(p,W∗) = 1 = I(p∗,W∗)

with p∗ ∈ P1 arbitrary. This means P1 is the set of all
maximizing input distributions for the channel W∗, since

I(p,W∗) = p1 · 1 · log
1 · p1
p1 · p1

+ p2 · 1 · log
1 · p2

p2(p2 + p3)

+ p3 · 1 · log
1 · p3

p3(p2 + p3)

= p1 log
1

p1
+ (p2 + p3) log

1

p2 + p3

= p1 log
1

p1
+ (1− p1) log

1

1− p1
= h2(p1)

where h2(·) is the binary entropy function. This means that
for all p with p1 ∈ [0, 1]\{ 1

2} we always have

I(p,W∗) < 1 = h2(p∗) = I(p∗,W∗)

with p∗ ∈ P1 arbitrary as defined above.
Next, we define the channel

Ŵ =

(
1 0 1
0 1 0

)
and for µ ∈ [0, 1] we have

W1,µ = (1− µ)W∗ + µŴ .

Then for p ∈ P(X ) arbitrary, we always have

I(p,W1,µ) ≤ (1− µ)I(p,W∗) + µI(p, Ŵ ).

We now consider the set

P2 =
{
p = (p1, p2, p3) ∈ P(X ) : p2 =

1

2
and p1 + p3 =

1

2

}
.

Similarly, we can show for the channel Ŵ that

max
p∈P(X )

I(p, Ŵ ) = 1 = I(p̂, Ŵ )

with p̂ ∈ P2 arbitrary. Further, we have

P1 ∩ P2 =

 1
2
1
2
0

 .

For p ∈ P(X ), p ̸= ( 12 ,
1
2 , 0), we must have

I(p,W∗) < 1 or I(p, Ŵ ) < 1.

Thus, for arbitrary p ∈ P(X ) with p ∈ P(X ), p ̸= ( 12 ,
1
2 , 0)

we always have

I(p,W1,µ) ≤ (1− µ)I(p,W∗) + µI(p, Ŵ )

< (1− µ) + µ

= 1.

For

p
(1)
∗ =

 1
2
1
2
0


we have

I(p
(1)
∗ ,W1,µ) = 1
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for µ ∈ [0, 1]. Consequently, for channel W1,µ for µ ∈
(0, 1) there is exactly one optimal input distribution, i.e.,
Popt(W1,µ) = {p(1)∗ }.

Similarly, one can show that for channel W2,µ for µ ∈
(0, 1) there is exactly one optimal input distribution, i.e.,
Popt(W2,µ) = {p(2)∗ } given by

p
(2)
∗ =

 1
2
0
1
2

 .

B. Non-Computability of an Optimal Input Distribution

Now we are in the position to prove Theorem 2.

Proof of Theorem 2: We start with the case |X | = 3
and |Y| = 2 and prove the desired result by contradiction.
For this purpose, we assume that there exists a function F ∈
Mopt(X ;Y) that is Banach-Mazur computable. This means
that every computable sequence (Wn)n∈N of computable chan-
nels Wn ∈ CHc(X ;Y) is mapped to a computable sequence
(pn)n∈N of computable input distributions pn ∈ Pc(X ) for all
n ∈ N. For the set of optimal input distributions (4) we always
have Popt(W ) ̸= ∅. Further, let F be an arbitrary function as
in (7) and

F (W ) ∈ Popt(W ),

i.e., F maps every channel to an optimal input distribution for
this channel.

For our previously defined channel W∗, cf. (9), we therefore
have

F (W∗) ∈ Popt(W∗) = P1.

For µ ∈ (0, 1), we further have

F (W1,µ) = p
(1)
∗

since Popt(W1,µ) = {p(1)∗ } for µ ∈ (0, 1).
For µ ∈ (0, 1) we also have

F (W2,µ) = p
(2)
∗

since Popt(W2,µ) = {p(2)∗ } for µ ∈ (0, 1). We have p
(1)
∗ ∈ P1,

p
(2)
∗ ∈ P1, and ∥p(1)∗ − p

(2)
∗ ∥ = 1. With this, we obtain

1 =
∥∥p(1)∗ − p

(2)
∗

∥∥
ℓ1

=
∥∥p(1)∗ − F (W∗) + F (W∗)− p

(2)
∗

∥∥
ℓ1

≤
∥∥p(1)∗ − F (W∗)

∥∥
ℓ1
+
∥∥F (W∗)− p

(2)
∗

∥∥
ℓ1

≤ 2max
{∥∥p(1)∗ − F (W∗)

∥∥
ℓ1
,
∥∥p(2)∗ − F (W∗)

∥∥
ℓ1

}
so that

max
{∥∥p(1)∗ − F (W∗)

∥∥
ℓ1
,
∥∥p(2)∗ − F (W∗)

∥∥
ℓ1

}
≥ 1

2
.

Let A ⊂ N be a recursively enumerable set that is not
recursive, cf. Section II. Let g : N → A be a computable
function where for each m ∈ A there exists a k with g(k) = m
and g(k1) ̸= g(k2) for k1 ̸= k2.

Let TA be a Turing machine that accepts exactly the set A,
i.e., TA stops for input k ∈ N if and only if k ∈ A. Otherwise,

TA runs forever and does not stop. For k ∈ N and n ∈ N, we
define the function

q(k, n)=

{
2s+2 if TA stops for input k after s ≤ n steps
2n+2 if TA does not stop for input k after n steps.

Note that q : N× N → N is a computable function.
Let k, n ∈ N be arbitrary. If k is odd, i.e., k ∈ O with

O ⊂ N the set of all odd numbers, then we have k = 2l − 1,
l ≥ 1, l ∈ N, and we consider the channel Wk,n := W1, 1

q(l,n)
.

If k is even, i.e., k ∈ E with E ⊂ N the set of all even
numbers, then we have k = 2l, l ≥ 1, l ∈ N, and we consider
Wk,n := W2, 1

q(l,n)
. Note that in both cases, l is a function of

k. With this, (Wk,n)k∈N,n∈N is a computable double sequence.
Now, we define the following sequence (W ∗

k )k∈N. We will
later show in the proof that (W ∗

k )k∈N is even a computable
sequence of computable channels. For k ∈ N, k is either odd
or even:

1) k ∈ O odd, i.e., k = 2l− 1, l ≥ 1, l ∈ N. If l ∈ A, then
we set W ∗

k := W1, 1

2s+2
with TA has stopped for input

l after s steps. If l /∈ A, then we set W ∗
k := W∗.

2) k ∈ E even, i.e., k = 2l, l ≥ 1, l ∈ N. If l ∈ A, then
we set W ∗

k := W2, 1

2s+2
with TA has stopped for input

l after s steps. If l /∈ A, then we set W ∗
k := W∗.

Next, we show that the double sequence (Wk,n)k∈N,n∈N con-
verges effectively to the sequence (W ∗

k )k∈N. This implies that
(W ∗

k )k∈N is a computable sequence of computable channels.
Further, we show that for all k ∈ N and n ∈ N we have

D(W ∗
k ,Wk,n) <

1

2n
(10)

so that (Wk,n)k∈N,n∈N indeed converges effectively.
Let k ∈ N be arbitrary. We first consider the case k ∈ O,

i.e., k = 2l − 1, l ≥ 1, l ∈ N. If l /∈ A, we have W ∗
k = W∗

so that

D
(
W ∗

k ,Wk,n

)
= D

(
W∗,W1, 1

2n+2

)
=

2

2n+2
<

1

2n

which already shows (10) for this case. In the other case, if
l ∈ A, we have W ∗

k = W1, 1

2s+2
, where s is the actual number

of steps after which the Turing machine TA stopped for input
l. Now, let n ∈ N be arbitrary. For n ≥ s we have

Wk,n = W2l−1,n = W1, 1

2s+2
= W ∗

k

so that
D(W ∗

k ,Wk,n) = 0.

For n < s we have Wk,n = W1, 1

2n+2
so that

D(W ∗
k ,Wk,n) = D(W1, 1

2s+2
,W1, 1

2n+2
)

=
∣∣∣(1− 1

2s+2

)
−

(
1− 1

2n+2

)∣∣∣+ ∣∣∣ 1

2s+2
− 1

2n+2

∣∣∣
= 2

∣∣∣ 1

2n+2
− 1

2s+2

∣∣∣ < 2
1

2n+2
<

1

2n

which shows (10) for this case as well.
The proof for even numbers k ∈ E follows as above for odd

numbers k ∈ O and is omitted for brevity. As a consequence,
(W ∗

k )k∈N is a computable sequence of computable channels.
If the function F is Banach-Mazur computable, then the
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sequence (F (W ∗
k ))k∈N must be a computable sequence of

computable input distributions in Pc(X ).
We consider the computable sequence(

F (W ∗
k )− F (W∗)

)
k∈N (11)

and the following Turing machine: For l ∈ N we start two
Turing machines in parallel.

The first Turing machine T1 is given by T1 = TA, i.e., for
input l it runs the algorithm for TA step by step.

The second Turing machine is given as follows. We compute
n = 2l−1 and also F (W ∗

2l−1)−F (W∗) which is possible since
(11) is a computable sequence. We compute ∥F (W ∗

2l−1) −
F (W∗)∥ℓ1 . In parallel, we further compute n = 2l and also
F (W ∗

2l)−F (W∗) and ∥F (W ∗
2l)−F (W∗)∥ℓ1 . We now compute

rl = max
{
∥F (W ∗

2l−1)−F (W∗)∥ℓ1 , ∥F (W ∗
2l)−F (W∗)∥ℓ1

}
.

We now use the Turing machine T< 1
4

from [31, page 14] and
test if rl < 1

4 is true. Our second Turing machine T2 stops if
and only if the Turing machine T< 1

4
stops for input rl.

We start both Turing machines in parallel in such a way
that the computing steps are synchronous. Whenever the first
Turing machine stops, we set l ∈ A. Otherwise, if the second
Turing machine stops, we set l /∈ A. The first Turing machine
stops if and only if l ∈ A. The second Turing machine stops
if and only if rl <

1
4 . As for l ∈ A we have rl ≥ 1

2 and for
l /∈ A we have rl = 0, the second Turing machine stops if
and only if l /∈ A.

With this, we have obtained a Turing machine T∗ that
always decides for l ∈ N whether l ∈ A or l /∈ A. This
means that A must be a recursive set which is a contradiction
to our initial assumption. Thus, the function F is not Banach-
Mazur computable which proves the desired result for the case
|X | = 3 and |Y| = 2.

Finally, we outline how the proof extends to arbitrary |X | ≥
3 and |Y| ≥ 2. In this case, for the set CHc(X ;Y) we consider
the subset CHc(X ;Y) of all channels W ∈ CHc(X ;Y) and
choose an arbitrary channel W ∈ CHc(X1;Y1) with |X1| = 3
and |Y1| = 2. We set

W (y|x) =
{
W (y|x) y ∈ {1, 2}x ∈ {1, 2, 3}
0 y ∈ {3, ..., |Y|}x ∈ {1, 2, 3} (12)

as well as

W (·|x) = W (·|1) x ∈ {4, ..., |X |}. (13)

As above, we assume that F ∈ Mopt(X ;Y) is a Banach-
Mazur computable function that computes an optimal input
distribution for the set CHc(X ;Y). Then we always have
F (W ) ∈ P(X ) for W ∈ CHc(X ;Y). For W ∈ CHc(X1;Y1)
we can immediately compute an optimal input distribution
p∗1 ∈ Popt(W ) as follows. We take W which is constructed
as above in (12)-(13). Let W ∈ CHc(X ;Y) and consider
p(W ) := F (W ). With

p(W ) =

 p1(W )
...

p|X |(W )



we set

p∗1(W ) := p1(W ) +

|X |∑
x=4

px(W ) (14)

and

p∗2(W ) := p2(W ), (15)
p∗3(W ) := p3(W ). (16)

For W ∈ CH(X1;Y1) we consider the mapping

G(W ) =

p∗1(W )
p∗2(W )
p∗3(W )


which is defined by (14)-(16). The mapping G is a composition
of the following components: 1) it constructs from W the
channel W according to (12)-(13); 2) it applies the function
F on W ; and 3) it applies the operations (14)-(16) on F . The
construction (12)-(13) and also the operations (14)-(16) are
Borel-Turing computable. Since F is further Banach-Mazur
computable by assumption, the mapping G must be Banach-
Mazur computable as well. However, we have p∗ ∈ Popt(W ).
This is a contradiction since for |X1| = 3 and |Y1| = 2 all
functions G ∈ Mopt(X1;Y1) can not be Banach-Mazur com-
putable. This proves the general case and therewith completes
the proof of Theorem 2.

By inspection of the proof of Theorem 2, we observe that we
have shown a stronger statement than was initially required.
More specifically, we even have shown the following result:

Theorem 3. Let X and Y be arbitrary finite alphabets. Then
there exists a computable sequence (Wn)n∈N of Borel-Turing
computable channels, where every channel Wn, n ∈ N has
only rational entries, such that for all G ∈ Mopt(X ;Y) it
always holds that (G(Wn))n∈N is not a Borel-Turing com-
putable sequence.

Some remarks are in order. We actually have a universal
non-Banach-Mazur computability here. To show that a specific
function G ∈ Mopt(X ;Y) is not Banach-Mazur computable,
we have to show that for this function G there is a com-
putable sequence (Wn)n∈N such that (G(Wn))n∈N is not
a computable sequence of computable input distributions in
P(X ). In general, the sequence (Wn)n∈N depends on the
function G. From a practical point of view, it could be the
case that for an arbitrary given computable sequence (Wn)n∈N
of computable channels (which contain all practically rel-
evant channels for certain application) there is a G such
that G((Wn))n∈N becomes a computable sequence of output
distributions (p(Wn))n∈N. However, we have shown that this
possibility for the optimization of the mutual information is
not possible, since Theorem 3 excludes such a behavior since
the sequence (Wn)n∈N in Theorem 3 is a universal sequence
such that for all G ∈ Mopt(X ;Y), the sequence (G(Wn))n∈N
is not a computable sequence.

As discussed in the previous Section IV, we must not
necessarily have G(W ) ∈ Pc(X ) for W ∈ CHc(X ;Y). In
particular, already on the interval [0, 1] there are computable
continuous functions f such that for all optimizers x∗ ∈ [0, 1]
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we have x∗ /∈ Rc. However, we know that such a behavior
cannot occur for the mutual information since for |X | ≥ 2 and
W ∈ CHc(X ;Y) arbitrary we have the following reasoning:
Popt(W ) is a non-empty set and if there is only one element
in Popt(W ), i.e., |Popt(W )| = 1, then we know from [31, Sec.
0.6] that for the optimal input distribution p∗ ∈ Pc(X ) is
satisfied. On the other hand, if Popt(W ) contains more than
one element, i.e., |Popt(W )| ≥ 2, then Popt(W ) is a convex
set, i.e., for p(1), p(2) ∈ Popt(W ) with p(1) ̸= p(2) we also
have pλ := (1− λ)p(1) + λp(2) ∈ Popt(W ) for λ ∈ [0, 1].

Now let i(1) be an arbitrary index of X with p(1)(i(1)) ̸=
p(2)(i(1)). For pλ(i(1)) = (1− λ)p(1)(i(1)) + λp(2)(i(1)) we
always have

pλ(i(1)) ∈ [a1, a
1]

with a1 < a1 and

a1 = min
{
p(1)(i(1)), p(2)(i(1))

}
,

a1 = max
{
p(1)(i(1)), p(2)(i(1))

}
.

This implies the existence of a λ̂ ∈ (0, 1) with pλ̂(i(1)) ∈ Rc.
Next, we consider Xi = X\{i(1)} and M1 = {p ∈ P(X ) :

p(i(1)) = pλ̂(i(1))} and study the relation

max
p∈M1

I(p,W ) = max
p∈P(X )

I(p,W ).

Now, let Popt(W,M1) be the set of all p∗M1 with

I(p∗,W ) = max
p∈M1

I(p,W ).

If Popt(W,M1) consists of only one element, then we must
have p∗ ∈ Pc(X ). If Popt(W,M1) consists of more than one
element, then the set Popt(W,M1) must be convex. In this
case, we find another index i(2) with i(2) ̸= i(1) such that for
i(2) there is a p̂∗ ∈ Popt(w,M1) with p̂∗ ∈ Popt(W,M1) and
p̂∗(i(2)) ∈ Rc. This procedure can be continued iteratively
such that the index set is reduced by one element in each
iteration. After finitely many steps, we obtain a p̃ ∈ Popt(W )
with p̃ ∈ Pc(X ).

It is clear that this procedure allows us to show the ex-
istence of such a p̃ only, but that p̃ cannot be constructed
algorithmically. It is interesting to note that this allows us
to show the existence of such a function G with G(W ) =
Popt(W ) for all W ∈ CHc(X ;Y) such that we always have
G(W ) ∈ Pc(X ) for W ∈ CHc(X ;Y) is true. Accordingly,
for W ∈ CHc(X ;Y) it is impossible that Popt(W ) contains
only non-Borel-Turing computable input distributions.

Finally, we want to emphasize that it has recently been
shown for other information theoretic problems arising in
prediction theory that for simple spectral power densities
the corresponding prediction filters and Wiener filter, ac-
cordingly, for Borel-Turing computable frequences have non-
Borel-Turing computable values [37]. In contrast to this, such
a behavior cannot occur for the optimal input distribution in
our case.

C. Discussion

Some discussion is in order.

Remark 6. This shows that such a Turing machine cannot
exist providing a negative answer to Question 1 above. As a
consequence, this means also that a function F as in (7) cannot
exist for which F (W ) can “easily” be computed for W . In
particular, this excludes the possibility of finding a function
F that provides a “closed form solution”, since this would
be then Turing computable and therewith algorithmically con-
structable, cf. also [38, 39].

Remark 7. It is of interest to discuss the Blahut-Arimoto
algorithm taking the result in Theorem 2 into account. This
algorithm computes for each channel W ∈ CHc(X ;Y) a
sequence (pn(W ))n∈N of input distributions such that all
convergent subsequences always converge to a corresponding
optimizer p∗(W ) ∈ Popt(W ). The second crucial ingredi-
ent of the representation of p∗(W ) is a stopping criterion
for the computation of the sequence (pn)n∈N for a given
approximation error 1

2N
. Such a stopping criterion is not

provided by the Blahut-Arimoto algorithm. This was already
criticized by Csiszár in [5]. Our Theorem 2 shows now that
such a computable stopping criterion as a function of the
representation of the channel cannot exist.

Remark 8. Theorem 2 further shows that the convergence
behavior of the Blahut-Arimoto algorithm cannot be improved
by optimizing the starting point of the algorithm, i.e., by
choosing the starting point in the form of a Turing computable
pre-processing such that it results in a computable stopping
criterion for the algorithm. As a consequence, there is no
Turing computable function G0 : CHc(X ;Y) → Popt(W ) with
p0(W ) = G0(W ) such that a Turing computable stopping
criterion would exist for the Blahut-Arimoto algorithm with
p0(W ) as initialization.

The statement on the impossibility of the algorithmic
solvability is closely connected to the underlying hardware
platform (Turing machine) and therewith, equivalently, to the
admissible programming languages (Turing complete) and also
the admissible signal processing operations. Note that for other
computing platforms (such as neuromorphic or quantum com-
puting platforms) this statement need not be the case. However,
whenever simulations are done in the broad area of information
theory, communication theory, or signal processing, these are
done on digital hardware platforms for which Turing machines
provide the underlying computing framework.

Remark 9. It is helpful and very interesting to gain further
intuition and insight into the non-computability by Turing ma-
chines and other potential computing platforms. For example,
it has been a long-standing open problem to describe the roots
of polynomials by radicals as a function of the coefficients of
the polynomial. To this end, Galois showed this is not possible
in general for polynomials of the order 5 or higher [40]. This
means that the roots of polynomials of order 5 or higher cannot
be expressed as a “closed form solution” by radicals; see [40]
and further discussions in [38, 39]. On the other hand, from
the complex analysis there are algorithms known that are able
to approximate these roots. This shows that the “computing
theory of radicals” is not sufficient for the computation of the
roots of polynomials of order 5 or higher, but other techniques
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Fig. 2. The Turing machine T obtains a description of the channel W and
the block length n as inputs and outputs a description of an input distribution
p(W ) that satisfies the tolerated approximation error 1

2n
. Here, an algorithmic

dependency on the channel W is given as W is provided as an input to T.

from complex analysis enable the approximation thereof.

Next, we want to further discuss the implications of The-
orem 2 and the problem of the computation of C(W ), W ∈
CHc(X ;Y). For this purpose, let W ∈ CHc(X ;Y) be fixed
and we consider the function fW (p) := I(p,W ). The function
fW is concave and further a computable function in p since
W ∈ CHc(X ;Y). Therefore, from [31, Section 0.6] follows
that the condition C(W ) ∈ Rc is satisfied, cf. also (6). For
p∗ ∈ Popt(W ) arbitrary we have fW (p∗) = C(W ), but p∗
must not necessarily be a computable input distribution, i.e.,
p∗ ∈ Pc(X ) is not necessarily satisfied. In fact, in [41] it has
been shown that already on the interval [0, 1] it is possible
to construct continuous computable functions g such that for
every point x∗ ∈ [0, 1] with maxx∈[0,1] g(x) = g(x∗) it
holds that x∗ /∈ Rc, i.e., there is no Borel-Turing computable
maximizer, although we have maxx∈[0,1] g(x) ∈ Rc.

For the mutual information, i.e., for our function fW , such
a behavior cannot exist. This means there always exists an
optimal p∗ ∈ Popt(W ) such that p∗ ∈ Pc(X ) is satisfied. This
implies the following: For an optimal p∗ ∈ Pc(X )∩Popt(W )
there exists by definition an algorithm (or Turing machine) that
approximates the optimal p∗ by rational probability distribu-
tions with arbitrarily small approximation error. In particular,
with this we can find a function G∗ such that for every
W ∈ CHc(X ;Y) it always holds G∗(W ) ∈ Pc(X )∩Popt(W ).
This means the function G∗ is mathematically well defined and
gives always a computable optimal input distribution, i.e., the
output of G∗ is in Pc(X ). But, at the same time, the function
G∗ itself is not Borel-Turing computable, i.e., the function
W → p∗(W ) ∈ Pc(X ) ∩ Popt(W ) does not depend on W
in a Borel-Turing computable way. In particular, for every
W ∈ CHc(X ;Y) there exists a p∗(W ) ∈ Pc(X ) ∩ Popt(W ),
but this p∗(W ) cannot be computed algorithmically.

Remark 10. For W ∈ CH(X ;Y) the set Popt is always
convex. For practical applications, it would be interesting to
know the extreme points of this set. Then it is of further
interest to understand if for W ∈ CHc(X ;Y) the extreme
points of the set Popt are also in Pc(X ), i.e., a computable
input distribution. This question remains open and for general
continuous computable concave functions it could be the case
that no extreme point of Popt is computable.

V. APPROXIMABILITY OF AN OPTIMAL INPUT
DISTRIBUTION

Above we have shown that it is impossible to algorithmi-
cally construct optimal, i.e., capacity-achieving, input distribu-
tions. Consequently, we are now interested in understanding
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<latexit sha1_base64="4HGdYQOEIFNXYe2OJ8ZKGlM3VQQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2RmUq27NXYCsEy8nVcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2Rc6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqx517Wr5lW1XsnjKMIZVOACPLiBOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MHrYOMxA==</latexit>

W <latexit sha1_base64="4NT0cPNUq2zaOayk/uRQd4yiK4E=">AAACHnicbVDLSsNAFJ3UV42vqks3oaXQgpRE6mNZcOOyQh9CE8pkOmmHTiZh5kYsIV/ixl9x40IRwZX+jdPHQlsPDBzOOZe59/gxZwps+9vIra1vbG7lt82d3b39g8LhUUdFiSS0TSIeyTsfK8qZoG1gwOldLCkOfU67/vh66nfvqVQsEi2YxNQL8VCwgBEMWuoXzt0QwyiQeJy2skr3VFTNclzpVl0mZg7BPG1m/dQF+gBpFEOmU9V+oWTX7BmsVeIsSAkt0OwXPt1BRJKQCiAcK9Vz7Bi8FEtghNPMdBNFY0zGeEh7mgocUuWls/Myq6yVgRVEUj8B1kz9PZHiUKlJ6OvkdGW17E3F/7xeAsGVlzIRJ0AFmX8UJNyCyJp2ZQ2YpAT4RBNMJNO7WmSEJSagGzV1Cc7yyaukc1ZzLmr123qpUVzUkUcnqIgqyEGXqIFuUBO1EUGP6Bm9ojfjyXgx3o2PeTRnLGaO0R8YXz/ZjKJB</latexit>

T(W, n)
<latexit sha1_base64="wqcOZDtq9LPRV7IdVmDpd802ES0=">AAACIXicbVDLSsNAFJ34rPEVdekmtBRakJJI0S4LblxW6AuaUibTSTt0MgkzN2IJ+RU3/oobF4p0J/6M08dCWw8MHM45l7n3+DFnChzny9ja3tnd288dmIdHxyen1tl5W0WJJLRFIh7Jro8V5UzQFjDgtBtLikOf044/uZv7nUcqFYtEE6Yx7Yd4JFjACAYtDayaMIteiGEcSDxJm1mpcyXKZjEudcoeEwuHYJ42skHqAX2CNIoh06nywCo4FWcBe5O4K1JAKzQG1swbRiQJqQDCsVI914mhn2IJjHCamV6iaIzJBI9oT1OBQ6r66eLCzC5qZWgHkdRPgL1Qf0+kOFRqGvo6OV9ZrXtz8T+vl0BQ66dMxAlQQZYfBQm3IbLnddlDJikBPtUEE8n0rjYZY4kJ6FJNXYK7fvImaV9X3JtK9aFaqOdXdeTQJcqjEnLRLaqje9RALUTQM3pF7+jDeDHejE9jtoxuGauZC/QHxvcPWUyi/A==</latexit>

n

<latexit sha1_base64="sUvF+HHRq2G5YO5vazRSoR7Sg/E="></latexit>

pn 2 Pc with kp(W ) � pnk`1 <
1

2n

<latexit sha1_base64="wqcOZDtq9LPRV7IdVmDpd802ES0=">AAACIXicbVDLSsNAFJ34rPEVdekmtBRakJJI0S4LblxW6AuaUibTSTt0MgkzN2IJ+RU3/oobF4p0J/6M08dCWw8MHM45l7n3+DFnChzny9ja3tnd288dmIdHxyen1tl5W0WJJLRFIh7Jro8V5UzQFjDgtBtLikOf044/uZv7nUcqFYtEE6Yx7Yd4JFjACAYtDayaMIteiGEcSDxJm1mpcyXKZjEudcoeEwuHYJ42skHqAX2CNIoh06nywCo4FWcBe5O4K1JAKzQG1swbRiQJqQDCsVI914mhn2IJjHCamV6iaIzJBI9oT1OBQ6r66eLCzC5qZWgHkdRPgL1Qf0+kOFRqGvo6OV9ZrXtz8T+vl0BQ66dMxAlQQZYfBQm3IbLnddlDJikBPtUEE8n0rjYZY4kJ6FJNXYK7fvImaV9X3JtK9aFaqOdXdeTQJcqjEnLRLaqje9RALUTQM3pF7+jDeDHejE9jtoxuGauZC/QHxvcPWUyi/A==</latexit>

n
<latexit sha1_base64="x4NMfTfMnA4fFhyOFwlCOjtby7M="></latexit>

TW (n)

<latexit sha1_base64="sUvF+HHRq2G5YO5vazRSoR7Sg/E="></latexit>

pn 2 Pc with kp(W ) � pnk`1 <
1

2n

Fig. 3. The Turing machine T obtains the block length n as input and
outputs a description of an input distribution p(W ) that satisfies the tolerated
approximation error 1

2n
. Here, the Turing machine TW depends on W in the

sense that for every W ∈ CHc(X ;Y) there exists a Turing machine with the
desired properties.

whether or not it is at least possible to algorithmically approx-
imate such distributions. This is visualized in Fig. 2 for the
case where the Turing machine would obtain both the channel
and the block length as inputs and in Fig. 3 for the case where
the channel is known beforehand and only the block length is
given as an input to the Turing machine.

We have seen that all functions F : CHc(X ;Y) → P(X )
with F (W ) ∈ Popt(W ) for all W ∈ CHc(X ;Y) are not
Banach-Mazur computable and therewith also not Borel-
Turing computable. The question is now whether or not we can
instead solve this problem approximately, i.e., does there exist
a computable sequence of Borel-Turing computable functions
Fn, n ∈ N, with Fn : CHc(X ;Y) → Pc(X ), n ∈ N, such
that for all W ∈ CHc(X ;Y) for a suitable function F with
F (W ) ∈ Popt(W ) for all W ∈ CHc(X ;Y) we always have

∥∥F (W )− Fn(W )
∥∥
ℓ1

<
1

2n
.

This is equivalent to the question of whether or not there exists
a Turing machine T that takes an arbitrary representation of
W ∈ CHc(X ;Y) and n ∈ N as inputs and then computes for
W and n a representation for pn(W ) ∈ P(X ) such that

∥∥F (W )− pn(W )
∥∥
ℓ1

<
1

2n
. (17)

And this is equivalent to the question of whether or not it
is possible to find a Turing machine T with the following
properties: T takes the channel and natural numbers as inputs
and computes a description of an input distribution. This
input distribution must satisfy the following: for all W ∈
CHc(X ;Y) and all n ∈ N the Turing machine must compute
for every description for W a description of pn(W ) such that
for a suitable p∗(W ) ∈ Popt(W ) it always holds that

∥∥p∗(W )− pn(W )
∥∥
ℓ1

<
1

2n
.

The input n of this Turing machine T could enable the
algorithmic approximation of the optimal input distribution.

A negative answer can be immediately given to this question
based on the results obtained above, since a function F must
be Borel-Turing computable, see also [29]. We can formalize
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the following question.

Question 2: Let X and Y be finite input and output
alphabets with |X | ≥ 3 and |Y| ≥ 2. Is it possible
to approximate a function F ∈ Mopt(X ;Y) by com-
putable functions? Is there a function F ∈ Mopt(X ;Y)
and a computable function F1 such that

sup
W∈CHc(X ;Y)

∥∥F (W )− F1(W )
∥∥
ℓ1

<
1

2
?

Remark 11. With this question we ask whether or not the
previous condition (17) as the supremum can be satisfied for
the trivial case n = 1.

Theorem 4. Let X and Y be arbitrary but finite alphabets with
|X | ≥ 3 and |Y| ≥ 2. Let F ∈ Mopt(X ;Y) be an arbitrary
function and let F1 be another arbitrary function with

sup
W∈CHc(X ;Y)

∥∥F (W )− F1(W )
∥∥
ℓ1

= α <
1

2
.

Then F1 is not Banach-Mazur computable.

Proof: We prove the result by contradiction. Therefore,
we assume that there exists a function F ∈ Mopt(X ;Y) such
that there is a function F1 with

sup
W∈CHc(X ;Y)

∣∣F (W )− F1(W )
∣∣ = β < 1

that is Banach-Mazur computable. Then, there exists a com-
putable real number α with β ≤ α < 1.

We now consider the computable sequence (W ∗
n)n∈N as

used in the proof of Theorem 2. For l ∈ N, let∥∥F1(W
∗
2l)− F (W ∗

2l)
∥∥
ℓ1

≤ α

and ∥∥F1(W
∗
2l−1)− F (W ∗

2l−1)
∥∥
ℓ1

≤ α

be satisfied. Then, we also have for l ∈ A the following:

1 =
∥∥F (W ∗

2l)− F (W ∗
2l−1)

∥∥
ℓ1

=
∥∥F (W ∗

2l)− F1(W
∗
2l) + F1(W

∗
2l)− F1(W

∗
2l−1)

+ F1(W
∗
2l−1)− F (W ∗

2l−1)
∥∥
ℓ1

≤
∥∥F (W ∗

2l)− F1(W
∗
2l)

∥∥
ℓ1
+
∥∥F1(W

∗
2l)− F1(W

∗
2l−1)

∥∥
ℓ1

+
∥∥F1(W

∗
2l−1)− F (W ∗

2l−1)
∥∥
ℓ1

≤ 2α+
∥∥F1(W

∗
2l)− F1(W

∗
2l−1)

∥∥
ℓ1
.

Therefore, it holds that∥∥F1(W
∗
2l)− F1(W

∗
2l−1)

∥∥
ℓ1

≥ 1− 2α = c1 > 0

which implies that

c1 =
∥∥F1(W

∗
2l)− F1(W∗) + F1(W∗)− F1(W

∗
2l−1)

∥∥
ℓ1

≤
∥∥F1(W

∗
2l)− F1(W∗)

∥∥
ℓ1
+
∥∥F1(W∗)− F1(W

∗
2l−1)

∥∥
ℓ1

≤ 2max
{∥∥F1(W

∗
2l)−F1(W∗)

∥∥
ℓ1
,∥∥F1(W∗)−F1(W

∗
2l−1)

∥∥
ℓ1

}
=: 2r∗l .

We conclude that

r∗l ≥ c1
2

> 0. (18)

For l ∈ N and l /∈ A,

F1(W
∗
2l) = F1(W∗)

and
F1(W

∗
2l−1) = F1(W∗)

are satisfied. Accordingly, we can use the same Turing ma-
chine T< 1

4
as in the proof of Theorem 2 for the input r∗l in

(18). The Turing machine T< 1
4
(r∗l ) stops if and only if l /∈ A.

Thus, we can construct a Turing machine as in the proof of
Theorem 2 that decides for every l ∈ N whether l ∈ A or
l /∈ A. This is, again, a contradiction to the initial assumption
completing the proof of Theorem 4.

From this we immediately obtain the following result.

Corollary 2. Let F ∈ Mopt(X ;Y) be an arbitrary function.
For α < 1

2 arbitrary, there exists no Turing machine T∗ such
that for all W ∈ CHc(X ;Y),∥∥F (W )− T∗(W )

∥∥
ℓ1

≤ α

is true.

Proof: If such a function F ∈ Mopt(X ;Y) would exist
for which we can find a Turing machine T∗ with α̂ < 1

2 , then
F1(W ) = T∗(W ), W ∈ CHc(X ;Y), would be Banach-Mazur
computable.

As a consequence, we can further conclude the following.

Corollary 3. The approximation problem stated in Question 2
is not solvable.

Proof: Already for n = 2 this is not possible.
Similarly as in Section IV, one can show that a choice

of Borel-Turing computable starting points for iterative algo-
rithms such as the Blahut-Arimoto algorithm, i.e., p0(W ) =
G(W ), W ∈ CHc(X ;Y), G Borel-Turing computable func-
tion, does not improve the approximation behavior according
to Question 2.

VI. CONCLUSION

The channel capacity describes the maximum rate at which
a source can be reliably transmitted. Capacity expressions
are usually given by entropic quantities that are optimized
over all possible input distributions. Evaluating such capacity
expressions and finding corresponding optimal input distribu-
tions that maximize these capacity expressions is a common
and important task in information and communication theory.
Several algorithms including the Blahut-Arimoto algorithm
have been proposed to algorithmically compute these quan-
tities. In this work, we have shown that there exists no
algorithm or Turing machine that takes a DMC as input
and then computes an input distribution that maximizes the
capacity. Although capacity-achieving input distributions have
been found analytically for some specific DMCs, this does not
immediately mean that capacity-achieving input distributions
can be algorithmically computed by a Turing that takes a
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DMC of interest as input. We have further shown that it is
not even possible to algorithmically approximate this distribu-
tion. These results have implications for the Blahut-Arimoto
algorithm. In particular, as we have noted, there is no stopping
criterion for the computation of the input distribution, and our
results imply that such a computable stopping criterion cannot
exist, providing a negative answer to the open question of
whether one does.

Future communication systems such as the 6th generation
(6G) of mobile communication networks are being developed
for very critical applications such as autonomous driving or
mobile robots, but also for health care [42, 43]. Due to the
particular challenges of security and privacy of these appli-
cations, 6G must fulfill strict conditions on trustworthiness
[44], for which integrity is one of the essential conditions that
needs to be satisfied. With the results of this work, it can
be shown that the computation of optimal input distributions
is never possible on digital computers under the condition
of integrity. In addition to the technical requirement for
integrity, algorithms must also fulfill legal requirements for
many future applications. For example, algorithms for critical
decision problems must already fulfill the legal requirement
of algorithmic transparency2. With the results of this work, it
can further be shown that the computation of optimal input
distributions on digital computers is never possible under the
requirement of algorithmic transparency.
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APPENDIX

A. Example of a Non-Computable Function

Here, we show that for x ∈ [0, 1] ∩ Rc the function

f(t) = e−x

is not exactly computable on Turing machines, but only
approximable.

By the remainder theorem of Lagrange, we get for x ∈
[0, 1]:

f(x) =

n∑
l=0

(−1)l

l!
xl +

1

(n+ 1)!
f (n+1)(ϑx)x

n+1

with ϑx ∈ [0, x] a suitable number. With this, we get∣∣∣f(x)− n∑
l=1

(−1)l

l!
xl
∣∣∣ = 1

(n+ 1)!
e−ϑxxn+1 ≤ 1

(n+ 1)!

and
(n+ 1)! > 2n, n ≥ 2.

2Algorithmic transparency requires all factors that determine the result of
an algorithm to be visible to the legislator, operator, user, and other affected
individuals.

Assume now that we have a sequence (rn)n∈N of rational
numbers with

|x− rn| <
1

2n

so that∣∣∣f(x)− n∑
l=0

(−1)l

l!
(rn)

l
∣∣∣

=
∣∣∣f(x)− f(rn) + f(rn)−

n∑
l=0

(−1)l

l!
(rn)

l
∣∣∣

≤ |f(x)− f(rn)|+
∣∣∣f(rn)− n∑

l=0

(−1)l

l!
(rn)

l
∣∣∣

< |f(x)− f(rn)|+
1

2n
, n ≥ 2.

Now, the mean value theorem implies that

|f(x)− f(rn)| = |f ′(ξx,n)|·|x− rn|

with ξx,n ∈ [x − rn, x + rn] being a suitable number. This
yields

|f(x)− f(rn)| ≤ |x− rn| <
1

2n
.

With yn :=
∑n

l=0
(−1)l

l! (rn)
l, we obtain

|f(x)− yn| <
1

2n
+

1

2n
=

1

2n−1
,

i.e., the algorithm

(rn)n∈N → (yn)n∈N

maps a representation of x into a representation of f(x). This
algorithm converges effectively.

From this calculation we immediately see how the function
f can be approximated. Whenever f needs to be approximated
in such a way that the error satisfies 1

2n , we use the polynomial
as given above and compute it accordingly. For this, it is
important to find suitable sequences of polynomials. Note that
the polynomials in this sequence needs to be computable as
well as the sequence itself needs to be a computable sequence,
since otherwise, we are not able to evaluate the approximation
process algorithmically. Note that this does not mean that
every sequence of approximations of f is also a suitable
sequence for our purpose.

B. Binary Entropy and Transcendental Numbers

For the following, we need Hilbert’s Seventh Problem which
is restated next for completeness.

Hilbert’s Seventh Problem. Let a /∈ {0, 1} be an
algebraic number (i.e., a root of a non-zero polynomial
with integer coefficients) and let b be an irrational and
algebraic number. Is ab always a transcendental number
(i.e., not algebraic)?

Remark 12. A positive answer to this question was then first
given in 1934 by Gelfond [45] and subsequently refined in
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1935 by Schneider [46]. Later this was generalized by Baker
for which he was awarded a Fields Medal in 1970, cf. [47].

We further need the following observation.

Lemma 1. Let n ∈ N and t ∈ N be arbitrary. Then n and nt

are divisible by the same prime numbers.

Proof: Let n =
∏r

l=1 pl be the unique prime factorization
of n. Note that in factorization, certain prime factors may
appear multiple times. Then, nt =

∏r
l=1(pl)

t is a prime
factorization of nt. As this factorization is unique, both n and
nt must have the same prime factors.

We now prove the following result.

Theorem 5. Let p ∈ Q with p /∈ {0, 1
2 , 1}. Then, h2(p) is a

transcendental number.

Proof: Let

h2(p) = p log
1

p
+ (1− p) log

1

1− p

be the binary entropy, which can be equivalently be expressed
as

2h2(p) =

(
1

p

)p (
1

1− p

)1−p

. (19)

Let p ∈ Q with p ∈ (0, 1), p /∈ {0, 1
2 , 1} be arbitrary. Then,

we can express p as p = n
m , n < m, n,m ∈ N, and assume

without loss of generality that n and m are coprime. With this,
we can write (

1

p

)p

=
(m
n

) n
m

and conclude that the number ( 1p )
p is a root of the polynomial

xm−(mn )n and therewith also of the polynomial nnxm−mn.
Thus, ( 1p )

p is an algebraic number. Similarly, one can show
that ( 1

1−p )
1−p is an algebraic number so that 2h2(p) as in (19)

is also an algebraic number.
Now, we can use the Gelfond-Schneider theorem, i.e., the

solution to Hilbert’s Seventh Problem, cf. for example [47]. As
2h2(p) is an algebraic number, h2(p) must be either rational or
transcendental. Since otherwise, if h2(p) would be algebraic
and irrational, then 2h2(p) would be transcendental.

Next, we want to show by contradiction that h2(p) cannot
be rational. Since p ∈ (0, 1), p ̸= 1

2 , we have h2(p) ∈ (0, 1).
For this purpose, we assume that h2(p) is rational so that it
can be expressed as h2(p) = u

v with 0 < u < v, u, v ∈ N,
and u, v coprime without loss of generality. We further must
have v > 1. This would imply that

2
u
v =

(m
n

) n
m

(
1

1− n
m

)1− n
m

=
(m
n

) n
m

(
m

m− n

)m−n
m

so that

2mu =
(m
n

)nv
(

m

m− n

)(m−n)v

or equivalently

2mu(n)nv(m− n)(m−n)v = (m)mv.

Note that m−n ≥ 1 and further nv ∈ N, nv > 1, since v > 1.
If n = 1, then

2mu(m− 1)(m−1)v = (m)mv.

Lemma 1 and the uniqueness of the prime factorization would
then imply that every prime factor of m− 1 must be a prime
factor m as well. However, this is not possible.

If n > 1, then Lemma 1 implies that every prime factor
of n must also be a prime factor of m. However, this is not
possible, since n and m are coprime. As a consequence, h2(p)
cannot be a rational number. Finally, we conclude that h2(p)
must be a transcendental number which completes the proof.
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