
RESEARCH ARTICLE

Algorithmic differentiation improves the
computational efficiency of OpenSim-based
trajectory optimization of humanmovement

Antoine FalisseID
1☯*, Gil Serrancolı́2☯, Christopher L. Dembia3, Joris Gillis4,5, Friedl De

Groote1

1 Department of Movement Sciences, KU Leuven, Leuven, Belgium, 2 Department of Mechanical
Engineering, Universitat Politècnica de Catalunya, Barcelona, Catalunya, Spain, 3 Department of Mechanical

Engineering, Stanford University, Stanford, California, United States of America, 4 Department of Mechanical
Engineering, KU Leuven, Leuven, Belgium, 5 DMMS Lab, Flanders Make, Leuven, Belgium

☯ These authors contributed equally to this work.
* antoine.falisse@kuleuven.be

Abstract

Algorithmic differentiation (AD) is an alternative to finite differences (FD) for evaluating

function derivatives. The primary aim of this study was to demonstrate the computational

benefits of using AD instead of FD in OpenSim-based trajectory optimization of human

movement. The secondary aim was to evaluate computational choices including different

AD tools, different linear solvers, and the use of first- or second-order derivatives. First, we

enabled the use of AD in OpenSim through a custom source code transformation tool and

through the operator overloading tool ADOL-C. Second, we developed an interface between

OpenSim and CasADi to solve trajectory optimization problems. Third, we evaluated

computational choices through simulations of perturbed balance, two-dimensional predic-

tive simulations of walking, and three-dimensional tracking simulations of walking. We per-

formed all simulations using direct collocation and implicit differential equations. Using AD

through our custom tool was between 1.8 ± 0.1 and 17.8 ± 4.9 times faster than using FD,

and between 3.6 ± 0.3 and 12.3 ± 1.3 times faster than using AD through ADOL-C. The lin-

ear solver efficiency was problem-dependent and no solver was consistently more efficient.

Using second-order derivatives was more efficient for balance simulations but less efficient

for walking simulations. The walking simulations were physiologically realistic. These results

highlight how the use of AD drastically decreases computational time of trajectory optimiza-

tion problems as compared to more common FD. Overall, combining AD with direct colloca-

tion and implicit differential equations decreases the computational burden of trajectory

optimization of human movement, which will facilitate their use for biomechanical applica-

tions requiring the use of detailed models of the musculoskeletal system.

PLOSONE | https://doi.org/10.1371/journal.pone.0217730 October 17, 2019 1 / 19

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPEN ACCESS

Citation: Falisse A, Serrancolı́ G, Dembia CL, Gillis

J, De Groote F (2019) Algorithmic differentiation

improves the computational efficiency of OpenSim-

based trajectory optimization of humanmovement.

PLoS ONE 14(10): e0217730. https://doi.org/

10.1371/journal.pone.0217730

Editor:Manoj Srinivasan, The Ohio State

University, UNITED STATES

Received:May 15, 2019

Accepted: September 19, 2019

Published: October 17, 2019

Copyright: © 2019 Falisse et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data, code, and

materials used in this study are available at https://

simtk.org/projects/algodiff.

Funding: This work was supported by the

Research Foundation Flanders (https://www.fwo.

be/) under Ph.D. grant 1S35416N and travel grant

V441717N to AF, and research project grant

G079216N to FDG, and by the NIH research

infrastructure (https://orip.nih.gov/) under grant

P2C HD065690 to the National Center for

Simulation in Rehabilitation Research (NCSRR)

http://orcid.org/0000-0001-9541-0886
https://doi.org/10.1371/journal.pone.0217730
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217730&domain=pdf&date_stamp=2019-10-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217730&domain=pdf&date_stamp=2019-10-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217730&domain=pdf&date_stamp=2019-10-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217730&domain=pdf&date_stamp=2019-10-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217730&domain=pdf&date_stamp=2019-10-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217730&domain=pdf&date_stamp=2019-10-17
https://doi.org/10.1371/journal.pone.0217730
https://doi.org/10.1371/journal.pone.0217730
http://creativecommons.org/licenses/by/4.0/
https://simtk.org/projects/algodiff
https://simtk.org/projects/algodiff
https://www.fwo.be/
https://www.fwo.be/
https://orip.nih.gov/

Introduction

Combining musculoskeletal modeling and dynamic simulation is a powerful approach to

study the mechanisms underlying human movement. In the last decades, researchers have pri-

marily used inverse dynamic simulations to identify biomechanical variables (e.g., muscle

forces and joint loads) underlying observed movements. Yet dynamic simulations can also be

applied to generate novel movements. Such predictive simulations have the potential to reveal

cause-effect relationships that cannot be explored based on inverse dynamic simulations that

require movement kinematics as input. Novel movements can be generated by solving trajec-

tory optimization problems. Generally, trajectory optimization consists of identifying a trajec-

tory that optimizes an objective function subject to a set of dynamic and path constraints [1].

In the biomechanical field, researchers have used trajectory optimization for solving two main

types of problems. In tracking problems, the objective function is the difference between a var-

iable’s measured and simulated value [2–4], whereas in predictive problems, the objective

function represents a movement related performance criterion (e.g., minimizing muscle

fatigue) [5–8]. However, the nonlinearity and stiffness of the dynamic equations characterizing

the musculoskeletal system cause the underlying optimal control problems to be challenging

to solve and computationally expensive [5,7,8]. For example, small changes in controls can

cause large changes in kinematics and hence a foot to penetrate into the ground, drastically

increasing ground reaction forces. These challenges have caused the biomechanics community

to primarily perform studies based on inverse dynamic analyses of observed movements rather

than trajectory optimization of novel movements.

Over the last decade, the increase in computer performance and the use of efficient numeri-

cal methods have equipped researchers with more efficient tools for solving trajectory optimiza-

tion problems. In particular, direct collocation methods [4,6,8–11] and implicit formulations of

the musculoskeletal dynamics [10,12] have become popular. Direct collocation reduces the sen-

sitivity of the objective function to the optimization variables, compared to other methods such

as direct shooting [5], by reducing the time horizon of the integration. Direct collocation con-

verts optimal control problems into large sparse nonlinear programming problems (NLPs) that

readily available NLP solvers (e.g., IPOPT [13]) can solve efficiently. Implicit formulations of

the musculoskeletal dynamics improve the numerical conditioning of the NLP over explicit for-

mulations by, for example, removing the need to divide by small muscle activations [10] or

invert a mass matrix that is near-singular due to body segments with a large range of masses

and moments of inertia [12]. In implicit formulations, additional controls are typically intro-

duced for the time derivative of the states, which allows imposing the nonlinear dynamic equa-

tions as algebraic constraints in their implicit rather than explicit form (i.e., _y ¼ u; 0 = fi(y,u)

instead of _y ¼ feðyÞ).

Algorithmic differentiation (AD) is another numerical tool that can improve the efficiency

of trajectory optimization [14,15]. AD is a technique for evaluating derivatives of functions

represented by computer programs. It is, therefore, an alternative to finite differences (FD) for

evaluating the derivative matrices required by the NLP solver, namely the objective function

gradient, the constraint Jacobian, and the Hessian of the Lagrangian (henceforth referred to as

simply Hessian). These evaluations are obtained free of truncation errors, in contrast with FD,

and for a computational cost of the same order of magnitude as the cost of evaluating the origi-

nal function. AD relies on the observation that any function can be broken down into a

sequence of elementary operations, forming an expression graph (example in Fig 1). AD then

relies on the chain rule of calculus that describes how to calculate the derivative of a composi-

tion of functions [15]. By traversing a function’s expression graph while applying the chain

rule, AD allows computing the function derivatives. Note that, like FD, AD can exploit the

Algorithmic differentiation speeds up trajectory optimization of humanmovement

PLOSONE | https://doi.org/10.1371/journal.pone.0217730 October 17, 2019 2 / 19

that funded AF and GS as visiting scholars. CLD

received a Stanford Bio-X Graduate Fellowship

(https://biox.stanford.edu/). JG has benefited from

KU Leuven-BOF PFV/10/002 Centre of Excellence:

Optimization in Engineering (OPTEC, https://set.

kuleuven.be/optec) and from Flanders Make

(https://www.flandersmake.be) ICON

(DriveTrainCodesign). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0217730
https://biox.stanford.edu/
https://set.kuleuven.be/optec
https://set.kuleuven.be/optec
https://www.flandersmake.be

sparsity of the aforementioned derivative matrices resulting, for example, from applying direct

collocation [16].

AD allows traversing the expression graph in two directions or modes: from the inputs to

the outputs in its forward mode and from the outputs to the inputs in its reverse mode. This

permits the evaluation of two types of directional derivatives: Jacobian-times-vector product

and Jacobian-transposed-times-vector product in the forward and reverse mode, respectively.

The computational efficiency of the ADmode depends on the problem dimensions. Consider

the function G : Rn ! Rm : y ¼ GðxÞ describing themNLP constraints y as a function of the

n optimization variables x. The constraint Jacobian J = @y/@x is a matrix with sizem x n. In the

forward mode, J relates forward seeds _x to forward sensitivities _y : _y ¼ J _x (example in Fig 1).

In the reverse mode, JT relates reverse seeds �y to reverse sensitivities �x : �x ¼ JT�y (example in

Fig 1). In the forward mode, the cost of evaluating J is proportional to n times the cost of evalu-

ating G. In the reverse mode, the cost of evaluating JT is proportional tom times the cost of

evaluating G. If there are many more inputs n than outputsm, the reverse mode may drasti-

cally decrease the number of function evaluations required to evaluate J and highly reduce the

computational time (CPU time) as compared to the forward mode [15,17].

Two main approaches exist for adding AD to existing software, namely operator overload-

ing and source code transformation. Source code transformation is inherently faster than

operator overloading but may not be readily available for all features of a programming lan-

guage. In the operator overloading approach, AD’s algorithms are applied after the evaluation

of the original function using concrete numerical inputs. This is typically performed by intro-

ducing a new numerical type that stores information about partial derivatives as calculations

proceed (e.g., through operator overloading in C++) [15,17]. Examples of AD tools using oper-

ator overloading in C++ are ADOL-C [18] and CppAD [19]. In the source code transforma-

tion approach, the AD tool analyzes a given function’s source code and outputs a new function

Fig 1. Example of AD forward and reverse modes.A function y = f(x1,x2) = cos x2−x2x1 is broken down into a
sequence of elementary operations, forming an expression graph. In the forward mode, the forward seeds _x1 and _x2 are
propagated from the inputs to the output, and the Jacobian J = @f/@x relates _x1 and _x2 to the forward sensitivity _y. In
the reverse mode, the reverse seed �y is propagated from the output to the inputs, and the transposed Jacobian JT relates
�y to the reverse sensitivities �x

1 and �x2.

https://doi.org/10.1371/journal.pone.0217730.g001

Algorithmic differentiation speeds up trajectory optimization of humanmovement

PLOSONE | https://doi.org/10.1371/journal.pone.0217730 October 17, 2019 3 / 19

https://doi.org/10.1371/journal.pone.0217730.g001
https://doi.org/10.1371/journal.pone.0217730

that computes the forward or reverse mode of that function. Examples of AD tools using

source code transformation are ADiGator for MATLAB [20] and CasADi that is available for

C++, Python, and MATLAB [21]. CasADi is a modern actively developed tool for nonlinear

optimization and AD that has many additional features (e.g., code generation) and interfaces

with NLP solvers designed to handle large and sparse NLPs (e.g., IPOPT). CasADi provides a

high-level, symbolic, way to construct an expression graph, on which source code transforma-

tion is applied. The resultant expression graph can be code-generated to achieve the computa-

tional efficiency of pure source code transformation.

AD has a long history [14] but has rarely been applied in biomechanics, likely because AD

is relatively unknown in the field and is not integrated as part of widely used biomechanical

software packages. In previous work, we solved muscle redundancy problems while exploiting

AD [10,22]. For this purpose, we used GPOPS-II [23], a MATLAB software for solving optimal

control problems with direct collocation, in combination with ADiGator. However, these

problems were limited to models implemented in MATLAB, enabling the use of ADiGator.

Generating simulations of human movement requires expanding these problems to account

for the multi-body dynamics. OpenSim [24,25] and its dynamics engine Simbody [26] are

widely used open-source software packages for musculoskeletal modeling and biomechanical

dynamic simulation. These packages provide multi-body dynamics models and have been

used for trajectory optimization of human gait [3,4,8,11]. Yet they currently do not leverage

tools for AD. Moreover, they are written in C++, which would prevent the use of ADiGator.

AD is increasingly used for trajectory optimization in related fields such as rigid body

dynamics for robotic applications and several software packages leverage AD tools [27]. Rob-

CoGen is a modeling tool for rigid body dynamics that supports AD through source code

transformation. Giftthaler et al. showed that trajectory optimization of gait for a quadrupedal

robot modeled with RobCoGen was five times faster with AD than with FD [27]. Other pack-

ages for robotic applications with modules supporting AD include Drake [28], Robotran [29],

MBSlib [30], and Pinocchio [31]. Drake is a collection of tools that relies on Eigen [32] for lin-

ear algebra. Eigen has a module supporting AD’s forward mode using operator overloading.

Robotran is a symbolic software to model multibody systems that can be interfaced with

CasADi to solve optimal control problems. MBSlib is a multibody system library supporting

AD through ADOL-C. Finally, Pinocchio is a software platform implementing algorithms for

rigid body dynamics that can be interfaced with ADOL-C, CppAD, and CasADi. Note that

AD is not exclusively used for trajectory optimization and is also applied in other related fields

including deep learning with libraries such as TensorFlow [33] and Theano [34], and applica-

tions for robotic gait optimization (e.g., [35]).

The contribution of this study is threefold. First, we enabled the use of AD in OpenSim and

Simbody (henceforth referred to as OpenSim). We compared two approaches: we incorpo-

rated the operator overloading AD tool ADOL-C and we developed our own AD tool Recorder

that uses operator overloading to construct an expression graph on which source code trans-

formation is applied using CasADi. Second, we interfaced OpenSim with CasADi, enabling

trajectory optimization using OpenSim’s multi-body dynamics models while benefitting from

CasADi’s efficient interface with NLP solvers. Third, we evaluated the efficiency of different

computational choices based on trajectory optimization problems of varying complexity

solved with IPOPT. We compared three different derivative scenarios: AD with ADOL-C, AD

with Recorder, and FD. In addition, we compared different linear solvers and different Hessian

calculation schemes within IPOPT, to aid users in choosing the most efficient solver settings.

Primal-dual interior point methods such as IPOPT rely on linear solvers to solve the primal-

dual system, which involves the Hessian, when computing the Newton step direction during

the optimization [36]. The Hessian can be exact (i.e., based on second-order derivative

Algorithmic differentiation speeds up trajectory optimization of humanmovement

PLOSONE | https://doi.org/10.1371/journal.pone.0217730 October 17, 2019 4 / 19

https://doi.org/10.1371/journal.pone.0217730

information) or approximated with a limited-memory quasi-Newton method (L-BFGS) that

only requires first-order derivative information. We found that using AD through Recorder

was more efficient than using FD or AD through ADOL-C, whereas the efficiency of the linear

solver and Hessian calculation scheme was problem-dependent.

Materials andmethods

Tools to enable the use of AD in OpenSim

We first incorporated the operator overloading AD tool ADOL-C in OpenSim. ADOL-C relies

on the concept of active variables, which are variables that may be considered as differentiable

quantities at some time during the execution of a computer program [18]. To distinguish these

variables and store information about their partial derivatives, ADOL-C introduced the aug-

mented scalar type adouble whose real part is of standard type double. All active variables

should be of type adouble. To differentiate OpenSim functions using ADOL-C, we modified

OpenSim’s source code by replacing the type of potential active variables to adouble (example

for SimTK::square() in Fig 2). We maintained a layer of indirection so that OpenSim could be

compiled to use either double or adouble as the scalar type. We excluded parts of the code,

such as numerical optimizers, that were not relevant to this study.

The limited computational benefits of using AD through ADOL-C led us to seek alternative

AD strategies (see discussion for more detail). We developed our own tool, Recorder, which

combines the versatility of operator overloading and the speed of source code transformation.

Recorder is a C++ scalar type for which all operators are overloaded to generate an expression

graph. When evaluating an OpenSim function numerically at a nominal point, Recorder gen-

erates the function’s expression graph as MATLAB source code in a format that CasADi’s AD

algorithms can transform into C-code (see S1 Appendix for source code from the example of

Fig 1). Note that this workflow is currently only practical when the branches (if-tests)

Fig 2. Flowchart depicting the optimal control framework.We developed two approaches (AD-ADOLC and AD-Recorder) to make an OpenSim function F and
its forward (F fwd) and reverse (F rev) directional derivatives available within the CasADi environment for use by the NLP solver during the optimization. In the
AD-ADOLC approach (top), ADOL-C’s algorithms are used in a C++ code to provide F fwd and F rev. In the AD-Recorder approach (bottom), Recorder provides
the expression graph of F as MATLAB source code from which CasADi’s C-code generator generates C-code containing F, F fwd, and F rev. The AD-Recorder
approach combines operator overloading, when generating the expression graph, and source code transformation, when processing the expression graph to
generate C-code for F, F fwd, and F rev. In both approaches, the code comprising F, F fwd, and F rev is compiled as a Dynamic-link Library (DLL), which is
imported as an external function within the CasADi environment. In our application, F represents the multi-body dynamics and is called when formulating the
optimal control problem. The latter is then composed into a differentiable optimal control transcription using CasADi. During the optimization, CasADi provides
the NLP solver with evaluations of the NLP objective function (nlp f), constraints (nlp g), objective function gradient (nlp grad f), constraint Jacobian (nlp jac g),
and Hessian of the Lagrangian (nlp hess l). CasADi efficiently queries F fwd and F rev to construct the full derivative matrices.

https://doi.org/10.1371/journal.pone.0217730.g002

Algorithmic differentiation speeds up trajectory optimization of humanmovement

PLOSONE | https://doi.org/10.1371/journal.pone.0217730 October 17, 2019 5 / 19

https://doi.org/10.1371/journal.pone.0217730.g002
https://doi.org/10.1371/journal.pone.0217730

encountered at the nominal point remain valid for all evaluations encountered during the

optimization.

To use Recorder with OpenSim, we relied on the code we had modified for incorporating

ADOL-C but replaced adouble with the Recorder scalar type (example for SimTK::square() in

Fig 2). This change required minimal effort but enabled Recorder to identify all differentiable

variables when constructing the expression graphs.

Interface between OpenSim and CasADi

We enabled the use of OpenSim functions within the CasADi environment by compiling the

functions and their derivatives as Dynamic-link Libraries that are then imported as external

functions for use by CasADi (Fig 2). The function derivatives can be computed through

ADOL-C (AD-ADOLC in Fig 2) or through Recorder (AD-Recorder in Fig 2).

Trajectory optimization problems to evaluate computational choices

We designed three example trajectory optimization problems to evaluate different computa-

tional choices (see Tables 1–3 for detailed formulations). The general formulation of the opti-

mal control problems consists of computing the controls u(t), states x(t), and time-

independent parameters pminimizing an objective functional:

J ¼
R tf
ti
LðxðtÞ; uðtÞ; pÞdt; ð1Þ

where ti and tf are initial and final times, and t is time [37]. This objective functional is subject

Table 1. Formulation of example 1.

Pendulum simulations

Number of
optimization variables

2 degree of freedom pendulum: 504
3 degree of freedom pendulum: 756
4 degree of freedom pendulum: 1008
5 degree of freedom pendulum: 1260
6 degree of freedom pendulum: 1512
7 degree of freedom pendulum: 3514
8 degree of freedom pendulum: 4016
9 degree of freedom pendulum: 4518
10 degree of freedom pendulum: 10020

Number of equality constraints 2 degree of freedom pendulum: 458
3 degree of freedom pendulum: 687
4 degree of freedom: pendulum 916
5 degree of freedom pendulum: 1145
6 degree of freedom pendulum: 1374
7 degree of freedom pendulum: 3178
8 degree of freedom pendulum: 3632
9 degree of freedom pendulum: 4086
10 degree of freedom pendulum: 9040

States
x(t)

Joint positions q and velocities v Controls
u(t)

Derivatives of v (accelerations): udv
Joint torques uT

Bounds �3p ¼ qlb � q � qub ¼ 3p

�20 ¼ vlb � v � vub ¼ 20

�500 ¼ udv;lb � udv � udv;ub ¼ 500

�1000 ¼ uT;lb � uT � uT;ub ¼ 1000

Scaling sq ¼ 3; ~q ¼ q=sq; ~q lb ¼ qlb=sq; ~qub ¼ qub=sq
st ¼ 0:2; ~v ¼ v=ðsq=stÞ; ~v lb ¼ vlb=ðsq=stÞ; ~vub ¼ vub=ðsq=stÞ

~udv ¼ udv=ðsq=st
2Þ; ~udv;lb ¼ udv;lb=ðsq=st

2Þ; udv;ub ¼ udv;ub=ðsq=st
2Þ

sT ¼ 500; ~uT ¼ uT=sT ; ~uT;lb ¼ uT;lb=sT ; ~uT;ub ¼ uT;ub=sT

Objective
function

L ¼ k~uTk
2

2
þ Lp

Lp ¼ 0:1k~udvk
2

2

Dynamic constraints ðdqdtÞ=sq ¼ v=sq
ðdv=dtÞ=ðsq=stÞ ¼ udv=ðsq=stÞ

Path
constraints

T ¼ fsðq; v; udvÞ
T=sT ¼ ~uT

~qð0Þ ¼ ~qð1Þ ¼ ~vð0Þ ¼ ~vð1Þ ¼ 0

Controls: we introduced accelerations (time derivative of velocities) as controls (implicit formulations) in addition to joint torques. Bounds: lb and ub are for lower and

upper bounds, respectively. Scaling: we used time scaling for the joint states and controls.Objective function: to avoid singular arcs, situations for which controls are

not uniquely defined by the optimality conditions [37], we appended a penalty function Lp with the remaining controls to the objective function L. Dynamic constraints

are scaled using the same scale factors as used for the states [37]. We used implicit formulations. Path constraints: fs(�) computes net joint torques T according to the

skeleton dynamics.

https://doi.org/10.1371/journal.pone.0217730.t001

Algorithmic differentiation speeds up trajectory optimization of humanmovement

PLOSONE | https://doi.org/10.1371/journal.pone.0217730 October 17, 2019 6 / 19

https://doi.org/10.1371/journal.pone.0217730.t001
https://doi.org/10.1371/journal.pone.0217730

to dynamic constraints:

_xðtÞ ¼ f ðxðtÞ; uðtÞ; pÞ; ð2Þ

and to algebraic path constraints:

gmin � gðxðtÞ; uðtÞ; pÞ � gmax; ð3Þ

which are equality constraints if gmin = gmax. The optimization variables are typically bounded

as follows:

xmin � xðtÞ � xmax; ð4Þ

umin � uðtÞ � umax; ð5Þ

pmin � p � pmax: ð6Þ

In the first example, we perturbed the balance of nine inverted pendulums, with between

two and 10 degrees of freedom, by applying a backward translation to their base of support.

The optimal control problem identified the joint torques necessary to restore the pendulums’

Table 2. Formulation of example 2.

2D predictive simulations of walking

Number of
optimization variables

13807 Number of
constraints

12857 equality constraints, 1800 inequality constraints

States
x(t)

Muscle activations a and tendon forces Ft
Joint positions q and velocities v

Trunk activations atrunk

Controls
u(t)

Derivatives of a: uda and Ft: udFt
Derivatives of v (accelerations): udv

Trunk excitations etrunk

Parameters
p

Half gait cycle duration tf Scaling sq ¼ maxðabsðqlbÞ; absðqubÞÞ; ~q ¼ q=sq; ~q lb ¼ qlb=sq; ~qub ¼ qub=sq
sv ¼ maxðabsðvlbÞ; absðvubÞÞ; ~v ¼ v=sv; ~v lb ¼ vlb=sv; ~vub ¼ vub=sv

sudv ¼ maxðabsðudv;lbÞ; absðudv;ubÞÞ; ~udv ¼ udv=sudv
~udv;lb ¼ udv;lb=sudv ; ~udv;ub ¼ udv;ub=sudv
sda ¼ sdFt ¼ 100; strunk ¼ 150

sFt ¼ Ft;ub;
~F t ¼ Ft=sFt ;

~F t;ub ¼ Ft;ub=sFt

Bounds 0 � a � 1; 0 � Ft � Ft;ub ¼ 5; 0:1 � tf � 1

�td=100 � uda � ta=100; td ¼ 60ms; ta ¼ 15ms

�1 � udFt ; atrunk; etrunk � 1

qlb;man ¼ qlb � q � qub ¼ qub;man

vlb;man ¼ vlb � v � vub ¼ vub;man

udv;lb;man ¼ udv;lb � udv � udv;ub ¼ udv;ub;man

Objective
function

L ¼ ðw1kak
3

3
þ w2ketrunkk

2

2
þ w3k~udvk

2

2
þ LpÞ=d

Lp ¼ 0:001ðkudak
2

2
þ kudFtk

2

2
Þ

Dynamic
constraints

da=dt ¼ sdauda
ðdFt=dtÞ=sFt ¼ ðsdFtudFt Þ=sFt

ðdq=dtÞ=sq ¼ v=sq
ðdv=dtÞ=sv ¼ udv=sv

datrunk=dt ¼ ðetrunk � atrunkÞ=t; t ¼ 35ms

Path
constraints

0 � sdauda þ a=td
sdauda þ a=ta � 1=ta
fcða; Ft ; udFt Þ ¼ 0

T ¼ fsðq; v; udvÞ
Tpelvis ¼ 0

Tll ¼
PM

m¼1
MAmFt;m

Ttrunk=strunk ¼ atrunk
�xðtf Þ ¼ �xð0Þ

ðqpelvis;forðtf Þ � qpelvis;forð0ÞÞ=tf ¼ 1:33

Controls are introduced for the time derivative of the states (implicit formulations) in addition to trunk excitations. Bounds are manually (man) set for the joint states

and controls; lb and ub are for lower and upper bounds, respectively. Scaling: joint states and controls, and tendon forces are scaled such that the lower and upper

bounds are between -1 and 1.Objective function L is normalized by distance traveled d. To avoid singular arcs [37], a penalty function Lp (with low weight) with the

remaining controls is appended to L. Dynamic constraints are scaled using the scale factors used for the states [37]. Path constraints: fs(�) computes net joint torques T

according to the skeleton dynamics, fc(�) describes the Hill-type muscle contraction dynamics [10],MAm is moment arm of musclem; �xð�Þ contains all states except the

pelvis forward position qpelvis,for (symmetry), and 1.33 m s-1 is the prescribed gait speed.

https://doi.org/10.1371/journal.pone.0217730.t002

Algorithmic differentiation speeds up trajectory optimization of humanmovement

PLOSONE | https://doi.org/10.1371/journal.pone.0217730 October 17, 2019 7 / 19

https://doi.org/10.1371/journal.pone.0217730.t002
https://doi.org/10.1371/journal.pone.0217730

T
ab
le
3
.
F
o
rm

u
la
ti
o
n
o
f
ex
am

p
le
3
.

3
D
tr
ac
k
in
g
si
m
u
la
ti
o
n
s
o
f
w
al
k
in
g

N
u
m
b
er

o
f

o
p
ti
m
iz
at
io
n

va
ri
ab
le
s

61
31
8

N
u
m
b
er

o
f

co
n
st
ra
in
ts

56
05
0
eq
u
al
it
y
co
n
st
ra
in
ts
,9
20
0
in
eq
u
al
it
y
co
n
st
ra
in
ts

S
ta
te
s

x
(t
)

M
u
sc
le
ac
ti
va
ti
o
n
s
a
an
d
te
n
d
o
n
fo
rc
es
F
t

Jo
in
t
p
o
si
ti
o
n
s
q
an
d
ve
lo
ci
ti
es
v

A
rm

ac
ti
va
ti
o
n
s
a
a
rm

s

C
o
n
tr
o
ls

u
(t
)

D
er
iv
at
iv
es

o
f
a
:u
d
a
an
d
F
t:
u
d
F
t

D
er
iv
at
iv
es

o
f
v
(a
cc
el
er
at
io
n
s)
:u
d
v

A
rm

ex
ci
ta
ti
o
n
s
e a
rm

s

P
ar
am

et
er
s

p

C
o
n
ta
ct
sp
h
er
e
tr
an
sv
er
sa
lp
la
n
e
lo
ca
ti
o
n
s
p
cl

C
o
n
ta
ct
sp
h
er
e
ra
d
ii
p c
r

S
ca
li
n
g

s q
¼

m
ax
ða
b
sð
q l
b
Þ;
ab
sð
q u
b
ÞÞ
;
~ q
¼
q=
s q
;
~ q
lb
¼
q l
b
=
s q
;

~q
u
b
¼
q u
b
=
s q

s v
¼

m
ax
ða
b
sð
v l
b
Þ;
ab
sð
v u
b
ÞÞ
;
~v
¼
v=
s v
;
~v
lb
¼
v l
b
=
s v
;

~v
u
b
¼
v u
b
=
s v

s u
d
v
¼

m
ax
ða
b
sð
u
d
v;
lb
Þ;
ab
sð
u
d
v;
u
b
ÞÞ
;
~u
d
v
¼
u
d
v
=
s u
d
v

~u
d
v;
lb
¼
u
d
v;
lb
=
s u
d
v
;
~u
d
v;
u
b
¼
u
d
v;
u
b
=
s u
d
v

s d
a
¼
s d
F
t
¼

1
0
0
;
s T

¼
s a
rm

s
¼

1
5
0

s F
t
¼
F
t;
u
b
;
~ F
t
¼
F
t=
s F
t
;
~ F
t;
u
b
¼
F
t;
u
b
=
s F
t

~ p
cl
;v
¼

1
=
ðp
cl
;u
b
�
p c
l;
lb
Þ;

~ p
cl
;r
¼

0
:5
�
p
cl
;u
b
=
ðp
cl
;u
b
�
p c
l;
lb
Þ

~ p
cr
;v
¼

1
=
ðp
cr
;u
b
�
p c
r;
lb
Þ;

~ p
cr
;r
¼

0
:5
�
p
cr
;u
b
=
ðp
cr
;u
b
�
p c
r;
lb
Þ

~ p
cl
;l
b
¼

~ p
cr
;l
b
¼

�
0
:5
;
~ p
cl
;u
b
¼

~ p
cr
;u
b
¼

0
:5

B
o
u
n
d
s

0
�
a
�

1
;
0
�
F
t
�
F
t;
u
b
¼

5

�
t
d
=
1
0
0
�
u
d
a
�

t
a
=
1
0
0
;
t
d
¼

6
0
m
s;

t
a
¼

1
5
m
s

�
1
�
u
d
F
t
;a

ar
m
s;
e a

rm
s
�

1

bq m
in
�
bq r

¼
q l
b
�
q
�
q
u
b
¼

bq m
ax
þ
bq r

b v m
in
�
b v r

¼
v l
b
�
v
�
v u
b
¼

b v m
ax
þ
b v r

b u d
v;
m
in
�

b u d
v;
r
¼
u
d
v;
lb
�
u
d
v
�
u
d
v;
u
b
¼

b u d
v;
m
ax
þ

b u d
v;
r

b p c
i
�
0
:0
2
5
¼
p
cl
;l
b
�
p c
l
�
p
cl
;u
b
¼

b p c
i
þ
0
:0
2
5

b p c
r
�
0
:5
b p c
r
¼
p
cr
;l
b
�
p
cr
�
p c
r;
u
b
¼

b p c
r
þ
0
:5
b p c
r

O
b
je
ct
iv
e

fu
n
ct
io
n

L
¼
w

1
k
a
k2 2

þ
w

2
k
q
�
bqk

2 2
þ
w

3
k
G
R
F
�

d GR
F
k
2 2
þ
w

4
k
G
R
T
�

d GR
T
k2 2

þ
w

5
k
T
ll
;t
ru
n
k
;a
rm

s
�

b T l
l;
tr
u
n
k
;a
rm
sk

2 2
þ
L
p

L
p
¼

0
:0
0
1
ðk
u
d
a
k2 2

þ
k
u
d
F
t
k2 2

þ
k
u
d
v
k2 2
Þ

D
yn

am
ic

co
n
st
ra
in
ts

d
a
=
d
t
¼
s d
a
u
d
a

ðd
F
t=
d
tÞ
=
s F
t
¼

ðs
d
F
t
u
d
F
t
Þ=
s F
t

ðd
q=
d
tÞ
=
s q
¼
v=
s q

ðd
v=
d
tÞ
=
s v
¼
u
d
v
=
s v

d
a
ar
m
s=
d
t
¼

ðe
ar
m
s
�
a
ar
m
sÞ
=
t
;
t
¼

3
5
m
s

P
at
h

co
n
st
ra
in
ts

0
�
s d
a
u
d
a
þ
a
=
t
d

s d
a
u
d
a
þ
a
=
t
a
�

1
=
t
a

f c
ða
;F
t;
u
d
F
t
Þ
¼

0

T
¼
f s
ðq
;v
;u
d
v
Þ

T
p
el
vi
s
=
s T

¼
b T p

el
vi
s
=
s T

T
ll
;t
ru
n
k
¼

P
M m
¼
1
M
A
m
F
t;
m
þ
T
p

T
ar
m
s=
s a
rm

s
¼
a
ar
m
s

C
o
n
tr
o
ls
ar
e
in
tr
o
d
u
ce
d
fo
r
th
e
st
at
e
d
er
iv
at
iv
es

in
ad
d
it
io
n
to

ar
m

ex
ci
ta
ti
o
n
s.
B
o
u
n
d
s
o
f
jo
in
t
st
at
es

an
d
co
n
tr
o
ls
ar
e
b
as
ed

o
n
m
ea
su
re
d
d
at
a
(bq
;
bu;

bu d
v
);
m
in

an
d
m
ax

ar
e
fo
r
m
in
im

u
m

an
d

m
ax
im

u
m

va
lu
es
,r
es
p
ec
ti
ve
ly
;r

is
ra
n
ge

o
f
m
o
ti
o
n
;l
b
an
d
u
b
ar
e
fo
r
lo
w
er

an
d
u
p
p
er

b
o
u
n
d
s,
re
sp
ec
ti
ve
ly
;b
o
u
n
d
s
o
f
co
n
ta
ct
p
ar
am

et
er
s
(p
cl
,p
cr
)
ar
e
b
as
ed

o
n
[4
].
S
ca
li
n
g
:j
o
in
t
st
at
es

an
d
co
n
tr
o
ls
,

an
d
te
n
d
o
n
fo
rc
es

ar
e
sc
al
ed

su
ch

th
at
th
e
lo
w
er

an
d
u
p
p
er

b
o
u
n
d
s
ar
e
b
et
w
ee
n
-1

an
d
1;
co
n
ta
ct
p
ar
am

et
er
s
ar
e
sc
al
ed

su
ch

th
at
th
ei
r
lo
w
er

an
d
u
p
p
er

b
o
u
n
d
s
ar
e
-0
.5
an
d
0.
5,
re
sp
ec
ti
ve
ly
.

O
b
je
ct
iv
e
fu
n
ct
io
n
L
tr
ac
k
s
m
ea
su
re
d
jo
in
t
p
o
si
ti
o
n
s
(bq
),
gr
o
u
n
d
re
ac
ti
o
n
fo
rc
es

(
d GR
F
)
an
d
to
rq
u
es

(
d GR
T
),
an
d
jo
in
t
to
rq
u
es

o
f
th
e
lo
w
er

li
m
b
s,
tr
u
n
k
,a
n
d
ar
m
s
(b T

ll
;t
ru
n
k
;a
rm

s)
.A

p
en
al
ty
fu
n
ct
io
n
L
p

is
ap
p
en
d
ed

to
L
.D

yn
am

ic
co
n
st
ra
in
ts
ar
e
sc
al
ed

u
si
n
g
sc
al
e
fa
ct
o
rs
u
se
d
fo
r
th
e
st
at
es

[3
7]
.P

at
h
co
n
st
ra
in
ts
:f
s(
�)
co
m
p
u
te
s
n
et
jo
in
t
to
rq
u
es
T
ac
co
rd
in
g
to

th
e
sk
el
et
o
n
d
yn

am
ic
s,
f c
(�
)
d
es
cr
ib
es

th
e
H
il
l-
ty
p
e
m
u
sc
le
co
n
tr
ac
ti
o
n
d
yn

am
ic
s
[1
0]
,M
A
m
is
m
o
m
en
t
ar
m

o
f
m
u
sc
le
m
,a
n
d
T
p
ar
e
p
as
si
ve

to
rq
u
es

[5
].

ht
tp
s:
//
do
i.o
rg
/1
0.
13
71
/jo
ur
na
l.p
on
e.
02
17
73
0.
t0
03

Algorithmic differentiation speeds up trajectory optimization of humanmovement

PLOSONE | https://doi.org/10.1371/journal.pone.0217730 October 17, 2019 8 / 19

https://doi.org/10.1371/journal.pone.0217730.t003
https://doi.org/10.1371/journal.pone.0217730

upright posture within one second while minimizing the actuator effort (i.e., squared joint tor-

ques) and satisfying the pendulum dynamics.

In the second example, we performed predictive simulations of walking with a two-dimen-

sional (2D) musculoskeletal model (10 degrees of freedom, 18 muscles actuating the lower

limbs, one ideal torque actuator at the trunk, and two contact spheres per foot [24]). We iden-

tified muscle excitations and half walking cycle duration that minimized a weighted sum of

muscle fatigue (i.e., muscle activations at the third power [6]) and joint accelerations subject to

constraints describing the musculoskeletal dynamics, imposing left-right symmetry, and pre-

scribing gait speed (i.e., distance travelled by the pelvis divided by gait cycle duration). Impos-

ing left-right symmetry allowed us to only optimize for half a gait cycle.

In the third example, we performed tracking simulations of walking with a three-dimen-

sional (3D) musculoskeletal model (29 degrees of freedom, 92 muscles actuating the lower

limbs and trunk, eight ideal torque actuators at the arms, and six contact spheres per foot

[4,24,38]) while calibrating the foot-ground contact model. We identified muscle excitations

and contact sphere parameters (locations and radii) that minimized a weighted sum of muscle

effort (i.e., squared muscle activations) and the difference between measured and simulated

variables (joint angles and torques, and ground reaction forces and torques) while satisfying

the musculoskeletal dynamics. Data collection was approved by the Ethics Committee at UZ /

KU Leuven (Belgium).

In these examples, we modeled pendulum/skeletal movement with Newtonian rigid body

dynamics and, for the walking simulations, compliant Hunt-Crossley foot-ground contact

[24,26]. We created a continuous approximation of a contact model from Simbody to provide

twice continuously differentiable contact forces, which are required when using second-order

gradient-based optimization algorithms [39]. We performed the approximations of condi-

tional if-tests using hyperbolic tangent functions. For the muscle-driven walking simulations,

we described muscle activation and contraction dynamics using Raasch’s model [9,40] and a

Hill-type muscle model [10,41], respectively. We defined muscle-tendon lengths, velocities,

and moment arms as a function of joint positions and velocities using polynomial functions

[42]. We optimized the polynomial coefficients to fit muscle-tendon lengths and moment

arms (maximal root mean square deviation: 3 mm; maximal order: ninth) obtained from

OpenSim for a wide range of joint positions.

We transcribed each optimal control problem into a NLP using a third order Radau

quadrature collocation scheme. We formulated each problem in MATLAB using CasADi

and IPOPT. We imposed an NLP relative error tolerance of 1 x 10−6 and used an adaptive

barrier parameter update strategy. We selected a number of mesh intervals for each problem

such that the results were qualitatively similar when using a mesh twice as fine. We used 10

and three initial guesses for the pendulum and walking simulations, respectively. We ran all

simulations on a single core of a standard laptop computer with a 2.9 GHz Intel Core i7

processor.

Table 4. Numerical tools.

NLP solver Linear solvers AD approaches

IPOPT Mumps Operator overloading
(ADOL-C)HSL collection ma27

ma57
ma77
ma86
ma97

Source code transformation
(Recorder)

https://doi.org/10.1371/journal.pone.0217730.t004

Algorithmic differentiation speeds up trajectory optimization of humanmovement

PLOSONE | https://doi.org/10.1371/journal.pone.0217730 October 17, 2019 9 / 19

https://doi.org/10.1371/journal.pone.0217730.t004
https://doi.org/10.1371/journal.pone.0217730

Results analysis

We compared CPU time and number of iterations required to solve the problems using the

different computational choices. First, we compared AD, using the Recorder approach, with

FD. Second, we compared the AD approaches, namely AD-Recorder and AD-ADOLC. We

performed these two comparisons using the linear solver mumps [43], which CasADi pro-

vides, and an approximated Hessian. Third, we compared different linear solvers, namely

mumps with the collection of solvers from HSL (ma27, ma57, ma77, ma86, and ma97) [44],

Fig 3. Comparison of computational time (top) and number of iterations (bottom) between FD, AD-ADOLC,
and AD-Recorder. The comparisons are expressed as ratios and averaged over results from different initial guesses
(error bars represent ± one standard deviation). The horizontal lines indicate 1:1 ratios. Ratios larger than one indicate
slower convergence (top) and more iterations (bottom) with FD or AD-ADOLC as compared to AD-Recorder. Pend
indicates pendulum simulations with the number being the number of degrees of freedom; Pred and Track indicate
predictive and tracking simulations, respectively. The results were obtained using mumps and an approximated
Hessian.

https://doi.org/10.1371/journal.pone.0217730.g003

Table 5. Comparison of computational time, number of iterations, and computational time per iteration between linear solvers.

Solver
� vs

mumps

Pendulum simulations 2D predictive simulations 3D tracking simulations

CPU time Iteration
Number

CPU time per
Iteration

CPU time Iteration
Number

CPU time per
Iteration

CPU time Iteration
Number

CPU time per
Iteration

�ma27 0.6 ±
0.1

1.0 ± 0.0 0.6 ± 0.1 1.0 ± 0.3 1.4 ± 0.3 0.7 ± 0.1 0.7 ± 0.2 0.9 ± 0.3 0.7 ± 0.0

�ma57 0.6 ± 0.0 1.0 ± 0.0 0.6 ± 0.0 2.4 ± 2.5 2.8 ± 2.8 0.8 ± 0.0 / / /
�ma77 0.9 ± 0.1 1.0 ± 0.0 0.9 ± 0.0 1.3 ± 0.0 1.2 ± 0.0 1.1 ± 0.0 0.5 ± 0.2 0.7 ± 0.3 0.7 ± 0.0
�ma86 1.1 ± 0.1 1.0 ± 0.0 1.1 ± 0.1 2.1 ± 0.5 1.1 ± 0.1 1.8 ± 0.3 2.3 ± 0.0 1.9 ± 0.0 1.2 ± 0.0
�ma97 0.7 ± 0.0 1.0 ± 0.0 0.7 ± 0.0 1.2 ± 0.3 1.2 ± 0.1 1.0 ± 0.2 / / /

The comparisons are expressed as ratios (mean ± one standard deviation; results obtained with solver from the HSL collection over results obtained with mumps
� indicates ma27, ma57, ma77, ma86, or ma97).

The ratios are averaged over results from different initial guesses. Ratios larger than one indicate faster convergence, fewer iterations, or less time per iteration with

mumps. The use of the solvers ma57 and ma97 led to memory issues for the 3D tracking simulations and these cases were therefore excluded from the analysis. The

simulations were run using AD-Recorder and an approximated Hessian.

https://doi.org/10.1371/journal.pone.0217730.t005

Algorithmic differentiation speeds up trajectory optimization of humanmovement

PLOSONE | https://doi.org/10.1371/journal.pone.0217730 October 17, 2019 10 / 19

https://doi.org/10.1371/journal.pone.0217730.g003
https://doi.org/10.1371/journal.pone.0217730.t005
https://doi.org/10.1371/journal.pone.0217730

while using AD-Recorder and an approximated Hessian. Finally, we compared the use of

approximated and exact Hessians. For this last comparison, we used AD-Recorder and tested

all linear solvers. In all cases, we ran simulations from different initial guesses and compared

results from simulations that started from the same initial guess and converged to similar opti-

mal solutions. Table 4 distinguishes the numerical tools used in our analyses.

Results

Using AD-Recorder was computationally more efficient than using FD or AD-ADOLC (Fig

3). The CPU time decreased when using AD-Recorder as compared to FD (between 1.8 ± 0.1

and 17.8 ± 4.9 times faster with AD-Recorder) and AD-ADOLC (between 3.6 ± 0.3 and

12.3 ± 1.3 times faster with AD-Recorder). CPU time spent in evaluating the objective function

gradient accounted for 95 ± 10% (average ± standard deviation) of the difference in CPU time

between AD-Recorder and FD. The difference in CPU time spent in evaluating the constraint

Jacobian accounted for 89 ± 6% of the difference in CPU time between AD-Recorder and

AD-ADOLC. The number of iterations was similar when using AD-Recorder, FD, and AD-A-

DOLC. For the 2D predictive and 3D tracking simulations, one and two cases, respectively,

out of nine (three derivative scenarios and three initial guesses) were excluded from the com-

parison as they converged to different solutions.

The solvers from the HSL collection were on average more efficient (faster with a similar

number of iterations) than mumps for the pendulum simulations, but the efficiency varied for

the 2D predictive and 3D tracking simulations (Table 5). The solver ma27 was on average

faster than mumps in all cases although ma27 required more iterations for the 2D predictive

simulations. The other solvers from the HSL collection were on average slower than mumps

for the 2D predictive simulations. For the 3D tracking simulations, the solvers ma77 and ma86

were faster and slower, respectively, than mumps. The solvers ma57 and ma97 failed to solve

Fig 4. Comparison of computational time (top) and number of iterations (bottom) between exact and
approximated Hessian. The comparisons are expressed as ratios and averaged over results from different initial
guesses (error bars represent ± one standard deviation). The horizontal lines indicate 1:1 ratios. Ratios larger than one
indicate slower convergence (top) and more iterations (bottom) with an exact versus an approximated Hessian. Pend
indicates pendulum simulations with the number being the number of degrees of freedom; Pred and Track indicate
predictive and tracking simulations, respectively. The results were obtained using all solvers and AD-Recorder.

https://doi.org/10.1371/journal.pone.0217730.g004

Algorithmic differentiation speeds up trajectory optimization of humanmovement

PLOSONE | https://doi.org/10.1371/journal.pone.0217730 October 17, 2019 11 / 19

https://doi.org/10.1371/journal.pone.0217730.g004
https://doi.org/10.1371/journal.pone.0217730

Fig 5. Results from trajectory optimization of walking. (Top) Results from 2D predictive simulations of walking (joint angles: flex is flexion, GC is gait cycle;
muscle activations: bic is biceps, fem is femoris, sh is short head, max is maximus, gastroc is gastrocnemius, ant is anterior; ground reaction forces: BW is body
weight). Experimental data are shown as mean ± two standard deviations. (Bottom) Results from 3D tracking simulations of walking (joint angles: R is right, L is left,
add is adduction, rot is rotation; muscle activations: med is medialis, long is longus, lat is lateralis). The vertical lines indicate right heel strike (solid) and left toe-off
(dashed); only part of the gait cycle, when experimental ground reaction forces are available, is tracked. The experimental electromyography data is normalized to
peak muscle activations. The foot diagrams depict a down-up view of the configuration of the contact spheres of the right foot pre-calibration (left: generic) and post-
calibration (right: optimized). The coefficient of determination R2 is given for the tracked variables.

https://doi.org/10.1371/journal.pone.0217730.g005

Algorithmic differentiation speeds up trajectory optimization of humanmovement

PLOSONE | https://doi.org/10.1371/journal.pone.0217730 October 17, 2019 12 / 19

https://doi.org/10.1371/journal.pone.0217730.g005
https://doi.org/10.1371/journal.pone.0217730

the 3D tracking simulations due to memory issues. For all simulations, the solvers from the

HSL collection except ma86 (and ma77 for the 2D predictive simulations) required less CPU

time per iteration than mumps. For the 2D predictive and 3D tracking simulations, one case

out of 18 (six solvers and three initial guesses) and four cases out of 12 (four solvers and three

initial guesses), respectively, were excluded from the comparison as they converged to different

solutions.

Using an exact Hessian was more efficient than using an approximated Hessian for the pen-

dulum simulations but not for the 2D predictive simulations (Fig 4). The exact Hessian

required less CPU time and fewer iterations than the approximated Hessian for the pendulum

simulations (average 2.4 ± 1.2 times faster and 2.5 ± 0.9 times fewer iterations). By contrast,

the exact Hessian required more CPU time and iterations than the approximated Hessian for

the 2D predictive simulations (average 6.0 ± 0.8 times slower and 2.1 ± 0.2 times more itera-

tions). For the pendulum simulations, 27 cases out of 540 (nine pendulums, six solvers, and 10

initial guesses) were excluded from the comparison as they converged to different solutions

with the two Hessian settings. One case was also excluded as it had not converged after 3000

iterations with the exact Hessian but converged in 209 iterations with the approximated Hes-

sian. For the 2D predictive simulations, only results obtained with the solvers ma86 and ma97

were included, since the use of the other solvers led to memory issues. Further, four cases out

of six (two solvers and three initial guesses) were excluded from the comparison as they con-

verged to different solutions with the two Hessian settings. Finally, the 3D tracking simulations

were not included for this comparison as the large problem size induced memory issues with

the exact Hessian.

In the different analyses, we examined the cases that we excluded from the comparison

because of convergence to different solutions but we did not find that one derivative scenario,

solver, or initial guess consistency led to a local optimum with a lower cost.

The pendulum simulations required at most 21 s and 366 iterations to converge (results

obtained with AD-Recorder, mumps, and an approximated Hessian); CPU time and number

of iterations depended on the number of degrees of freedom (S1 Movie).

The 2D predictive simulations reproduced salient features of human gait but deviated from

experimental data in three noticeable ways (Fig 5; S2 Movie). First, the predicted knee flexion

during mid-stance was limited, resulting in small knee torques. Second, the simulations pro-

duced less ankle plantarflexion at push-off. Third, the vertical ground reaction forces exhibited

a large peak at impact. The simulations converged in less than one CPUminute (average over

solutions starting from three initial guesses: 36 ± 17 s and 247 ± 143 iterations; results obtained

with AD-Recorder, mumps, and an approximated Hessian).

The 3D tracking simulations accurately tracked the experimental walking data (average

coefficient of determination R2: 0.95 ± 0.17; Fig 5; S3 Movie). Simulated muscle activations

also qualitatively resembled experimental electromyography data, even though electromyogra-

phy was not tracked (Fig 5). The configuration of the contact spheres differed from the generic

model after the calibration. The simulations converged in less than 20 CPU minutes (average

over simulations starting from two initial guesses: 19 ± 7 minutes and 493 ± 151 iterations;

results obtained with AD-Recorder, mumps, and an approximated Hessian).

Discussion

We showed that the use of AD over FD improved the computational efficiency of OpenSim-

based trajectory optimization of human movement. Specifically, AD drastically decreased the

CPU time spent in evaluating the objective function gradient. This time decrease results from

AD’s ability to evaluate a Jacobian-transposed-times-vector product through its reverse mode.

Algorithmic differentiation speeds up trajectory optimization of humanmovement

PLOSONE | https://doi.org/10.1371/journal.pone.0217730 October 17, 2019 13 / 19

https://doi.org/10.1371/journal.pone.0217730

The objective function gradient has many inputs (all optimization variables) but only one out-

put. It can thus be evaluated in only one reverse sensitivity sweep; the computational cost is

hence proportional to the cost of evaluating the objective function. By contrast, with FD, the

computational cost is proportional to the number of optimization variables times the cost of

evaluating the objective function. The efficiency benefit of AD also increased with the com-

plexity of the problems. This is expected, since the number of optimization variables increases

with problem size; FD thus requires more objective function evaluations, whereas AD still

requires only one reverse sweep. In our problems, AD did not outperform FD when evaluating

the constraint Jacobian. Yet we expect that AD will be more efficient than FD for trajectory

optimization problems in which the number of optimization variables largely exceeds the

number of constraints, thereby resulting in faster constraint Jacobian evaluations with AD’s

reverse mode.

The choice of the objective function influences CPU time. As an illustration, we added a

term representing the metabolic energy rate [45] to the objective function of the 2D predictive

simulations. Minimizing metabolic energy rate is common in predictive studies of walking

[5,7,39]. Solving the resulting optimal control problem was about 60 times faster with AD-Re-

corder than with FD (although FD required fewer iterations), whereas AD-Recorder was only

about 10 times faster than FD without incorporating the metabolic energy rate in the objective

function. This increased time difference can be explained by our use of computationally

expensive hyperbolic tangent functions to make the metabolic energy rate model twice contin-

uously differentiable, as required when using second-order gradient-based optimization algo-

rithms [39]. Overall, AD reduces the number of function evaluations, which has an even larger

effect if these functions are expensive to compute.

The implementation of AD was computationally more efficient through Recorder than

through ADOL-C. Specifically, Recorder decreased the CPU time by a factor 4–12 compared

to ADOL-C. ADOL-C records all calculations involving differential variables on a sequential

data set called a tape [18], which is then evaluated by ADOL-C’s virtual machine. By contrast,

Recorder generates plain C-code. The factor 4–12 is the difference between a virtual machine

interpreting a list of instructions (ADOL-C) and machine code performing these instructions

directly (Recorder).

The effort required to enable the use of AD through Recorder was minimal once OpenSim’s

source code had been modified for use with the ADOL-C libraries. Indeed, Recorder relies on

operator overloading for constructing the expression graphs, which is similar to ADOL-C. The

only required change was to replace the adouble scalar type (ADOL-C) by the Recorder scalar

type. Recorder also facilitates the interface with CasADi, since it generates expression graphs

in a format from which CasADi can directly generate C-code. This code can then be compiled

as a Dynamic-link Library and imported in the CasADi environment without any scripting

input required from the user (Fig 2). Using ADOL-C’s AD algorithms with CasADi necessi-

tates manually writing C++ code to provide forward and reverse directional derivatives using

ADOL-C’s drivers in a format recognized by CasADi, which might be prone to errors (Fig 2).

Note that the manual effort required for using Recorder or ADOL-C is independent of prob-

lem complexity. Overall, using Recorder is more efficient but also simpler than using ADOL-C

when solving trajectory optimization problems with CasADi.

The process of converting OpenSim’s source code to code that compiles with the AD tools

(ADOL-C and Recorder) was a considerable but one-time effort. OpenSim-based trajectory

optimization problems can now be solved through the proposed framework while benefiting

from AD and without any additional developments. We made our OpenSim-based AD frame-

work available so that others can build upon our work. Importantly, using AD does not

increase the complexity for the end user as compared to using FD. Indeed, the simulation

Algorithmic differentiation speeds up trajectory optimization of humanmovement

PLOSONE | https://doi.org/10.1371/journal.pone.0217730 October 17, 2019 14 / 19

https://doi.org/10.1371/journal.pone.0217730

framework relies on CasADi that provides evaluations of function derivatives to the NLP

solver. Hence, the user does not need to re-implement AD’s forward and reverse algorithms. It

is also worth mentioning that, in this study, we used Recorder to enable the use of AD with

OpenSim. However, Recorder is a general C++ class that could be applied to any other C+

+ code for use with CasADi. Compiling existing source code with Recorder would require

replacing the scalar type of active variables (i.e., differentiable quantities) with the Recorder sca-

lar type. Our study suggests that this programming effort might be particularly valuable when

the goal is to solve complex trajectory optimization problems. Specifically, our results showed

that the difference between AD and FD increased with problem size. Users might thus con-

sider the programming effort only when the aim is to solve multiple complex problems and

when they are not satisfied with the computational performance obtained with FD.

It is difficult to provide guidelines for the linear solver selection based on our results, as

their efficiency was problem-dependent. In contrast with mumps, the solvers from the HSL

collection do not freely come with CasADi and are only free to academics. Hence, our study

does not support the extra effort to obtain them since they did not consistently outperform

mumps in our applications. Yet an in-depth analysis of the solvers’ options and underlying

mathematical details should be considered in future work.

The use of an exact Hessian, rather than an approximated Hessian, improved the computa-

tional efficiency for the pendulum simulations but not for the walking simulations. For the 2D

walking simulations, using an exact Hessian required more CPU time but also more iterations.

This might seem surprising, since an exact Hessian is expected to provide more accurate infor-

mation and, therefore, lead to convergence in fewer iterations. However, IPOPT requires the

Hessian to be positive definite when calculating a Newton step to guarantee that the step is in

the descent direction. When this is not the case, the Hessian is approximated with a positive

definite Hessian by adding the identity matrix multiplied by a regularization term to the Hes-

sian [36]. We observed that for the 2D predictive simulations, the magnitude of the regulariza-

tion term was much greater than for the pendulum simulations. Yet excessive regularization

might degrade the performance of the algorithm, as regularization alters the second-order

derivative information and causes IPOPT to behave more like a steepest-descent algorithm

[46]. The approximated Hessian requires no regularization, which likely explains the differ-

ence in number of iterations. Overall, convexification of the currently non-convex optimal

control problems is expected to further improve the computational efficiency [9].

Our comparison of derivative scenarios (AD-ADOLC, AD-Recorder, and FD), linear solv-

ers (mumps and the HSL collection), and Hessian calculation schemes was based on several

specific choices. First, we solved all problems using the NLP solver IPOPT, whereas other solv-

ers compatible with CasADi, such as SNOPT [47] and KNITRO [48] (see [21] for detailed list),

might behave differently. We selected IPOPT since it is open-source (SNOPT and KNITRO

are commercial products), widely used, and well suited for large and very sparse NLPs [21].

Second, we transcribed the optimal control problems into NLPs using a third order Radau

quadrature collocation scheme, whereas different orders, schemes (e.g., Legendre), and tran-

scription methods (e.g., trapezoidal and Hermite-Simpson) might lead to different results. We

selected quadrature collocation methods as they achieve exponential convergence if the under-

lying function is sufficiently smooth [1,49]. Third, we used specific models of muscle activation

dynamics, contraction dynamics, and compliant contacts, whereas other models might behave

differently. We selected models that were continuously differentiable for use with gradient-

based optimization algorithms. Finally, our focus was on solving trajectory optimization prob-

lems for biomechanical applications with OpenSim. We chose OpenSim as it is an open-source

and widely used software package in biomechanics. The difference in computational perfor-

mance between AD and FD might thus vary with other software packages and applications.

Algorithmic differentiation speeds up trajectory optimization of humanmovement

PLOSONE | https://doi.org/10.1371/journal.pone.0217730 October 17, 2019 15 / 19

https://doi.org/10.1371/journal.pone.0217730

Investigating all these other modeling and computational choices was out of the scope of this

study but might be useful for helping users select the best settings for their applications. Over-

all, our study underlined the computational benefit of using AD over FD for trajectory optimi-

zation in biomechanics, which is in agreement with previous research in robotics (e.g., [27]).

The 2D predictive and 3D tracking simulations produced realistic movements although devi-

ations remain between simulated and measured data. Modeling choices rather than local optima

likely explain these deviations. These choices have a greater influence on the predictive simula-

tions, since deviations frommeasured data are minimized in tracking simulations, whereas only

the motor task goal is specified in the objective function of predictive simulations. Several model-

ing choices might explain the main deviations for the predictive simulations. First, we did not

model stability requirements, which might explain the limited knee flexion during mid-stance

[6,39]. Instead, we included muscle activity in the cost function, which might explain why reduc-

ing knee torques and, therefore, knee extensor activity was optimal. Second, the model did not

include a metatarsophalangeal joint, which might explain the limited ankle plantarflexion at

push-off; similar ankle kinematics have indeed been observed experimentally when limiting the

range of motion of the metatarsophalangeal joint [50]. Third, the lack of knee flexion combined

with the simple trunk model (i.e., one degree of freedom controlled by one ideal torque actuator)

might explain the high vertical ground reaction forces at impact [6]. Finally, the goal of the

motor task (i.e., minimizing muscle fatigue) likely does not fully explain the control strategies

governing human walking. In this study, the focus was on evaluating different computational

choices but future work should exploit the improved computational efficiency to explore how

modeling choices affect the correspondence between simulated and measured quantities.

Our results indicate that AD is particularly beneficial with increasingly complex models.

Hence, our OpenSim-based AD framework might allow researchers to rely on complex mod-

els, such as three-dimensional muscle-driven neuro-musculoskeletal models, in their studies.

This model complexity might be highly desirable when studying, for instance, the impact of

treatment on gait performance in patients with neuro-musculoskeletal disorders. Indeed, in

such cases, the model should be complex enough to describe the musculoskeletal structures

and motor control processes underlying gait that may be affected by treatment. Previous stud-

ies based on predictive models reported high computational times and were therefore limited

to few predictions when relying on complex musculoskeletal models [5,8,51]. Using AD has

the potential to drastically decrease the computational time of such predictive simulations,

thereby extending their application.

Conclusions

In this study, we enabled the use of AD when performing OpenSim-based trajectory optimiza-

tion of human movement. We showed that using AD drastically improved the computational

efficiency of such simulations. This improved efficiency is highly desirable for researchers using

complex models or aiming to implement such models in clinical practice where time constraints

are typically more stringent than in research context. Overall, the combination of AD with other

efficient numerical tools such as direct collocation and implicit differential equations allows

overcoming the computational roadblocks that have long limited the use of trajectory optimiza-

tion for biomechanical applications. In the future, we aim to exploit this computational efficiency

to design optimal treatments for neuro-musculoskeletal disorders, such as cerebral palsy.

Supporting information

S1 Appendix. Example source code. Recorder provides the expression graph of the function

to differentiate as MATLAB source code in a format that CasADi’s AD algorithms can then

Algorithmic differentiation speeds up trajectory optimization of humanmovement

PLOSONE | https://doi.org/10.1371/journal.pone.0217730 October 17, 2019 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0217730.s001
https://doi.org/10.1371/journal.pone.0217730

transform into C-code. This file provides MATLAB and C source code resulting from applying

these two steps on the example function from Fig 1.

(PDF)

S1 Movie. Pendulum-based simulations of perturbed balance. The pendulums have between

two and 10 degrees of freedom. The playback speed is 0.2 times real-time.

(AVI)

S2 Movie. 2D muscle-driven predictive simulation of walking (1.33 m s-1). The playback

speed is 0.2 times real-time.

(MP4)

S3 Movie. 3D muscle-driven tracking simulation of walking. The pink model (tracking sim-

ulation results) tracks the motion of the white model (experimental data). The playback speed

is 0.2 times real-time.

(MP4)

Acknowledgments

The authors would like to thank Michael Sherman for helpful technical discussions.

Author Contributions

Conceptualization: Antoine Falisse, Gil Serrancolı́, Friedl De Groote.

Data curation: Antoine Falisse, Gil Serrancolı́.

Formal analysis: Antoine Falisse, Gil Serrancolı́.

Funding acquisition: Antoine Falisse, Gil Serrancolı́, Friedl De Groote.

Investigation: Antoine Falisse, Gil Serrancolı́, Christopher L. Dembia.

Methodology: Antoine Falisse, Gil Serrancolı́, Christopher L. Dembia, Joris Gillis, Friedl De

Groote.

Project administration: Friedl De Groote.

Resources: Antoine Falisse, Gil Serrancolı́, Christopher L. Dembia, Joris Gillis.

Software: Antoine Falisse, Gil Serrancolı́, Christopher L. Dembia, Joris Gillis.

Supervision: Friedl De Groote.

Validation: Antoine Falisse, Gil Serrancolı́.

Visualization: Antoine Falisse, Gil Serrancolı́.

Writing – original draft: Antoine Falisse.

Writing – review & editing: Antoine Falisse, Gil Serrancolı́, Christopher L. Dembia, Joris Gil-

lis, Friedl De Groote.

References
1. Kelly M. An introduction to trajectory optimization: how to do your own direct collocation. SIAMRev.

2017; 59(4):849–904.

2. van den Bogert AJ, Hupperets M, Schlarb H, Krabbe B. Predictive musculoskeletal simulation using
optimal control: Effects of added limb mass on energy cost and kinematics of walking and running. P I
Mech Eng P-J Spo. 2012; 226(2):123–33.

Algorithmic differentiation speeds up trajectory optimization of humanmovement

PLOSONE | https://doi.org/10.1371/journal.pone.0217730 October 17, 2019 17 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0217730.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0217730.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0217730.s004
https://doi.org/10.1371/journal.pone.0217730

3. Meyer AJ, Eskinazi I, Jackson JN, Rao A V., Patten C, Fregly BJ. Muscle synergies facilitate computa-
tional prediction of subject-specific walking motions. Front Bioeng Biotechnol. 2016; 4:77. https://doi.
org/10.3389/fbioe.2016.00077 PMID: 27790612

4. Lin Y-C, PandyMG. Three-dimensional data-tracking dynamic optimization simulations of human loco-
motion generated by direct collocation. J Biomech. 2017; 59:1–8. https://doi.org/10.1016/j.jbiomech.
2017.04.038 PMID: 28583674

5. Anderson FC, PandyMG. Dynamic optimization of human walking. J Biomech Eng. 2001; 123(5):381–
90. https://doi.org/10.1115/1.1392310 PMID: 11601721

6. AckermannM, van den Bogert AJ. Optimality principles for model-based prediction of human gait. J Bio-
mech. 2010; 43(6):1055–60. https://doi.org/10.1016/j.jbiomech.2009.12.012 PMID: 20074736

7. Song S, Geyer H. A neural circuitry that emphasizes spinal feedback generates diverse behaviours of
human locomotion. J Physiol. 2015; 593(16):3493–511. https://doi.org/10.1113/JP270228 PMID:
25920414

8. Lin Y-C, Walter JP, PandyMG. Predictive simulations of neuromuscular coordination and joint-contact
loading in human gait. Ann Biomed Eng. 2018; 46(8):1216–27. https://doi.org/10.1007/s10439-018-
2026-6 PMID: 29671152

9. DeGroote F, Pipeleers G, Jonkers I, Demeulenaere B, Patten C, Swevers J, et al. A physiology based
inverse dynamic analysis of human gait: potential and perspectives. Comput Methods Biomech Biomed
Engin. 2009; 12(5):563–74. https://doi.org/10.1080/10255840902788587 PMID: 19319704

10. DeGroote F, Kinney AL, Rao AV, Fregly BJ. Evaluation of direct collocation optimal control problem for-
mulations for solving the muscle redundancy problem. Ann Biomed Eng. 2016; 44(10):2922–36. https://
doi.org/10.1007/s10439-016-1591-9 PMID: 27001399

11. Lee L-F, Umberger BR. Generating optimal control simulations of musculoskeletal movement using
OpenSim and MATLAB. PeerJ. 2016; 4:e1638. https://doi.org/10.7717/peerj.1638 PMID: 26835184

12. van den Bogert AJ, Blana D, Heinrich D. Implicit methods for efficient musculoskeletal simulation and
optimal control. Procedia IUTAM. 2011; 2:297–316. https://doi.org/10.1016/j.piutam.2011.04.027
PMID: 22102983

13. Wächter A, Biegler LT. On the implementation of an interior-point filter line-search algorithm for large-
scale nonlinear programming. Math Program. 2006; 106(1):25–57.

14. Griewank A, Walther A. Evaluating derivatives: principles and techniques of algorithmic differentiation.
2nd ed. SIAM; 2008. 448 p.

15. Nocedal J, Wright SJ. Calculating Derivatives. In: Mikosch T V., Resnick S I, Robinson SM, editors.
Numerical Optimization. 2nd ed. Springer-Verlag New York; 2006. p. 193–219.

16. Gebremedhin AH, Manne F, Pothen A. What color is your Jacobian? Graph coloring for computing
derivatives. SIAMRev. 2005; 47(4):629–705.

17. Andersson JAE. A general-purpose software framework for dynamic optimization. KU Leuven; 2013.

18. Walther A, Griewank A. Getting started with ADOL-C. In: Naumann U, Schenk O, editors. Combinatorial
Scientific Computing. Chapman & Hall/CRCComputational Science; 2012. p. 181–202.

19. CppAD: A package for differentiation of C++ algorithms. https://projects.coin-or.org/CppAD.

20. Weinstein MJ, Rao A V. A source transformation via operator overloading method for the automatic dif-
ferentiation of mathematical functions in MATLAB. ACM Trans Math Softw. 2016; 42(2):11:1–11:44.

21. Andersson JAE, Gillis J, Horn G, Rawlings JB, Diehl M. CasADi: a software framework for nonlinear
optimization and optimal control. Math ProgramComput. 2019; 11(1):1–36.

22. Falisse A, Van Rossom S, Jonkers I, De Groote F. EMG-driven optimal estimation of subject-specific
Hill model muscle-tendon parameters of the knee joint actuators. IEEE Trans Biomed Eng. 2017; 64
(9):2253–62. https://doi.org/10.1109/TBME.2016.2630009 PMID: 27875132

23. Patterson MA, Rao A V. GPOPS-II: a MATLAB software for solving multiple-phase optimal control prob-
lems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming.
ACM Trans Math Softw. 2014; 41(1):1:1–1:37.

24. Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, et al. OpenSim: open-source software to
create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007; 54(11):1940–
50. https://doi.org/10.1109/TBME.2007.901024 PMID: 18018689

25. Seth A, Hicks JL, Uchida TK, Habib A, Dembia CL, Dunne JJ, et al. OpenSim: simulating musculoskele-
tal dynamics and neuromuscular control to study human and animal movement. PLOSComput Biol.
2018; 14(7):e1006223. https://doi.org/10.1371/journal.pcbi.1006223 PMID: 30048444

26. ShermanMA, Seth A, Delp SL. Simbody: multibody dynamics for biomedical research. Procedia
IUTAM. 2011; 2:241–61. PMID: 25866705

Algorithmic differentiation speeds up trajectory optimization of humanmovement

PLOSONE | https://doi.org/10.1371/journal.pone.0217730 October 17, 2019 18 / 19

https://doi.org/10.3389/fbioe.2016.00077
https://doi.org/10.3389/fbioe.2016.00077
http://www.ncbi.nlm.nih.gov/pubmed/27790612
https://doi.org/10.1016/j.jbiomech.2017.04.038
https://doi.org/10.1016/j.jbiomech.2017.04.038
http://www.ncbi.nlm.nih.gov/pubmed/28583674
https://doi.org/10.1115/1.1392310
http://www.ncbi.nlm.nih.gov/pubmed/11601721
https://doi.org/10.1016/j.jbiomech.2009.12.012
http://www.ncbi.nlm.nih.gov/pubmed/20074736
https://doi.org/10.1113/JP270228
http://www.ncbi.nlm.nih.gov/pubmed/25920414
https://doi.org/10.1007/s10439-018-2026-6
https://doi.org/10.1007/s10439-018-2026-6
http://www.ncbi.nlm.nih.gov/pubmed/29671152
https://doi.org/10.1080/10255840902788587
http://www.ncbi.nlm.nih.gov/pubmed/19319704
https://doi.org/10.1007/s10439-016-1591-9
https://doi.org/10.1007/s10439-016-1591-9
http://www.ncbi.nlm.nih.gov/pubmed/27001399
https://doi.org/10.7717/peerj.1638
http://www.ncbi.nlm.nih.gov/pubmed/26835184
https://doi.org/10.1016/j.piutam.2011.04.027
http://www.ncbi.nlm.nih.gov/pubmed/22102983
https://projects.coin-or.org/CppAD
https://doi.org/10.1109/TBME.2016.2630009
http://www.ncbi.nlm.nih.gov/pubmed/27875132
https://doi.org/10.1109/TBME.2007.901024
http://www.ncbi.nlm.nih.gov/pubmed/18018689
https://doi.org/10.1371/journal.pcbi.1006223
http://www.ncbi.nlm.nih.gov/pubmed/30048444
http://www.ncbi.nlm.nih.gov/pubmed/25866705
https://doi.org/10.1371/journal.pone.0217730

27. Giftthaler M, Neunert M, Stäuble M, Frigerio M, Semini C, Buchli J. Automatic differentiation of rigid
body dynamics for optimal control and estimation. Adv Robot. 2017; 31(22):1225–37.

28. Tedrake R. and the Drake Development Team. Drake: model-based design and verification for robotics.
https://drake.mit.edu. 2019.

29. Docquier N, Poncelet A, Fisette P. ROBOTRAN: A powerful symbolic gnerator of multibody models.
Mech Sci. 2013; 4(1):199–219.

30. Wojtusch J, Kunz J, Stryk O Von. MBSlib-An efficient multibody systems library for kinematics and
dynamics simulation, optimization and sensitivity analysis. IEEE Robot Autom Lett. 2016; 1(2):954–60.

31. Carpentier J, Saurel G, Buondonno G, Mirabel J, Lamiraux F, Stasse O, et al. The Pinocchio C ++
library: A fast and flexible implementation of rigid body dynamics algorithms and their analytical deriva-
tives. 2019 IEEE/SICE Int Symp Syst Integr. 2019;614–9.

32. Guennebaud G, Jacob B, Others. Eigen v3. http://eigen.tuxfamily.org. 2010.

33. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Distributed Systems. arXiv [Preprint] arXiv:160304467 Available online at:
https://arxiv.org/abs/160304467. 2016;

34. The Theano Development Team, Al-Rfou R, Alain G, Almahairi A, Angermueller C, Bahdanau D, et al.
Theano: A Python framework for fast computation of mathematical expressions. arXiv [Preprint]
arXiv:160502688 Available online at: https://arxiv.org/abs/160502688. 2016;1–19.

35. Degrave J, HermansM, Dambre J, Wyffels F. A differentiable physics engine for deep learning in robot-
ics. Front Neurorobot. 2019; 13(March):1–9.

36. Nocedal J, Wright SJ. Interior-point methods for nonlinear programming. In: Mikosch T V., Resnick S I,
Robinson SM, editors. Numerical Optimization. 2nd ed. Springer-Verlag New York; 2006. p. 563–97.

37. Betts JT. The optimal control problem. In: Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming. 2nd ed. Philadelphia: SIAM; 2010. p. 123–218.

38. Hamner SR, Seth A, Delp SL. Muscle contributions to propulsion and support during running. J Bio-
mech. 2010; 43(14):2709–16. https://doi.org/10.1016/j.jbiomech.2010.06.025 PMID: 20691972

39. Koelewijn AD, Dorschky E, van den Bogert AJ. A metabolic energy expenditure model with a continuous
first derivative and its application to predictive simulations of gait. Comput Methods Biomech Biomed
Engin. 2018; 21(8):521–31. https://doi.org/10.1080/10255842.2018.1490954 PMID: 30027769

40. Raasch CC, Zajac FE, Ma B, LevineWS. Muscle coordination of maximum-speed pedaling. J Biomech.
1997; 30(96):595–602.

41. Zajac FE. Muscle and tendon: properties, models, scaling, and application to biomechanics andmotor
control. Crit Rev Biomed Eng. 1989; 17(4):359–411. PMID: 2676342

42. van den Bogert AJ, Geijtenbeek T, Even-Zohar O, Steenbrink F, Hardin EC. A real-time system for bio-
mechanical analysis of humanmovement and muscle function. Med Biol Eng Comput. 2013; 51
(10):1069–77. https://doi.org/10.1007/s11517-013-1076-z PMID: 23884905

43. Amestoy PR, Duff IS, L’Excellent J-Y. Multifrontal parallel distributed symmetric and unsymmetric solv-
ers. Comput Methods Appl Mech Eng. 2000; 184(2–4):501–20.

44. HSL. A collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk/.

45. Bhargava LJ, Pandy MG, Anderson FC. A phenomenological model for estimating metabolic energy
consumption in muscle contraction. J Biomech. 2004; 37(1):81–8. https://doi.org/10.1016/s0021-9290
(03)00239-2 PMID: 14672571

46. Nocedal J, Wright SJ. A regularization procedure. In: Mikosch T V., Resnick S I, Robinson SM, editors.
Numerical Optimization. 2nd ed. Springer-Verlag New York; 2006. p. 635–6.

47. Gill PE, MurrayW, Saunders MA. SNOPT: An SQP algorithm for large-scale constrained optimization.
SIAM Rev. 2005; 47(1):99–131.

48. Byrd RH, Nocedal J, Waltz RA. KNITRO: an integrated package for nonlinear optimization. In: Di Pillo
G, RomaM, editors. Large Scale Nonlinear Optimization Nonconvex Optimization and Its Applications.
Boston: Springer; 2006.

49. Limebeer DJN, Rao A V. Faster, higher, and greener: Vehicular optimal control. IEEE Control Syst
Mag. 2015; 35(2):36–56.

50. Hall C, Nester CJ. Sagittal plane compensations for artificially induced limitation of the first metatarso-
phalangeal joint: a preliminary study. J Am Podiatr Med Assoc. 2004; 94(3):269–74. PMID: 15153589

51. Miller RH. A comparison of muscle energy models for simulating human walking in three dimensions. J
Biomech. 2014; 47(6):1373–81. https://doi.org/10.1016/j.jbiomech.2014.01.049 PMID: 24581797

Algorithmic differentiation speeds up trajectory optimization of humanmovement

PLOSONE | https://doi.org/10.1371/journal.pone.0217730 October 17, 2019 19 / 19

https://drake.mit.edu
http://eigen.tuxfamily.org
https://arxiv.org/abs/160304467
https://arxiv.org/abs/160502688
https://doi.org/10.1016/j.jbiomech.2010.06.025
http://www.ncbi.nlm.nih.gov/pubmed/20691972
https://doi.org/10.1080/10255842.2018.1490954
http://www.ncbi.nlm.nih.gov/pubmed/30027769
http://www.ncbi.nlm.nih.gov/pubmed/2676342
https://doi.org/10.1007/s11517-013-1076-z
http://www.ncbi.nlm.nih.gov/pubmed/23884905
http://www.hsl.rl.ac.uk/
https://doi.org/10.1016/s0021-9290(03)00239-2
https://doi.org/10.1016/s0021-9290(03)00239-2
http://www.ncbi.nlm.nih.gov/pubmed/14672571
http://www.ncbi.nlm.nih.gov/pubmed/15153589
https://doi.org/10.1016/j.jbiomech.2014.01.049
http://www.ncbi.nlm.nih.gov/pubmed/24581797
https://doi.org/10.1371/journal.pone.0217730

