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1. INTRODUCTION

As theInternetcontinuesto grow exponentially, theproblem
of locatingpeople,services,data,software,andmachinesis
becomingmoresevere.To compoundtheproblem,increas-
ingly many usersareno longertied to a single,fixedaccess
point, but insteadareusingmobile hardwaresuchas tele-
phones,notebookcomputers,andpersonaldigital assistants.
Applicationsmustthereforetakeinto accountthatauserwill
have to belocatedfirst in orderto deliverany messages[1].
Likewise,themobileuserwill possiblyalsohave to find lo-
cal,nonmobileresourcesatthelocationheorsheis currently
residing(e.g.,a local laserprinter)[2].

Mobile computing,which is generallytied to usersmi-
gratingbetweendifferentlocations,is oneaspectof mobility
in theInternet.Anotheraspectis formedby mobilecompu-
tations,by whichsoftwareanddatamovewithin acomputer
network insteadof users.For example,to supportubiquitous
computing,it will benecessaryto moveauser’spersonalen-
vironmentfrom onelocationto another[3]. Anotherexam-
ple of softwaremobility is theactive transferof Webpages
to replicationserversin theproximity of clients[4, 5]. Like-
wise,softwareagentsmayberoamingthenetwork in search
of information,representingtheir ownerat servers,etc.[6].
Finally, with theintroductionof Java,mobilecodewill form
animportantcomponentof many futureWeb-basedapplica-
tions[7, 8].

In this paper, we usethe term mobile object to collec-
tively refer to any component– implementedin hardware,
software,oracombinationthereof– thatiscapableof chang-
ing locations. We assumethat a mobile objectcanbe dis-

tributedor replicatedacrossmultiplelocations,meaningthat
theremaybeseverallocationswheretheobjectresidesatthe
sametime. This canbethecase,for example,with a white-
boardapplicationsharedbetweenanumberof mobileusers.

Theexistenceof (worldwide)mobileobjectsintroducesa
locationproblem:Theneedfor ascalablefacility thatmain-
tainsa binding (i.e., a mapping)betweenan object’s per-
manentnameandits currentaddress(es).Suchfacilitiesare
normallyofferedby wide-areanamingsystemssuchasthe
Internet’s DomainNameSystem(DNS) [9], DEC’s Global
NameService(GNS) [10], and the X.500 Directory Ser-
vice [11].

However, existingnamingsystemsareinadequatefor mo-
bile objectsfor two reasons.First, wide-areanamingsys-
temsassumethat name-to-addressbindingshardly change.
This assumptionis necessaryto allow effective useof data
cachesto improve look-up performance. In a mobile en-
vironment, however, we must be able to handlethe case
that bindingschangeregularly. Second,mostnamingsys-
temsdistributethenamespaceacrossdifferentgloballydis-
tributednamingauthorities,andsubsequentlyuselocation-
dependentnames[12]. Unfortunately, location-dependent
namesmake it harderto handlemigrationandreplication.
Eachtimeanobjectchangeslocation,or whenevera replica
is addedor removed,we have to adapttheobject’s name(s)
aswell. Alternatively, we could changea nameinto a for-
warding pointer, but this has seriousscalability problems
whenappliedin worldwidesystems.

Whatis neededis anamingfacility thatallowsbindingsto
changeregularly andwhich offerscompletelocationtrans-
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parency to its users.We have recentlycompletedthedesign
of sucha facility, which we call a location service, aspart
of theGlobeproject[13].2 TheGlobelocationserviceis de-
signedto handletrillions of mobile objectsworldwide. It
usesa worldwidedistributedsearchtreein which addresses
of an object’s presentlocationarestored. All locationop-
erations(updatingand looking up addresses)arebasedon
the useof globally uniqueandlocation-independentobject
identifiers.Theservicecanbeusedin combinationwith tra-
ditional namingservices,but which shouldthenmapuser-
definednamesto objectidentifiersinsteadof addresses.Our
approachdistinguishesitself by (1)scalingworldwideandto
trillions of objects,(2) allowing objectsto frequentlyupdate
name-to-addressbindings,and(3) supportingdistributedob-
jectsthatresideatmultiple locationsat thesametime.

In thispaper, wepresentthebasicalgorithmsfor updating
andlookingup locations.In Section2 wegiveanoutlineof
ourapproach,followedin Section3 by adetaileddescription
of our algorithms. Relatedwork is presentedin Section4.
We concludeanddiscussfuturework in Section5.

2. ARCHITECTURAL DESIGN

In thissection,weoutlinethearchitectureof theGlobeloca-
tion service.An overview of ourapproachcanalsobefound
in [14].

2.1. Naming and Locating Objects

A namingandlocationservicemaintainsamappingbetween
a user-definednameof anobjectandthatobject’s location.
Traditionalnamingservicesgenerallystorename-to-address
bindingsdirectly. In otherwords,eachbindingconsistsof a
recordcontainingthenameandaddressof anobject.

In this approach,we are forced to updatethe binding
whenever the objectchangesits location. For example,if
we move a Webserver to a machinewith a differentIP ad-
dress,we aregenerallyforced to updatethe server’s DNS
entry. Likewise, thename-to-addressbindinghasto beup-
datedwhenevertheuserdecidestochangetheobject’sname.
As an example,if systemadministrationdecidesto assign
differentnamesto existing machines,we maybe forcedto
changename-to-addressbindingsof Internetservicesasreg-
isteredin DNS.

Consequently, by storingbindingsbetweenauser-defined
nameandan object’s locationasrecordsin a database,we
createa dependencebetweentwo different,andin principle
unrelatedkindsof updates.For a wide-areasystem,sucha
dependencemay introduceseriousmanagementandscala-
bility problems.

In Globe,we follow a differentapproach. We separate
namingfrom location issuesby introducinga two-layered
naminghierarchy. Theupperlayerdealswith hierarchically
organized,user-defined,human-readablenamespaces.The
lower layer dealswith keepingtrack of eachobject’s loca-
tion independentof how that object is namedby its users.

2Information on the Globe project can be found at
http://www.cs.vu.nl/ m steen/globe/.

The interfacebetweenthe two layersis formed by object
handles: a user-definednameis boundto anobjecthandle,
which in turn is boundto the address(es)wherethe object
canbefound.

An objecthandleis designedspecificallyfor lookingupan
object’s presentlocation. It containsa Service-independent
GlobalUniqueIdentifier(SGUID)whichis similarto aUni-
versalUniqueIdentifierin DCE[15]. A SGUIDis atrueob-
ject identifier[16]: (1) eachSGUIDrefersto exactlyoneob-
ject,(2) eachobjecthasexactlyoneSGUID,(3) aSGUIDis
neverreused,and(4)anobjectwill nevergetanotherSGUID
thantheoneinitially assignedto it.

An objecthandlewill generallyobey thesameproperties,
althoughan objectmight have several objecthandles. An
objecthandlemayalsocontaininformationthatcanbeused
to assistin locating the object. An importantpropertyof
an object handleis its stability: it is assignedonceto an
object,andremainsthe sameduring that object’s lifetime,
no matterwherethe objectmovesto. No two objectsever
have the sameobject handle,even if generated100 years
apartin distantcountries.

Mappinguser-definednamesto objecthandlesis doneby
a naming service, andwhichcanbebasedonexisting tech-
nology. For example,becauseobjecthandlesdonotchange,
animplementationcanmakeeffectiveuseof cachingname-
to-handlebindings,analogousto the approachfollowed in
DNS [9]. In fact,we canevenuseTXT recordsin DNS to
implementourname-to-handlebindings.

In contrast,mappinganobjecthandleto asetof addresses
is themaintaskof a location service. In Globe,we adopta
modelin which anobjectofferscontactaddressesto client
processes.A contactaddressdescribeswhereandhow an
objectcanbe reached[13]. A contactaddressconsistsof,
for example,an IP address,a telephonenumber, or another
kind of address,aswell asadditionalinformationthat iden-
tifies the placewherethe addresslies. We allow an object
to regularly changeits location,that is, to regularly change
the binding betweenits objecthandleandcontactaddress.
In addition,we alsoprovide supportfor bindingseveralad-
dressesto a singleobjecthandle. In this way, it becomes
mucheasierto handlereplicatedobjects. In this model,a
mobile,replicatedobjectis characterizedby having a setof
contactaddresseswhichmaychangeovertime.

2.2. GeneralOrganization

To efficiently updateandlook up contactaddresses,we or-
ganizethe underlyingwide-areanetwork asa hierarchyof
geographical,topological,or administrative domains, simi-
lar to theorganizationof DNS. For example,a lowestlevel
domainmayrepresenta campus-widenetwork of a univer-
sity, whereasthenext higherlevel domainrepresentsthecity
wherethatcampusis located.Lowestlevel domainsarealso
calledleafdomains. EachdomainD is representedby asep-
aratedir ectory node, denoteddir(D), leadingto aworldwide
searchtree.Nodesmaybeinternallypartitionedfor scalabil-
ity reasons.Theinternalorganizationof thelocationservice
is entirelytransparentto clientprocesses.
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Contact record at N0

Addr-1
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Empty contact field 
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Contact field with forwarding pointer
Contact field with address(es)
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N21 N22

dom(N1)
p

FIGURE 1. Theorganizationof contactrecordsin thetreefor aspecificobject.

A directorynodestoresinformationonobjectsin contact
records. Eachnodehasaseparatecontactrecordperobject.
A contactrecordcontainsanumberof contactfields, onefor
eachchild of thenodewheretherecordis stored.A contact
addressof anobjectis alwaysstoredatexactlyonedirectory
node.In addition,apathof forwardingpointersfromtheroot
to thenodewheretheaddressis stored,is establishedfor that
objectaswell. An implicationof this designis thatwe can
alwayslocatea contactaddressof anobjectby following a
chainof forwardingpointersfor that object,startingat the
root. In practice,we can do much better, as we describe
later.

As an illustration,Figure1 shows partof thesearchtree
storingseveralcontactaddressesonbehalfof asingleobject.
Thedomainrepresentedby a nodeN is denoteddom(N). In
Figure1, nodeN0 containsa contactrecordwith threecon-
tact fields,onefor eachof its children. The field for child
N1 containstwo contactaddresses,whichbothlie in domain
dom(N1). As we put forward in Section3.5, althoughcon-
tactaddressesarenormallystoredin leafnodes,higherlevel
nodesmaydecideto storeaddressesaswell. We follow the
policy that in suchcases,higher level nodeshave priority
over lower level ones. The contactfield for child N2 con-
tainsa forwardingpointer, meaningthat somewherein the
subtreerootedat N2 thereshouldbeat leastoneothercon-
tact addressstoredfor the object. Finally, the contactfield
for nodeN3 containsnodataatall, implying thatthereareno
contactaddressesthatlie in domaindom(N3). If noneof the
contactfieldsof a contactrecordcontainsdata,the contact
recordis saidto beempty.

Storageof addressesandpointersis subjectto a number
of consistency conditions.In particular, whentherearecur-
rently no updateoperationsin progressfor a specificobject
O, we requirethatthefollowing threeconditionsaremet:

C1: A contactaddressfrom a leaf domainD, is stored at
dir(D), or at thedirectorynodeof an enclosing(higher-
level)domainof D.
This conditionimpliesthata contactaddressfrom leaf
domainD canbe storedonly at a directorynodethat
lieson thepathfrom theroot to dir(D).

C2: For each nodeN, the contactrecord for O at nodeN

stores a forwarding pointer to a child node of N if
and only if the contact record for O at that child is
nonempty.
This meansthatwe do not acceptdanglingpointersin
our tree. In other words, if we follow a forwarding
pointerweshouldeventuallyfind a contactrecordcon-
tainingoneor moreaddresses.

C3: A contactfieldcancontaineithera forwarding pointer
or contactaddresses,but notboth.
Togetherwith the previous conditions,this condition
impliesthatassoonasweencounteracontactfieldcon-
tainingcontactaddresses,we canbesurethatwe have
found all contactaddressesthat lie in the subdomain
representedby thatcontactfield.

Whentheseconditionsaremet,thetreeis saidto beglobally
consistentfor O. As anexample,thetreeshown in Figure1
is globallyconsistent.

As wediscussbelow, acontactaddressthatlies in leafdo-
mainD is alwaysinsertedor deletedby initiating a request
at the directorynodedir(D) of D. To simplify matters,we
requirethat the identity of the leaf domainin which thead-
dresslies is encodedin theaddress.For example,a contact
addresscould be representedby a recordcontainingfields
for thetypeof network address(suchas“IPv6”), theactual
network address,anda namesuchas“cs.vu.nl” that identi-
fies the leaf domainwherethat addresslies. In contrastto
mostnetwork addressingschemes,ourcontactaddressesare
thusseento belocationdependent.

2.3. UpdateAlgorithms

We requirethat an updateoperationon a globally consis-
tent treeleavesthe treein a global consistentstateafter its
completion(assumingthatno otheroperationsfor thesame
objectarestill in progress).For aninsertrequestinitiatedat
leaf nodedir(D), it is easilyseenthatglobalconsistency im-
pliesthattherecanbeonly onenodealongthepathfrom the
leaf nodeto theroot whereall addressesfrom D arestored.
In particular, if thereis sucha nodeN, then an insert re-
questfrom any leaf domainenclosedby dom(N) shouldbe
forwardedto N.

THE COMPUTER JOURNAL, Vol. 41, No. 5, 1998



300 M. VAN STEEN etal.

Request arrives at
q
node with nonempty
contact record

Request to insert contact 
q
address at leaf node1

2
r

Forwarding pointer
s
is installed at N0

3
t

4
u

5
v

Nodes that want to
w
store address N0

N2

Node decides to
w
store address

N0

N2
Contact record at leaf 
node remains empty

N1

N1

(a)

(b)

FIGURE 2. Thegeneralapproachto insertingacontactaddress,by whichaninsertionrequestpropagatesupwardsto thelowest-level node
wheretheobjectis known (a),afterwhichadownwardpathof forwardingpointersis setup (b).

If thereis no nodethat is alreadystoringaddressesfrom
D, we canchooseonealongthepathto the root aslong as
the global consistency constraintsaresatisfied. We follow
thepolicy that thehighestlevel nodethatwantsto storead-
dressesfrom D, withoutviolatingglobalconsistency, will be
allowedtostoreaddresses.As weexplainin Section3.5,this
policy allows us to constructhighly effective caches,even
for mobileobjects. Note that only thosenodesareeligible
for storingcontactaddressesfrom D which eitherhave an
emptycontactrecord,or anemptycontactfield for adomain
thatenclosesD.

Whenever an insertrequestarrivesat a nodethat is will-
ing andcapableof storing the address,that nodewill thus
have to checkwhetherthereis a higherlevel nodealongthe
pathto therootwheretheaddressshouldactuallybestored.
The generalapproachto insertingan addressis illustrated
in Figure2. Whenanaddressis to be inserted,the request
is propagatedto thefirst directorynodewheretheobjectis
known, which is N0 in our example. Due to conditionsC2
andC3, nodeshigherthanN0 cannotstorethe addressand
thusneednot be considered.AssumingnodeN0 doesnot
wantto storetheaddress(asweexplainbelow), anacknowl-
edgmentis propagatedbackto theinitiating leaf nodewhile

at thesametimeapathof forwardingpointersis established.
In our example,bothN1 andleaf nodeN2 want to storethe
address,in whichcaseN1 will bepermittedto doso.

Theremay be several factorsthat determinewhetheror
notanodewantsto storeaddresses.For example,aswedis-
cussin Section3.5,whenanobjectis highly mobile,mean-
ing that it is insertinganddeletingaddressesat a relatively
highfrequency, anodemaydecidethatit is moreefficientto
storeaddressesatahigherlevelnodethatcoversthesmallest
domainin which theobjectis moving. This meansthat,al-
thoughaninsertoperationis alwaysinitiatedat a leaf node,
thecontactaddressmayactuallybestoredat a higherlevel
node.Theremaybeotherreasonsaswell that influencethe
willingnessof a nodeto storeaddresses.However, we want
to decoupleour algorithmsfrom suchdecisionsand intro-
duce,for eachnode,a booleanoperationstore here that re-
turns true if andonly if the nodewantsto storeaddresses.
If, on the path from a leaf node to the root, there is no
nodewilling to storeaddresses,we follow the policy that
addressesarestoredin therootnode.We allow theoutcome
of store here to changein thecourseof time.

Deletinga contactaddressis straightforwardandis done
asfollows. First, theaddressis foundthrougha searchpath
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Issue look-up request 
x
at leaf node

1Contact address found ⇒
return along reverse path

5
y

2 Contact record empty ⇒ 
forward request to parent

Nonempty contact record 
z

⇒
follow path of forwarding 
pointers

Alternative paths ⇒
make arbitrary choice

4

3
{

FIGURE 3. Thedefault approachfor lookingup acontactaddress.

up the tree,startingat the leaf nodewherethe addresswas
initially inserted.Oncethecontactaddresshasbeenfound,
it is removed from its record. If a contactrecordbecomes
empty, the parentnodeis informedthat it shoulddeleteits
forwarding pointer to that record, possibly leading to the
(recursive) deletionof forwarding pointersat higher level
nodes.

Insertinganddeletingcontactaddressesis targetedtoward
exploiting locality. Especiallywhen contactaddressesal-
readyexist in thedomainwheretheoperationis beingper-
formed,it is seenthattheoperationscanberelatively cheap.

2.4. Look-up Algorithm

Looking up addressescanbedonecompletelyindependent
of the updateoperations. In this paper, we consideronly
look-up operationsfor onecontactaddress;operationsthat
look up severaladdressesfor thesameobjectareeasilyde-
vised.

We adopta simple look-up policy. A look-up operation
is alwaysinitiatedat a leaf node(in particulartheonein the
client’s domain),and forwardedalongthe path to the root
until anodeis reachedhaving anonemptycontactrecord.If
thatrecordcontainsacontactaddress,thentheaddressis re-
turnedto theclientprocess.Otherwise,if therecordcontains
only forwardingpointers,a depth-firstsearchis initiated at
anarbitrarychild, until anaddressis finally found.This ap-
proachis shown in Figure3.

Again, it is seenthatwe exploit locality: the look-upop-
erationsearcheslocal domainsfirst, andgraduallyexpands
to largerdomainsaslongasnocontactaddressesarefound.

3. ALGORITHMIC DESIGN

In this sectionwe concentrateon the algorithmicdesignof
our locationservice. We first presentthe basicdatastruc-
tures,after which we discussin detail the insertionof ad-
dresses.Addressdeletionis thenrelatively straightforward,

aswell asour look-upalgorithm. In thefollowing, we con-
centrateonly onoperationsfor a singleobject,asoperations
for differentobjectsarecompletelyindependent.

3.1. Preliminaries

ContactRecords. For eachdirectorynode,we model an
object’s contactrecordasan(indexed)setof contactfields,
onefield for eachchild. Eachcontactfield storeseithera
forwardingpointer, or a setof contactaddresses,but never
both. A leaf nodehasexactly onecontactfield. Adopting
an Ada-like notation,we can describethesedatatypesas
shown in Figure4. We assumethateachnodehasa unique
identifierof typeNodeID thatcanbeusedasanindex for sets
of contactfields. An opaquedatatype Address is usedto
modelcontactaddresses.

TentativelyAvailableData. As we make clearin the suc-
ceeding sections, update operationsgradually propagate
throughthetree.Whiledoingso,adecisionis madewhereto
actuallystoreor removedata.For example,our updatepro-
tocol prescribesthatbeforestoringanaddressaddr at some
nodeN, wefirst needpermissionfrom N’sparent.If wewait
until that permissionis granted,addr cannotyet be looked
up, despitethe fact that we alreadyknow that it is a valid
contactaddress.Therefore,it makessenseto make thead-
dresstentativelyavailableat the nodewherethe operation
is currentlybeingperformed,withoutgiving guaranteesthat
it will eventuallyalsobe storedthere. To supporttentative
availability of updates,we introduceviewsandview series.

A view ona variablev is a statementexpressingachange
to the valueof v. Evaluatinga view leadsto the tentative
executionof thestatement,returningthevaluethatv would
have hadif thestatementhadactuallybeenexecuted.Eval-
uatinga view on v leavestheoriginal valueof v unaffected;
it is like a kind of shadow version. View evaluationtakes
placeonly by meansof view series. A view seriesassoci-
atedwith a variablev is a FIFO-orderedlist of views on v.

THE COMPUTER JOURNAL, Vol. 41, No. 5, 1998
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type ContactField is
record

addrSet : set of Address : |"}~ ; �V� Setof contactaddressesfor subdomain

isPtr : Boolean : | false; �V� True iff contactfield is forwardingpointerto child

end record;

type ContactRecord is set � NodeID � of ContactField; �V� Indexedsetof contactfields

FIGURE 4. Datastructuresfor storingcontactaddressesof asingleobjectat adirectorynode.

(1) x : Integer : | 4;

(2) y : Integer;
(3) vx : view series of Integer : | x; x | 4; vx |(�l�
(4) append view � self : | self � 1� to vx; y : | vx; x | 4; y | 5; vx |�� x � 1�
(5) append view � self : | self � 2� to vx; y : | vx; x | 4; y | 10; vx |(� x � 1 � 2 � x�
(6) x : | 5; y : | vx; x = 5; y = 12

(7) apply view to vx; x | 6; y | 12; vx |@� 2 � x�
FIGURE 5. A simpleexampleof viewsandview series.

Thevalueof a view seriesis definedasthe resultof evalu-
atingits views in theorderthat they have beenappendedto
theseries.

Thismechanismis bestillustratedby anexample.In Fig-
ure 5, we declareinteger variablesx andy, andan integer
view seriesvx thatis associatedwith x. (Thenotation� a � b � c�
denotesa list of elementsa, b, c, with a beingthe headof
the list.) In line 4, we appenda view that expressesan in-
crementof x by 1. The pseudo-variableself points to the
variableassociatedwith theview series,in this casex. We
thensubsequentlyassignthevalueof vx to y. At thatpoint,
the valueof y is 5, whereasx is still 4. In line 5, another
view is appendedexpressinga multiplicationby 2, followed
by an updateof y, which now hasthe value10. Note that
at this point, the valueof vx is 2 �8� x � 1� . Therefore,if we
changethevalueof x to 5, asin line 6, andupdatey again,y
will become12.

The view at the headof a view series,that is, the least
recentlyappendedone,canbeapplied by evaluatingits ex-
pressionandchangingthe valueof the associatedvariable
accordingly. Theview is thenremovedfrom theview series.
For example,in line 7, we applythefirst view to x, thereby
changingthevalueof x to 6 by incrementingit by 1. At the
sametime, the view is removed,so that the view seriesvx

now reflectsonly thevalue2 � x. A view canalsobedirectly
removed, that is, without applyingit. Finally, the function
sizeof returnsthelengthof a givenview series.

A contactrecordfor anobjectO at nodeN hasanassoci-
atedview seriestentativeCR � O � N � . Becausewe consideronly
operationsfor a specificpair of object andnode,we omit
theindicesthroughouttheremainderof ourdiscussion.This
view seriesis aninstanceof thefollowing datatype:

type TentativeRecord is view series of ContactRecord ;

As we shall see,all updateoperationsfirst appenda view
to a contactrecord’s view seriesto reflectthe intendedup-
date. However, this resultis still tentative. Later, whenthe
final decisioncanbemadeon theupdate,thepreviouslyap-
pendedview is eitherapplied,makingthe resultauthorita-
tive, or undoneby removing theview from theview series.

Detailsareexplainedin thenext section.

RemoteInvocations. Our algorithmsarebasedon anRPC
mechanism[17], by which a nodeinvokesan operationat
its parent,andsubsequentlyblocksuntil a reply is received.
We assumethat the executionof an updateor look-up op-
erationfor a specificobject runs to completionor until it
blocks,without beingpre-emptedby competingoperations.
To ensurecorrectnessof our algorithms,we requirethat in-
vocationrequestsandthesubsequentresponses,arehandled
in theorderthat they wereissued.How thesesemanticsare
implementedis describedin [18].

3.2. Addr essInsertion

The insertionof anaddressfor a specificobjectis doneby
two operations:

� insert addr is invoked at a nodewhen that nodeis re-
questedto storethegivenaddress� insert chk is invokedat a parentnodeto obtainpermis-
sionto storetheaddressat theinvokingnode,or oneof
its children

Notethatwhenever eitheroperationis invokedat a specific
directorynode,it is known at that point that the given ad-
dresscanbeusedto contacttheobject. In otherwords,the
addresscan,in principle,bereturnedastheresultof a look-
up operation. The only thing that is not yet known, is ex-
actlyatwhich nodetheaddresswill bestored.For example,
whenreturningto Figure2, we seethat assoonasthe in-
sertrequestis initiatedat leafnodeN2, wecanalreadymake
the addressavailableto look-up operationsfrom dom(N2).
Likewise,whentherequestis propagatedto N1, theaddress
canbemadeavailableto look-uprequestsfrom N1. In both
cases,wedonotyetknow where theaddresswill actuallybe
stored.Our insertoperations,therefore,canstartby making
theaddresstentatively availableat thepresentnodewithout
yet having permissionfrom theparent.Making theaddress
tentatively availablemeansthateithertheaddress,or a for-
wardingpointerto thecallingnodeis tentatively stored.
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(1) procedure insert addr � caller : NodeID; addr : Address � return � OK � DELETE � is
(2) viewedCR : TentativeRecord : | tentativeCR; �$� Make a copyof thecurrentview series

(3) final action : � OK � DELETE � : | OK;

(4) �$� Startby makingtheinsertedaddresstentativelyavailable, byappendingit to thecontact

(5) �$� record’s associatedview series.

(6) append view � self � caller �/� addrSet : | self � caller �/� addrSet �&� addr �R� to tentativeCR;

(7) �$� Testwhethertheparentnodeis to beaskedfor permissionto store theaddress.Thisis

(8) �$� necessarywhen(1) thecontactrecord appearedto beemptyor (2) whennoauthoritative

(9) �$� decisioncouldyetbemade.

(10) if parent �| NIL and � empty � viewedCR � or sizeof � viewedCR ��� 0� then
(11) if empty � viewedCR � and not store here � tentativeCR � then
(12) �V� Thecontactrecord appearedto beempty, but thenodeis notpreparedto store theaddress.

(13) �V� Forward therequestto theparentandensure theappendedview is removed.

(14) parent � insert addr � thisNode � addr � ;
(15) final action : | DELETE;

(16) else
(17) �V� Thenodewantsto store theaddress,or mayhaveto becausethere appearto beother

(18) �V� addressesstoredalso.Check with theparentwhetherstoringis permitted.

(19) final action : | parent � insert chk � thisNode � addr � ;
(20) end if
(21) end if
(22) if final action | OK then apply view to tentativeCR;

(23) else remove view from tentativeCR;

(24) end if
(25) return OK;

(26) end insert addr

FIGURE 6. Insertionof contactaddresses.

Operation insert addr. We start with the operation
insert addr, which is specifiedin Figure6. We assumethere
is a function thisNode that returnsthe nodeidentifier of the
nodewhere the function is called. As mentionedbefore,
the variable tentativeCR denotesthe view seriesassociated
with the object’s contactrecordat the currentnode. The
operationstartswith saving the stateof the currentcontact
recordin line 2 afterwhich it makestheaddressavailableto
look-up operationsby tentatively addingit to tentativeCR in
line 6.

As a next step,thenodehasto checkwhetherandhow it
shouldcontactits parent.Therearethreeoccasionsonwhich
theparentneedsto becontacted:
� If thecontactrecordwasemptywhentheoperationwas

invoked,thenodemaychooseto storetheaddress.If it
is not preparedto storethe address,it shouldpassthe
requestto its parent.This is expressedin lines11–15.
It alsomeansthatthepreviouslyappendedview should
beremovedwhenthecall to theparentreturns(line 15).
Notethattheaddressis simply passedto theparentby
calling invoke addr againin line 14.� If thecontactrecordwasemptyandthenodewantsto
storetheaddress,it will have to askits parentfor per-
missionby invoking insert chk in line 19.� Permissionis alsoneededwhentherearependingre-
queststo theparent,thatis, whenanumberof tentative
resultsfrom previousoperationsstill exist. In thatcase,
thenodecannottakeany definitivedecisiononwhether
or not to storethe address.This situationis alsocov-
eredby theinvocationof insert chk in line 19.

Dependingon whetherthe parenthadbeencalled,or what
theresponsewas,theoperationeventuallycontinueswith ei-
therturningthepreviouslyappendedview into authoritative
data(line 22), or removing it altogether(line 23).

Operation insert chk. The operation insert chk is invoked
at the parentnode when the invoking node or one of its
(grand)childrenwantsto storethe given address.The par-
ent is askedfor permissionto storetheaddressat oneof its
(grand)children.

If the parentagrees,it will, in turn, have to obtainper-
missionfrom thenext higherlevel node,andsoonup to the
rootof thetree.Thispermissionresultsfrom ourpolicy that
thehighestlevel nodethatwantsto storeaddresses,maydo
so,providedglobalconsistency is not violated. Permission
is not neededif the parenthadalreadystoreda forwarding
pointerto thecalling child. Whentheinvokednodepermits
its (grand)childto storethe address,it tentatively installsa
forwardingpointerto the calling child, therebymakingthe
addressavailablefor look-upoperationsin its domain.The
pointer can be only tentatively installedas long as higher
level nodeshave not yet given their permissionfor storing
theaddressat somelower level.

Alternatively, theparentmaydecidethat it wantsto store
the addressitself, and that it can do so without violating
global consistency. In that case,the invoking child, which
will havemadetheaddresstentativelyavailable,is instructed
to removetheaddressor its forwardingpointerfrom its view
series.Removal is recursively propagateddownwardsto the
lowestlevel nodewheretheaddressis tentatively stored.
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(1) procedure insert chk � caller : NodeID; addr : Address � return � OK � DELETE � is
(2) viewedCR : TentativeRecord : | tentativeCR;

(3) subRecord : ContactField : | viewedCR � caller � ;
(4) parent response � my response : � OK � DELETE � ;
(5) �$� If thisnodealreadystoresaddresses,thenew addressshouldbestoredhereaswell. This

(6) �$� is alsotruewhenthecontactrecord is emptybut thisnodewantsto start storingaddresses.

(7) �$� In thatcase, it haspriority over thecalling child. In all othercases,it will, in principle,

(8) �$� allow its child to store theaddressandensuresit hasa forwardingpointerto thechild.

(9) if subRecord.addrSet �|�}~ or � not subRecord.isPtr and store here � tentativeCR �/�
(10) then append view � self � caller �/� addrSet : | self � caller �/� addrSet �&� addr ��� to tentativeCR;

(11) my response : | DELETE;

(12) else append view � self � caller �/� isPtr : | true � to tentativeCR;

(13) my response : | OK;

(14) end if
(15) �$� Nowtestwhethertheparentnodeis to beaskedfor permissionto store theaddress.Thisis

(16) �$� necessarywhen(1) contactrecord appearedto beemptyor (2) whennoauthoritative

(17) �$� decisioncouldyetbemade.

(18) if parent �| NIL and � empty � viewedCR � or sizeof � viewedCR ��� 0�
(19) then parent response : | parent � insert chk � thisNode � addr � ;
(20) else parent response : | OK;

(21) end if
(22) if parent response | OK then apply view to tentativeCR;

(23) return my response;

(24) else remove view from tentativeCR;

(25) return DELETE;

(26) end if
(27) end insert chk

FIGURE 7. Checkinganinsertoperationwith aparent.

The operation insert chk has a similar structure to
insert addr (seeFigure7). It decideswhetherto tentatively
addthegivenaddressto its contactrecord,or tentatively in-
stall a forwardingpointer to the calling child (lines9–14).
An addressis alwaysaddedif therearealreadycontactad-
dressesin thecorrespondingcontactfield. Whenthecontact
field wasempty, that is, it alsodid not containa forward-
ing pointerto thecallingchild, thenodemaydecideto store
theaddressusingits store here operation.Whenanaddress
is (tentatively) added,the calling child mustclear its con-
tact record. This is accomplishedby replyingwith DELETE

(lines10–11).
Whenthe invokednodeis not goingto storetheaddress,

it givesthe calling child permissionto do so instead. The
invokednodewill not storethe addressbecauseit eitheris
notpreparedto doso,or becauseit alreadyhasa forwarding
pointerto the calling child. (Note that whenever a contact
field alreadyhasa forwardingpointer, it canneverdecideto
storeanaddress.In otherwords,we discardtheoutcomeof
store here.) In any case,it will have to ensurethat the ad-
dressbecomes(tentatively) available,by having a forward-
ing pointerto thecaller. Thelatter is ensuredby simply in-
stallingthepointer, asis donein lines12–13.

Thereare two occasionswhen the invoked nodehasto
passtherequestto its parent:

� Whentherearestill pendingrequeststo theparentthat
have not beenansweredyet, the nodecannottake an
authoritativedecisiononwhetheror notto makethead-

dressavailable.In thatcase,theparenthasto beasked
for permissionaswell.� When the node had an empty contact record when
theinsertrequestarrived,this invocationconcernscur-
rently theonly addressfrom thenode’sdomain.In that
case,the parentis also unaware of the address,and
shouldbeaskedfor permission,regardlesswhetherthe
nodeis preparedto storetheaddressor not.

Thesetwo casesarespecifiedin lines18–21. Finally, de-
pendingon the reactionof the parent,the previously ap-
pendedview is either applied or removed as shown in
lines22–25.

3.3. Addr essDeletion

Deletinganaddressis doneby asingleoperationdelete addr.
Theoperationmustbe invokedat thesameleaf nodewhere
theassociatedaddressinsertionwasinitiated. (Notethatwe
assumethattheleafdomainin whichacontactaddressliesis
encodedin theaddress.We canthuseasilyidentify theleaf
nodewherethedeletionshouldbeinitiated.)Whenacontact
recordat nodeN becomesemptyafter deletingan address,
theparentnodeshoulddeleteits forwardingpointerto N. Re-
movingapointerataparentnodeis handledby delete addr as
well, for which caseit hasanadditionalbooleanparameter
delPtr. Theoperationis specifiedin Figure8.

Completely analogousto making newly inserted ad-
dressestentatively available,we can also immediatelyan-
nouncethat an addressor forwarding pointer will be re-
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(1) procedure delete addr � caller : NodeID; addr : Address; delPtr : Boolean � return � OK � NOTFOUND � is
(2) viewedCR : TentativeRecord : | tentativeCR;

(3) addrFound : Boolean : |(� addr � viewedCR � caller �/� addrSet � ; �$� True iff theaddressis here

(4) ptrFound : Boolean : |(� delPtr and viewedCR � caller �/� isPtr � ; �V� True iff there is a pointerto thecaller

(5) �$� If eithertheaddressis (tentatively)storedat thisnode, or a (tentative)pointerto thecalling

(6) �$� nodeexists,theoperation will haveto deletetheaddressor pointer, respectively. Again,the

(7) �$� resultsof thedeleteoperation canbemadeavailableimmediately.

(8) if addrFound or ptrFound then
(9) if addrFound

(10) then append view � self � caller �/� addrSet : | self � caller �/� addrSet �X� addr �R� to tentativeCR;

(11) else append view � self � caller �/� isPtr : | false � to tentativeCR;

(12) end if
(13) �$� Whenthecontactrecord is nowemptyweknowthat theparenthasa pointerinstalledto thisnode.

(14) �$� In thatcase, requesttheparentto deleteit.

(15) if parent �| NIL and empty � tentativeCR � then
(16) parent � delete addr � thisNode � addr � true � ;
(17) elsif parent �| NIL and sizeof � viewedCR �-� 0 then
(18) parent � delete addr � thisNode � addr � false � ;
(19) end if
(20) �$� Unconditionallyapplythepreviouslyappendedview, i.e., removeeithertheaddressor the

(21) �$� forwardingpointer.

(22) apply view to tentativeCR;

(23) return OK;

(24) elsif parent �| NIL and � empty � tentativeCR � or sizeof � tentativeCR �-� 0� then
(25) return parent � delete addr � thisNode � addr � false � ;
(26) else return NOTFOUND;

(27) end if
(28) end delete addr

FIGURE 8. Deletionof contactaddresses.

moved. In otherwords,assoonasa nodeN is requestedto
deleteanaddressor forwardingpointer, it candosowithout
waitingfor its parentto havecompletedtheoperation.Dele-
tion takesplaceby appendinga view by which theaddress
or forwardingpointer is removed from the contactrecord.
In this way, we even achieve that a previously insertedad-
dressfor which the insertoperationhasnot yet fully com-
pleted,that is, the addressis yet only tentatively available
atanode,is immediatelymadeunavailableagainto look-up
operationsat thatnode.Sucheffectsareimportantin wide-
areasystems.An alternative,by which a deletioncancome
into effectonly aftertheassociatedinsertionhascompleted,
is generallyunacceptabledueto unpredictabledelaysfor the
completionof anoperation.

Theoperationdelete addr startswith undoingtheeffectsof
thepreviousinsertoperation(lines3–12). It checkswhether
it storesthe address(line 3) or forwardingpointer(line 4),
afterwhich a view is appendedreflectingthe respective re-
moval (lines10–11).

Thereare two occasionsin which the parentshouldbe
calledaswell:
� If thecontactrecordwasalreadyempty, or whenit be-

cameemptyonaccountof thecurrentdelete,theparent
nodeshouldremove its forwardingpointerto the cur-
rentnode.This situationis specifiedin lines15–17for
the casethat recordbecameempty, and in line 25 for
thecasethatit alreadywasempty.� If therewerependingoperationsto theparent,thenode

doesnotyetknow whatthefinal situationwill bewhen
all previous requestshave beenprocessed.Therefore,
theparentmustbeinformedaboutthedeletionaswell.
Thissituationis expressedin line 18andalsoin line 25.

3.4. Addr essLook-ups

An importantdesignissuefor our locationserviceis thatwe
wish to make updateresultsavailableas soonas possible.
This is importantin awide-areasystem,wherepropagations
of updatesmaytakerelatively longdueto network andnode
failures.Therefore,look-upsoperateontentatively available
data,that is, thevalueof view series,ratherthanon theau-
thoritativedataof contactrecords.

Thispolicy worksfine in a treethatis globallyconsistent,
andevenin atreewheresomeaddresseshavebeenmadeten-
tatively availableonly. Problemsarisewhensomeaddresses
arebeingdeletedconcurrentlywith look-upoperations,for
in that casewe may decideto follow a pathof forwarding
pointersthat is in theprocessof beingdeleted.In thatcase,
weadoptasimplesolution.If apathhasbeenfollowedwith-
outsuccess,wesimplycontinuethelook-upoperationin an-
otherpath,if possible.If all suchattemptsfail, the look-up
operationproceedswith the next higher level nodeon the
pathto theroot.

Our operationlookup is given in Figure9. It startswith
checkingwhetherthe currentnodehasa nonemptycontact
record (line 4). If so, it tries to selectan arbitrary con-
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(1) procedure lookup � caller : NodeID � return Address is
(2) addr : Address : | NIL;

(3) �V� First check whetherthisnodehasanyinformationon theobject.

(4) if not empty � tentativeCR � then
(5) �V� In principle, weshouldbeableto findsomethinghere. Check whetheranyaddressis

(6) �V� (tentatively)storedin thiscontactrecord. Otherwise, follow pathsin thesubtrees.

(7) choose any child with tentativeCR � child �/� addrSet �|;}~ ;

(8) if child �| NIL then �$� An addresshasbeenfound.Anystoredaddresswill do.

(9) choose any addr with addr � tentativeCR � child �/� addrSet;
(10) return addr;
(11) else �$� Check anydownward path. If thepathis beingdeleted,selecta next one.

(12) foreach child with � child �| caller � and � tentativeCR � child �/� isPtr | true � loop
(13) addr : | child � lookup � thisNode � ;
(14) if addr �| NIL then return addr end if
(15) end loop;

(16) end if
(17) end if
(18) if addr | NIL and caller �| parent
(19) then return parent � lookup � thisNode �
(20) else return addr
(21) end if
(22) end lookup

FIGURE 9. Lookingupasinglecontactaddress.

tact field containingaddresses.This is expressedby the
choose any statementin line 7, which, in this case,takesan
index asa freevariableandtriesto matchthatin theexpres-
sionfollowing thewith keyword.

If theselectionsucceeded,theoperationsubsequentlyse-
lectsan arbitraryaddressfrom that contactfield (againex-
pressedasa choose any statement),andreturnstheaddress
asthe result to the calling node(lines8–10). On the other
hand,if therewereno addressesin the contactrecord,the
look-up operationcontinuesby following an arbitrarypath
of forwarding pointersin one of the subtreesrooted at a
child. Becauseeachof thesepathsmay be in the process
of beingdeleted,all contactfields containinga forwarding
pointer are checked (line 12). As soonas an addresshas
beenfoundin oneof thesubtrees,theoperationstopsby re-
turningthataddress(line 14).

If noaddresscouldbefound,wecontinuethelook-upop-
erationat a higher level node(line 19). This makessense
only whenthe operationwas initially calledby oneof the
children,or by a clientprocess,thatis, caller �| parent. Other-
wise,whenno addresswasfound,wehave reachedtheroot
of the tree,andNIL, which is the presentvalueof addr can
be returned(line 20). If we did find anaddress,we simply
returnthatvalue.

3.5. Discussion

If we ignorethe useof view series,our algorithmsarerel-
atively straightforwardandstronglyresemblestandard(re-
cursive) implementationsfor searchtreealgorithms.Thein-
tricaciesmainlycomefrom thefactthatwewishto makere-
sultsavailableassoonaspossible.This explainswhy every
operationstartswith appendingits anticipatedresult to the
view seriesassociatedwith the currentcontactrecord. Ef-

fectively, view seriesallow usto propagateupdateresultsin
increasinglyexpandingdomainsbefore theupdatehasbeen
fully completed.For a wide-areasystem,theavailability of
suchtentative datais essential,asit may take considerable
timebeforeresultsbecomeauthoritative.

To illustratethebenefitof our approach,assumetheroot
nodeis temporarilyunreachabledueto a network or node
failure. In thatcase,our locationserviceis temporarilypar-
titionedinto a numberof subtrees(onefor eachchild of the
rootnode).However, eachsubtreecontinuesto operatenor-
mally, althoughoperationsrequestedto be invoked at the
root nodewill experiencea significantdelay. By addition-
ally maintainingthe orderof invocationsthroughview se-
ries,we,at worst,experienceperformancefailures.Clearly,
the look-up operationneedsto be improved, as it is unac-
ceptablethataclientmustwait until thetreerecoversfrom a
failure.Longor indefinitivewaitingcaneasilybedealtwith
by usingtime-outmechanisms.

Correctness. To assessthe correctnessof our algorithms,
we initially expressedour updateandlook-upoperationsin
the protocol verification languagePromela[19], and con-
ducteda numberof statespacesearches.After aninitial de-
signphase,weconstructedformalproofsof correctness.The
lattercanbefoundin anextendedversionof thispaper[20].

Placementof ContactAddresses. Thereareseveral ways
in which we can improve the working of the locationser-
vice describedso far. Oneimportantoptimizationconsists
of addingcaches.

By default, a contactaddressis storedat the leaf node
whereit is inserted. However, this may not alwaysbe the
bestchoice.Considerthesituationthatanobjectis regularly
moving betweentwo leaf domainsL1 andL2. Let D denote
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Search path
�Cache pointers

Object may be moving between different leaf domains

Place where addresses 
�
are stored is stable

FIGURE 10. Cachingpointersto astablelocation,evenastheobjectmoves.

thelowestlevel domainthatcoversbothleafdomains.Each
timetheobjectmovesmovesfrom L1 to L2, thelocationser-
vice createsanddeletesa pathof forwardingpointersfrom
the directorynodedir(D) of D to the leaf nodesdir(L1) and
dir(L2), respectively. Whentheobjectis moving regularly, it
makessenseto storethecontactaddressin theobject’scon-
tact recordat dir(D). For example,by maintainingonly the
path from the root to dir(D), we cansave on costsfor path
maintenance.

In addition, there is anotheradvantageof storing ad-
dressesat dir(D). We know that, althoughthe set of ad-
dressesstoredat dir(D) may change,the placewherethese
addressesarestoredis now stable. This permitsus to ef-
fectively shortensearchpathsby cachingpointers to con-
tact records. Specifically, we cachea pointer to the direc-
tory nodecontaininga contactaddress,at eachnodeof the
searchpathwhenreturningtheanswerto theleafnodewhere
a look-uprequestoriginated,asshown in Figure10.

Wenow havethesituationthattheobjectwhichis moving
betweenleafdomainscanbeeasilylocatedby lookingupits
presentaddressin the nodedir(D) representingthe smallest
domainin whichall its movementstakeplace.By cachinga
pointerto dir(D), theobjectmaybetrackedby just two suc-
cessive look-upoperations(assuminga cachehit at the leaf
node):thefirst oneat theleaf nodeservicingtherequesting
process,andthesecondoneat dir(D). This is a considerable
improvementoverexistingapproaches.

We are currently investigatinghow stablelocationsfor
storingaddressescanbeidentified. Initially, we planto use
a timer-basedapproach.If a nodedetectsthatpointersin a
relatively long-living contactrecordoften changebetween
therecord’sfields,it canconcludethatcontactaddressesin-
steadof pointersshouldbestoredin that record. Likewise,
if an addresshasbeenstoredfor a relatively long time at
someintermediatenode,it is justifiedto storetheaddressat
a lower-level node.

Scalability. Oursearchtreedescribedsofarobviouslydoes
not yet scale.In particular, higher-level directorynodesnot

only have to handlea relatively large numberof requests,
they also have high storagedemands. Our solution is to
partitiona directorynodeinto oneor moredir ectory subn-
odes, suchthat eachsubnodeis responsiblefor a subsetof
the recordsoriginally storedat the directorynode. We can
easilyusehashingtechniqueson theobjecthandlesto iden-
tify subnodesatparentsandchildren.

When partitioning directory nodes,simple calculations
show thatstoragerequirementspersubnoderangebetween
10and100gigabytes,whichcanbeeasilyhandledwith cur-
rent technology. Whetherwe canactuallymeetprocessing
demandspersubnodeis somewhatspeculativein lackof ref-
erencedata. However, it is morelikely thatperformanceis
limited by the capacitiesof the underlyingcommunication
network.

4. RELATED WORK

We have madea strict separationbetweena namingservice
whichis usedto organizeobjectsin awaythatis meaningful
to theirusers,anda locationservicewhich is strictly usedto
contactanobjectgivena uniqueidentifier. Namingservices
canbeusedfor finding informationbasedonthemeaningof
a name,asis oftenusedfor Internetresourcediscoveryser-
vices. In our scheme,informationretrieval would startwith
findingrelevantnames,retrieving theassociatedobjecthan-
dles,andhaving the locationservicereturncontactaddress
for eachobjectthatwasfoundto bepotentiallyinteresting.

Locationservicesareparticularlyimportantwhensources
of information,thatis objects,canmigratebetweendifferent
physicallocations.They arebecomingincreasinglyimpor-
tant asmobile telecommunicationandcomputingfacilities
becomemorewidespread.To relateourwork to thatof oth-
ers,we thereforeconcentrateprimarily on aspectsof mobil-
ity, for which we make a distinctionbetweenmobile hosts
andmobileobjects.

MobileComputing
Sofar, muchresearchhasconcentratedonmobilecomputing
which is generallybasedon a modelin which usersmigrate
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betweendifferentnetwork locations. Usually, mobility in
thesecasesis tiedtomobilehardwaresuchashand-heldtele-
phones,personaldigital assistants,andnotebookcomputers.
An implicit assumptionunderlyingmobilecomputingis that
themobileobjectis alwaysatpreciselyonelocation.Repli-
cationis lessanissue,exceptwhendealingwith fault toler-
ant issuesas, for example,in the caseof disconnectedfile
operations[21].

Locationmanagementin mobilecomputinggenerallyfol-
lowsahome-basedapproach.Thismeansthatthesystemas-
sumesthatthereisalwaysahomelocationthatkeepstrackof
theobject’s currentlocation. Oncethepresentlocationhas
beenfoundthroughthehomelocation,messagescanberedi-
rected.This is, for example,theway thatmobile IP works
[22]. PCNsoftenwork with atwo-level searchtreein which
the secondlevel consistsof Visitor LocationRegistersthat
containaddressesof visiting hostsin thecurrentregion. A
distinctivefeatureof ourapproachcomparedtoPCNs,is that
we have several levelsallowing us to exploit locality more
effectively by inspectingsucceedinglyexpandedregionsat
linearly incrementingcosts.

The main drawbackof a home-basedapproachis that it
doesnot scalewell to worldwide systems.First, having to
contacta possibledistanthome location while the object
may actuallybe very nearto the calling processis not ef-
ficient: all locality aspectsareneglected. Second,the ap-
proachcannotadequatelyhandlelong living objects,asthe
homelocationmustremainresponsiblefor all its objectsfor-
ever. This is alsotrue for thesituationsin which an object
haspermanentlymoved to anotherlocation, even perhaps
decadesago. As a consequence,assigninga lifetime tele-
phonenumberis hardto realizeefficiently with home-based
approaches.

As an alternative, thereareseveralproposalsbasedon a
hierarchicallyorganizeddistributeddatabase.A straightfor-
ward solution without any cachingfacilities and in which
addressesare always storedin leaf nodesis describedin
[23]. AwerbuchandPeleg [24] proposeasolutionin whicha
moving objectleavesaforwardingpointerwhichis removed
only aftera considerabledistancehasbeentraveled. In this
way, a trade-off betweencostlyupdateoperationsandscal-
ablelook-upsis achieved.

Jain [25] usesan approachto cachingthat is somewhat
similar to ours. He also builds a hierarchicaldatabasein
whichtheleafnodescontaincontactaddresses,andinterme-
diatenodespointerssimilar to ours.Onceanobjecthasbeen
located,a pointer to a nodecovering the domainin which
theobjectis moving canbecachedat nodeson thereversed
searchpath.Our approachis differentin thattheaddressof
frequentlymovingobjectsis storedatahigher-levelnodein-
steadof justapointer. Consequently, ourlook-upandupdate
operationsappearto becheaper.

Alternatively, updateand look-up strategies can be dy-
namicallyadaptedto a user’s migrationpatternasproposed
by Krishnaet al. [26]. In contrast,we proposeto adaptthe
treeona per-objectbasisby allowing addressesto bestored
at higher levels when necessary. Our updateand location
policiesremainthesame.To avoid globallook-upsthatmay

involvemany hops,Janninketal. [27] proposeto selectively
replicateuserprofiles. This comesvery closeto allowing
anobjectto have severalcontactaddressesstoredby thelo-
cationservice. In our approach,however, we let theobject
decidewhetheror not it wantsto provideseveralcontactad-
dresses.

Using a hierarchicallydistributed databaseleadsto the
questionwhenandhow updatesarepropagatedthroughthe
tree. In mostcases,anupdatebecomesvisible whenit has
beencompleted. For wide-areasystems,this approachis
not acceptablebecauseupdatepropagationis slow. Instead,
theresultsof updateoperationsshouldbemadeavailableas
soonaspossible.Similar, in wide-areasystems,we cannot
acceptthat an operationis delayeduntil a previous one is
completed.To solvetheseproblems,weintroducedview se-
riesthatareusedto implementanotionof tentativedata.Our
mechanismresemblesqueuedRPCsas usedin the Rover
toolkit [28], except that we maintainthe orderingof invo-
cations.In this sense,view seriesarecomparableto sender-
basedmessageloggingusedfor recoveryfrom nodeandnet-
work failuresasexplainedin [29].

MobileObjectSystems
An implicit assumptionthat locationmanagementservices
for mobile computingare often making, is that the object
movesgraduallythroughthenetwork. For thisreason,many
algorithmsareseento work well becauseupdatesneednot
be propagatedthroughthe entire distributed database.In
contrastto systemsfor mobile computing,mobile-object
systemsoftendealwith mobilecomputations. In thesecases,
onecanimagineusersto befairly immobile,andthatinstead
objectsmove betweenlocationsfor reasonsof loadbalanc-
ing, dynamicreplication,etc. An importantdifferencewith
mobilecomputing,is that objectstravel at a speeddictated
by the network, andmay pop-upvirtually anywhere. This
requiresa highly flexible approachto locatingobjects.

Mobile objectshave mainly beenconsideredin the con-
text of localdistributedsystems.In Emerald,mobileobjects
aretrackedthroughchainsof forwardingpointers,combined
with techniquesfor shorteninglong chains,and a broad-
castfacility whenall elsefails [30]. Suchanapproachdoes
not scaleto worldwide networks. An alternative approach
to handleworldwidedistributedsystemsis theLocationIn-
dependentInvocation(LII) [31]. By combiningchainsof
forwarding references,stablestorages,and a global nam-
ing service,an efficient mechanismis derived for tracking
objects. Most of the appliedtechniquesareorthogonalto
ourapproach,andcaneasilybeaddedto improveefficiency.
However, the global namingservice,which is essentialto
LII, assumesthattheupdate-to-lookupratio is small.We do
notmakesuchanassumption.

A seeminglypromisingapproachthathasbeenadvocated
for large-scalesystemsareSSPchains[32]. The principle
has beenapplied to a systemcalled Shadows [33]. SSP
chainsallow object referencesto be transparentlyhanded
over betweenprocesses.In essence,a chainof forwarding
pointersisconstructedfromanobjectreferenceto theobject.
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Consequently, thereis no needfor any locationservicebe-
causeanobjectreferencecanalwaysberesolvedthroughthe
chainof pointers.A drawbackis thatthisapproachneglects
locality, makingit hardto applyto worldwidesystems.

5. CONCLUSIONS AND FUTURE WORK

TheGlobelocationserviceprovidesa novel approachto lo-
cating objectsin mobile computingandcomputation. Al-
thoughthe servicehasyet to be extensively testedin prac-
tice, simulationexperimentsandlocal implementationsin-
dicatethat the servicecanscaleefficiently worldwide. An
importantcomponentof the serviceis formed by pointer
caches.Furtherresearchandexperimentationis neededto
seewhetherandhow our cachingpolicy canindeedbe ef-
fectively andefficiently deployed.

We arecurrentlydevelopinga prototypeimplementation
of directorynodesthat canbeeasilytestedon the Internet.
To cometo thatpoint, our researchis currentlyconcentrat-
ing on minimal supportfor fault toleranceandsecurity. We
initially concentrateon an implementationthat cansupport
mobileandreplicatedWeb pages,andwhich canbeseam-
lesslyintegratedwith existingWebbrowsers.
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