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Abstrat

We present an overview of the reent progress of apply-

ing omputational geometry tehniques to solve some ques-

tions, suh as topology onstrution and broadasting, in

wireless ad ho networks. Treating eah wireless devie as

a node in a two dimensional plane, we model the wireless

networks by unit disk graphs in whih two nodes are on-

neted if their Eulidean distane is no more than one. We

�rst summarize the urrent status of onstruting sparse

spanners for unit disk graphs with various ombinations of

the following properties: bounded streth fator, bounded

node degree, planar, and bounded total edges weight (om-

pared with the minimum spanning tree). Instead of on-

struting subgraphs by removing links, we then review the

algorithms for onstruting a sparse bakbone (onneted

dominating set), i.e., subgraph from the subset of nodes.

We then review some eÆient methods for broadasting

and multiasting with theoreti guaranteed performane.

Keywords: Computational geometry, wireless net-
works, network optimization, power onsumption,
routing, spanner, topology ontrol.

1 Introdution

Due to its potential appliations in various situations
suh as battle�eld, emergeny relief, and so on, wire-
less networking has reeived signi�ant attention over
the last few years. There are no wired infrastrutures
or ellular networks in ad ho wireless network. Eah
mobile node has a transmission range. Node v an
reeive the signal from node u if node v is within
the transmission range of the sender u. Otherwise,
two nodes ommuniate through multi-hop wireless
links by using intermediate nodes to relay the mes-
sage. Consequently, eah node in the wireless network
also ats as a router, forwarding data pakets for other
nodes. In this survey, we onsider that eah wireless
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node has an omni-diretional antenna. This is attra-
tive beause a single transmission of a node an be
reeived by many nodes within its viinity whih, we
assume, is a disk entered at the node. In addition,
we assume that eah node has a low-power Global Po-
sition System (GPS) reeiver, whih provides the po-
sition information of the node itself. If GPS is not
available, the distane between neighboring nodes an
be estimated on the basis of inoming signal strengths.
Relative o-ordinates of neighboring nodes an be ob-
tained by exhanging suh information between neigh-
bors [1℄.

Wireless ad ho networks an be subdivided into
two lasses: stati and mobile. In stati networks,
the position of a wireless node does not hange or
hanges very slowly one the node was deployed. Typ-
ial example of suh stati networks inludes sensor
networks. In mobile networks, wireless nodes move
arbitrarily. Sine mobile wireless networks hange
their topology frequently and often without any regu-
lar pattern, topology maintenane and routing in suh
networks are hallenging tasks. For the sake of the
simpliity, we assume that the nodes are quasi-stati
during the short period of topology reonstrution or
route �nding.

We onsider a wireless ad ho network onsisting
of a set V of n wireless nodes distributed in a two-
dimensional plane. By a proper saling, we assume
that all nodes have the maximum transmission range
equal to one unit. These wireless nodes de�ne a unit
disk graph UDG(V ) in whih there is an edge between
two nodes if and only if their Eulidean distane is at
most one.

Computational geometry emerged from the �eld
of algorithms design and analysis in the late 70s. It
studies various problems [2, 3, 4℄ from omputer graph-
is, geographi information system, robotis, sienti�
omputing, wireless networks reently, and others, in
whih geometri algorithms ould play some funda-
mental roles. Most geometri algorithms are designed
for studying the strutural properties, searhing, in-
lusion or exlusion relations, of a set of points, a set
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of hyperplanes, or both. For example, the strutural
properties inlude the onvex hull, intersetions, hy-
perplane arrangement, triangulation (Delaunay, regu-
lar, and so on), Voronoi diagram, and so on. The query
operations often inlude point loation, range searh-
ing (orthogonal, unbounded, or some variations) and
so on.

In this survey, we onentrate on how to apply
some strutural properties of a point set for wire-
less networks as we treat wireless devies as two-
dimensional points.

It is ommon to separate the network design prob-
lem from the management and ontrol of the network
in the ommuniation network literature. The separa-
tion is very onvenient and helps to signi�antly sim-
plify these two tasks, whih are already very omplex
on its own. Nevertheless, there is a prie to be paid for
this modularity as the deisions made at the network
design phase may strongly a�et the network manage-
ment and ontrol phase. In partiular, if the issue of
designing eÆient routing shemes is not taken into a-
ount by the network designers, then the onstruted
network might not suited for supporting a good rout-
ing sheme. Wireless ad ho network needs some spe-
ial treatment as it intrinsially has its own speial
harateristis and some unavoidable limitations om-
pared with traditional wired networks. Wireless nodes
are often powered by batteries only and they often
have limited memories. Therefore, it is more halleng-
ing to design a network topology for wireless ad ho
networks, whih is suitable for designing an eÆient
routing sheme to save energy and storage memory
onsumption, than the traditional wired networks.

In tehnial terms, the question we deal with
is therefore whether it is possible (if possible, then
how) to design a network, whih is a subgraph of the
unit disk graph, suh that it ensures both attrative
network features suh as bounded node degree, low-
streth fator, and linear number of links, and attra-
tive routing shemes suh as loalized routing with
guaranteed performanes.

The size of the unit disk graph ould be as large
as the square order of the number of network nodes.
So we want to onstrut a subgraph of the unit disk
graph UDG(V ), whih is sparse, an be onstruted
loally in an eÆient way, and is still relatively good
ompared with the original unit disk graph for routes'
quality.

Unlike the wired networks that typially have
�xed network topologies, eah node in a wireless net-
work an potentially hange the network topology by
adjusting its transmission range and/or seleting spe-

i� nodes to forward its messages, thus, ontrolling its
set of neighbors. The primary goal of topology ontrol
in wireless networks is to maintain network onne-
tivity, optimize network lifetime and throughput, and
make it possible to design power-eÆient routing. Not
every onneted subgraph of the unit disk graph plays
the same important role in network designing. One
of the pereptible requirements of topology ontrol is
to onstrut a subgraph suh that the shortest path
onneting any two nodes in the subgraph is not muh
longer than the shortest path onneting them in the
original unit disk graph. This aspet of path quality
is aptured by the streth fator of the subgraph. A
subgraph with onstant streth fator is often alled a
spanner and a spanner is alled a sparse spanner if it
has only a linear number of links. In this survey, we
review and study how to onstrut a spanner (a sparse
network topology) eÆiently for a set of stati wireless
nodes.

Restriting the size of the network has been found
to be extremely important in reduing the amount of
routing information. The notion of establishing a sub-
set of nodes whih perform the routing has been pro-
posed in many routing algorithms [5, 6, 7, 8℄. These
methods often onstrut a virtual bakbone by using
the onneted dominating set [9, 10, 11℄, whih is often
onstruted from dominating set or maximal indepen-
dent set.

Many routing algorithms were proposed reently
for wireless ad ho networks. The routing protools
proposed may be ategorized as table-driven protools
or demand-driven protools. A good survey may be
found in [12℄.

Table-driven routing protools maintain up-to-
date routing information between every pair of nodes.
The hanges to the topology are maintained by prop-
agating updates of the topology throughout the net-
work. Destination-sequened Distane-Vetor Rout-
ing (DSDV) [13℄ and Zone-Routing Protool (ZRP)
[14, 15℄ are two of the table driven protools proposed
reently. The mobility nature of the wireless networks
prevent these table-driven routing protools from be-
ing widely used in large sale wireless ad ho networks.
Thus, on-demand routing protools are preferred.

Soure-initiated on-demand routing reates routes
only when desired by the soure node. The methodolo-
gies that have been proposed inlude the Ad-Ho On-
Demand Distane Vetor Routing (AODV) [16℄, the
Dynami Soure Routing (DSR) [17℄, and the Tem-
porarily Ordered Routing Algorithm (TORA) [18℄. In
addition, the Assoiativity Based Routing (ABR) [19℄
and Signal Stability Routing (SSR) use various riteria
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for seleting routes.

Introduing a hierarhial struture into routing
have also been used in many protools suh as the
Clusterhead Gateway Swith Routing (CGSR) [20℄,
the Fisheye Routing [21, 22℄, and the Hierarhial
State Routing [23℄. Dominating set based methods
were also adopted by several researhers [6, 7, 8℄. To
failitate this, several methods [24, 9, 10, 25℄ were pro-
posed to approximate the minimum dominating set or
the minimum onneted dominating set problems in
entralized and/or distributed ways.

Route disovery an be very expensive in ommu-
niation osts, thus reduing the response time of the
network. On the other hand, expliit route mainte-
nane an be even more ostly in the expliit ommu-
niation of substantial routing information and the us-
age of sarity memory of wireless network nodes. The
geometri nature of the multi-hop ad-ho wireless net-
works allows a promising idea: loalized routing pro-
tools. Loalized routing does not require the nodes to
maintain routing tables, a distint advantage given the
sare storage resoures and the relatively low ompu-
tational power available to the wireless nodes. More
importantly, given the numerous hanges in topology
expeted in ad-ho networks, no re-omputation of the
routing tables is needed and therefore we expet a
signi�ant redution in the overhead. Thus loalized
routing is salable. Loalized routing is also uniform,
in the sense that all the nodes exeute the same pro-
tool when deiding to whih other node to forward
a paket. Mauve et al. [26℄ onduted an exellent
survey of position-based loalized routing protools.
Thus, we will not repeat it here.

Energy onservation is a ritial issue in ad ho
wireless network for the node and network life, as the
nodes are powered by batteries only. In the most om-
mon power-attenuation model, the power needed to
support a link uv is kuvk�, where kuvk is the Eulidean
distane between u and v, � is a real onstant between
2 and 5 dependent on the wireless transmission envi-
ronment. This power onsumption is typially alled
path loss. In this survey, we assume that the path loss
is the major part of power onsumption to transmit
signals.

Notie that, pratially, there is some other over-
head ost for eah devie to reeive and then proess
the signal. For simpliity, this overhead ost an be
integrated into one ost, whih is almost the same for
all nodes. Thus, we will use  to denote suh onstant
overhead. In most results surveyed here, it is assumed
that  = 0.

The rest of the survey is organized as follows. In

Setion 2, we review some geometry strutures, de�ne
the graph spanners, and introdue the loalized algo-
rithm onept. In Setion 3, we review the strutures
with bounded streth fator, or with bounded node
degree, or planar strutures. In Setion 4, we summa-
rize the urrent status of ontrolling the transmission
power so the total or the maximum transmission power
is minimized without sari�ing the network onne-
tivity. In Setion 5, state of the art of onstruting
virtual bakbone for wireless networks is reviewed. As
there are many heuristis proposed in this area, we
onentrate on the ones that have theoreti perfor-
mane guarantees or are popular. Setion 6 reviews
the broadasting protools that We onlude the sur-
vey in Setion 7 by pointing out some possible future
researh questions.

2 Geometry Strutures

Several geometrial strutures have been studied re-
ently both by omputational geometry sientists and
network engineers. Here we review the de�nitions of
some of them whih ould be used in the wireless net-
working appliations. Let G = (V;E) be a geometri
graph de�ned on V .

The minimum spanning tree of G, denoted by
MST(G), is the tree belong to E that onnets all
nodes and whose total edge length is minimized.
MST(G) is obviously one of the sparsest possible on-
neted subgraph, but its streth fator an be as large
as n� 1.

The relative neighborhood graph, denoted by
RNG(G), is a geometri onept proposed by Tous-
saint [27℄. It onsists of all edges uv 2 E suh that
there is no point w 2 V with edges uw and wv in
E satisfying kuwk < kuvk and kwvk < kuvk. Thus,
an edge uv is inluded if the intersetion of two ir-
les entered at u and v and with radius kuvk do not
ontain any vertex w from the set V suh that edges
uw and wv are in E. Notie if G is a direted graph,
then edges uw and wv also are direted in the above
de�nition, i.e., we have �!uw and �!wv instead of uw and
wv.

Let disk(u; v) be the disk with diameter uv.
Then, the Gabriel graph [28℄ GG(G) ontains an edge
uv from G if and only if disk(u; v) ontains no other
vertex w 2 V suh that there exist edges uw and wv
from G satisfying kuwk < kuvk and kwvk < kuvk.
Same to the de�nition of RNG(G), if G is a direted
graph, then edges uw and wv also are direted in the
above de�nition of GG(G), i.e., we use �!uw and �!wv in-
stead. GG(G) is a planar graph (that is, no two edges
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ross eah other) if G is the omplete graph. It is easy
to show that RNG(G) is a subgraph of the Gabriel
graph GG(G). For an undireted and onneted graph
G, both GG(G) and RNG(G) are onneted and on-
tain the minimum spanning tree of G.

The Yao graph with an integer parameter k � 6,

denoted by
��!
Y Gk(G), is de�ned as follows. At eah

node u, any k equally-separated rays originated at u
de�ne k ones. In eah one, hoose the shortest edge
uv among all edges from u, if there is any, and add
a direted link �!uv. Ties are broken arbitrarily. The
resulting direted graph is alled the Yao graph. See
Figure 1 for an illustration. Let Y Gk(G) be the undi-
reted graph by ignoring the diretion of eah link in��!
Y Gk(G). If we add the link �!vu instead of the link
�!uv, the graph is denoted by

 ��
Y Gk(G), whih is alled

the reverse of the Yao graph. Some researhers used a
similar onstrution named �-graph [29℄, the di�erene
is that, in eah one, it hooses the edge whih has the
shortest projetion on the axis of the one instead of
the shortest edge. Here the axis of a one is the angu-
lar bisetor of the one. For more detail, please refer
to [29℄.

u v u v u

RNG GG Yao

Figure 1: The de�nitions of RNG, GG, and Yao on
point set. Left: The lune using uv is empty for RNG.
Middle: The diametri irle using uv is empty for
GG. Right: The shortest edge in eah one is added
as a neighbor of u for Yao.

Notie all these de�nitions are exatly the on-
ventional de�nitions [30, 31, 32, 33℄ when graph G is
the ompleted Eulidean graph K(V ). We will use
RNG(V ), GG(V ), and Yao(V ) to denote the orre-
sponding resulting graph if G is the omplete graph
K(V ).

We ontinue with the de�nition of Delaunay tri-
angulation. Assume that there are no four verties
of V that are o-irular. A triangulation of V is a
Delaunay triangulation, denoted by Del(V ), if the ir-
umirle of eah of its triangles does not ontain any
other verties of V in its interior. A triangle is alled
the Delaunay triangle if its irumirle is empty of
verties of V . The Voronoi region, denoted by Vor(p),
of a vertex p 2 V is a olletion of two dimensional
points suh that every point is loser to p than to any

other vertex of V . The Voronoi diagram for V is the
union of all Voronoi regions Vor(p), where p 2 V . The
Delaunay triangulation Del(V ) is also the dual of the
Voronoi diagram: two verties p and q are onneted in
Del(V ) if and only if Vor(p) and Vor(q) share a om-
mon boundary. The shared boundary of two Voronoi
regions Vor(p) and Vor(q) is on the perpendiular bi-
setor line of segment pq. The boundary segment of a
Voronoi region is alled the Voronoi edge. The inter-
setion point of two Voronoi edge is alled the Voronoi
vertex. The Voronoi vertex is the irumenter of some
Delaunay triangle.

Besides these geometri strutures, some graph
notations will also be used in this survey. A subset
S of V is a dominating set if eah node u in V is
either in S or is adjaent to some node v in S. Nodes
from S are alled dominators, while nodes not is S
are alled dominatees. A subset C of V is a onneted
dominating set (CDS) if C is a dominating set and
C indues a onneted subgraph. Consequently, the
nodes in C an ommuniate with eah other without
using nodes in V �C. A dominating set with minimum
ardinality is alled minimum dominating set, denoted
by MDS. A onneted dominating set with minimum
ardinality is denoted by MCDS.

A subset of verties in a graph G is an indepen-
dent set if for any pair of verties, there is no edge
between them. It is a maximal independent set if no
more verties an be added to it to generate a larger in-
dependent set. It is amaximum independent set (MIS)
if no other independent set has more verties.

Due to the limited resoures of the wireless nodes,
it is preferred that the underlying network topology
an be onstruted in a loalized manner. Stojmenovi
et al. �rst de�ned what is a loalized algorithm in sev-
eral pioneering papers [34, 35℄. Here a distributed al-
gorithm onstruting a graphG is a loalized algorithm
if every node u an exatly deide all edges inident
on u based only on the information of all nodes within
a onstant hops of u (plus a onstant number of addi-
tional nodes' information if neessary). It is easy to see
that the Yao graph YG(V ), the relative neighborhood
graph RNG(V ) and the Gabriel graph GG(V ) an be
onstruted loally. However, the Eulidean minimum
spanning tree EMST(V ) and the Delaunay triangula-
tion Del(V ) an not be onstruted by any loalized
algorithm. Gabriel graph was used as a planar sub-
graph in the Fae routing protool [34, 36, 37℄ and the
GPSR routing protool [38℄. Right hand rule is used to
guarantee the delivery of the paket in [34℄. Relative
neighborhood graph RNG was used for eÆient broad-
asting (minimizing the number of retransmissions) in
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one-to-one broadasting model in [39℄. In this survey,
we are interested in loalized algorithms that onstrut
sparse and power eÆient network topologies.

3 Spanners

Spanners have been studied intensively in reent years
[40, 41, 42, 43, 44, 45, 46, 47, 32℄. Let G = (V;E) be
a n-vertex onneted weighted graph. The distane in
G between two verties u; v 2 V is the total weight
(length) of the shortest path between u and v and is
denoted by dG(u; v). A subgraph H = (V;E0), where
E0 � E, is a t-spanner of G if for every u; v 2 V ,
dH(u; v) � t � dG(u; v). The value of t is alled the
streth fator.

Consider any uniast �(u; v) in G (ould be di-
reted) from a node u 2 V to another node v 2 V :

�(u; v) = v0v1 � � � vh�1vh; where u = v0; v = vh:

Here h is the number of hops of the path �. The total
transmission power p(�) onsumed by this path � is
de�ned as

p(�) =
hX
i=1

kvi�1vik�

Let pG(u; v) be the least energy onsumed by all paths
onneting nodes u and v in G. The path in G on-
neting u; v and onsuming the least energy pG(u; v)
is alled the least-energy path in G for u and v. When
G is the unit disk graph UDG(V ), we will omit the
subsript G in pG(u; v).

Let H be a subgraph of G. The power streth
fator of the graphH with respet to G is then de�ned
as

�H(G) = max
u;v2V

pH(u; v)

pG(u; v)

If G is a unit disk graph, we use �H(V ) instead of
�H(G). For any positive integer n, let

�H(n) = sup
jV j=n

�H(V ):

Similarly, we de�ne the length streth fators `H(G)
and `H(n). When the graph H is lear from the on-
text, it is dropped from notations.

It is not diÆult to show that, for anyH � G with
a length streth fator Æ, its power streth fator is at
most Æ� for any graph G. In partiular, a graph with
a onstant bounded length streth fator must also
have a onstant bounded power streth fator, but the
reverse is not true. Finally, the power streth fator
has the following monotoni property: If H1 � H2 �

G then the power streth fators of H1 and H2 satisfy
�H1

(G) � �H2
(G).

Previous algorithms that onstrut a t-spanner of
the Eulidean omplete graph K(V ) in omputational
geometry are entralized methods. The rapid devel-
opment of the wireless ommuniation presents a new
hallenge for algorithm designing and analysis. Dis-
tributed algorithms are favored than the more tradi-
tional entralized algorithms.

In this setion, we study the power streth fa-
tor of several new sparse spanners for unit disk graph.
A trade-o� an be made between the sparseness of
the topology and the power eÆieny. The power eÆ-
ieny of any spanner is measured by its power streth
fator, whih is de�ned as the maximum ratio of the
minimum power needed to support the onnetion of
two nodes in this spanner to the least neessary in the
unit disk graph.

3.1 RNG, GG, and Yao

Sine the relative neighborhood graph has the length
streth fator as large as n�1, then obviously its power
streth fator is at most (n�1)�. Li et al. [48℄ showed
that it is atually n � 1. Thus, any graph ontains
the Eulidean minimum spanning tree has the power
streth fator at most n� 1.

The Gabriel graph has length streth fator be-

tween
p
n

2 and 4�
p
2n�4
3 [43℄. Li et al. [48℄ proved that

its power streth fator is at most
�
4�
p
2n�4
3

��
.

The Yao graph has length streth fator 1
1�2 sin �

k

.

Thus, its power streth fator is no more than
( 1
1�2 sin �

k

)� . Li et al. [48℄ proved a stronger result:

its power streth fator is at most 1
1�(2 sin �

k
)� .

Li et al. [49℄ also proposed to apply the Yao stru-
ture on top of the Gabriel graph struture (the result-

ing graph is denoted by
���!
Y GGk(V )), and apply the

Gabriel graph struture on top of the Yao struture

(the resulting graph is denoted by
���!
GY Gk(V )). These

strutures are sparser than the Yao struture and the
Gabriel graph struture and they still have a onstant
bounded power streth fator. These two strutures
are onneted graphs if the UDG is onneted, whih
an be proved by showing that RNG is a subgraph of
both strutures.

The two-phased approah by Wattenhofer et al.
[50℄ onsists of a variation of the Yao graph followed by
a variation of the Gabriel graph. They tried to prove
that the onstruted spanner has a onstant power
streth fator and the node degree is bounded by a
onstant. Unfortunately, there are some bugs in their
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proof of the onstant power streth fator and their
result is erroneous, whih was disussed in detail in
[48℄.

Li et al. [51℄ proposed a struture that is similar
to the Yao struture for topology ontrol. Eah node
u �nds a power pu;� suh that in every one of de-
gree � surrounding u, there is some node that u an
reah with power pu;�. Here, nevertheless, we assume
that there is a node reahable from u by the maxi-
mum power in that one. Then the graph G� ontains
all edges uv suh that u an ommuniate with v us-
ing power pu;�. They proved that, if � � 5�

6 and
the UDG is onneted, then graph G� is a onneted
graph. On the other hand, if � > 5�

6 , they showed
that the onnetivity of G� is not guaranteed by giv-
ing some ounter-example [51℄.

3.2 Bounded Degree Spanners

Notie that although the direted graphs
��!
Y Gk(V ),���!

GY Gk(V ) and
���!
Y GGk(V ) have a bounded power

streth fator and a bounded out-degree k for eah
node, some nodes may have a very large in-degree.
The nodes on�guration given in Figure 2 will result
a very large in-degree for node u. Bounded out-degree
gives us advantages when apply several routing algo-
rithms. However, unbounded in-degree at node u will
often ause large overhead at u. Therefore it is of-
ten imperative to onstrut a sparse network topology
suh that both the in-degree and the out-degree are
bounded by a onstant while it is still power-eÆient.

v

α

v

v
1

u
v

i

v
i+1

α
α

2
v

n-1

n-2

Figure 2: Node u has degree (or in-degree) n� 1.

3.2.1 Sink Struture

Arya et al. [41℄ gave an ingenious tehnique to gen-
erate a bounded degree graph with onstant length
streth fator. In [48℄, Li et al. applied the same teh-
nique to onstrut a sparse network topology with a
bounded degree and a bounded power streth fator
from Y G(V ). The tehnique is to replae the direted
star onsisting of all links toward a node u by a di-
reted tree T (u) of a bounded degree with u as the

sink. Tree T (u) is onstruted reursively. The algo-
rithm is as follows.

Algorithm: Construting-YG�

1. Eah node u omputes the set of in-oming nodes

I(u) = fv j �!vu 2 ��!
Y Gk(V )g.

2. Node u uses Tree(u,I(u)) to build tree T (u).

Algorithm: Construting-T (u) Tree(u,I(u))

1. Chooses k equal-sized ones: C1(u), C2(u), � � � ,
Ck(u) to partition the unit disk entered at u.

2. Finds the nearest node yi 2 I(u) in Ci(u), for 1 �
i � k, if there is any. Link �!yiu is added to T (u)
and yi is removed from I(u). For eah one Ci(u),
if I(u) \ Ci(u) is not empty, all Tree(yi,I(u) \
Ci(u)) and add the reated edges to T (u).

Figure 3 (a) illustrates a direted star entered
at u and Figure 3 (b) shows the direted tree T (u)
onstruted to replae the star with k = 8. The union

of all trees T (u) is alled the sink struture
��!
Y G�

k(V ).
Notie that, node u onstruts the tree T (u) and

then broadasts the struture of T (u) to all nodes in
T (u). Sine the total number of edges in the Yao stru-
ture is at most k � n, where k is the number of ones
divided, the total number of edges of T (u) of all node
u is also at most k � n. Thus, the total ommuniation
ost of broadasting the T (u) to all its neighbors is
still at most k � n. Reall that k is a small onstant.

u u

(a) (b)

Figure 3: (a) Star formed by links toward to u. (b)
Direted tree T (u) sinked at u.

The algorithm uses a direted tree T (u) to replae
the direted star for eah node u. Therefore, if nodes

u and v are onneted by a path in
��!
Y Gk, they are also

onneted by a path in
��!
Y G�k. It is already known that��!

Y Gk is strongly onneted if UDG(V) is onneted, so

does
��!
Y G�k. Li et al. [48℄ showd that the power streth

fator of the graph
��!
Y G�k(V ) is at most ( 1

1�(2 sin �
k
)�
)2,

the maximum degree of the graph
��!
Y G�k(V ) is at most

(k + 1)2 � 1, and the maximum out-degree is k.
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Notie that the sink struture and the Yao graph
struture do not have to have the same number of
ones, and the ones do not need to be aligned. For
setting up a power-eÆient wireless networking, eah
node u �nds all its neighbors in Y Gk(V ), whih an
be done in linear time proportional to the number of
nodes within its transmission range.

3.2.2 YaoYao Struture

In this setion, we review another algorithm proposed
by Li et al. [49℄ that onstruts a sparse and power
eÆient topology. Assume that eah node vi of V
has a unique identi�ation number ID(vi) = i. The
identity of a direted link �!uv is de�ned as ID(�!uv) =
(jjuvjj; ID(u); ID(v)).

Node u hooses a node v from eah one, if there
is any, so the direted link �!vu has the smallest ID(�!vu)
among all direted links �!wu in Y G(V ) in that one.
The union of all hosen direted links is the �nal net-
work topology, denoted by

��!
Y Y k(V ). If the dire-

tions of all links are ignored, the graph is denoted

as Y Yk(V ). The direted graph
��!
Y Y k(V ) is strongly

onneted if UDG(V ) is onneted and k > 6, see [49℄.

It was proved in [52, 49℄ that
��!
Y Y k(V ) is a spanner

in ivilized graph. Here a unit disk graph is ivilized
graph if the distane between any two nodes in this
graph is larger than a positive onstant �. In [53℄, they
alled the ivilized unit disk graph as the �-preision
unit disk graph. Notie the wireless devies in wireless
networks an not be too lose or overlapped. Thus, it
is reasonable to model the wireless ad ho networks as
a ivilized unit disk graph.

The experimental results by Li et al. [49℄ showed
that this sparse topology has a small power streth

fator in pratie. They [49℄ onjetured that
��!
Y Y k(V )

also has a onstant bounded power streth fator the-
oretially in any unit disk graph. The proof of this
onjeture or the onstrution of a ounter-example
remain a future work.

3.2.3 Symmetri Yao Graph

In [49℄, Li et al. also onsidered another undireted
struture, alled symmetri Yao graph Y Sk(V ), whih
guarantees that the node degree is at most k. Eah
node u divides the region into k equal angular regions
entered at the node, and hooses the losest node in
eah region, if any. An edge uv is seleted to graph
Y Sk(V ) if and only if both direted edges �!uv and �!vu
are in the Yao graph

��!
Y Gk(V ). Then it is obvious that

the maximum node degree is k.

Li et al. [48℄ proved that the graph Y Sk(V ) is
strongly onneted if UDG(V ) is onneted and k �
6 by showing that RNG is a subgraph of Y Sk(V ) if
k � 6. This immediately implies the onnetivity of
the Yao graph, sink struture, and the YaoYao graph
as RNG is also the subgraph of all these strutures.

The experiment by Li et al. also showed that it
has a small power streth fator in pratie. However,
it was shown in [54℄ reently that Y Sk(V ) is not a
spanner theoretially. The basi idea of the ounter
example is similar to the ounter example for RNG
proposed by Bose et al. [43℄. For the ompleteness of
the presentation, we still review the ounter example
here.

Let nodes v1 and v0 have distane half unit from
eah other. Assume the ith one of v1 ontains v0,
and the i0th one of v0 ontains v1. Then draw two
lines l1 = v1v3 and l2 = v0v2 suh that both the an-
gles \v3v1v0 and \v2v0v1 are

�
2 ��, where � is a very

small positive number. Let's �rst onsider even n, say
n = 2m. Figure 4 illustrates the onstrution of the
point set V . The node v2j is plaed on l2 in the ith
one of v2j�1 and it is very lose to the upper bound-
ary of the ith one of v2j�1. The node v2j+1 is plaed
on l1 in the i0th one of v2j lose to the upper bound-
ary of that one. Using this method, plae all nodes
from v2 to v2m in order. Then it is easy to show that
the Y Sk(V ) does not ontain any edge v2jv2j+1 and
v2j+1v2j+2 for 0 � j � m � 1. The nearest neighbor
of v2j is v2j+1, but for v2j+1, the nearest neighbor is
v2j+2. So although in Y Sk(V ) there is a path from v1
to v2, its length is kv1v2m�1k+kv2m�1v2mk+kv2mv2k.
So when � is appropriately small, the length streth
fator of Y Sk(V ) annot be bounded by a onstant.
Similarly, its power streth fator annot be bounded
also. When n is odd, the onstrution is similar.

3.3 Planar Spanner

Given a set of nodes V , it is well-known that the De-
launay triangulation Del(V ) is a planar t-spanner of
the ompleted graph K(V ). This was �rst proved
by Dobkin, Friedman and Supowit with onstant t =
1+

p
5

2 � � 5:08. Then Kevin and Gutwin improved
the upper bound on t to be 2�

3 os �
6

� 2:42. How-

ever, it is not appropriate to require the onstru-
tion of the Delaunay triangulation in the wireless
ommuniation environment beause of the possible
massive ommuniations it requires. Given a set of
points V , let UDel(V ) be the graph of removing all
edges of Del(V ) that are longer than one unit, i.e.,
UDel(V ) = Del(V ) \ UDG(V ). Li et al. [55℄ on-
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Figure 4: An example that Y Sk(V ) has a large streth
fator.

sidered the unit Delaunay triangulation UDel(V ) for
planar spanner of UDG, whih is a subset of the Delau-
nay triangulation. In [55℄, they proved that UDel(V )
is a t-spanner of the unit disk graph UDG(V ). Speif-
ially, they showed that, for any two verties u and v
of V ,

jj�UDel(V )(u; v)jj � 1 +
p
5

2
� � jj�UDG(V )(u; v)jj:

Notie that, Kevin and Gutwin [56℄ showed that
the Delaunay triangulation is a t-spanner for a on-
stant t � 2:42. They proved this using indution on
the order of the lengths of all pair of nodes (from the
shortest to the longest). It an be shown that the path
onneting nodes u and v onstruted by the method
given in [56℄ also satis�es that all edges of that path
is shorter than kuvk. Consequently, we know that

the unit Delaunay triangulation UDel(V ) is a 4
p
3

9 �-
spanner of the unit disk graph UDG(V ).

3.3.1 Loalized Delaunay triangulation

Li et al. [55℄ gave a loalized algorithm that on-
struts a sequene graphs, alled loalized Delaunay
LDel(k)(V ), whih are supergraphs of UDel(V ). We
begin with some neessary de�nitions before present-
ing the algorithm.

Unit Gabriel graph It onsists of all edges uv suh
that kuvk � 1 and the open disk using uv as di-
ameter does not ontain any vertex from V . Suh

edge uv is alled the Gabriel edge. We denote the
unit Gabriel graph by GG(V ) hereafter.

k-loalized Delaunay triangle Triangle 4uvw is
alled a k-loalized Delaunay triangle if the in-
terior of the irumirle of 4uvw, denoted by
disk (u; v; w) hereafter, does not ontain any ver-
tex of V that is a k-neighbor of u, v, or w; and all
edges of the triangle 4uvw have length no more
than one unit.

k-loalized Delaunay graph The k-loalized De-
launay graph over a vertex set V , denoted by
LDel (k)(V ), has exatly all unit Gabriel edges and
edges of all k-loalized Delaunay triangles.

α vu

w

Figure 5: LDel: The disk(u; v; w) is not neessarily
overed by unit disks entered at u and v. But it is
empty of other verties from N1(u) [N1(v) [N1(w).

A sequene of loalized Delaunay graphs
LDel (k)(V ), where 1 � k � n is de�ned. All graphs
are t-spanner of the unit-disk graph with the following
properties [55℄: (1) UDel(V ) � LDel (k)(V ), for all

1 � k � n; (2) LDel (k+1)(V ) � LDel (k)(V ), for all

1 � k � n; (3) LDel (k)(V ) are planar graphs for all

2 � k � n; and (4) LDel (1)(V ) is not always planar.

Notie that, although LDel (1)(V ) is not a planar

graph, graph LDel (1)(V ) has thikness 2; see [55℄.
Although the graph UDel(V ) is a t-spanner for

UDG(V ), it is unknown how to onstrut it loally.

We an onstrut LDel (2)(V ), whih is guaranteed to
be a planar spanner of UDel(V ), but a total ommuni-
ation ost of this approah is O(m logn) bits, where
m is the number of edges in UDG(V ) and ould be as
large as O(n2). This is more ompliated than some
other non-planar t-spanners, suh as the Yao stru-
ture [32℄ and the �-graph [56℄ (although the lattes are
not planar). In order to redue the total ommuni-
ation ost to O(n logn) bits, they do not onstrut

LDel (2)(V ), and instead they extrat a planar graph

PLDel(V ) out of LDel (1)(V ). They provided a novel

algorithm to onstrut LDel (1)(V ) using linear om-
muniations and then make it planar in linear ommu-
niation ost. The �nal graph still ontains UDel(V )



Algorithmi, geometri and graphs issues in wireless networks, X.-Y. Li, September 19, 2002 9

as a subgraph. Thus, it is a t-spanner of the unit-disk
graph UDG(V ). In the following desription of the al-
gorithm onstruting LDel, the order of three nodes
in a triangle is immaterial.

Algorithm 1 Loalized Unit Delaunay Triangulation

1. Eah node u broadasts its identity and loation
and listens to the messages from other nodes.

2. Node u omputes Del(N1(u)) of its 1-neighbors
N1(u) and u itself.

3. If angle \wuv � �
3 and kvwk � 1, node u

broadasts a message proposal(u; v; w) to form a 1-

loalized Delaunay triangle 4uvw in LDel (1)(V ).

4. When u reeives a message proposal(u; v; w), u a-
epts the proposal of onstruting4uvw if 4uvw
belongs to Del(N1(u)) by broadasting message
aept(u; v; w); otherwise, it rejets the proposal
by broadasting message rejet(u; v; w).

5. Node u adds the edges uv and uw to its set of in-
ident edges if 4uvw is in Del(N1(u)), kvwk � 1,
and both v and w have sent either aept(u; v; w)
or proposal(u; v; w).

It was proved that the graph onstruted by the
above algorithm is LDel (1)(V ). Indeed, for eah trian-

gle 4uvw of LDel (1)(V ), one of its interior angle is at
least �=3 and 4uvw is in Del(N1(u)), Del(N1(v)) and
Del(N1(w)). So one of the nodes amongst fu; v; wg
will broadast the message proposal(u; v; w) to form a
1-loalized Delaunay triangle 4uvw.

As Del(N1(u)) is a planar graph, and a proposal
is made only if \wuv � �

3 , node u broadasts at most
6 proposals. And eah proposal is replied by at most
two nodes. Therefore, the total ommuniation ost is
O(n log n) bits. The above algorithm also shows that

LDel (1)(V ) has O(n) edges. Consequently, the loal

Delaunay onstrution method generates LDel (1)(V )
with total ommuniation ost O(n logn) bits [55℄.

We then review the algorithm to extrat from
LDel (1)(V ) a planar subgraph.

Algorithm 2 Planarize LDel (1)(V )

1. Eah node u broadasts the Gabriel edges inident
on u and the triangles 4uvw of LDel (1)(V ).

2. Assume u gathered the Gabriel edge and 1-loal
Delaunay triangles information of all nodes from
N1(u). For two interseted triangles 4uvw and
4xyz known by u, node u removes the triangle
4uvw if its irumirle ontains a node from
fx; y; zg.

3. Eah node u broadasts all the triangles whih it
has not removed in the previous step.

4. Node u keeps the edge uv in its set of inident
edges if it is a Gabriel edge, or if there is a triangle
4uvw suh that u, v, and w have all announed
they have not removed 4uvw in Step 2.

They denoted the graph extrated by the algo-
rithm above by PLDel(V ). Note that any triangle

of LDel (1)(V ) not kept in the last step of the Pla-

narization Algorithm is not a triangle of LDel (2)(V ),

and therefore PLDel(V ) ontains LDel (2)(V ). Thus,

UDel(V ) � LDel (2)(V ) � PLDel(V ) � LDel (1)(V ).

Similar to the proof that LDel (2)(V ) is a planar
graph, they showed that the algorithm does generate
a planar graph.

The total ommuniation ost to onstrut the
graph PLDel(V ) is a O(logn) times the number of

edges of the graph LDel (1)(V ), whih is O(n). In sum-

mary, PLDel(V ) is planar 4
p
3

9 �-spanner of UDG(V ),
and an be onstruted with total ommuniation ost
O(n log n) bits.

3.3.2 Partial Delaunay triangulation

Stojmenovi and Li [57℄ also proposed a geometry
struture, namely the partial Delaunay triangulation
(PDT ), that an be onstruted in a loalized manner.
Partial Delaunay triangulation ontains Gabriel graph
as its subgraph, and itself is a subgraph of the Delau-
nay triangulation, more preisely, the subgraph of the
unit Delaunay triangulation UDel(V ). The algorithm
for the onstrution of PDT goes as follows.

Let u and v be two neighboring nodes in the net-
work. Edge uv belongs to Del(V ) if and only if there
exists a disk with u and v on its boundary, whih does
not ontain any other point from the set V . First test
whether disk(u; v) ontains any other node from the
network. If it does not, the edge belongs to GG and
therefore to PDT . If it does, hek whether nodes
exist on both sides of line uv or on only one side. If
both sides of line uv ontain nodes from the set inside
disk(u; v) then uv does not belong to Del(V ).

Suppose now that only one side of line uv on-
tains nodes inside the irle disk(u; v), and let w be
one suh point that maximizes the angle \uwv. Let
� = \uwv. Consider now the largest angle \uxv on
the other side of the mentioned irle disk(u; v), where
x is a node from the set S. If \uwv+\uxv > �, then
edge uv is de�nitely not in the Delaunay triangula-
tion Del(V ). The searh an be restrited to ommon
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neighbors of u and v, if only one-hop neighbor infor-
mation is available, or to neighbors of only one of the
nodes if 2-hop information (or exhange of the infor-
mation for the purpose of reating PDT is allowed) is
available. Then whether edge uv is added to PDT is
based on the following proedure.

Assume only N1(u) is known to u, and there is
one node w from N1(u) that is inside disk(u; v) with
the largest angle \uwv. Edge uv is added to PDT
if the following onditions hold: (1) there is no node
from N1(u) that lies on the di�erent side of uv with w
and inside the irumirle passing through u, v, and
w, (2) sin� > d

R
, where R is the transmission radius of

eah wireless node, d is the diameter of the irumirle
disk(u; v; w), and � = \uwv (here � � �

2 ).
Assume only 1-hop neighbors are known to u and

v, and there is one node w from N1(u) [ N1(v) that
is inside disk(u; v) with the largest angle \uwv. Edge
uv is added to PDT if the following onditions hold:
(1) there is no node from N1(u) [ N1(v) that lies on
the di�erent side of uv with w and inside the irum-
irle passing u, v, and w, (2) os �

2 > d
2R , where R

is the transmission radius of eah wireless node and
� = \uwv.

Obviously, the partial Delaunay triangulation is a
subgraph of UDel(V ). Thus, the spanning ratio of the
partial Delaunay triangulation ould be very large.

α
w

vu
α

w

vu

Figure 6: Left: Only one hop information is known
to u. Then it requires disk(u; v; w) to be overed by
the transmission range of u (denoted by the shaded
region) and is empty of neighbors of u. Right: Node
u knows N1(u) and node v knows N1(v). The ir-
umirle disk(u; v; w) is overed by the union of the
transmission ranges of u and v and is empty of other
verties.

3.3.3 Restrited Delaunay Graph

Gao et al. [58℄ also proposed another struture, alled
restrited Delaunay graph RDG and showed that it has
good spanning ratio properties and is easy to maintain
loally. A restrited Delaunay graph of a set of points
in the plane is a planar graph and ontains all the De-
launay edges with length at most one. In other other

words, they all any planar graph ontaining UDel(V )
as a restrited Delaunay graph. They desribed a dis-
tributed algorithm to maintain the RDG suh that at
the end of the algorithm, eah node u maintains a set
of edges E(u) inident to u. Those edges E(u) satisfy
that (1) eah edge in E(u) has length at most one unit;
(2) the edges are onsistent, i.e., an edge uv 2 E(u)
if and only if uv 2 E(v); (3) the graph obtained is
planar; (4) The graph UDel(V ) is in the union of all
edges E(u).

The algorithm works as follows. First, eah node
u aquires the position of its 1-hop neighbors N1(u)
and omputes the Delaunay triangulation Del(N1(u))
on N1(u), inluding u itself. In the seond step, eah
node u sends Del(N1(u)) to all of its neighbors. Let
E(u) = fuv j uv 2 Del(N1(u))g. For eah edge uv 2
E(u), and for eah w 2 N1(u), if u and v are in N1(w)
and uv 62 Del(N1(u)), then node u deletes edge uv
from E(u).

They proved that when the above steps are �n-
ished, the resulting edges E(u) satisfy the four prop-
erties listed above. However, unlike the loal Delaunay
triangulation, the omputation ost and ommunia-
tion ost of eah node needed to obtain E(u) is not
optimal within a small onstant fator.

Figure 7 gives some onrete examples of the ge-
ometry strutures disussed before.

4 Transmission Power Control

In the previous setions, we have assumed that the
transmission power of every node is equal and is nor-
malized to one unit. We relax this assumption for a
moment in this subsetion. In other words, we assume
that eah node an adjust its transmission power a-
ording to its neighbors' positions. A natural question
is then how to assign the transmission power for eah
node suh that the wireless network is onneted with
optimization riteria being minimizing the maximum
(or total) transmission power assigned.

A transmission power assignment on the verties
in V is a funtion f from V into real numbers. The
ommuniation graph, denoted by Gf , assoiated with
a transmission power assignment f , is a direted graph
with V as its verties and has a direted edge ��!vivj
if and only if jjvivj jj� � f(vi). We all a transmis-
sion power assignment f omplete if the ommunia-
tion graph Gf is strongly onneted. Reall that a
direted graph is strongly onneted if, for any given
pair of ordered nodes s and t, there is a direted path
from s to t.

The maximum-ost of a transmission power as-
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UDG(V ) Del(V )

PLDel(V ) PDel(V )

MST (V ) Y ao(GG(V ))

RNG(V ) GG(V )

Y G(V ) Y G�(V )

Y Y (V ) Y S(V )

Figure 7: Di�erent topologies from UDG(V ).

signment f is de�ned as m(f) = maxvi2V f(vi). And
the total-ost of a transmission power assignment f is
de�ned as s(f) =

P
vi2V f(vi).

The min-max assignment problem is then to �nd a
omplete transmission power assignment f whose ost
m(f) is the least among all omplete assignments.
The min-total assignment problem is to �nd a omplete
transmission power assignment f whose ost s(f) is
the least among all omplete assignments.

Given a graph H , we say the power assignment f
is indued by H if

f(v) = max
(v;u)2E

jjvujj� ;

where E is the set of edges of H . In other words, the
power assigned to a node v is the largest power needed
to reah all neighbors of v in H .

Transmission power ontrol has been well-studied
by peer researhers in the reent years. Monks et
al. [59℄ onduted simulations whih show that im-
plementing power ontrol in a multiple aess environ-
ment an improve the throughput performane of the
non-power ontrolled IEEE 802.11 by a fator of 2.
Therefore it provides a ompelling reason for adopting
the power ontrolled MAC protool in wireless net-
work.

The min-max assignment problem was studied by
several researhers [60, 61℄. Let EMST(V ) be the
Eulidean minimum spanning tree over a point set
V . Both [60℄ and [61℄ use the power assignment in-
dued by EMST(V ). The orretness of using mini-
mum spanning tree is proved in [60℄. Both algorithms
ompute the minimum spanning tree from the fully
onneted graph. Notie that Kruskal's or Prim's min-
imum spanning tree algorithm has time omplexity
O(m + n logn), where m is the number of edges of
the graph. Thus, the approah by [60℄ and [61℄ has
time omplexity O(n2) in the worst ase. In addition,
di�erent distributed implementation of this algorithm
is not feasible beause of the information eah node has
to store and proess. In ontrast, Li [62℄ gave a sim-
ple O(n logn) time omplexity entralized algorithm
and also show how this algorithm an be implemented
eÆiently for distributed omputation.

For an optimum transmission power assignment
fopt, all a link uv the ritial link if jjuvjj� = m(fopt).
It was proved in [60℄ that the longest edge of the Eu-
lidean minimum spanning tree EMST(V ) is always
the ritial link.

The best distributed algorithm [63, 64, 65℄ an
ompute the minimum spanning tree in O(n) rounds
using O(m + n logn) ommuniations for a general
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graph with m edges and n nodes. The relative neigh-
borhood graph, the Gabriel graph and the Yao graph
all have O(n) edges and ontain the Eulidean mini-
mum spanning tree. This implies that the distributed
min-max assignment problem an be solved in O(n)
rounds using O(n log n) ommuniations.

The min-total assignment problem was studied by
Kiroustis et al. [66℄ and by Clementi et al. [67, 68, 69℄.
Kiroustis et al. [66℄ �rst proved that the min-total as-
signment problem is NP-hard when the mobile nodes
are deployed in a three-dimensional spae. A simple 2-
approximation algorithm based on the Eulidean min-
imum spanning tree was also given in [66℄. The algo-
rithm guarantees the same approximation ratio in any
dimensions. Then Clementi et al. [67, 68, 69℄ proved
that the min-total assignment problem is still NP-hard
when the mobile nodes are deployed in a two dimen-
sional spae.

Reently, C�alinesu et al. [70℄ gave a method that
ahieves better approximation ratio than the approah
by the minimum spanning tree by using idea from the
minimum Steiner tree.

5 Clustering, Virtual Bakbone

While all the strutures disussed so far are at stru-
tures, there are another set of strutures, alled hier-
arhial strutures, are used in wireless networks. In-
stead of all nodes are involved in relaying pakets for
other nodes, the hierarhial routing protools pik a
subset of nodes that server as the routers, forwarding
pakets for other nodes. The struture used to build
this virtual bakbone is usually the onneted domi-
nating set.

5.1 Centralized Methods

Guha and Khuller [71℄ studied the approximation of
the onneted dominating set problem for general
graphs. They gave two di�erent approahes, both of
them guarantee approximation ratio of �(H(�)). As
their approahes are for general graphs and thus do not
utilize the geometry struture if applied to the wireless
ad ho networks.

One approah is to grow a spanning tree that in-
ludes all nodes. The internal nodes of the spanning
tree is seleted as the �nal onneted dominating set.
They �rst pik the node (marked with blak) with the
maximum node degree and all of its neighbors as its
hildren (marked with gray). They give two rules for
seleting nodes (either gray node or a gray node and a
white node adjaent to it) to grow the spanning tree:

(1) the gray node with the maximum number of white
neighbors; (2) two adjaent nodes, one is gray and one
is white, with the maximum number of white neigh-
bors. They [71℄ proved that this approah has approx-
imation ratio 2(H(�) + 1).

The other approah is �rst approximating the
dominating set and then onneting the dominating
set to a onneted dominating set. It runs in two
phases. At the start of the �rst phase all nodes are
olored white. Eah time a vertex is inluded into
the dominating set, we olor it blak. Dominators are
olored gray. In this �rst phase, the algorithm piks
a node at eah step and olors it blak and olors all
its adjaent nodes gray (as dominators). A piee is de-
�ned as a white node, or a blak onneted omponent.
At eah step, pik a node to olor blak that gives the
maximum non-zero redution in the number of piees.
In the seond phase, reursively onnet pairs of blak
omponents by hoosing a hain of verties, until there
is only one blak onneted omponent. The �nal on-
neted dominating set is the set of blak verties. They
[71℄ proved that this approah has approximation ratio
ln� + 3.

One an also use the Steiner tree algorithm to
onnet the dominators. This straightforward method
gives approximation ratio (H(�) + 1), where  is the
approximation ratio for the unweighted Steiner tree
problem. Currently, the best ratio is 1 + ln 3

2 ' 1:55,
due to Robins and Zelikovsky [72℄.

By de�nition, any algorithm generating a maxi-
mal independent set is a lustering method. We �rst
review the methods that approximates the maximum
independent set, the minimum dominating set, and the
minimum onneted dominating set.

Hunt et al. [73℄ and Marathe et al. [74℄ also
studied the approximation of the maximum indepen-
dent set and the minimum dominating set for unit disk
graphs. They gave the �rst PTASs for MDS in UDG.
The method is based on the following observations: a
maximal independent set is always a dominating set;
given a square 
 with a �xed area, the size of any
maximal dominating set is bounded by a onstant C.
Assume that there are n nodes in 
. Then, we an
enumerate all sets with size at most C in time �(nC).
Among these enumerated sets, the smallest dominat-
ing set is the minimum dominating set. Then, using
the shifting strategy proposed by Hohbaum [75℄, they
derived a PTAS for the minimum dominating set prob-
lem.

Sine we have PTAS for minimum dominating set
and the graph V irtG onneting every pair of dom-
inators within at most 3 hops is onneted [11℄, we



Algorithmi, geometri and graphs issues in wireless networks, X.-Y. Li, September 19, 2002 13

have an approximation algorithm (onstruting a min-
imum spanning tree V irtG) for MCDS with approxi-
mation ratio 3+�. Notie that, Berman et al. [76℄ gave
an 4

3 approximation method to onnet a dominating
set and Robins et al. [72℄ gave an 4

3 approximation
method to onnet an independent set. Thus, we an
easily have an 8

3 approximation algorithm for MCDS,
whih was reported in [77℄. Reently, Cheng et al. [78℄
designed a PTAS for MCDS in UDG. However, it is
diÆult to distributize their method eÆiently.

5.2 Distributed Methods

Many distributed lustering (or dominating set) algo-
rithms have been proposed in the literature [9, 79, 80,
81, 24, 82℄. All algorithms assume that the nodes have
distintive identities (denoted by ID hereafter).

In the rest of setion, we will interhange the
terms luster-head and dominator. The node that is
not a luster-head is also alled dominatee. A node is
alled white node if its status is yet to be deided by
the lustering algorithm. Initially, all nodes are white.
The status of a node, after the lustering method �n-
ishes, ould be dominator with olor blak or domi-
natee with olor gray. The rest of this setion is de-
voted for the distributed methods that approximates
the minimum dominating set and the minimum on-
neted dominating set for unit disk graph.

5.2.1 Clustering without Geometry Property

For general graphs, Jia et al. [83℄ desribed and an-
alyzed some randomized distributed algorithms for
the minimum dominating set problem that run in
polylogarithmi time, independent of the diameter of
the network, and that return a dominating set of
size within a logarithmi fator from the optimum
with high probability. Their best algorithm runs in
O(log n log�) rounds with high probability, and ev-
ery pair of neighbors exhange a onstant number
of messages in eah round. The omputed dominat-
ing set is within O(log�) in expetation and within
O(log n) with high probability. Their algorithm works
for weighted dominating set also.

The method proposed by Das et al. [6, 84℄ on-
tains three stages: approximating the minimum domi-
nating set, onstruting a spanning forest of stars, ex-
panding the spanning forest to a spanning tree. Here
the stars are formed by onneting eah dominatee
node to one of its dominators. The approximation
method of MDS is essentially a distributed variation
of the the entralized Chvatal's greedy algorithm [85℄

for set over. Notie that the dominating set prob-
lem is essentially the set over problem whih is well-
studied. It is then not surprise that the method by
Das et al. [6, 84℄ guarantees a H(�) for the MDS
problem, where H is the harmoni funtion and � is
the maximum node degree.

While the algorithm proposed by Das et al. [6, 84℄
�nds a dominating set and then grows it to a onnet-
ing dominating set, the algorithm proposed by Wu and
Li [86, 7℄ takes an opposite approah. They �rst �nd a
onneting dominating set and then prune out ertain
redundant nodes from the CDS. The initial CDS C

ontains all nodes that have at least two non-adjaent
neighbors. A node u is said to be loally redundant if it
has either a neighbor in C with larger ID whih dom-
inate all other neighbors of u, or two adjaent neigh-
bors with larger ID whih together dominates all other
neighbors of u. Their algorithm then keeps removing
all loally redundant nodes from C . They showed that
this algorithm works well in pratie when the nodes
are distributed uniformly and randomly, although no
any theoretial analysis is given by them both for the
worst ase and for the average approximation ratio.
However, it was shown by Alzoubi et al. [9℄ that the
approximation ratio of this algorithm ould be as large
as n

2 .

Stojmenovi et al. [8℄ proposed several synhro-
nized distributed onstrutions of onneting dominat-
ing set. In their algorithms, the onneting dominat-
ing set onsists of two types of nodes: lusterhead and
border-nodes (also alled gateway or onnetors else-
where). The lusterhead nodes are just a maximal
independent set, whih is onstruted as follows. At
eah step, all white nodes whih have the lowest rank
among all white neighbors are olored blak, and the
white neighbors are olored gray. The ranks of the
white nodes is updated if neessary. Here, the follow-
ing rankings of a node are used in various methods:
the ID only [80, 79℄, the ordered pair of degree and ID
[87℄, and an ordered pair of degree and loation [8℄.
After the lusterhead nodes are seleted, border-nodes
are seleted to onnet them. A node is a border-node
if it is not a lusterhead and there are at least two lus-
terheads within its 2-hop neighborhood. It was shown
by [9℄ that the worst ase approximation ratio of this
method is also n

2 , although it works well in pratie.

In [88, 89, 87℄, several researhers studied how
to maintain the lustering in mobile wireless ad ho
networks. It uses a general weight as a riterion for
seleting the node as the lusterhead, where the weight
ould be any riteria used before.
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5.2.2 Clustering with Geometry Property

Notie that none of the above algorithm utilizes the
geometry property of the underlying unit disk graph.
Reently, several algorithms were proposed with a on-
stant worst ase approximation ratio by taking ad-
vantage of the geometry properties of the underlying
graph. These methods typially use two messages sim-
ilar to IamDominator and IamDominatee, and typially
have the following proedures: a white node laims it-
self to be a dominator if it has the smallest ID among
all of its white neighbors, if there is any, and broad-
asts IamDominator to its 1-hop neighbors. A white
node reeiving IamDominator message marks itself as
dominatee and broadasts IamDominatee to its 1-hop
neighbors. The set of dominators generated by the
above method is atually a maximal independent set.
Here, we assume that eah node knows the IDs of all
its 1-hop neighbors, whih an be ahieved by asking
eah node to broadast its ID to its 1-hop neighbors
initially. This approah of onstruting MIS is well-
known. For example, Stojmenovi et al. [8℄ also used
this method to ompute the MIS.

The seond step of bakbone formation is to �nd
some onnetors (also alled gateways) among all the
dominatees to onnet the dominators. Then the on-
netors and the dominators form a onneted dominat-
ing set. Reently, Wan, et al. [10℄ proposed a ommu-
niation eÆient algorithm to �nd onnetors based
on the fat that there are only a onstant number of
dominators within k-hops of any node. The following
observation is a basis of several algorithms for CDS.
After lustering, one dominator node an be onneted
to many dominatees. However, it is well-known that a
dominatee node an only be onneted to at most �ve
dominators in the unit disk graph model. Generally,
it was shown in [10, 11℄ that for eah node (dominator
or dominatee), there are at most a onstant number of
dominators that are at most k units away.

Given a dominating set S, let V irtG be the graph
onneting all pairs of dominators u and v if there is
a path in UDG onneting them with at most 3 hops.
It is also well-known that, V irtG is onneted. It is
natural to form a onneted dominating set by �nd-
ing onnetors to onnet any pair of dominators u
and v if they are onneted in V irtG. This strategy
is also adopted by Wan, et al. [10℄. Notie that, in
the approah by Stojmenovi et al. [8℄, they set any
dominatee node as the onnetor if there are two dom-
inators within its 2-hop neighborhood. This approah
is very pessimisti and results in very large number of
onnetors in the worst ase [9℄. Instead, Wan et al.
suggested to �nd only one unique shortest path to on-

net any two dominators that are at most three hops
away.

We �rst briey review their basi idea of forming
a CDS in a distributed manner. Let �UDG(u; v) be
the path onneting two nodes u and v in UDG with
the smallest number of hops. Let's �rst onsider how
to onnet two dominators within 3 hops. If the path
�UDG(u; v) has two hops, then u �nds the dominatee
with the smallest ID to onnet u and v. If the path
�UDG(u; v) has three hops, then u �nds the node, say
w, with the smallest ID suh that w and v are two
hops apart. Then node w selets the node with the
smallest ID to onnet w and v.

Wang and Li [11℄ and Alzoubi et al. [10℄ disussed
in detail some approahes to optimize the ommuni-
ation ost and the memory ost. We briey review
the approahes proposed by Wang and Li [11℄. Notie
that, for example, it is not obvious how node u an
�nd suh node w eÆiently. In addition that, using
the smallest ID is not eÆient beause we may have to
postpone the seleting of onnetors till the node ol-
lets the IDs of all its one-hop neighbors. Instead of
using the intermediate node with the smallest ID, we
pik any node that omes �rst to the notie of the node
that makes the seletion of onnetors. Their method
uses the following primitive messages (some messages
are used in forming lusters):

� IamDominator(u): node u tells its 1-hop neighbors
that u is a dominator;

� IamDominatee(u; v): node u tells its 1-hop neigh-
bors that u is a dominatee of node v;

� 2HopsPath(u;w; v): node u tells its 1-hop neigh-
bors that u has a 2-hops path uwv and w is the
unique node seleted by u among all intermediate
nodes that an onnet u and v.

� 3HopsPath(x; u; w; v): node x tells its 1-hop neigh-
bors that x has a 3-hops path xuwv and u and w
are the uniquely seleted nodes among all inter-
mediate nodes. Node u is seleted by node x and
node w is seleted by node u.

Notie that the message IamDominator(u) is only
broadasted at most one by eah node; the message
IamDominatee(u; v) is only broadasted at most �ve
times by eah node u for all possible dominators v;
2HopsPath(u;w; v) and 3HopsPath(x; u; w; v) are also
broadasted at most a onstant times by eah node
for all possible dominator v.

To save the memory ost of eah wireless node,
they [11℄ also designed the following link lists for eah
node u:
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� Dominators: it stores all dominators of u if there is
any. Notie that if the node itself is a dominator,
no value is assigned for Dominators.

� Connetor2HopsPath: for eah dominator v that
are 2-hops apart from u, node u stores (w; v),
where the intermediate node w is seleted by u
to onnet u and v.

� Connetor3HopsPath: for eah dominator v that
are 3-hops apart from u, node u stores (w; x; v)
suh that there is a path uwxv, and w is seleted
by u and x is the node seleted by w to onnet
v.

Notie that for eah node, there are at most �ve
dominators. So the size of link list Dominators is at
most �ve. Then for eah node u, there are at most `k
number of dominators v that are k-hops apart from u.
Therefore, the sizes of link lists Connetor2HopsPath,
Connetor3HopsPath are bounded by `2 and `3 respe-
tively. Then we are in the position to review the dis-
tributed algorithm proposed by Wang and Li [11℄ to
�nd the onnetors eÆiently. Assume that a maximal
independent set is already onstruted by a luster al-
gorithm.

Algorithm 3 Finding Connetors

1. Every dominatee node w broadasts to its 1-hop
neighbors a message IamDominatee(w; v) for eah
dominator v stored at Dominators.

2. Assume node u reeives a message IamDomina-
tee(w; v) for the �rst time. If u 6= v, v is not in
Dominators list of u, and there is no pair (�; v) in
Connetor2HopsPath, then u adds (w; v) to Con-
netor2HopsPath. Here � denotes any node ID.
If u is a dominatee, then it broadasts message a
2HopsPath(u;w; v) to its 1-hop neighbors. If node
u is a dominator, node u already knows a path
uwv to onnet a 2-hops apart dominator v.

Node u will disard any message IamDomina-
tee(�; v) afterward.

3. When a node w (it must be a dominatee here)
reeives the message 2HopsPath(u;w; v), node w
marks itself as a onnetor, if u is a dominator.

4. Assume a dominator x reeives the message
2HopsPath(u;w; v), where x 6= w. If there is
no triple (�; �; v) in Connetor3HopsPath, then x
adds (u;w; v) to Connetor3HopsPath and broad-
asts the message 3HopsPath(x; u; w; v) to its 1-
hop neighbors. Then node x already knows a path
xuwv to onnet a 3-hops apart dominator v.

5. When a node u (it must be dominatee here) re-
eives the message 3HopsPath(x; u; w; v), node u
marks itself as a onnetor. Node u sends a mes-
sage to node w asking w to be a onnetor.

Notie that it is possible that, given any two nodes
u and v, the path found by node u to onnet v is dif-
ferent from the path found by v to onnet u. This
inreases the robustness of the bakbone. When only
one onneting path between any pair of dominators
is needed, they suggested to add the following restri-
tions: a dominator node u stores a 2-hops or 3-hops
path onneting it to another dominator node v if and
only if node u has a smaller ID. In other words, the
deision to selet the onnetors is always made by the
node with smaller ID.

The graph onstruted by the above algorithm is
alled a CDS graph (or bakbone of the network). If
we also add all edges that onnet all dominatees to
their dominators, the graph is alled extended CDS,
denoted by CDS'.

Wang and Li [11℄ proved that the number of on-
netors found is at most `3 times of the minimum.
The size of the onneted dominating set found by the
above algorithm is within a small onstant fator of
the minimum.

5.2.3 The Properties of Bakbone

It was shown in [11℄ that CDS is a sparse graph, i.e.,
the total number of edges is O(k), where k is the num-
ber of dominators. Moreover, the graph CDS' is also
a sparse graph beause the total number of the links
from dominatees to dominators is at most 5(n � k).
Notie that we have at most n � k dominatees, eah
of whih is onneted to at most 5 dominators. The
node degree in CDS is bounded, however, the degree
of some dominator node in CDS' may be arbitrarily
large.

After we onstrut the bakbone CDS and the in-
dued graph CDS', if a node u wants to send a message
to another node v, it follows the following proedure.
If v is within the transmission range of u, node u di-
retly sends message to v. Otherwise, node u asks
its dominator to send this message to v (or one of
its dominators) through the bakbone. They showed
that CDS' (plus all impliit edges onneting domina-
tees that are no more than one unit apart) is a good
spanner in terms of both hops and length. The hops
streth fator of CDS' is bounded by a onstant 3 and
the length streth fator of CDS' is bounded by a on-
stant 6.
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Several routing algorithms require the underlying
topology be planar. Notie in the formation algorithm
of CDS, we do not use any geometry information. The
resulting CDS maybe non-planar graph. Even using
some geometry information, the CDS still is not guar-
anteed to be a planar graph. Then Li et al. [52℄
proposed a method to make the graph CDS planar
without losing the spanner property of the bakbone.
Their method applies the loalized Delaunay triangu-
lation [55℄ on top of the indued graph from CDS, de-
noted by ICDS. It was proved in [55℄ that LDel(G) is
a spanner if G is a unit disk graph. Notie that ICDS
is a unit disk graph de�ned over all dominators and
onnetors. Consequently, LDel(ICDS) is a spanner
in terms of length. In addition, LDel(ICDS) has on-
stant bounded hop-streth fator and a bounded node
degree [52℄.

6 Broadasting & Multiasting

Minimum-energy broadast/multiast routing in a
simple ad ho networking environment has been ad-
dressed by the pioneering work in [90, 91, 92, 93℄. To
assess the omplexities one at a time, the nodes in
the network are assumed to be randomly distributed
in a two-dimensional plane and there is no mobility.
Nevertheless, as argued in [93℄, the impat of mobil-
ity an be inorporated into this stati model beause
the transmitting power an be adjusted to aommo-
date the new loations of the nodes as neessary. In
other words, the apability to adjust the transmission
power provides onsiderable \elastiity" to the topo-
logial onnetivity, and hene may redue the need
for hand-o�s and traking. In addition, as assumed
in [93℄, there are suÆient bandwidth and transeiver
resoures. Under these assumptions, entralized (as
opposed to distributed) algorithms were presented by
[93℄ for minimum-energy broadast/multiast routing.
These entralized algorithms, in this simple network-
ing environment, are expeted to serve as the ba-
sis for further studies on distributed algorithms in
a more pratial network environment, with limited
bandwidth and transeiver resoures, as well as the
node mobility.

6.1 Broadasting

Three greedy heuristis were proposed in [93℄ for the
minimum-energy broadast routing problem: MST
(minimum spanning tree), SPT (shortest-path tree),
and BIP (broadasting inremental power). The MST
heuristi �rst applies the Prim's algorithm to obtain

a MST, and then orient it as an arboresene rooted
at the soure node. The SPT heuristi applies the
Dijkstra's algorithm to obtain a SPT rooted at the
soure node. The BIP heuristi is the node version of
Dijkstra's algorithm for SPT. It maintains, through-
out its exeution, a single arboresene rooted at the
soure node. The arboresene starts from the soure
node, and new nodes are added to the arboresene
one at a time on the minimum inremental ost basis
until all nodes are inluded in the arboresene. The
inremental ost of adding a new node to the arbores-
ene is the minimum additional power inreased by
some node in the urrent arboresene to reah this
new node. The implementation of BIP is based on the
standard Dijkstra's algorithm, with one fundamental
di�erene on the operation whenever a new node q is
added. Whereas the Dijkstra's algorithm updates the
node weights (representing the urrent knowing dis-
tanes to the soure node), BIP updates the ost of
eah link (representing the inremental power to reah
the head node of the direted link). This update is
performed by subtrating the ost of the added link
pq from the ost of every link qr that starts from q to
a node r not in the new arboresene.

They have been evaluated through simulations in
[93℄, but little is known about their analytial perfor-
manes in terms of the approximation ratio. Here, the
approximation ratio of a heuristi is the maximum ra-
tio of the energy needed to broadast a message based
on the arboresene generated by this heuristi to the
least neessary energy by any arboresene for any set
of points. The analytial performane is very essen-
tial and more onvining in evaluating these heuristis,
beause one may ome up with several seemingly rea-
sonable greedy heuristis. But it is hard to tell from
simulation outputs whih one is better or worse in the
worst ase senario.

For a pure illustration purpose, another slight
variation of BIP was disussed in detail in [94℄. This
greedy heuristi is similar to the Chvatal's algorithm
[95℄ for the set over problem and is a variation of
BIP. Like BIP, an arboresene, whih starts with the
soure node, is maintained throughout the exeution of
the algorithm. However, unlike BIP, many new nodes
an be added one at a time. Similar to the Chvatal's
algorithm [95℄, the new nodes added are hosen to
have the minimal average inremental ost, whih is
de�ned as the ratio of the minimum additional power
inreased by some node in the urrent arboresene
to reah these new nodes to the number of these new
nodes. They alled this heuristi as the Broadast Av-
erage Inremental Power (BAIP). In ontrast to the
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1 + logm approximation ratio of the Chvatal's algo-
rithm [95℄, where m is the largest set size in the Set
Cover Problem, they showed that the approximation
ratio of BAIP is at least 4n

lnn � o (1), where n is the
number of reeiving nodes.

Wan et al. [94, 96℄ showed that the approxima-
tion ratios of MST and BIP are between 6 and 12 and
between 13

3 and 12 respetively; on the other hand, the
approximation ratios of SPT and BAIP are at least n

2
and 4n

lnn � o (1) respetively, where n is the number of
nodes. We then disuss in detail of their proof teh-
niques.

Any broadast routing is viewed as an arbores-
ene (a direted tree) T , rooted at the soure node
of the broadasting, that spans all nodes. Let fT (p)
denote the transmission power of the node p required
by T . For any leaf node p of T , fT (p) = 0. For any
internal node p of T ,

fT (p) = max
pq2T

kpqk� ;

in other words, the �-th power of the longest distane
between p and its hildren in T . The total energy
required by T is

P
p2P fT (p). Thus the minimum-

energy broadast routing problem is di�erent from
the onventional link-based minimum spanning tree
(MST) problem. Indeed, while the MST an be solved
in polynomial time by algorithms suh as Prim's al-
gorithm and Kruskal's algorithm [97℄, it is still un-
known whether the minimum-energy broadast rout-
ing problem an be solved in polynomial time. In its
general graph version, the minimum-energy broadast
routing an be shown to be NP-hard [98℄, and even
worse, it an not be approximated within a fator
of (1� �) log�, unless NP � DTIME

�
nO(log logn)

�
,

where � is the maximal degree and � is any arbitrary
small positive onstant. However, this intratability
of its general graph version does not neessarily imply
the same hardness of its geometri version. In fat,
as shown later in the survey, its geometri version an
be approximated within a onstant fator. Neverthe-
less, this suggests that the minimum-energy broadast
routing problem is onsiderably harder than the MST
problem. Reently, Clementi et al. [90℄ proved that
the minimum-energy broadast routing problem is a
NP-hard problem and obtained a parallel but weaker
result to those of [94, 96℄.

Wan et al. [94, 96℄ gave some lower bounds on
the approximation ratios of MST and BIP by study-
ing some speial instanes in [94, 96℄. Their deriving
of the upper bounds relies extensively on the geomet-
ri strutures of Eulidean MSTs. They �rst observed
that as long as the ost of a link is an inreasing fun-

tion of the Eulidean length of the link, the set of
MSTs of any point set oinides with the set of Eu-
lidean MSTs of the same point set. In partiular, for
any spanning tree T of a �nite point set P , parameterP

e2T kek2 ahieves its minimum if and only if T is
an Eulidean MST of P . For any �nite point set P ,
let mst (P ) denote an arbitrary Eulidean MST of P .
The radius of a point set P is de�ned as

inf
p2P

sup
q2P

kpqk :

Thus, a point set of radius one an be overed by a
disk of radius one. A key result in [94, 96℄ is an upper

bound on the parameter
P

e2mst(P ) kek2 for any �nite
point set P of radius one. Note that the supreme of
the total edge lengths of mst (P ),

P
e2mst(P ) kek, over

all point sets P of radius one is in�nity. However, the
parameter

P
e2mst(P ) kek2 is bounded from above by

a onstant for any point set P of radius one. They use
 to denote the supreme of

P
e2mst(P ) kek2 over all

point sets P of radius one. They [94, 96℄ proved that
 is at most 12. The proof of this theorem involves
ompliated geometri arguments.

Note that for any point set P of radius one, the
length of eah edge in mst (P ) is at most one. There-
fore, for any point set P of radius one and any real
number � � 2,X

e2mst(P )

kek� �
X

e2mst(P )

kek2 �  � 12:

The next theorem proved in [94, 96℄ explores a
relation between the minimum energy required by a
broadasting and the energy required by the Eulidean
MST of the orresponding point set.

Lemma 1 [94, 96℄ For any point set P in the plane,
the total energy required by any broadasting among P
is at least 1



P
e2mst(P ) kek�.

Proof. Let T be an arboresene for a broadasting
among P with the minimum energy onsumption. For
any none-leaf node p in T , let Tp be an Eulidean MST
of the point set onsisting p and all hildren of p in T .
Suppose that the longest Eulidean distane between
p and its hildren is r. Then the transmission power
of node p is r� , and all hildren of p lie in the disk
entered at p with radius r. From the de�nition of ,
we have X

e2Tp

�kek
r

��
� ;

whih implies that

r� � 1



X
e2Tp

kek� :
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Let T � denote the spanning tree obtained by su-
perposing of all Tp's for non-leaf nodes of T . Then the

total energy required by T is at least 1


P
e2T� kek� ,

whih is further no less than 1


P
e2mst(P ) kek� . This

ompletes the proof.

Consider any point set P in a two-dimensional
plane. Let T be an arboresene oriented from some
mst (P ). Then the total energy required by T is at

most
P

e2Tp kek
�
. From Lemma 1, this total energy is

at most  times the optimum ost. Thus the approx-
imation ratio of the link-based MST heuristi is at
most . This observation implies that the approxima-
tion ratio of the link-based MST heuristi is at most ,
and therefore is at most 12 [94, 96℄. In addition, they
derived an upper bound on the approximation ratio of
the BIP heuristi: For any broadasting among a point
set P in a two-dimensional plane, the total energy re-
quired by the arboresene generated by the BIP al-
gorithm is at most

P
e2mst(P ) kek� . One again, the

Eulidean MST plays an important role.

6.2 Forwarding Neighbors

The simplest broadasting mehanism is to let every
node retransmit the message to all its one-hop neigh-
bors when reeiving the �rst opy of the message,
whih is alled ooding in the literature. Despite its
simpliity, ooding is very ineÆient and an result
in high redundany, ontention, and ollision. One
approah to reduing the redundany is to let a node
only forward the message to a subset of one-hop neigh-
bors who together an over the two-hop neighbors. In
other words, when a node retransmits a message to its
neighbors, it expliitly ask a subset of its neighbors to
relay the message.

C�alinesu et al. [99℄ gave two pratial heuris-
tis for this problem (they alled seleting forwarding
neighbors). The �rst algorithm runs in time O(n log n)
and returns a subset with size at most 6 times of the
minimum. The seond algorithm has an improved ap-
proximation ratio 3, but with running time O(n2).
Here n is the number of total two-hop neighbors of
a node. When all two-hop neighbors are in the same
quadrant with respet to the soure node, they gave
an exat solution in time O(n2) and a solution with
approximation fator 2 in time O(n logn). Their al-
gorithms partition the region surrounding the soure
node into four quadrants, solve eah quadrants using
an algorithm with approximation fator �, and then
ombine these solutions. They proved that the om-
bined solution is at most 3� times of the optimum

solution.
Their approah assumes that every node u an

ollet its 2-hop neighbors N2(u) eÆiently. Notie
that, the 1-hop neighbors of every node u an be ol-
leted eÆiently by asking eah node to broadast its
information to its 1-hop neighbors. Thus all nodes get
their 1-hop neighbors information by using total O(n)
messages. However, until reently, it is unknown how
to ollet the 2-hop neighbors information with O(n)
ommuniations. The simplest broadasting of 1-hop
neighbors N1(u) to all neighbors u does let all nodes
in N1(u) to ollet their orresponding 2-hop neigh-
bors. However, the total ommuniation ost of this
approah is O(m), where m is the total number of
links in UDG. Reently, C�alinesu [100℄ proposed an
eÆient approah to ollet N2(u) using the onneted
dominating set [10, 52℄ as forwarding nodes. Assume
that the node position is known. He proved that the
approah takes total ommuniations O(n), whih is
optimum within a onstant fator.

7 Conlusion

Wireless ad ho networks has attrated onsiderable
attentions reently due to its potential wide applia-
tions in various areas and the moreover, the ubiquitous
omputing. Many exellent researhes have been on-
duted to study the eletroni part of the wireless ad
ho networks, the networking part of the wireless ad
ho networks. For networking, there are also many
interesting topis suh as topology ontrol, routing,
energy onservation, QoS, mobility management, and
so on. In this survey, we present an overview of the
reent progress of applying omputational geometry
tehniques to solve some questions, suh as topology
onstrution and broadasting, in wireless ad ho net-
works. Nevertheless, there are still many exellent re-
sults, suh as loalized routing methods, onnetivity
and apaity results of wireless networks, and loation
sevies, are not overed in this survey due to spae
limit.
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