VRIJE
UNIVERSITEIT
° AMSTERDAM

VU Research Portal

Algorithmic design of the globe wide-area location service
van Steen, M.; Hauck, F.J.; Ballintijn, G.

published in
The Computer Journal

1998

DOI (link to publisher)
10.1093/comjnl/41.5.297

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
van Steen, M., Hauck, F. J., & Ballintijn, G. (1998). Algorithmic design of the globe wide-area location service.
The Computer Journal, 41(5). https://doi.org/10.1093/comjnl/41.5.297

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 23. Aug. 2022

https://doi.org/10.1093/comjnl/41.5.297
https://research.vu.nl/en/publications/9ab48e10-61d0-4ae4-a46b-2aa3a17f0ed4
https://doi.org/10.1093/comjnl/41.5.297

Algorithmic Designof the Globe
Wide-ArealocationService

MAARTEN VAN STEEN, FRANZ J. HAUCK, GERCO BALLINTIIN AND
ANDREW S. TANENBAUM

DepartmentMathematicand ComputerScienceVrije Universiteit
De Boelelaan1081a,1081HV, Amstedam, TheNetherlands
Email: steen@cs.vu.nl

‘We describe the algorithmic design of a worldwide location service for distributed
objects. A distributed object can reside at multiple locations at the same time,
and offers a set of addresses to allow client processes to contact it. Objects may
be highly mobile like, for example, software agents or Web applets. The proposed
location service supports regular updates of an object’s set of contact addresses, as
well as efficient look-up operations. Our design is based on a worldwide distributed
search tree in which addresses are stored at different levels, depending on the
migration pattern of the object. By exploiting an object’s relative stability with
respect to a region, combined with the use of pointer caches, look-up operations
can be made highly efficient.

Keywords: mobility, locationservice namingsystemworldwidescalability

Receivedecembe2,1997;revisedAugustl4,1998

1. INTRODUCTION

Asthelnternetcontinuego grow exponentiallytheproblem
of locatingpeople servicesdata,software,andmachiness
becomingmoresevere. To compoundhe problem,increas-
ingly mary usersareno longertied to a single,fixedaccess
point, but insteadare using mobile hardware suchas tele-

phonesnotebookcomputersandpersonatigital assistants.

Applicationsmustthereforeake into accounthatauserwill
have to belocatedfirst in orderto deliver any messagefl].
Likewise,the mobile userwill possiblyalsohave to find lo-
cal,nonmobileresourceatthelocationheor sheis currently
residing(e.g.,alocallaserprinter)[2].

Mobile computing,which is generallytied to usersmi-
gratingbetweerdifferentlocationsjs oneaspecbf mobility
in the Internet. Anotheraspecis formedby mobile compu-
tations,by which softwareanddatamove within acomputer
network insteadf users.For example to supportubiquitous
computingjt will benecessarjo moveauserspersonakn-
vironmentfrom onelocationto anothef3]. Anotherexam-
ple of softwaremobility is the active transferof Web pages
to replicationsenersin the proximity of clients[4, 5]. Like-
wise,softwareagentanayberoamingthenetwork in search
of information,representingheir owner at seners, etc.[6].
Finally, with theintroductionof Java, mobile codewill form
animportantcomponenbf mary future Web-based@pplica-
tions[7, 8].

In this paper we usethe term mobile object to collec-
tively referto any component- implementedn hardware,
software,or acombinatiorthereof-thatis capableof chang-
ing locations. We assumethat a mobile objectcanbe dis-

tributedor replicatedacrossnultiple locations meaninghat
theremaybeseverallocationsvheretheobjectresidesatthe
sametime. This canbethe casefor example,with a white-
boardapplicationsharechetweera numberof mobileusers.

Theexistenceof (worldwide) mobile objectsintroducesa
locationproblem:Theneedfor ascalablgacility thatmain-
tainsa binding (i.e., a mapping)betweenan objects per
manentameandits currentaddress(es)Suchfacilitiesare
normally offeredby wide-areanamingsystemssuchasthe
Internets DomainNameSystem(DNS) [9], DEC’s Global
Name Service (GNS) [10], and the X.500 Directory Ser
vice[11].

However, existing namingsystemsreinadequatéor mo-
bile objectsfor two reasons.First, wide-areanamingsys-
temsassumehat name-to-addressindingshardly change.
This assumptioris necessaryo allow effective useof data
cachesto improve look-up performance. In a mobile en-
vironment, however, we must be able to handlethe case
that bindingschangeregularly. Secondmostnamingsys-
temsdistribute the namespaceacrosdifferentglobally dis-
tributednamingauthorities,and subsequentlyselocation-
dependenhames[12]. Unfortunately location-dependent
namesmale it harderto handlemigrationand replication.
Eachtime anobjectchangegocation,or wheneerareplica
is addedor removed, we have to adaptthe objects name(s)
aswell. Alternatively, we could changea nameinto a for-
warding pointer, but this has seriousscalability problems
whenappliedin worldwide systems.

Whatis neededs anamingfacility thatallows bindingsto
changeregularly andwhich offers completelocationtrans-

THE COMPUTER JOURNAL,

Vol. 41, No.5, 1998

298

M. VAN STEEN etal.

pareng to its users.We have recentlycompletedhe design
of sucha facility, which we call a location service, aspart
of theGlobeproject[13].? The Globelocationserviceis de-
signedto handletrillions of mobile objectsworldwide. It
usesa worldwidedistributedsearchreein which addresses
of an objects presentocationare stored. All locationop-
erations(updatingand looking up addressesire basedon
the useof globally unigueandlocation-independerdbject
identifiers.Theservicecanbeusedin combinatiorwith tra-
ditional namingservices but which shouldthenmapuser
definednamedo objectidentifiersinsteadof addresseOur
approactdistinguished#tself by (1) scalingworldwideandto
trillions of objects(2) allowing objectsto frequentlyupdate
name-to-addredsindings,and(3) supportingdistributedob-
jectsthatresideat multiple locationsat the sametime.

In this paperwe presenthebasicalgorithmsfor updating
andlooking up locations.In Section2 we give anoutline of
ourapproachfollowedin Section3 by adetaileddescription
of our algorithms. Relatedwork is presentedn Section4.
We concludeanddiscusduturework in Section5.

2. ARCHITECTURAL DESIGN

In this sectionwe outlinethearchitecturef the Globeloca-
tion service.An overview of ourapproacttanalsobefound
in [14].

2.1. Namingand Locating Objects

A namingandlocationservicemaintainsamappingoetween
a userdefinednameof an objectandthat objects location.
Traditionalnamingservicegenerallystorename-to-address
bindingsdirectly. In otherwords,eachbinding consistf a
recordcontainingthe nameandaddres®f anobject.

In this approach,we are forced to updatethe binding
wheneer the objectchangesdts location. For example, if
we move a Web sener to a machinewith a differentIP ad-
dress,we are generallyforcedto updatethe sener's DNS
entry Likewise,the name-to-addredsinding hasto be up-
datedwhenevertheuserdecidedo changeheobjectsname.
As an example,if systemadministrationdecidesto assign
differentnamesto existing machineswe may be forcedto
changename-to-addredsndingsof Internetservicesasreg-
isteredin DNS.

Consequentlyby storingbindingsbetweera userdefined
nameandan objects locationasrecordsin a databasewe
createa dependencbetweentwo different,andin principle
unrelatedkinds of updates.For a wide-areasystem,sucha
dependencenay introduceseriousmanagemenand scala-
bility problems.

In Globe, we follow a differentapproach. We separate
namingfrom locationissuesby introducinga two-layered
naminghierarchy Theupperlayerdealswith hierarchically
organizeduserdefined human-readableamespaces.The
lower layer dealswith keepingtrack of eachobject’s loca-
tion independenbf how that objectis namedby its users.

2Information on the Globe project can be found at

http://www.cs.vu.nl/~steen/globe/.

The interface betweenthe two layersis formed by object
handles auserdefinednameis boundto anobjecthandle,
which in turn is boundto the address(esivherethe object
canbefound.

An objecthandles designedpecificallyfor lookingupan
objects presentocation. It containsa Service-independent
GlobalUniqueldentifier(SGUID)whichis similarto a Uni-
versalUnigueldentifierin DCE[15]. A SGUIDis atrueob-
jectidentifier[16]: (1) eachSGUID refersto exactly oneob-
ject, (2) eachobjecthasexactlyoneSGUID, (3) aSGUIDis
neverreusedand(4) anobjectwill nevergetanotheiSGUID
thantheoneinitially assignedo it.

An objecthandlewill generallyobey thesameproperties,
althoughan object might have several objecthandles. An
objecthandlemayalsocontaininformationthatcanbe used
to assistin locating the object. An importantproperty of
an objecthandleis its stability: it is assignedonceto an
object, and remainsthe sameduring that objects lifetime,
no matterwherethe objectmovesto. No two objectsever
have the sameobject handle,even if generatedlO0 years
apartin distantcountries.

Mappinguserdefinednameso objecthandless doneby
anaming sewice, andwhich canbebasedn existing tech-
nology. For example becaus®bjecthandlesdo notchange,
animplementatiorcanmalke effective useof cachingname-
to-handlebindings,analogougo the approachollowed in
DNSJ9]. In fact,we canevenuseTXT recordsin DNSto
implementour name-to-handleindings.

In contrastmappinganobjecthandleto asetof addresses
is themaintaskof alocation sewvice. In Globe,we adopta
modelin which anobjectofferscontactaddressedo client
processesA contactaddresglescribesvhereand how an
objectcanbe reached13]. A contactaddressonsistsof,
for example,an IP addressa telephonenumber or another
kind of addressaswell asadditionalinformationthatiden-
tifies the placewherethe addresdies. We allow an object
to regularly changeits location, thatis, to regularly change
the binding betweenits objecthandleand contactaddress.
In addition,we alsoprovide supportfor binding several ad-
dressedo a single objecthandle. In this way, it becomes
much easierto handlereplicatedobjects. In this model, a
mobile, replicatedobjectis characterizedhy having a setof
contactaddressewhich maychangeovertime.

2.2. General Organization

To efficiently updateandlook up contactaddressesye or-

ganizethe underlyingwide-areanetwork asa hierarchyof

geographicaltopological,or administratve domains simi-

lar to the organizationof DNS. For example,a lowestlevel

domainmay representi campus-widenetwork of a univer-

sity, whereashenext higherlevel domainrepresentthecity

wherethatcampuss located.Lowestlevel domainsarealso
calledleafdomains EachdomainD is representetly asep-
aratedir ectory node denotediir(D), leadingto aworldwide
searchree.Nodesmaybeinternallypartitionedfor scalabil-
ity reasonsTheinternalorganizatiorof thelocationservice
is entirelytransparento client processes.

THE COMPUTER JOURNAL,

Vol. 41, No.5, 1998

ALGORITHMIC DESIGN OF THE GLOBE WIDE-AREA LOCATION SERVICE 299

Empty contact field
Contact field with forwarding pointer
Contact field with address(es)

K[|

dom(ND) *

NO| W[T ...

Contact record aNO

.......
- ~
. -~
. -

NI (]3] [N2 N3

oHH

D Contact addresses ‘

Forwardin
from dom(N1) pointer tol\?z

,
|
.
.
D / D .
,
,
,
.

N21 N22

FIGURE 1. Theorganizationof contactrecordsin thetreefor a specificobject.

A directorynodestoresinformationon objectsin contact
records Eachnodehasaseparateontactrecordperobject.
A contactrecordcontainsanumberof contactfields, onefor
eachchild of thenodewheretherecordis stored.A contact
addres®f anobjectis alwaysstoredat exactly onedirectory
node.In addition,apathof forwardingpointersfrom theroot
to thenodewheretheaddresss storedjs establishedor that
objectaswell. An implication of this designis thatwe can
alwayslocatea contactaddresf an objectby following a
chainof forwardingpointersfor that object, startingat the
root. In practice,we cando much better aswe describe
later

As anillustration, Figure 1 shaws partof the searchtree
storingseveralcontaciaddressesn behalfof asingleobject.
The domainrepresentetdy a noden is denoteddon(N). In
Figurel, nodeNo containsa contactrecordwith threecon-
tact fields, onefor eachof its children. The field for child
N1 containgwo contactaddressesyhich bothlie in domain
dom(N1). As we put forwardin Section3.5, althoughcon-
tactaddressearenormallystoredin leaf nodeshigherlevel
nodesmaydecideto storeaddresseaswell. We follow the
policy thatin suchcaseshigherlevel nodeshave priority
over lower level ones. The contactfield for child N2 con-
tainsa forwarding pointer, meaningthat somevherein the
subtreerootedat N2 thereshouldbe at leastoneothercon-
tactaddressstoredfor the object. Finally, the contactfield
for nodeNn3 containsnodataatall, implying thatthereareno
contactaddressethatlie in domaindom(N3). If noneof the
contactfields of a contactrecordcontainsdata,the contact
recordis saidto beempty.

Storageof addresseand pointersis subjectto a number
of consisteng conditions.In particular whentherearecur-
rently no updateoperationsn progresdor a specificobject
0, we requirethatthefollowing threeconditionsaremet:

C1: A contactaddressfrom a leaf domainD, is stored at
dir(D), or at thedirectorynodeof an enclosing(higher
level) domainof D.

This conditionimpliesthata contactaddresgrom leaf
domainD canbe storedonly at a directory nodethat
lies onthepathfrom therootto dir(D).

C2: For eath nodeN, the contactrecod for o at nodeN

stores a forwarding pointer to a child node of N if
and only if the contactrecod for o at that child is
nonempty
This meanghatwe do not acceptdanglingpointersin
our tree. In otherwords, if we follow a forwarding
pointerwe shouldeventuallyfind a contactrecordcon-
tainingoneor moreaddresses.

C3: A contactfield cancontaineithera forwarding pointer
or contactaddressesbut notboth.
Togetherwith the previous conditions,this condition
impliesthatassoonaswe encounteracontacfield con-
taining contactaddressesye canbe surethatwe have
found all contactaddresseshat lie in the subdomain
representedly thatcontacffield.

Whentheseconditionsaremet,thetreeis saidto beglobally
consistentfor 0. As anexample thetreeshovnin Figurel
is globally consistent.

As we discusdelow, acontactaddresshatliesin leafdo-
mainD is alwaysinsertedor deletedby initiating a request
at the directory nodedir(d) of D. To simplify matters,we
requirethattheidentity of the leaf domainin which the ad-
dresdiesis encodedn the addressFor example,a contact
addres<ould be representedby a recordcontainingfields
for the type of network addresgsuchas“IPv6”), theactual
network addressanda namesuchas“cs.vu.nl” thatidenti-
fiesthe leaf domainwherethat addresdies. In contrastto
mostnetwork addressingchemespur contactaddresseare
thusseento belocationdependent.

2.3. Update Algorithms

We requirethat an updateoperationon a globally consis-
tenttreeleavesthetreein a global consistenstateafter its

completion(assuminghatno otheroperationgor the same
objectarestill in progress)For aninsertrequesinitiated at
leaf nodedir(D), it is easilyseenthatglobal consisteng im-

pliesthattherecanbeonly onenodealongthe pathfrom the
leaf nodeto theroot whereall addresseffom D arestored.
In particulay if thereis sucha nodeN, thenan insertre-
guestfrom any leaf domainenclosedy dom(N) shouldbe
forwardedto N.

THE COMPUTER JOURNAL,

Vol. 41, No.5, 1998

300

M. VAN STEEN etal.

Request arrives at U I
node with nonempty ‘
contact record
Nodes that want to .
store address [[¥]]| NO
NlU]] [] [1]
gllollo||olm]|0]lO
N2
' Request to insert contact
@1 address at leaf node
@
| —
Forwarding pointer
@ is installed atNO ‘
V¥]| NO
Node decides to
store addres
5 i it 0
N1~ \
;
ollo]lo| |olm] |0]lO
N2

Contact record at leaf
node remains empty

(b)

FIGURE 2. Thegeneralpproactho insertinga contactaddressby which aninsertionrequespropagatesipwardsto the lowest-level node
wheretheobjectis known (a), afterwhich adownward pathof forwardingpointersis setup (b).

If thereis no nodethatis alreadystoringaddressefrom
D, we canchooseonealongthe pathto theroot aslong as
the global consisteng constraintsare satisfied. We follow
the policy thatthe highestlevel nodethatwantsto storead-
dresse$rom D, withoutviolating globalconsisteng, will be
allowedto storeaddressesAs we explainin Section3.5,this
policy allows us to constructhighly effective cachesgven
for mobile objects. Note that only thosenodesare eligible
for storing contactaddressefrom D which eitherhave an
emptycontactrecord,or anemptycontacfield for adomain
thatenclose®.

Wheneer aninsertrequestarrivesat a nodethatis will-
ing and capableof storingthe addressthat nodewill thus
have to checkwhetherthereis a higherlevel nodealongthe
pathto therootwheretheaddresshouldactuallybe stored.
The generalapproachto insertingan addresss illustrated
in Figure2. Whenan addresss to beinsertedtherequest
is propagatedo the first directorynodewherethe objectis
known, whichis No in our example. Dueto conditionsC2
and C3, nodeshigherthanNo cannotstorethe addressand
thus neednot be considered.AssumingnodeNo doesnot
wantto storetheaddresgaswe explain below), anacknavl-
edgments propagatedbackto theinitiating leaf nodewhile

atthesametime apathof forwardingpointersis established.
In our example,bothN1 andleaf nodeN2 wantto storethe
addressin which caseni will bepermittedto do so.

Theremay be several factorsthat determinewhetheror
notanodewantsto storeaddressed-or example aswe dis-
cussin Section3.5, whenan objectis highly mobile,mean-
ing thatit is insertingand deletingaddresseat a relatively
highfrequeny, anodemaydecidethatit is moreefficientto
storeaddresseatahigherlevel nodethatcoversthesmallest
domainin which the objectis moving. This meanghat, al-
thoughaninsertoperationis alwaysinitiatedat a leaf node,
the contactaddressnay actuallybe storedat a higherlevel
node.Theremaybe otherreasonsaswell thatinfluencethe
willingnessof a nodeto storeaddressesHowever, we want
to decoupleour algorithmsfrom suchdecisionsand intro-
duce,for eachnode,a booleanoperationstore_here that re-
turnstrue if andonly if the nodewantsto storeaddresses.
If, on the path from a leaf nodeto the root, thereis no
nodewilling to storeaddressesye follow the policy that
addressearestoredin therootnode.We allow the outcome
of store_here to changen the courseof time.

Deletinga contactaddresss straightforvardandis done
asfollows. First, the addresss foundthrougha searchpath

THE COMPUTER JOURNAL,

Vol. 41, No.5, 1998

ALGORITHMIC DESIGN OF THE GLOBE WIDE-AREA LOCATION SERVICE

301

Nonempty contact record
follow path of forwarding

pointers
o PR
V]]
¥y
Alternative pathg]
- W] @ make arbitrary choice g ﬁ

! @ Contact record emptyl
| forward request to parent

o] il

o]

O | OO 0|l O

@ Contact address fourid
return along reverse path

Issue look-up request
at leaf node

FIGURE 3. ThedefaultapproacHor looking up acontactaddress.

up the tree, startingat the leaf nodewherethe addressvas

initially inserted.Oncethe contactaddressasbeenfound,

it is removed from its record. If a contactrecordbecomes
empty the parentnodeis informedthatit shoulddeleteits

forwarding pointer to that record, possibly leadingto the

(recursve) deletionof forwarding pointersat higher level

nodes.

Insertinganddeletingcontactaddresseis targetedtoward
exploiting locality. Especiallywhen contactaddressesl-
readyexist in the domainwherethe operationis beingper
formed.,it is seerthatthe operationsanberelatively cheap.

2.4. Look-up Algorithm

Looking up addressesanbe donecompletelyindependent
of the updateoperations. In this paper we consideronly
look-up operationgor one contactaddresspperationghat
look up severaladdressefor the sameobjectareeasilyde-
vised.

We adopta simplelook-up policy. A look-up operation
is alwaysinitiatedat aleaf node(in particulartheonein the
client’s domain),and forwardedalong the pathto the root
until anodeis reachedaving anonemptycontactrecord.If
thatrecordcontainsa contactaddressthentheaddresss re-
turnedto theclientprocessOtherwisejf therecordcontains
only forwardingpointers,a depth-firstsearchis initiated at
anarbitrarychild, until anaddresss finally found. This ap-
proachis shavnin Figure3.

Again, it is seenthatwe exploit locality: thelook-up op-
erationsearchesocal domainsfirst, andgraduallyexpands
to largerdomainsaslong asno contactaddressearefound.

3. ALGORITHMIC DESIGN

In this sectionwe concentraten the algorithmic designof
our locationservice. We first presentthe basicdatastruc-
tures, after which we discussin detail the insertionof ad-
dressesAddressdeletionis thenrelatively straightforward,

aswell asour look-upalgorithm. In the following, we con-
centrateonly onoperationdor a singleobject,asoperations
for differentobjectsarecompletelyindependent.

3.1. Preliminaries

ContactRecods. For eachdirectory node,we modelan
objects contactrecordasan (indexed) setof contactfields,
onefield for eachchild. Eachcontactfield storeseithera
forwardingpointer, or a setof contactaddressedyut never
both. A leaf nodehasexactly one contactfield. Adopting
an Ada-like notation,we can describethesedatatypesas
shawvn in Figure4. We assumehateachnodehasa unique
identifierof typeNodelD thatcanbeusedasanindex for sets
of contactfields. An opaquedatatype Address is usedto
modelcontactaddresses.

TentativelyAvailable Data. As we make clearin the suc-
ceeding sections, update operationsgradually propagate
throughthetree.While doingso,adecisions madewheeto
actuallystoreor remove data. For example,our updatepro-
tocol prescribeghat beforestoringan addressddr at some
nodeN, we first needpermissiorfrom N’s parent.If we wait
until that permissionis granted,addr cannotyet be looked
up, despitethe fact that we alreadyknow thatit is a valid
contactaddress.Therefore it makessenseo make the ad-
dresstentativelyavailable at the nodewherethe operation
is currentlybeingperformedwithout giving guaranteethat
it will eventuallyalsobe storedthere. To supporttentatve
availability of updatesye introduceviews andview series.
A view onavariablev is a statemenéexpressinga change
to the valueof v. Evaluatinga view leadsto the tentative
executionof the statementreturningthe valuethatv would
have hadif the statemenhadactuallybeenexecuted.Eval-
uatinga view onv leavesthe original valueof v unafected;
it is like a kind of shadev version. View evaluationtakes
placeonly by meansof view series A view seriesassoci-
atedwith avariablev is a FIFO-orderedist of views onv.

THE COMPUTER JOURNAL,

Vol. 41, No.5, 1998

302 M. VAN STEEN etal.

type ContactField is
record
addrSet: set of Address := @;
isPtr : Boolean := false;
end record;

type ContactRecord is set (NodelD) of ContactField;

—— Setof contactaddressegor subdomain

—— Trueiff contactfield is forwarding pointerto child

—— Indexedsetof contactfields

FIGURE 4. Datastructuredor storingcontactaddressesf a singleobjectata directorynode.

(1) x:Integer:=4,
(2) y:Integer,
(3) vx:view series of Integer := x;

(4) append view (self :=self+ 1) to vx; y :=vX;
(5) append view (self :=self%2) to vx; y 1= vx;

(6) X:=5;y:=vx;
(7) apply view to vx;

x=4;vx={()
x=4;y=5; vx=(x+1)
x=4;y=10; vx= (x+1,2-X)
x=5;y=12

X=6; y=12; vx=(2-x)

FIGURE 5. A simpleexampleof views andview series.

The valueof aview seriesis definedasthe resultof evalu-
atingits views in the orderthatthey have beenappendedo
theseries.

This mechanisnis bestillustratedby anexample.In Fig-
ure 5, we declareinteger variablesx andy, and an integer
view series/x thatis associatewith x. (Thenotation{a, b, c)
denotesa list of elementsa, b, ¢, with a beingthe headof
thelist.) In line 4, we appenda view that expressesnin-
crementof x by 1. The pseudo-ariableself pointsto the
variableassociateavith the view series,in this casex. We
thensubsequentlassignthe valueof vx to y. At thatpoint,
the valueof y is 5, whereas« is still 4. In line 5, another
view is appended@xpressinga multiplicationby 2, followed
by an updateof y, which now hasthe value 10. Note that
at this point, the valueof vx is 2- (x+ 1). Therefore|if we
changehevalueof x to 5, asin line 6, andupdatey again,y
will becomel2.

The view at the headof a view series,thatis, the least
recentlyappendeane,canbeapplied by evaluatingits ex-
pressionand changingthe value of the associatedariable
accordingly Theview is thenremovedfrom theview series.
For example,in line 7, we applythefirst view to x, thereby
changingthe valueof x to 6 by incrementingt by 1. At the
sametime, the view is removed, so that the view seriesvx
now reflectsonly thevalue2- x. A view canalsobedirectly
removed, thatis, without applyingit. Finally, the function
sizeof returnsthelengthof a givenview series.

A contactrecordfor anobjecto atnodeN hasanassoci-
atedview seriesentativeCR(O,N). Becausave consideronly
operationgor a specificpair of objectand node,we omit
theindicesthroughoutheremaindeiof ourdiscussionThis
view serieds aninstanceof thefollowing datatype:

type TentativeRecord is view series of ContactRecord ;

As we shall see,all updateoperationdfirst appenda view
to a contactrecords view seriesto reflectthe intendedup-
date. However, this resultis still tentatve. Later, whenthe
final decisioncanbe madeon the updatethe previously ap-
pendedview is eitherapplied,makingthe resultauthorita-
tive, or undoneby remaoving the view from the view series.

Detailsareexplainedin the next section.

Remotdnvocations. OuralgorithmsarebasedonanRPC
mechanisn{17], by which a nodeinvokesan operationat
its parentandsubsequentlplocksuntil areply is receved.
We assumehat the executionof an updateor look-up op-
erationfor a specificobjectrunsto completionor until it
blocks,without beingpre-emptedy competingoperations.
To ensurecorrectnessf our algorithms,we requirethatin-
vocationrequest@ndthesubsequemntesponsesrehandled
in the orderthatthey wereissued.How thesesemanticare
implementeds describedn [18].

3.2. Addresslnsertion

The insertionof anaddresgor a specificobjectis doneby
two operations:

e insert.addr is invoked at a nodewhenthat nodeis re-
guestedo storethegivenaddress

e insertchk is invoked at a parentnodeto obtainpermis-
sionto storetheaddresattheinvoking node,or oneof
its children

Notethatwheneer eitheroperationis invoked at a specific
directorynode, it is known at that point that the given ad-
dresscanbe usedto contactthe object. In otherwords,the
addresan,in principle,bereturnedastheresultof alook-
up operation. The only thing thatis not yet known, is ex-
actly atwhich nodetheaddreswill bestored.For example,
whenreturningto Figure 2, we seethatassoonasthein-
sertrequests initiatedatleaf noden2, we canalreadymale
the addressvailableto look-up operationsrom dom(N2).
Likewise,whentherequesis propagatedo N1, theaddress
canbe madeavailableto look-uprequestsrom N1. In both
caseswedo notyetknow whee theaddressvill actuallybe
stored.Ourinsertoperationstherefore canstartby making
the addresdentatvely availableat the presenhodewithout
yet having permissiorfrom the parent.Making the address
tentatvely availablemeanghat eitherthe addressor a for-
wardingpointerto thecalling nodeis tentatively stored.

THE COMPUTER JOURNAL,

Vol. 41, No.5, 1998

ALGORITHMIC DESIGN OF THE GLOBE WIDE-AREA LOCATION SERVICE 303

(1) procedure insert_addr(caller : NodelD; addr : Address) return (OK,DELETE) is

(2) viewedCR : TentativeRecord := tentativeCR; —— Make a copyof thecurrentview series
(3) final_action: (OK,DELETE) := OK;
(4) —— Startby makingtheinsertedaddresstentativelyavailable by appendingt to thecontact
(5) —— recod’sassociatediiew series.
(6) append view (self(caller).addrSet := self(caller).addrSet+ {addr}) to tentativeCR;
(7) —— Testwhetherthe parentnodeis to beasledfor permissiorto store theaddress.Thisis
(8) —— necessaryhen(1) thecontactrecod appeaedto beemptyor (2) whenno authoritative
(99 —— decisioncouldyetbemade

(10) if parent# NIL and (empty(viewedCR) or sizeof(viewedCR) > 0) then

(11) if empty(viewedCR) and not store_here(tentativeCR) then

(12) —— Thecontactrecod appeaedto be empty but thenodeis not prepaedto store theaddress.

(13) —— Forward therequesto the parentandensue theappendediiew is remaved.

(14) parent.insert_addr(thisNode, addr);

(15) final_action := DELETE;

(16) else

7) —— Thenodewantsto store theaddress,or mayhaveto becausehere appearto be other

(18) —— addressestoredalso. Ched with the parentwhetherstoringis permitted.

(19) final_action := parent.insert_chk(thisNode, addr);

(20) end if

(21) endif

(22) if final_action = OK then apply view to tentativeCR;

(23) else remove view from tentativeCR,;

(24) endif

(25) return OK;
(26) end insert_addr

FIGURE 6. Insertionof contactaddresses.

Opemation insertaddr. We start with the operation
insert_addr, which is specifiedin Figure6. We assumehere
is a function thisNode that returnsthe nodeidentifier of the
nodewherethe function is called. As mentionedbefore,
the variabletentativeCR denotesthe view seriesassociated
with the objects contactrecordat the currentnode. The
operationstartswith saving the stateof the currentcontact
recordin line 2 afterwhich it makestheaddressvailableto
look-up operationsby tentatvely addingit to tentativeCR in
line 6.

As anext step,thenodehasto checkwhetherandhow it
shouldcontacits parent.Therearethreeoccasion®@nwhich
the parentneeddo be contacted:

e If thecontactrecordwasemptywhentheoperationwas
invoked,thenodemaychooseo storetheaddressilf it
is not preparedo storethe addressit shouldpassthe
requesto its parent. This is expressedn lines11-15
It alsomeanghatthepreviously appendediew should
beremoredwhenthecallto theparentreturngline 15).
Notethatthe addresss simply passedo the parentby
callinginvoke_addr againin line 14.

¢ If thecontactrecordwasemptyandthe nodewantsto
storethe addressit will have to askits parentfor per
missionby invokinginsert_chk in line 19.

e Permissions alsoneededvhenthereare pendingre-
guestgo the parentthatis, whena numberof tentatve
resultsfrom previousoperationstill exist. In thatcase,
thenodecannotake ary definitive decisiononwhether
or not to storethe address.This situationis alsocov-
eredby theinvocationof insert_chk in line 19.

Dependingon whetherthe parenthad beencalled, or what
theresponsevas,theoperatioreventuallycontinueswith ei-
therturningthe previously appendediew into authoritatve
data(line 22), or remaving it altogethe(line 23).

Opemation insert.chk. The operationinsert.chk is invoked
at the parentnode when the invoking node or one of its
(grand)childrerwantsto storethe given address.The par
entis asledfor permissiorto storethe addresst oneof its
(grand)children.

If the parentagreesijt will, in turn, have to obtainper
missionfrom the next higherlevel node,andsoonupto the
root of thetree. This permissiorresultsfrom our policy that
the highestlevel nodethatwantsto storeaddressesnaydo
so, provided global consisteng is not violated. Permission
is not neededf the parenthadalreadystoreda forwarding
pointerto the calling child. Whentheinvokednodepermits
its (grand)childto storethe addressit tentatvely installsa
forwardingpointerto the calling child, therebymakingthe
addressvailablefor look-up operationsn its domain. The
pointer can be only tentatvely installedas long as higher
level nodeshave not yet given their permissionfor storing
theaddressatsomelower level.

Alternatively, the parentmay decidethatit wantsto store
the addresstself, and that it can do so without violating
global consisteng. In that case,the invoking child, which
will havemadetheaddressentatvely available,is instructed
to removetheaddres®r its forwardingpointerfrom its view
series.Removal is recursvely propagatediovnwardsto the
lowestlevel nodewheretheaddresss tentatvely stored.

THE COMPUTER JOURNAL,

Vol. 41, No.5, 1998

304 M. VAN STEEN etal.

(1) procedure insert_chk(caller : NodelD; addr : Address) return (OK,DELETE) is

(2) viewedCR : TentativeRecord := tentativeCR;
(3) subRecord : ContactField := viewedCR(caller);
(4) parent_response,my_response : (OK,DELETE);

(5) —— If thisnodealreadystoresaddressesthe nev addressshouldbe stored here aswell. This
(6) ——isalsotruewhenthecontactrecod is emptybut this nodewantsto start storingaddresses.
(77 —— Inthatcaseit haspriority overthecalling child. In all othercasesit will, in principle,

(8) —— allowits child to store theaddressandensuesit hasa forwarding pointerto thechild.

(9) if subRecord.addrSet# () or (not subRecord.isPtr and store_here(tentativeCR))
(10) then append view (self(caller).addrSet := self(caller).addrSet+ {addr}) to tentativeCR;

(11) my_response := DELETE;

(12) else append view (self(caller).isPtr := true) to tentativeCR;

(13) my_response := OK;

(14) endif

(15) —— Nowtestwhetherthe parentnodeis to beasledfor permissiorto store theaddress.Thisis
(16) —— necessaryvhen(1) contactrecod appeaedto be emptyor (2) whenno authoritative
(17) —— decisioncouldyetbemade

(18) if parent # NIL and (empty(viewedCR) or sizeof(viewedCR) > 0)

(19) then parent_response := parent.insert_chk(thisNode, addr);

(20) else parent_response := OK;

(21) endif

(22) if parent_response = OK then apply view to tentativeCR;

(23) return my_response;

(24) else remove view from tentativeCR,;

(25) return DELETE;

(26) endif

(27) end insert_chk

FIGURE 7. Checkinganinsertoperatiorwith a parent.

The operation insert.chk has a similar structure to
insert.addr (seeFigure 7). It decideswhetherto tentatvely
addthegivenaddresdo its contactrecord,or tentatvely in-
stall a forwarding pointerto the calling child (lines9-14).
An addresss alwaysaddedif therearealreadycontactad-
dressedn the correspondingontactfield. Whenthecontact
field was empty thatis, it alsodid not containa forward-
ing pointerto the calling child, thenodemay decideto store
the addressusingits store_here operation.Whenan address
is (tentatvely) added,the calling child mustclearits con-
tactrecord. Thisis accomplishedy replyingwith DELETE
(lines10-11.

Whenthe invoked nodeis not goingto storethe address,
it givesthe calling child permissionto do so instead. The
invoked nodewill not storethe addresdecausét eitheris
notpreparedo do so,or becausé alreadyhasaforwarding
pointerto the calling child. (Note thatwheneer a contact
field alreadyhasa forwardingpointet, it cannever decideto
storeanaddressin otherwords,we discardthe outcomeof
store_here.) In ary case,it will have to ensurethat the ad-
dressbecomegtentatvely) available,by having a forward-
ing pointerto the caller Thelatteris ensuredy simply in-
stallingthe pointer, asis donein lines12-13

Thereare two occasionsvhen the invoked node hasto
pasgherequesto its parent:

¢ Whentherearestill pendingrequestgo the parentthat
have not beenansweredyet, the node cannottake an
authoritatve decisiononwhetheror notto make thead-

dressavailable. In thatcasethe parenthasto be asled
for permissioraswell.

e When the node had an empty contactrecord when
theinsertrequestrrived, this invocationconcernsur-
rently theonly addresgrom thenodes domain.In that
case,the parentis also unavare of the addressand
shouldbeasledfor permissionregardlessvhetherthe
nodeis preparedo storetheaddres®r not.

Thesetwo casesare specifiedin lines18-21 Finally, de-
pendingon the reactionof the parent,the previously ap-
pendedview is either applied or removed as showvn in
lines22-25

3.3. AddressDeletion

Deletinganaddresss doneby a singleoperatiordelete_addr.
The operatiormustbe invoked at the sameleaf nodewhere
theassociatedddressnsertionwasinitiated. (Notethatwe
assumehattheleafdomainin whichacontaciaddress$iesis
encodedn the addressWe canthuseasilyidentify the leaf
nodewherethedeletionshouldbeinitiated.) Whena contact
recordat nodeN becomesmptyafter deletingan address,
theparentnodeshoulddeleteits forwardingpointertoN. Re-
moving apointerataparenmnodeis handledy delete_addr as
well, for which caseit hasan additionalbooleanparameter
delPtr. The operatioris specifiedn Figure8.

Completely analogousto making newly inserted ad-
dressedentatively available, we can alsoimmediatelyan-
nouncethat an addressor forwarding pointer will be re-

THE COMPUTER JOURNAL,

Vol. 41, No.5, 1998

ALGORITHMIC DESIGN OF THE GLOBE WIDE-AREA LOCATION SERVICE 305

(1) procedure delete_addr(caller : NodelD; addr : Address; delPtr : Boolean) return (OK,NOTFOUND) is

(2) viewedCR : TentativeRecord := tentativeCR;

(3) addrFound : Boolean := (addr € viewedCR(caller).addrSet); —— Trueiff theaddressis here
(4) ptrFound : Boolean := (delPtr and viewedCR(caller).isPtr); —— Trueiff theris a pointerto thecaller
(5) —— If eithertheaddressis (tentatively)storedat thisnode or a (tentative)pointerto the calling
(6) —— nodeexists,theopemtionwill haveto deletetheaddressor pointer respectivelyAgain,the
(79 —— resultsof thedeleteopemation canbe madeavailableimmediately
(8) if addrFound or ptrFound then
9) if addrFound
(10) then append view (self(caller).addrSet := self(caller).addrSet— {addr}) to tentativeCR;
(11) else append view (self(caller).isPtr := false) to tentativeCR;
(12) end if
(13) —— Whenthe contactrecod is nowemptywe knowthat the parenthasa pointerinstalledto this node
(14) —— In thatcase requesthe parentto deleteit.
(15) if parent # NIL and empty(tentativeCR) then
(16) parent.delete_addr(thisNode, addr, true);
17) elsif parent # NIL and sizeof(viewedCR) > O then
(18) parent.delete_addr(thisNode, addr, false);
(19) end if
(20) —— Unconditionallyapplythe previouslyappendediiew, i.e., remweeithertheaddressor the
(21) —— forwarding pointer
(22) apply view to tentativeCR,;

(23) return OK;

(24) elsif parent # NIL and (empty(tentativeCR) or sizeof(tentativeCR) > 0) then

(25) return parent.delete_addr(thisNode, addr, false);

(26) else return NOTFOUND;
27) endif
(28) end delete_addr

FIGURE 8. Deletionof contactaddresses.

moved. In otherwords,assoonasa nodeN is requestedo
deleteanaddres®r forwardingpointer, it cando sowithout
waiting for its parentto have completedheoperation Dele-
tion takes placeby appendinga view by which the address
or forwarding pointeris removed from the contactrecord.
In this way, we even achieve that a previously insertedad-
dressfor which the insertoperationhasnot yet fully com-
pleted,thatis, the addresss yet only tentatvely available
atanode,is immediatelymadeunavailableagainto look-up
operationsat thatnode. Sucheffectsareimportantin wide-
areasystemsAn alternatve, by which a deletioncancome
into effectonly afterthe associatedsertionhascompleted,
is generallyunacceptabldueto unpredictabl@elaysfor the
completionof anoperation.

Theoperationdelete_addr startswith undoingthe effectsof
the previousinsertoperation(lines3—-12). It checkswvhether
it storesthe addresgline 3) or forwarding pointer (line 4),
afterwhich a view is appendedeflectingthe respectie re-
moval (lines10-1J.

Thereare two occasionsn which the parentshould be
calledaswell:

e If thecontactrecordwasalreadyempty or whenit be-
cameemptyonaccounbf thecurrentdelete theparent
nodeshouldremove its forwardingpointerto the cur-
rentnode. This situationis specifiedn lines15-17for
the casethat recordbecameempty andin line 25 for
thecasethatit alreadywasempty

e If therewerependingoperationgo the parentthenode

doesnotyet know whatthefinal situationwill bewhen
all previousrequestdave beenprocessed.Therefore,
theparentmustbeinformedaboutthe deletionaswell.
Thissituationis expressedh line 18andalsoin line 25.

3.4. AddressLook-ups

An importantdesignissuefor ourlocationserviceis thatwe
wish to make updateresultsavailable as soonas possible.
Thisis importantin awide-areasystemwherepropagations
of updatesnaytake relatively long dueto network andnode
failures.Therefore|ook-upsoperateontentatvely available
data,thatis, the valueof view seriesratherthanon the au-
thoritative dataof contactrecords.

This policy worksfinein atreethatis globally consistent,
andevenin atreewheresomeaddresselsavebeermadeten-
tatively availableonly. Problemsarisewhensomeaddresses
arebeingdeletedconcurrentlywith look-up operationsfor
in that casewe may decideto follow a pathof forwarding
pointersthatis in the procesf beingdeleted.In thatcase,
weadoptasimplesolution.If apathhasbeenfollowedwith-
outsuccessye simply continuethelook-upoperationn an-
otherpath,if possible.If all suchattemptdfail, thelook-up
operationproceedswith the next higherlevel nodeon the
pathto theroot.

Our operationlookup is givenin Figure9. It startswith
checkingwhetherthe currentnodehasa nonemptycontact
record (line 4). If so, it tries to selectan arbitrary con-

THE COMPUTER JOURNAL,

Vol. 41, No.5, 1998

306 M. VAN STEEN etal.

(1) procedure lookup(caller : NodelD) return Address is

(2) addr:Address:= NIL;

(3) —— Firstchedk whetherthis nodehasanyinformationon the object.
(4) if not empty(tentativeCR) then
(5) —— In principle, weshouldbeableto find somethindiere. Ched whetherany addressis
(6) —— (tentatively)storedin this contactrecod. Otherwisefollow pathsin thesubtees.
@) choose any child with tentativeCR(child).addrSet # @;
8) if child # NIL then —— Anaddresshasbeenfound. Anystoredaddresswill do.
9 choose any addr with addr € tentativeCR(child).addrSet;
(10) return addr;
(11) else —— Ched anydownwad path. If thepathis beingdeleted selecta next one
(12) foreach child with (child # caller) and (tentativeCR(child).isPtr = true) loop
(13) addr := child.lookup(thisNode);
(14) if addr # NIL then return addr end if
(15) end loop;
(16) end if
17) endif

(18) if addr = NIL and caller # parent

(19) then return parent.lookup(thisNode)
(20) else return addr

(21) endif

(22) end lookup

FIGURE 9. Looking up asinglecontactaddress.

tact field containingaddresses.This is expressedby the
choose any statemenin line 7, which, in this case takesan
index asa freevariableandtriesto matchthatin theexpres-
sionfollowing thewith keyword.

If theselectionsucceededhe operationsubsequentige-
lectsan arbitraryaddresdrom that contactfield (againex-
pressedsachoose any statement)andreturnsthe address
astheresultto the calling node(lines8-10. On the other
hand,if therewereno addressef the contactrecord,the
look-up operationcontinuesby following an arbitrary path
of forwarding pointersin one of the subtreesrootedat a
child. Becausesachof thesepathsmay be in the process
of beingdeleted,all contactfields containinga forwarding
pointer are checled (line 12). As soonas an addresshas
beenfoundin oneof the subtreesthe operatiorstopsby re-
turningthataddresgline 14).

If noaddresgouldbefound,we continuethelook-upop-
erationat a higherlevel node(line 19). This makessense
only whenthe operationwas initially called by one of the
children,or by aclient processthatis, caller # parent. Other
wise,whenno addressasfound,we have reachedheroot
of the tree,andNiL, which is the presentvalue of addr can
be returned(line 20). If we did find an addressye simply
returnthatvalue.

3.5. Discussion

If we ignorethe useof view series,our algorithmsarerel-
atively straightforvard and strongly resemblestandardre-
cursive)implementationgor searchtreealgorithms.Thein-
tricaciesmainly comefrom thefactthatwe wishto malkere-
sultsavailableassoonaspossible.This explainswhy every
operationstartswith appendingts anticipatedresultto the
view seriesassociatedvith the currentcontactrecord. Ef-

fectively, view seriesallow usto propagateipdateresultsin
increasinglyexpandingdomainsbefole the updatehasbeen
fully completed.For a wide-areasystem the availability of
suchtentatve datais essentialasit may take considerable
time beforeresultshecomeauthoritatve.

To illustratethe benefitof our approachassumehe root
nodeis temporarilyunreachablelue to a network or node
failure. In thatcase purlocationserviceis temporarilypar
titionedinto a numberof subtreegonefor eachchild of the
root node).However, eachsubtreecontinuedo operatenor-
mally, althoughoperationsrequestedo be invoked at the
root nodewill experiencea significantdelay By addition-
ally maintainingthe orderof invocationsthroughview se-
ries,we, atworst, experienceperformancdailures.Clearly,
the look-up operationneedsto be improved, asit is unac-
ceptablahata clientmustwait until thetreerecoversfrom a
failure. Long or indefinitive waiting caneasilybe dealtwith
by usingtime-outmechanisms.

Correctness. To assesshe correctnes®f our algorithms,
we initially expressedur updateandlook-up operationsn
the protocol verification languagePromela[19], and con-
ducteda numberof statespacesearchesAfter aninitial de-
signphasewe constructedormalproofsof correctnessThe
lattercanbefoundin anextendedversionof this paper{20].

Placemenbf ContactAddresses. Thereare several ways
in which we canimprove the working of the location ser
vice describedso far. Oneimportantoptimizationconsists
of addingcaches.

By default, a contactaddresss storedat the leaf node
whereit is inserted. However, this may not always be the
bestchoice.Considethesituationthatanobjectis regularly
moving betweenwo leaf domainsL1 andL2. Let D denote

THE COMPUTER JOURNAL,

Vol. 41, No.5, 1998

ALGORITHMIC DESIGN OF THE GLOBE WIDE-AREA LOCATION SERVICE 307

Cache pointers l

Place where addresses
are stored is stable

i

(111 [1]

Search path

o 0| 0

AN L

Object may be moving between different leaf domains

FIGURE 10. Cachingpointersto a stablelocation,evenasthe objectmoves.

thelowestlevel domainthatcoversbothleafdomains Each
time theobjectmovesmovesfrom L1 to L2, thelocationser
vice createsaanddeletesa pathof forwardingpointersfrom
the directory nodedir(D) of D to the leaf nodesdir(L1) and
dir(L2), respectrely. Whenthe objectis moving regularly, it
makessenseo storethe contactaddressn the objects con-
tactrecordat dir(D). For example,by maintainingonly the
pathfrom the root to dir(D), we cansase on costsfor path
maintenance.

In addition, there is anotheradwantageof storing ad-
dressesat dir(D). We know that, althoughthe set of ad-
dressesstoredat dir(D) may change the place wherethese
addressesre storedis now stable. This permitsusto ef-
fectively shortensearchpathsby cachingpointers to con-
tactrecords. Specifically we cachea pointerto the direc-
tory nodecontaininga contactaddressat eachnodeof the
searctpathwhenreturningtheansweto theleafnodewhere
alook-uprequesbriginated,asshavn in Figure10.

We now have thesituationthatthe objectwhichis moving
betweerleafdomainscanbeeasilylocatedby lookingupits
presentaddressn the nodedir(D) representinghe smallest
domainin whichall its movementdake place.By cachinga
pointerto dir(D), the objectmay be tracked by just two suc-
cessie look-up operationgassuminga cachehit at the leaf
node):thefirst oneat theleaf nodeservicingthe requesting
processandthe secondoneat dir(D). Thisis a considerable
improvementover existing approaches.

We are currently investigatinghow stablelocationsfor
storingaddressesanbeidentified. Initially, we planto use
atimer-basedapproach.lf a nodedetectshatpointersin a
relatively long-living contactrecordoften changebetween
therecordsfields,it canconcludethatcontactaddressems-
steadof pointersshouldbe storedin thatrecord. Lik ewise,
if an addresshasbeenstoredfor a relatively long time at
someintermediatenode,it is justifiedto storethe addressat
alowerlevel node.

Scalability Oursearchreedescribeagofarobviouslydoes
notyetscale.In particular higherlevel directorynodesnot

only have to handlea relatively large numberof requests,
they also have high storagedemands. Our solution is to
partitiona directorynodeinto oneor moredir ectory subn-
odes suchthat eachsubnodeis responsibldor a subsetof
the recordsoriginally storedat the directorynode. We can
easilyusehashingtechnique®n the objecthandlego iden-
tify subnodesit parentsandchildren.

When partitioning directory nodes, simple calculations
shaw thatstoragerequirementper subnoderangebetween
10and100gigabyteswhich canbeeasilyhandledwith cur
renttechnology Whetherwe canactually meetprocessing
demandpersubnodes someavhatspeculatrein lack of ref-
erencedata. However, it is morelikely thatperformancas
limited by the capacitiesof the underlyingcommunication
network.

4. RELATED WORK

We have madea strict separatiorbetweera namingservice
whichis usedto organizeobjectsin away thatis meaningful
to their usersandalocationservicewhichis strictly usedto
contactan objectgivena uniqueidentifier Namingservices
canbeusedfor finding informationbasedn themeaningof
aname asis oftenusedfor Internetresourcaliscorery ser
vices. In our schemejnformationretrieval would startwith
finding relevantnamesretrieving the associatedbjecthan-
dles,andhaving the locationservicereturncontactaddress
for eachobjectthatwasfoundto be potentiallyinteresting.

Locationservicesareparticularlyimportantwhensources
of information,thatis objects canmigratebetweerdifferent
physicallocations. They arebecomingincreasinglyimpor-
tant as mobile telecommunicatiomnd computingfacilities
becomemorewidespreadTo relateour work to thatof oth-
ers,we thereforeconcentrat@rimarily on aspect®f mobil-
ity, for which we make a distinctionbetweenmobile hosts
andmobileobjects.

Mobile Computing
Sofar, muchresearcthasconcentratedn mobilecomputing
whichis generallybasedon amodelin which useramigrate

THE COMPUTER JOURNAL,

Vol. 41, No.5, 1998

308 M. VAN STEEN etal.

betweendifferent network locations. Usually, mobility in
thesecasess tied to mobilehardwaresuchashand-heldele-
phonespersonatligital assistantsandnotebookcomputers.
An implicit assumptiomunderlyingmobilecomputings that
themobile objectis alwaysat preciselyonelocation. Repli-
cationis lessanissue exceptwhendealingwith fault toler-
antissuesas, for example,in the caseof disconnectedile
operationg21].

Locationmanagemerih mobilecomputinggenerallyfol-
lowsahome-basedpproachThismeanghatthesystenmas-
sumeghatthereis alwaysahomeocationthatkeepdrackof
the object’s currentlocation. Oncethe presentiocationhas
beerfoundthroughthehomelocation,messagesanberedi-
rected. This is, for example,the way that mobile IP works
[22]. PCNsoftenwork with atwo-level searchreein which
the secondevel consistsof Visitor Location Registersthat
containaddressesf visiting hostsin the currentregion. A
distinctive featureof ourapproacttomparedo PCNs,is that
we have severallevels allowing usto exploit locality more
effectively by inspectingsucceedinglyexpandedregions at
linearly incrementingcosts.

The main drawbackof a home-basedpproachis that it
doesnot scalewell to worldwide systems.First, having to
contacta possibledistanthome location while the object
may actually be very nearto the calling processs not ef-
ficient: all locality aspectsare ngglected. Secondthe ap-
proachcannotadequatehhandlelong living objects,asthe
homelocationmustremainresponsibléor all its objectsfor-
ever. Thisis alsotrue for the situationsin which an object
has permanentlymoved to anotherlocation, even perhaps
decadesago. As a consequenceassigninga lifetime tele-
phonenumberis hardto realizeefficiently with home-based
approaches.

As an alternatve, thereare several proposaldasedon a
hierarchicallyorganizeddistributeddatabaseA straightfor
ward solution without any cachingfacilities andin which
addressesre always storedin leaf nodesis describedin
[23]. AwerbuchandPelay [24] proposeasolutionin whicha
moving objectleavesaforwardingpointerwhichis removed
only aftera considerablalistancehasbeentraveled. In this
way, a trade-of betweencostly updateoperationsandscal-
ablelook-upsis achieved.

Jain[25] usesan approachto cachingthatis somevhat
similar to ours. He also builds a hierarchicaldatabasen
whichtheleafnodescontaincontactaddressegndinterme-
diatenodegointerssimilarto ours.Onceanobjecthasbeen
located,a pointerto a nodecovering the domainin which
theobjectis moving canbe cachedat nodeson thereversed
searchpath. Our approachis differentin thatthe addresof
frequentlymoving objectsis storedata higherlevelnodein-
steadof justapointer Consequentlyourlook-upandupdate
operationsappeato be cheaper

Alternatively, updateand look-up stratgies can be dy-
namicallyadaptedo a users migrationpatternasproposed
by Krishnaetal. [26]. In contrastwe proposeto adaptthe
treeon a perobjectbasisby allowing addresse® be stored
at higherlevels when necessary Our updateand location
policiesremainthesame.To avoid globallook-upsthatmay

involve mary hops,Janninketal. [27] proposeo selectively
replicateuserprofiles. This comesvery closeto allowing
anobjectto have severalcontactaddressestoredby the lo-
cationservice. In our approachhowever, we let the object
decidewhetheror notit wantsto provide severalcontactad-
dresses.

Using a hierarchicallydistributed databasdeadsto the
guestiorwhenandhow updatesarepropagatedhroughthe
tree. In mostcasesan updatebecomesvisible whenit has
beencompleted. For wide-areasystems this approachis
not acceptabldecauseipdatepropagations slow. Instead,
theresultsof updateoperationshouldbe madeavailableas
soonaspossible.Similar, in wide-areasystemswe cannot
acceptthat an operationis delayeduntil a previous oneis
completed.To solve theseproblemswe introducedview se-
riesthatareusedto implementanotionof tentatve data.Our
mechanisnmresemblesjueuedRPCsas usedin the Rover
toolkit [28], exceptthat we maintainthe orderingof invo-
cations.In this senseyiew seriesarecomparabléo sender
basednessag#ggingusedfor recoveryfrom nodeandnet-
work failuresasexplainedin [29].

Mobile ObjectSystems

An implicit assumptiorthat location managemenservices
for mobile computingare often making, is that the object
movesgraduallythroughthe network. For thisreasonmary
algorithmsare seento work well becauseipdatesneednot
be propagatedhroughthe entire distributed database.In
contrastto systemsfor mobile computing, mobile-object
system®ftendealwith mobilecomputationsin thesecases,
onecanimagineusergo befairly immobile,andthatinstead
objectsmove betweenlocationsfor reasonf load balanc-
ing, dynamicreplication,etc. An importantdifferencewith
mobile computing,is that objectstravel at a speeddictated
by the network, and may pop-upvirtually anywhere. This
requiresa highly flexible approacho locatingobjects.

Mobile objectshave mainly beenconsideredn the con-
text of local distributedsystemsin Emeraldmobileobjects
aretrackedthroughchainsof forwardingpointers,combined
with techniquesfor shorteninglong chains,and a broad-
castfacility whenall elsefails [30]. Suchanapproactdoes
not scaleto worldwide networks. An alternatve approach
to handleworldwide distributedsystemss the LocationIn-
dependentnvocation(LIl) [31]. By combiningchainsof
forwarding referencesstablestoragesand a global nam-
ing service,an efficient mechanisnis derived for tracking
objects. Most of the appliedtechniquesare orthogonalto
ourapproachandcaneasilybeaddedo improveefficiency.
However, the global namingservice,which is essentiato
LII, assumeshattheupdate-to-lookupatiois small. We do
notmake suchanassumption.

A seeminglypromisingapproachhathasbeenadwocated
for large-scalesystemsare SSPchains[32]. The principle
hasbeenappliedto a systemcalled Shadevs [33]. SSP
chainsallow objectreferencego be transparentiyhanded
over betweenprocessesln essencea chainof forwarding
pointersis constructedrom anobjectreferenceo theobject.

THE COMPUTER JOURNAL,

Vol. 41, No.5, 1998

ALGORITHMIC DESIGN OF THE GLOBE WIDE-AREA LOCATION SERVICE 309

Consequentlythereis no needfor ary locationservicebe-
causenobjectreferenceanalwaysberesohedthroughthe
chainof pointers.A drawvbackis thatthis approachmeglects
locality, makingit hardto applyto worldwide systems.

5. CONCLUSIONS AND FUTURE WORK

The Globelocationserviceprovidesa novel approactto lo-
cating objectsin mobile computingand computation. Al-
thoughthe servicehasyet to be extensvely testedin prac-
tice, simulationexperimentsand local implementationsn-
dicatethat the servicecanscaleefficiently worldwide. An
importantcomponentof the serviceis formed by pointer
caches.Furtherresearchand experimentatioris neededo
seewhetherandhow our cachingpolicy canindeedbe ef-
fectively andefficiently deployed.

We are currentlydevelopinga prototypeimplementation
of directorynodesthat canbe easilytestedon the Internet.
To cometo thatpoint, our researchs currentlyconcentrat-
ing on minimal supportfor fault toleranceandsecurity We
initially concentrateon animplementatiorthat cansupport
mobile andreplicatedWeb pages.andwhich canbe seam-
lesslyintegratedwith existing Web browsers.

REFERENCES

[1] G.FormanandJ.Zahorjan.“The Challenge®f Mobile Com-
puting” Computey27(4):38—47Apr. 1994.

[2] B. JacobandT. Mudge. “Supportfor Nomadismin a Global
Ervironment’ In Proc. Workshopon ObjectReplicationand
Mobile Computing SanJose CA, Oct.1996.ACM.

[3] M. Weiser “Some ComputerSciencelssuesin Ubiquitous
Computing. CommunACM, 36(7):74-83,July 1993.

[4] M. Baentschl.. Baum,G. Molter, S.RothkugelandP. Sturm.
“EnhancingheWeb’s Infrastructure FromCachingto Repli-
cation” |EEE InternetComput, 1(2):18—-27Mar. 1997.

[5] J. Gwertzmanand M. Seltzer “The Casefor Geographical
Push-Caching. In Proc. Fifth HOTOS Orcaslsland, WA,
May 1996.IEEE.

[6] C.G.Harrison,D. M. ChessandA. Kershenbaum:Mobile
Agents:Are They aGoodldea! TechnicalReport,IBM T.J.
WatsonResearclCenter Yorktovn Heights,NY, Mar. 1995.

[7] A. FugettaG. P. Picco,andG. Vigna. “UnderstandingCode
Mobility.” IEEE Trans. Softw Eng, 24(5):342-361May
1998.

[8] A. Wollrath, J. Waldo, and R. Riggs. “Java-CentricDis-
tributedComputing. IEEE Micro, 17(2):44-53May 1997.

[9] P. Mockapetris.“Domain Names- ConceptsaandFacilities”
RFC1034,Nov. 1987.

[10] B. Lampson. “Designinga Global NameServic€. In Proc.
Fourth ACM Symposiunon Principles Of Distributed Com-
puting ACM, 1985.

[11] S.Radicati. X.500Directory Services:Technolaggy and De-
ployment InternationalThomsonComputerPress,London,
1994.

[12] D. Cheritonand T. Mann. “Decentralizinga Global Nam-
ing Servicefor Improved Performancend Fault Tolerancé.
ACM Trans.Comp.Syst, 7(2):147-183May 1989.

[13] M. vanSteenP. Homhurg, andA. TanenbaumThe Archi-
tecturalDesignof Globe: A Wide-AreaDistributedSystent.
IEEE Concurency Acceptedor publication.

[14] M. van Steen,F. Hauck, P. Homturg, and A. Tanenbaum.
“Locating Objectsin Wide-AreaSystems. IEEE Commun.
Mag., 36(1):104-109Jan.1998.

[15] W. RosenberryD. Kenng, and G. Fisher Undeistanding
DCE. O'Reilly & AssociatesSebastopolCA., 1992.

[16] R.WieringaandW. deJonge.“Object Identifiers,Keys, and
Surrogates ObjectldentifiersRevisited” Theoryand Prac-
tice of ObjectSystemgl(2):101-1141995.

[17] A. Birrell andB. Nelson. “ImplementingRemoteProcedure
Calls? ACM Trans.Comp.Syst, 2(1):39-59Feh 1984.

[18] G. Ballintijn, M. Sandbeg, andM. van Steen. “Scheduling
ConcurrentRPCsin the Globe Location Service. In Proc.
Third ASCI Annual Conf, pp. 28-33, Heijen, The Nether
lands,Junel997.

[19] G.Holzmann.DesignandValidationof ComputeiProtocols
PrenticeHall, Englevood Cliffs, N.J.,1991.

[20] M. van Steenand F. Hauck. “Algorithmic Designof the
Globe Wide-Arealocation Service. TechnicalReportIR-
440, Vrije Universiteit, Departmentof Mathematicsand
ComputerScienceDec.1997.

[21] J. Kistler. DisconnectedOpemtionsin a Distributed File
Systemvolume 1002 of Lect. NotesComput.Sc. Springer
Verlag,Berlin, 1996.

[22] C.Perkins.“IP Mobility Support. RFC2002,0ct.1996.

[23] J. Wang. “A Fully Distributed Location Registration Strat-
egy for UniversalPersonalCommunicatiorSystems. |IEEE
J. SelecteddreasCommun.11(6):850—860Aug. 1993.

[24] B. Awerluch and D. Pelg. “Online Tracking of Mobile
Users. J. ACM, 42(5):1021-10585ept.1995.

[25] R.Jain.“ReducingTraffic Impactsof PCSusingHierarchical
User Location Database’. In Proc. Int'l Conf on Comm.
IEEE, 1996.

[26] P. Krishna,N. Vaidya,andD. Pradhan.“Location Manage-
mentin Distributed Mobile Environments. In Proc. Third
Int'l Cont on Parallel and Distributed Information Systems
pp.81-88,Austin, TX, Sept.1994.IEEE.

[27] J.Jannink,D. Lam, N. Shivakumar J. Widom, andD. Cox.
“EfficientandFlexible LocationManagementechniquegor
WirelessCommunicationSystems. In Proc. Secondint’l
Conf on Mobile Computingand Networking White Plains,
NY, Nov. 1996.ACM/IEEE.

[28] A. D. JosephJ. A. Tauber and M. F. Kaashoek. “Mobile
Computingwith the Rover Toolkit” IEEE Trans.Comput,
46(3):337-352Mar. 1997.

[29] D. Johnsonand W. Zwaenepoel. “SenderBasedMessage
Logging” In Proc. 17th Annual International Symposium
on Fault-Tolerant Computing pp. 14—19,Pittskurgh, PA, July
1987.IEEE.

[30] E.Jul,H. Levy, N. HutchinsonandA. Black. “Fine-Grained
Mobility in the EmeraldSystent. ACM Trans.Comp.Syst,
6(1):109-133Feh 1988.

[31] A. BlackandY. Artsy. “ImplementingLocationindependent
Invocation’. IEEE Trans.Par. Distr. Syst, 1(1):107-119Jan.
1990.

[32] M. Shapiro,P. Dickman,andD. Plainfos&. “SSP Chains:
Rotust, Distributed ReferencesSupportingAcyclic Garbage
Collection? TechnicalReport1799,INRIA, Rocquencourt,
FranceNov. 1992.

[33] S. Caughg andS. Shrivastaa. “Architectural Supportfor
Mobile Objectsin Large-ScaleDistributed Systems. In L.-
F. Cabreraand M. Theimer (eds.),Proc. Fourth Int’l Work-
shopon ObjectOrientationin Opemting Systemspp. 38-47,
Lund, SwedenAug. 1995.IEEE.

THE COMPUTER JOURNAL,

Vol. 41, No.5, 1998

310 M. VAN STEEN etal.

This electionic version approximatesthe layout of the
original publicationin The ComputerJournal. The origi-
nal publicationis extendedo this page.

THE COMPUTER JOURNAL, Vol.41, No.5, 1998

