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Computer Aided Design (CAD) tools are extensively used to design industrial components,
however contrary to e.g. Computational Fluid Dynamics (CFD) solvers, shape sensitivities
for gradient-based optimisation of CAD-parametrised geometries have only been available
with inaccurate and non-robust finite differences. Here Algorithmic Differentiation (AD) is
applied to the open-source CAD kernel Open CASCADE Technology using the AD software
tool ADOL-C (Automatic Differentiation by OverLoading in C++). The differentiated CAD
kernel is coupled with a discrete adjoint CFD solver, thus providing the first example of a
complete differentiated design chain built from generic, multi-purpose tools. The design chain
is demonstrated on the gradient-based optimisation of a squared U-bend turbo-machinery
cooling duct to minimise the total pressure loss.
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1. Introduction

Computer Aided Design (CAD) systems carry out an essential role in engineering de-
sign workflows. In a multi-disciplinary product development cycle, the so-called CAD/-
CAE/CAM workflow, CAD systems are used extensively to construct and manipulate
the geometric representation of the design. In Computer Aided Engineering (CAE), this
geometric model is currently used to define the object surface when meshing the com-
putational domain. CAE packages such as Computational Fluid Dynamics (CFD) or
Computational Structural Mechanics (CSM) then use these meshes when solving the
governing partial differential equations (PDEs) to assess the design performance. After
a number of design cycles that are typically controlled manually, the selected design can
be manufactured using the geometric CAD model (Computer Aided Manufacturing –
CAM).
The next advance in engineering design with CAE is to employ optimisation algorithms

which systematically explore the design space and determine the design with optimal
performance.
To find the optimal design, one can choose between gradient-free and gradient-based

optimisation methods. Gradient-free approaches such as Genetic or Evolutionary Algo-
rithms, require only the standard output data from each element in the chain, the pri-
mal, such as grid coordinates on the shape, lift and drag coefficients or maximal stresses.
Hence it is straightforward to build complete CAD/CAE/CAM optimisation workflows,
the only element that is required additionally is the definition of the design space through
a set of design variables and their allowable ranges. However, CFD analysis has very long
compute times and often needs very rich design spaces, which makes the gradient-free
approach prohibitively expensive for industrial application.
We consider here gradient-based methods because they are recognised for their com-

putational efficiency, especially when optimising cases with many control variables. Gra-
dients then need to be computed for all elements in the design chain.
Over the past decades adjoint methods [7, 12, 17] have emerged in CFD as they can

compute gradients with respect to an arbitrary number of design variables at near-
constant computational cost similar to the primal flow computation. Similarly, adjoint
methods for linear elasticity are widely used in topology optimisation of structures [1].
Today, industrial application of gradient-based optimisation is primarily limited by the
immaturity of the parametrisation tools that define the design space. While CAD-based
parametrisations are used with gradient-free methods, but restricted to a very small
number of design variables, computing CAD gradients is an unresolved problem.
So far, the derivative computation for a complete design chain, ranging from the shape

parametrisation to the computation of the objective function to optimise, has not been
demonstrated with exact gradient computation. Robinson et al. [18] used inaccurate
finite differences to evaluate gradients. A typical workaround is to use bespoke, non-
CAD parametrisations [6], which can be differentiated exactly but offer only limited
versatility. Most importantly, such approaches break the overall workflow as the optimal
shape exists only as a deformed mesh, but not in CAD, which is a severe shortcoming
for routine industrial application.
In this paper we close this gap by demonstrating the differentiation of a generic CAD

kernel, in this case the most widely used open-source CAD kernel Open CASCADE Tech-
nology (OCCT) [16]. The coupling is shown between the differentiated OCCT kernel and
a discrete adjoint CFD solver which is also developed using algorithmic differentiation.
The coupled differentiated chain is applied to the optimisation of an internal cooling
channel of a turbo-machinery blade. The results demonstrate a significant reduction in
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the objective function value. Since the considered design chain consists of generic com-
ponents, it can be used in a wide variety of applications as discussed later.
The paper is organised as follows. Sec. 2 reviews current gradient-based parametri-

sation approaches and highlights their shortcomings. Sec. 3 explains the algorithmic
differentiation of the OCCT CAD kernel. Sec. 4 briefly describes the U-bend parametri-
sation, which is our current test-case, and the verification of the differentiated OCCT,
along with performance tests. Sec. 5 presents the governing equations for a flow problem
and its adjoint, together with an assembly of the relevant derivatives. Sec. 6 shows an
application of the complete differentiated design chain to gradient-based optimisation of
the U-bend duct. Finally, Sec. 7 offers conclusions.

2. CAD-based Parametrisation Approaches

Typically, gradient-based shape optimisation chains use simple shape parametrisations
such as node-based approaches where the displacement of every surface node of the grid
is a control variable. To avoid highly oscillatory shapes, regularisation of the gradients or
the surface is required, often chosen as implicit [13] or explicit [14] smoothing. Another
popular approach is to define a global perturbation field using radial basis functions
[5] or with ‘Free Form Deformation’ which interpolates the deformation of the domain
within the control lattice of a volume spline [11, 20]. All of these approaches offer simple
derivative computation, but only produce the optimal shape as a deformed mesh rather
than a CAD surface.
A completely different approach tackles the shape itself as an own object to be modified,

instead of considering every surface node as a control variable. This involves so-called
shape derivatives which are rather complicated to derive, see e.g. [19, 21]. However,
once this mathematical description is available, adjoint methods can be applied again to
compute these shape derivatives.
On the other hand, CAD-based methods work directly with the CAD description in the

optimisation loop and can use CAD model parameters as design variables. As a benefit
of using these methods, one starts and retrieves the optimal shape in a CAD geometry,
but computing the derivatives is more challenging.
Xu et al. [25, 26] use NURBS control points in the CAD-native boundary represen-

tation (BRep) to define the design space. Their ‘NURBS-based Parametrisation with
Complex Constraints’ (NSPCC) approach is vendor-neutral (i.e. the parametrisation is
not tied to the internal representation of a specific CAD system) and considers only the
BRep as given, e.g. in the standardised STEP format, therefore obviating the need to
establish any design parametrisation in the CAD system. For computing the derivatives,
the NSPCC geometry kernel has been differentiated using the source-transformation AD
tool Tapenade [10].
Robinson et al. [18] use the design parametrisation defined in a closed-source CAD

system and compute the derivatives using finite differences. To tackle possible changes
in topology, the shape differences need to be computed between triangulations (STL) of
the CAD surfaces. The use of STL avoids robustness issues with patch re-numbering,
but introduces issues of surface-surface projection when computing distances between
two STL surfaces. As inherent of finite differences, step-widths must be carefully chosen
to limit truncation error. On the other hand, using a parametrisation that is explicitly
defined in CAD allows to build geometric constraints into the design space.
Dannenhoffer and Haimes used the open-source CAD kernel Open CASCADE Tech-

nology (OCCT) to develop a fully-parametric, feature-based solid-modeling system with
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web-based user interface [9]. To obtain the derivatives they applied analytic differenti-
ation to simple geometrical shapes (such as circles or cylinders), while finite differences
are used for the more complex geometries [4]. They also considered algorithmic differen-
tiation of the OCCT code, but did not demonstrate an implementation due to the high
complexity of the source code.
As is shown in this paper, the algorithmic differentiation of OCCT is indeed feasible.

For this purpose, we differentiated the OCCT kernel (v7.0 ) using a traceless forward
mode as well as trace-based forward and reverse modes of the AD software tool ADOL-C
(Automatic Differentiation by OverLoading in C++) [23]. This work is the first time a
fully developed CAD kernel has been differentiated. Section 4 presents the advances this
approach offers for gradient accuracy and the opportunity to use the efficient reverse
mode of algorithmic differentiation.
Considering other CAD-based approaches, the application of AD to a complete CAD

kernel offers a number of significant advantages. As opposed to the finite difference ap-
proaches [18], the geometric derivatives are not affected by projection and truncation
errors but are exact (up to floating point roundoff). Furthermore, the computational
efficiency of the method is superior compared to the finite differences approach. The
temporal complexity of the derivative computation can be dramatically reduced even
further, once the reverse mode integration is adapted for further structure exploitation.

3. Algorithmic Differentiation of OCCT

3.1 Introduction to ADOL-C

ADOL-C is a software tool that facilitates the computation of first and higher derivatives
of vector functions that are defined by computer programs written in C or C++. As noted
in the acronym, this software tool is based on the operator overloading concept (instead
of source transformation) and therefore it does not generate intermediate source code.
ADOL-C features the following options and differentiation modes:

• trace-based (differentiation modes: forward or reverse),
• traceless (differentiation mode: forward).

These options impose different ways of derivative computation. Concerning the trace-
based variants, operator overloading generates an internal representation of the function
to be differentiated. Later on, this internal function representation is used by ADOL-C
driver functions to evaluate the derivatives. Using the traceless option, the derivative
computation is executed directly together with the primal/function evaluation. Another
difference between these options is that the trace-based approaches feature the compu-
tation of higher order derivatives, while the traceless approach allows so far only the
computation of first order derivatives. Both options offer the derivative computation in
one (scalar mode) or many directions (vector mode). Although increasing the number
of directions requires more computational time and memory, it enables the derivative
computation w.r.t. many design parameters with a single code execution.
The ADOL-C library is integrated into the code that is to be differentiated by injection

of its specific adouble type instead of the native real type used by OCCT. That is, one
has to use the specific ADOL-C type as a declaration type to all relevant real variables,
i.e. variables that depend on the design variables and influence the output variables.
Otherwise, i.e. if the adouble chain is broken in some part of the code, the derivative
values will be incorrect. When applying this to a complicated object-oriented code like
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OCCT, the process of replacing the declaration types is not simple. The differentiation
of the OCCT sources as well as the issues encountered during the process are explained
in the following section.

3.2 The Typedef Approach of Differentiating OCCT

The typedef specifier is a reserved keyword in C/C++ used to declare an alias for
another data type. OCCT defines the alias Standard Real for double data type and
we used it as an entry point for algorithmic differentiation, changing Standard Real to
become an alias for adouble type of ADOL-C. In the so-called typedef approach, almost all
declarations of doubles variables are replaced by the declaration of adouble variables. The
main advantage of this approach is that code modification should be minimal with the
drawback of sacrificing memory and efficiency to some extent because almost all double
variables, even the ones that are not needed for the algorithmic differentiation, become
adouble objects. With the minimal code modification, it should be also straightforward
to maintain the differentiated code alongside the original code development. Therefore,
it is a very appropriate solution for differentiating large and complex source codes like
OCCT.
Although the idea about the typedef approach looks simple, it is not as straightforward

as one would expect. The differentiation of OCCT version 7.0 involved a significant
amount of code modification and even after successful compilation, a large number of
run-time errors had to be resolved during the testing phase.

3.2.1 Compile and run-time issues of OCCT differentiation

Here we describe the difficulties faced during the typedef implementation and the corre-
sponding solutions. Some of the compile-time issues were related to:

• On a very low level of the OCCT kernel, static assertion is used to check whether the
size of Standard Real is equal to the size of 2×Standard Integer (which is the type-
def for int type). Once the typedef Standard Real corresponds to adouble, the static
assertion fails, therefore yielding a compile-time error. The reason of having such an
assertion is due to a definition of the union with two members of {Standard Real,
2×Standard Integer}. Union is a user-defined type in C/C++ in which all its mem-
bers occupy the same physical space in memory. Until C++11 standard, unions were
allowed to store only primitive data types. Without further investigation how to inte-
grate a non-primitive type with C++11 standard, we kept the double data type here
because the union appears only in the low level of OCCT that is not related to the
modeling algorithms. This affects the class FSD BinaryFile, where the union is used
to inverse bytes of a real number. To overcome compile-time issues, keeping the double
variables results in a certain modification of other sources that used the union in order
to create a sort of bridge between doubles and adoubles.

• Hundreds of places in the OCCT code involve explicit/implicit conversion of Stan-
dard Real to int type. In the terms of algorithmic differentiation, this could cause a
problem because an integer object does not carry along the derivative information. By
doing such a type change, the computational graph of the function to be differentiated
is disconnected in that part. Hence, the chain rule is broken and wrong derivatives
may be computed as a result. This is the reason why such a cast is not automatically
supported in the adouble class. Being aware of the risk, we allowed it simply by using
the getValue method on the adouble object which extracts the primal (double) value
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of it. A small example where this could cause a problem is related to a method of the
BndLib Box2dCurve class, as shown in Listing 1. Let us assume that the input adouble
variables aT and aPeriod carry the derivative information. Such a derivative informa-
tion will not be propagated in the line where k is computed because the expression
(-aT/aPeriod) is converted to int. On the following line, the result aTRet is computed
using the previously described variable k with the truncated derivative information.
On the other hand, there is no problem if the inputs aT and aPeriod are not ‘active’,
i.e. do not carry derivative information. Since this is application-dependent, the deriva-
tives have to be carefully verified or the original code structure has to be modified to
avoid such problems.

• Standard Real is not the only typedef for double in OCCT. Although it is broadly
used in OCCT, there are many other typedefs: Quantity Acceleration, Quantity Area,
Quantity Coefficient, doublereal, GLdouble etc. Most of them are replaced by Stan-
dard Real to keep consistency across the OCCT kernel, but there are also exceptions
where native double type is required. These exceptions mostly relate to packages that
belong to the visualisation module of OCCT, e.g. the OpenGL package which uses both
doubles and floats. This means that the adouble presence is reduced in such packages
as much as possible (which is reasonable), but not entirely. The issue lies in the fact
that visualisation packages use geometrical entities like point, vector and axis, that
already contain adouble objects because they use Standard Real typedef. To overcome
this problem is not simple, but it is successfully resolved by introducing intermediate
variables and breaking the chain rule wherever required.

• Functions that are a part of external libraries can not work with adoubles. Therefore,
the compiler reports type mismatch in such places. Depending on the function argu-
ments, whether they are pointers or not, we had to substitute adoubles with doubles
or call the getValue method on the adouble objects. This includes also functions like
modf (decomposes a number into integer and fractional parts) and fmod (calculates
remainder of the floating point division operation). They are C-functions (defined in
the header cmath) and the differentiation rule for them is simply not defined. There-
fore, similar to the type cast case described above, the chain rule is broken when using
these functions.

• Functions for printing to an output, like sprintf, can not accept adouble as an argument.
However, the sprintf function is used in a lot of places in OCCT, mostly referred to
printing standard CAD output formats like STEP and IGES. Since sprintf is a C-
function and can not be overloaded in ADOL-C, we used the getValue method here as
well.

Listing 1 BndLib Box2dCurve class method (simplified)

Standard_Real BndLib_Box2dCurve :: AdjustToPeriod(const Standard_Real aT ,

const Standard_Real aPeriod)

{

Standard_Integer k;

Standard_Real aTRet;

aTRet=aT;

if (aT <0.) {

k=1+( Standard_Integer )(-aT/aPeriod ). getValue (); // possible loss of derivative

aTRet=aT+k*aPeriod;

}

//...

return aTRet;

}

Furthermore, some of the run-time issues were related to:
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• The left and right shift operators (<< and >>) are overloaded in the adouble class. Since
they are also used in the OCCT output system, the files were corrupted by adoubles,
because the derivative information is also printed to the output. There is no need that
files like STEP contain such an additional information. Hence, the solution was just to
extract the primal values of adoubles using the getValue method wherever necessary.

• C dynamic memory allocation is used in the OCCT kernel. This causes errors once
the adoubles are present. An adouble object has to be initialised using its constructor,
such that the correct memory amount is allocated. The C-function malloc does not
achieve that, triggering ‘segmentation fault’ errors upon program execution. For this
reason, we replaced the functions malloc/free with the C++ operators new/delete.
Moreover, the C-functions memset and memcpy were replaced by for loops in order
to manually assign or copy the values from one pointer to another. Otherwise, the
memory exceptions would occur. Even more complex low-level memory management
is used in one specific package of OCCT that we could not differentiate, as described
in Sec. 4.

• In many places of the OCCT code, we had to use explicit conversion from real num-
bers to adoubles, if these numbers are passed as arguments to the specific overloaded
methods. For example, consider the SetCoord method which is overloaded in OCCT
in two different ways: SetCoord(Standard Integer, Standard Real), which sets a coordi-
nates value by its index, and SetCoord(Standard Real, Standard Real), which specifies
each coordinate value independently. A case in the code where developer uses the sec-
ond method with real numbers, e.g. SetCoord(6., 8.), is not correctly identified in the
differentiated sources because the compiler calls the method with primitive types as
arguments, which is the first method. Without any interaction this may not produce
a runtime error, but certainly the values are wrong. The correct way in such cases is
to add an explicit conversion, i.e. SetCoord((Standard Real) 6., (Standard Real) 8.).

After integrating the traceless forward mode into OCCT by using the typedef approach,
we have also considered the trace-based options of ADOL-C. The first step is to compile
OCCT sources with the ADOL-C trace headers, which has been completed successfully.
The following step is to use ADOL-C driver functions in the specific parts of the code
in order to evaluate the derivatives. Both traceless forward mode and the trace-based
modes of AD have been validated in a specific test-case that is described in the following
section. Further work will be dedicated to structure exploitation when using the reverse
mode for efficiency improvement.

4. Verification of Differentiated OCCT with U-bend Test-case

4.1 Testing the Differentiated OCCT Kernel

After successful compilation of the differentiated OCCT kernel, we first verify the original
(primal) functionality. For such a purpose, OCCT provides its own Automated Testing
System which consists of more than 10,000 tests related to all OCCT modules. As men-
tioned in Sec. 3, a large number of run-time errors had to be resolved during the testing
phase. A very small number of issues could not be resolved, see Table 1 for details. The
majority of the tests marked failed are related to the package AdvApp2Var which deals
with approximation of functions based on Legendre polynomials. In the beginning, this
approximation code was written in Fortran and later automatically translated to C code.
The package involves low-level memory management routines which make adouble han-
dling quite difficult. Therefore, whenever it is used, a run-time memory exception will

7



January 16, 2018 Optimization Methods & Software AD2016Paper

Table 1. OCCT Automated Testing System final results

Tests marked: OK Tests marked failed: FAILED Success rate

11,306 374 97%

Last slice

Pathline

Inlet pipe

Outlet pipe

Figure 1. U-bend geometry

occur. The only solution here is to rewrite the package such that it follows the C++
standards for memory management.
In Sec. 4.3, we verify the correctness of the computed derivatives using the geometric

model of the U-Bend of Sec. 4.2.

4.2 U-bend Parametrisation

The U-bend under investigation is a typical internal cooling channel used in a turbine
blade application. The baseline geometry consists of a circular U-part with attached inlet
and outlet legs which are not modified during the optimisation. The baseline geometry
is shown in Fig. 1.
The parametrisation is done on the U-part: the three-dimensional shape is constructed

by continuous evolution of a rectangular 2-D cross-section along a guiding circular path-
line (the sweeping function in CAD). The cross-section is defined by 4 Bézier curves with
4 control points each, forming a closed ‘wire’ with a total of 12 control points. Each
2-D slice lies on a plane orthogonal to a pathline, which itself is described as a B-spline
curve (in green in Fig. 1). The parametric coordinates of each control point within the
2-D cross-section have their own law of evolution along the pathline, also defined by a
B-spline curve. The final B-spline surfaces of the U-Bend are fitted to the swept cross-
sections. Therefore, the actual design parameters considered in the optimisation are the
parameters of the laws of evolution, in this example 96 degrees of freedom.

4.3 Gradient Verification using U-bend Parametrisation

The correctness of the computed gradients is verified using the U-bend parametric model.
As a representative example, we compare here the surface sensitivities with respect to one
design parameter calculated by the traceless forward mode of AD and finite differences
(Fig. 2). The overall magnitude plots illustrate that these results coincide to a very high
extent. Also the quantitative comparison between AD and finite differences for the same

8



January 16, 2018 Optimization Methods & Software AD2016Paper

AD Sensitivity Magnitude

2.959e-01

0.22192

0.14795

0.73974

0.000e+00

FD Sensitivity Magnitude

2.959e-01

0.22192

0.14795

0.73975

0.000e+00

Figure 2. U-part sensitivities evaluated by AD (left) and finite differences (right)

Table 2. AD and FD values comparison for
several U-bend point coordinates

AD value FD value Abs. difference

0.00038436 0.00038426 1.02e-07
0.06339189 0.06339125 6.41e-07
0.15615249 0.15614906 3.43e-06
0.12874039 0.12873815 2.24e-06

.

.

.
.
.
.

.

.

.

0.27459387 0.27458089 1.30e-05*

*Maximal difference

design parameter shows mutual agreement (Table 2). Furthermore, the same surface
sensitivities are also verified with a Taylor test:

f(x+ h)− f(x)− h
∂f

∂x
(x) = O(h2). (1)

The Taylor test was performed on a number of arbitrary surface points with a range of
step sizes h ∈ [10−1, 10−10]. The error plots (the left-hand side of Eq. (1)) in eight surface
point coordinates are presented in Fig. 3. Here we observe even better convergence than
the theoretical convergence rate of h2. This behaviour continues until h = 10−4, where
the errors reach machine precision.
We also validate the derivatives computed with the trace-based variants against the

traceless forward mode. The results presented in Table 3 and Table 4 show some small
disparity (close to machine precision) between the gradients. This is due to the differences
between some overloaded operators of ADOL-C in the trace-based and traceless options.
Not only the derivative calculation but also the primal evaluation is affected in the same
order of magnitude. The differences between the trace-based and the traceless variants
are therefore small enough not to yield radically different CAD models, and hence both
can be used equally.
This verification ensures the correctness of the computed derivatives only for the com-

putational path exercised by the U-bend geometry. Although this test-case does use a lot
of methods from the OCCT kernel, it represents a very small part of the complete OCCT
capability. Clearly, adding definitions for all possible input and output variables to all
regression tests is not a feasible task. An unanswered challenge to the AD community
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Figure 3. Taylor test overview for eight U-bend surface point coordinates

Table 3. AD Traceless-forward and AD Trace-based forward gradient comparison for

several U-bend point coordinates

AD Traceless-forward gradient AD Trace-based forward gradient Abs. difference

1.03293863915149e-01 1.03293863915283e-01 1.34e-13
2.36707086987917e-01 2.36707086987913e-01 4.00e-15
1.28682761975210e-01 1.28682761975225e-01 1.50e-14
1.25652442670046e-02 1.25652442669980e-02 6.60e-15

...
...

...

2.24699593280905e-01 2.24699593281250e-01 3.45e-13*

*Maximal difference

Table 4. AD Traceless-forward and AD Trace-based reverse gradient comparison for
several U-bend point coordinates

AD Traceless-forward gradient AD Trace-based reverse gradient Abs. difference

1.03293863915149e-01 1.03293863915222e-01 7.30e-14
2.36707086987917e-01 2.36707086987912e-01 5.00e-15
1.28682761975210e-01 1.28682761975216e-01 6.00e-15
1.25652442670046e-02 1.25652442670053e-02 6.99e-16

.

.

.
.
.
.

.

.

.

2.24699593280905e-01 2.24699593281155e-01 2.50e-13*

*Maximal difference

is how to not just automatically produce the derivative code, but also to derive relevant
derivative regression tests from existing primal tests.

4.4 Performance Tests

To measure performance by computing a large number of derivatives, we have developed
an optimisation example that is a typical, often executed task in CAD, so-called ‘surface
fitting’. It is used to find a set of design parameters in parametrisation P to match a
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(a) Original U-bend shape (b) Perturbed U-bend shape

Figure 4. CAD optimisation with two U-bends

certain geometry T, with the following optimisation problem:

min
x∈R96

f(x) =
12000
∑

i=1

‖Pi(x)− Ti‖
2 s.t. lbj ≤ xj ≤ ubj , j = 1, . . . , 96. (2)

where j is the number of the design variables, i is the index of one of 12000 sampling
points distributed uniformly over the surface, Pi(x) and Ti are the points on the original
and target (perturbed) surfaces respectively, lbj and ubj are lower and upper box limits
for the j-th design parameter. The verification proceeds as follows:

(1) Construct two U-bends: original and perturbed, see Fig. 4.
(2) Sample both final B-spline surfaces with 12K pairs of (ui, vi) parametric coordinates.

These parametric coordinates are later used in B-spline algorithms to evaluate the
corresponding three-dimensional points Pi(x) and Ti.

(3) Define an objective function as in Eq. (2).
(4) Declare the original design parameters (x) as independent variables of the system.
(5) Minimise the objective function by using the limited-memory BFGS optimisation

algorithm with box constraints (L-BFGS-B) [27].

Before analysing the performance, the optimisation example was executed with the
traceless forward mode and the trace-based reverse mode. The L-BFGS-B optimiser con-
verged at the same point using the gradients provided with both modes of AD. This
served as an additional step to validate the derivatives.
The performance of the differentiated OCCT sources has been analysed and compared

to the original sources. The time required for a single geometry optimisation iteration
(the objective function value and the corresponding derivatives) has been measured.
All three differentiation modes of ADOL-C (the traceless forward mode and the trace-
based forward and reverse modes) have been evaluated in the tests. It is important
to note that the measurements related to the trace-based modes include the time for
generating the trace (tracing), because we need to perform tracing on every iteration.
The reason is that the OCCT geometry computation is a highly non-linear algorithm and
a different computational path may be traversed at each design iteration. This requires
a re-evaluation of the trace. The results, i.e. quantitative comparisons of the average
timings and run-time ratios, where the derivatives have been computed in one direction
(scalar mode) as well as in 96 directions (vector mode), are shown in Table 5 and Table 6,
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Table 5. U-bend single optimisation iteration timings with original and differentiated (AD) sources with
number of directions p = 1 (scalar mode)

Original sources Traceless forward Trace-based forward Trace-based reverse

Avg. time (second) 0.421 1.26 4.726 4.66
Run-time ratio 2.99 11.23 11.07

*The results are based on 10 measurements. Tracing time: 3.9s – run-time ratio: 9.25.

Table 6. U-bend single optimisation iteration timings with original and differentiated (AD) sources with
number of directions p = 96 (vector mode)

Original sources Traceless forward Trace-based forward Trace-based reverse

Avg. time (second) 0.421 12.597 18.132 4.654
Run-time ratio 29.92 43.07 11.05

*The results are based on 10 measurements. Tracing time: 3.9s – run-time ratio: 9.25.

respectively.
According to the theory [8], the run-time ratio between the derivative computation

in the forward mode of AD and the function (primal) evaluation should be in range
[1 + p, 1 + 1.5p], where p is the number of directions. Furthermore, the run-time ratio
between the derivative computation in the reverse mode of AD and the function (primal)
evaluation should be in range [1 + 2q, 1.5 + 2.5q ], where q is the number of adjoints. In
our test example q = 1, therefore the expected range is [3, 4].
Comparing this with the results in Table 5 and Table 6, one can state that the differen-

tiated OCCT sources yield run-time ratios that are even below the theoretical lower range
boundaries. One reason for this is that the derivation of the theoretical bounds assumes
a rather pessimistic runtime ratio for nonlinear univariate operations. Therefore, much
better run-time ratios achieved with the traceless forward mode might be connected to
the limited use of these costly operations by OCCT. Alternatively, one might also assume
that compiler optimisation could be a reason for this good run-time ratio. However, a
similar effect, i.e. a better run-time ratio than predicted by the theory, is observable
also for the trace-based forward mode where compiler optimisation is not available in a
comprehensive fashion due to the used overloading approach. Finally, the reverse mode
of AD obtains a 63% improved efficiency in contrast to the traceless forward mode of
AD.
An overview of all run-time ratios evaluated in the range of 1 to 96 directions (with

included timings for tracing), together with the memory requirements w.r.t. the maximal
number of directions, is shown in Fig. 5. Additionally to the AD run-time ratios, the run-
time ratios for finite differences are also shown. To evaluate the memory requirements
(with p = 96), the same U-bend application has been profiled with the profiling tool
Massif – which is a part of the Valgrind tools for debugging and profiling [15]. The sources
have been compiled with two compilers: g++ v4.8.5 and clang++ v3.7.0, showing similar
results. To summarise, AD requires more memory than the finite difference approach,
but it performs significantly faster, especially when using many directions.

5. Application of CAD-sensitivities in Aerodynamic Shape Optimisation

The main subject of this paper is the algorithmic differentiation of the CAD-kernel, hence
only a brief overview of the gradient-based shape optimisation loop will be presented here,
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Figure 5. Summary of run-time ratios (left) and total memory requirements (right) for U-bend example

more details can be found in [25, 26]. The aerodynamic performance of a given CAD-
geometry is usually described with a scalar objective function J such as drag, lift, or
total pressure loss. We consider a minimisation problem for the aerodynamic objective
with the CAD parameters α as design variables:

min
α

J(U(X(α)), X(α), α) (3)

subject to R(U(X(α)), X(α)) = 0 . (4)

The constraint of the Reynolds-Averaged Navier-Stokes equations (4) R = 0, is a function
of the state variables U and computational mesh coordinates X, which in turn depend on
design parameters α. For a large number of design parameters, which is usually the case
in industrial applications, the adjoint method proves to be computationally efficient and
will be applied here. The application of the chain rule to the system Eq. (3)-(4) yields:

dJ

dα
=

[ dJ

dX
+ νT f

]∂X

∂α
, (5)

where

f = −
∂R

∂X

and ν represents the solution of the adjoint equation

(∂R

∂U

)T

ν =
∂J

∂U
. (6)

After computing the solution of the primal and adjoint equations one can map the
obtained sensitivity of the coordinates of the volume mesh X onto the mesh coordinates
of nodes on the design surfaces XS . For instance, using a spring-based analogy as the
volume-surface deformation algorithm, the sensitivity in terms of perturbations of the
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surface nodes becomes

dJ

dα
=

dJ

dXS

dXS

dα
. (7)

The first term in Eq. (7), the CFD sensitivity, corresponds to the sensitivity of the
objective function w.r.t. displacements of the surface grid points XS , the second term,
the CAD sensitivity, represents the geometric derivative of the surface grid points XS

w.r.t. design parameters. While the CFD sensitivity is evaluated using the computation-
ally efficient adjoint method, we propose two possibilities of computing the total gradient
dJ/dα:

(1) Compute the CAD sensitivity independently by using the OCCT kernel differentiated
in the traceless forward mode and couple both sensitivities at the end.

(2) Use the differentiated OCCT kernel in the trace-based reverse mode, thus having
a full reverse mode differentiation of the complete differentiated design chain to
compute the desired gradient.

The procedure of the second approach is that the CFD sensitivity has to be evaluated
first and then propagated as a derivative seed vector using the reverse differentiated
OCCT. Once this derivative seed vector is set, the ADOL-C driver function will use
it to evaluate the total gradient. After obtaining the total gradient, one can use it in
gradient-based optimisation loops:

α(n+1) = A
(

α(n),
dJ

dα
(α(n))

)

, (8)

with A as an iterative optimisation algorithm.

6. U-bend Optimisation in a Complete Differentiated Design Chain

The optimisation methodology described in the previous section is applied to the U-bend
CAD-model of Sec. 4.2. The complete case description can be found in [3, 22]. In this
work, we investigate the single objective of decreasing total pressure loss between the
inlet and the outlet pipe.
The CFD computations are performed by the in-house discrete adjoint solver STAMPS

[2] developed at Queen Mary University of London. The U-bend is a rather challenging
case for the compressible CFD solver, due to the very low flow speed exacerbated by the
long inlet and outlet tails which are needed to establish fully developed flow. The mesh
has approximately 170,000 cells.
At each optimisation step, the surface mesh is recalculated on the updated CAD ge-

ometry given by the OCCT kernel and then the surface displacements are propagated
into the interior domain. The deformation of the volume mesh is computed using inverse
distance weighting [24].
Two optimisation methods were applied: steepest descent (S-D) and L-BFGS-B. Al-

though the first method is considered to be inferior in performance, its explicit control of
the design steps made parametrisation updates and corresponding volume mesh move-
ment more robust and hence was finally used to drive the optimisation.
The dominant flow phenomenon in the baseline geometry is the separation after the U-

part and downstream in the outlet leg, which significantly adds to the total pressure loss.
As shown in Fig. 6, the CAD-driven optimisation managed to reduce its size, resulting
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Figure 7. U-bend optimisation results in a complete differentiated design chain

in much lower loss of total pressure. This is mainly due to the increase in inner radius of
the bend and the cross-sectional area of the U-part.
The optimisation history, yielding 18% improvement, is shown in Fig. 7. The design

iterations broke down at this stage because the mesh quality of the deformed mesh
became too poor for the flow solver to converge. As we provide an exact CAD description
of the geometry, we could remesh and run further optimisation steps. However, remeshing
is currently a manual step and not included in the automated design algorithm. Improved
methods for mesh deformation with better mesh quality are an active area of research in
the field.
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7. Conclusion

Algorithmic differentiation of the Open CASCADE Technology CAD kernel has been
performed successfully, however requiring a significant amount of code modification.
ADOL-C has been successfully integrated into OCCT, the correctness of the computed
derivatives have been verified for the U-bend test-case, but the derivative validation of
the rest of differentiated OCCT sources remains challenging. Certainly, some parts will
be validated as we move on to the next test-cases. However, a more generic approach
of testing the derivatives has to be investigated. There is a need for an effective and
automated framework, an Automated Testing System which derives gradient tests from
the regression tests available for the OCCT kernel.
The first results of using the reverse mode differentiation of OCCT show a significant

reduction in the temporal complexity of the derivative computation. Compared to the
traceless forward vector mode differentiation, we benefit in improved efficiency by 63%.
There are some ways of code modification to make this even more efficient. This requires
a complete understanding of the complex OCCT source code, at least the part used for
the U-bend. Since ADOL-C is integrated into OCCT by the typedef approach, the first
step is to reduce the total number of adoubles used in the optimisation process as much
as possible. All variables that do not participate in the differentiation chain should have
a passive declaration type. Next thing is to find linear solvers in the OCCT code and
take them out of the differentiation process. Although this looks very straightforward,
it is not as simple as one would expect, especially in the complex object-oriented source
code like OCCT. This will be a part of our future research.
The differentiated CAD kernel has been coupled with a discrete adjoint flow solver also

produced with algorithmic differentiation. The work demonstrates for the first time the
differentiation of a complete design chain with generic, multi-purpose components which
can be applied to a very wide variety of shape parametrisations expressed in CAD.
The effective application of the design chain is demonstrated by application to a U-

bend turbo-machinery cooling channel. A typical, but complex CAD parametrisation for
this type of geometry is used which starts from a two-dimensional curve formed by a set
of Bézier curves in a cross-sectional plane. Then the three-dimensional shape is ‘swept’
along a pathline over the slices. The values of pathline and control parameters are defined
along B-spline curves around the U-bend. Application of gradient-based optimisation to
this geometry results in a 18% reduction of total pressure loss in the duct.
The computational time to construct the CAD geometry and to evaluate the corre-

sponding sensitivities is negligible compared to the CFD part (primal and adjoint eval-
uation). On an average desktop computer configuration, where the U-bend optimisation
presented in Sec. 6 takes a whole day, the total required computational time for the CAD
part takes only several minutes.
The paper demonstrates that differentiation of complete CAD kernel is entirely fea-

sible and can be applied to industrial cases. The inclusion of the CAD kernel in the
design chain avoids the effort and errors associated with mesh-based methods of man-
ual re-transcription of optimised shapes back into CAD. Application of AD to the CAD
kernel rather than finite differences not only produces exact shape derivatives, but also
strengthens the robustness of the method and reduces its computational cost. These im-
provements enable a step change in industrial shape optimisation with gradient-based
methods.
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