
 Open access  Journal Article  DOI:10.1002/WCM.107

Algorithmic, geometric and graphs issues in wireless networks — Source link 

Xiang-Yang Li

Institutions: Illinois Institute of Technology

Published on: 01 Mar 2003 - Wireless Communications and Mobile Computing (Wiley)

Topics: Wireless ad hoc network, Connected dominating set, Minimum spanning tree, Wireless network and Spanning tree

Related papers:

 Topology control and routing in ad hoc networks: a survey

 On constructing minimum spanning trees in k-dimensional spaces and related problems

 Topology Control in Wireless Ad Hoc and Sensor Networks

 A Distributed Algorithm for Minimum-Weight Spanning Trees

 GPSR: greedy perimeter stateless routing for wireless networks

Share this paper:    

View more about this paper here: https://typeset.io/papers/algorithmic-geometric-and-graphs-issues-in-wireless-networks-
26wkh5zq09

https://typeset.io/
https://www.doi.org/10.1002/WCM.107
https://typeset.io/papers/algorithmic-geometric-and-graphs-issues-in-wireless-networks-26wkh5zq09
https://typeset.io/authors/xiang-yang-li-1kolha4s37
https://typeset.io/institutions/illinois-institute-of-technology-2wle175o
https://typeset.io/journals/wireless-communications-and-mobile-computing-3q0hx589
https://typeset.io/topics/wireless-ad-hoc-network-8o8qdnaj
https://typeset.io/topics/connected-dominating-set-27ulaelg
https://typeset.io/topics/minimum-spanning-tree-218lm6ym
https://typeset.io/topics/wireless-network-36z1b9ct
https://typeset.io/topics/spanning-tree-zd2ftzqm
https://typeset.io/papers/topology-control-and-routing-in-ad-hoc-networks-a-survey-54q9b3ui1c
https://typeset.io/papers/on-constructing-minimum-spanning-trees-in-k-dimensional-k9spnf4507
https://typeset.io/papers/topology-control-in-wireless-ad-hoc-and-sensor-networks-3e17u396zt
https://typeset.io/papers/a-distributed-algorithm-for-minimum-weight-spanning-trees-32sk5ejtjn
https://typeset.io/papers/gpsr-greedy-perimeter-stateless-routing-for-wireless-59gz21qf8y
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/algorithmic-geometric-and-graphs-issues-in-wireless-networks-26wkh5zq09
https://twitter.com/intent/tweet?text=Algorithmic,%20geometric%20and%20graphs%20issues%20in%20wireless%20networks&url=https://typeset.io/papers/algorithmic-geometric-and-graphs-issues-in-wireless-networks-26wkh5zq09
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/algorithmic-geometric-and-graphs-issues-in-wireless-networks-26wkh5zq09
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/algorithmic-geometric-and-graphs-issues-in-wireless-networks-26wkh5zq09
https://typeset.io/papers/algorithmic-geometric-and-graphs-issues-in-wireless-networks-26wkh5zq09


Algorithmi
, geometri
 and graphs issues in wireless networks

Xiang-Yang Li �

September 19, 2002

Abstra
t

We present an overview of the re
ent progress of apply-

ing 
omputational geometry te
hniques to solve some ques-

tions, su
h as topology 
onstru
tion and broad
asting, in

wireless ad ho
 networks. Treating ea
h wireless devi
e as

a node in a two dimensional plane, we model the wireless

networks by unit disk graphs in whi
h two nodes are 
on-

ne
ted if their Eu
lidean distan
e is no more than one. We

�rst summarize the 
urrent status of 
onstru
ting sparse

spanners for unit disk graphs with various 
ombinations of

the following properties: bounded stret
h fa
tor, bounded

node degree, planar, and bounded total edges weight (
om-

pared with the minimum spanning tree). Instead of 
on-

stru
ting subgraphs by removing links, we then review the

algorithms for 
onstru
ting a sparse ba
kbone (
onne
ted

dominating set), i.e., subgraph from the subset of nodes.

We then review some eÆ
ient methods for broad
asting

and multi
asting with theoreti
 guaranteed performan
e.

Keywords: Computational geometry, wireless net-
works, network optimization, power 
onsumption,
routing, spanner, topology 
ontrol.

1 Introdu
tion

Due to its potential appli
ations in various situations
su
h as battle�eld, emergen
y relief, and so on, wire-
less networking has re
eived signi�
ant attention over
the last few years. There are no wired infrastru
tures
or 
ellular networks in ad ho
 wireless network. Ea
h
mobile node has a transmission range. Node v 
an
re
eive the signal from node u if node v is within
the transmission range of the sender u. Otherwise,
two nodes 
ommuni
ate through multi-hop wireless
links by using intermediate nodes to relay the mes-
sage. Consequently, ea
h node in the wireless network
also a
ts as a router, forwarding data pa
kets for other
nodes. In this survey, we 
onsider that ea
h wireless
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node has an omni-dire
tional antenna. This is attra
-
tive be
ause a single transmission of a node 
an be
re
eived by many nodes within its vi
inity whi
h, we
assume, is a disk 
entered at the node. In addition,
we assume that ea
h node has a low-power Global Po-
sition System (GPS) re
eiver, whi
h provides the po-
sition information of the node itself. If GPS is not
available, the distan
e between neighboring nodes 
an
be estimated on the basis of in
oming signal strengths.
Relative 
o-ordinates of neighboring nodes 
an be ob-
tained by ex
hanging su
h information between neigh-
bors [1℄.

Wireless ad ho
 networks 
an be subdivided into
two 
lasses: stati
 and mobile. In stati
 networks,
the position of a wireless node does not 
hange or

hanges very slowly on
e the node was deployed. Typ-
i
al example of su
h stati
 networks in
ludes sensor
networks. In mobile networks, wireless nodes move
arbitrarily. Sin
e mobile wireless networks 
hange
their topology frequently and often without any regu-
lar pattern, topology maintenan
e and routing in su
h
networks are 
hallenging tasks. For the sake of the
simpli
ity, we assume that the nodes are quasi-stati

during the short period of topology re
onstru
tion or
route �nding.

We 
onsider a wireless ad ho
 network 
onsisting
of a set V of n wireless nodes distributed in a two-
dimensional plane. By a proper s
aling, we assume
that all nodes have the maximum transmission range
equal to one unit. These wireless nodes de�ne a unit
disk graph UDG(V ) in whi
h there is an edge between
two nodes if and only if their Eu
lidean distan
e is at
most one.

Computational geometry emerged from the �eld
of algorithms design and analysis in the late 70s. It
studies various problems [2, 3, 4℄ from 
omputer graph-
i
s, geographi
 information system, roboti
s, s
ienti�


omputing, wireless networks re
ently, and others, in
whi
h geometri
 algorithms 
ould play some funda-
mental roles. Most geometri
 algorithms are designed
for studying the stru
tural properties, sear
hing, in-

lusion or ex
lusion relations, of a set of points, a set

1
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of hyperplanes, or both. For example, the stru
tural
properties in
lude the 
onvex hull, interse
tions, hy-
perplane arrangement, triangulation (Delaunay, regu-
lar, and so on), Voronoi diagram, and so on. The query
operations often in
lude point lo
ation, range sear
h-
ing (orthogonal, unbounded, or some variations) and
so on.

In this survey, we 
on
entrate on how to apply
some stru
tural properties of a point set for wire-
less networks as we treat wireless devi
es as two-
dimensional points.

It is 
ommon to separate the network design prob-
lem from the management and 
ontrol of the network
in the 
ommuni
ation network literature. The separa-
tion is very 
onvenient and helps to signi�
antly sim-
plify these two tasks, whi
h are already very 
omplex
on its own. Nevertheless, there is a pri
e to be paid for
this modularity as the de
isions made at the network
design phase may strongly a�e
t the network manage-
ment and 
ontrol phase. In parti
ular, if the issue of
designing eÆ
ient routing s
hemes is not taken into a
-

ount by the network designers, then the 
onstru
ted
network might not suited for supporting a good rout-
ing s
heme. Wireless ad ho
 network needs some spe-

ial treatment as it intrinsi
ally has its own spe
ial

hara
teristi
s and some unavoidable limitations 
om-
pared with traditional wired networks. Wireless nodes
are often powered by batteries only and they often
have limited memories. Therefore, it is more 
halleng-
ing to design a network topology for wireless ad ho

networks, whi
h is suitable for designing an eÆ
ient
routing s
heme to save energy and storage memory

onsumption, than the traditional wired networks.

In te
hni
al terms, the question we deal with
is therefore whether it is possible (if possible, then
how) to design a network, whi
h is a subgraph of the
unit disk graph, su
h that it ensures both attra
tive
network features su
h as bounded node degree, low-
stret
h fa
tor, and linear number of links, and attra
-
tive routing s
hemes su
h as lo
alized routing with
guaranteed performan
es.

The size of the unit disk graph 
ould be as large
as the square order of the number of network nodes.
So we want to 
onstru
t a subgraph of the unit disk
graph UDG(V ), whi
h is sparse, 
an be 
onstru
ted
lo
ally in an eÆ
ient way, and is still relatively good

ompared with the original unit disk graph for routes'
quality.

Unlike the wired networks that typi
ally have
�xed network topologies, ea
h node in a wireless net-
work 
an potentially 
hange the network topology by
adjusting its transmission range and/or sele
ting spe-


i�
 nodes to forward its messages, thus, 
ontrolling its
set of neighbors. The primary goal of topology 
ontrol
in wireless networks is to maintain network 
onne
-
tivity, optimize network lifetime and throughput, and
make it possible to design power-eÆ
ient routing. Not
every 
onne
ted subgraph of the unit disk graph plays
the same important role in network designing. One
of the per
eptible requirements of topology 
ontrol is
to 
onstru
t a subgraph su
h that the shortest path

onne
ting any two nodes in the subgraph is not mu
h
longer than the shortest path 
onne
ting them in the
original unit disk graph. This aspe
t of path quality
is 
aptured by the stret
h fa
tor of the subgraph. A
subgraph with 
onstant stret
h fa
tor is often 
alled a
spanner and a spanner is 
alled a sparse spanner if it
has only a linear number of links. In this survey, we
review and study how to 
onstru
t a spanner (a sparse
network topology) eÆ
iently for a set of stati
 wireless
nodes.

Restri
ting the size of the network has been found
to be extremely important in redu
ing the amount of
routing information. The notion of establishing a sub-
set of nodes whi
h perform the routing has been pro-
posed in many routing algorithms [5, 6, 7, 8℄. These
methods often 
onstru
t a virtual ba
kbone by using
the 
onne
ted dominating set [9, 10, 11℄, whi
h is often

onstru
ted from dominating set or maximal indepen-
dent set.

Many routing algorithms were proposed re
ently
for wireless ad ho
 networks. The routing proto
ols
proposed may be 
ategorized as table-driven proto
ols
or demand-driven proto
ols. A good survey may be
found in [12℄.

Table-driven routing proto
ols maintain up-to-
date routing information between every pair of nodes.
The 
hanges to the topology are maintained by prop-
agating updates of the topology throughout the net-
work. Destination-sequen
ed Distan
e-Ve
tor Rout-
ing (DSDV) [13℄ and Zone-Routing Proto
ol (ZRP)
[14, 15℄ are two of the table driven proto
ols proposed
re
ently. The mobility nature of the wireless networks
prevent these table-driven routing proto
ols from be-
ing widely used in large s
ale wireless ad ho
 networks.
Thus, on-demand routing proto
ols are preferred.

Sour
e-initiated on-demand routing 
reates routes
only when desired by the sour
e node. The methodolo-
gies that have been proposed in
lude the Ad-Ho
 On-
Demand Distan
e Ve
tor Routing (AODV) [16℄, the
Dynami
 Sour
e Routing (DSR) [17℄, and the Tem-
porarily Ordered Routing Algorithm (TORA) [18℄. In
addition, the Asso
iativity Based Routing (ABR) [19℄
and Signal Stability Routing (SSR) use various 
riteria
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for sele
ting routes.

Introdu
ing a hierar
hi
al stru
ture into routing
have also been used in many proto
ols su
h as the
Clusterhead Gateway Swit
h Routing (CGSR) [20℄,
the Fisheye Routing [21, 22℄, and the Hierar
hi
al
State Routing [23℄. Dominating set based methods
were also adopted by several resear
hers [6, 7, 8℄. To
fa
ilitate this, several methods [24, 9, 10, 25℄ were pro-
posed to approximate the minimum dominating set or
the minimum 
onne
ted dominating set problems in

entralized and/or distributed ways.

Route dis
overy 
an be very expensive in 
ommu-
ni
ation 
osts, thus redu
ing the response time of the
network. On the other hand, expli
it route mainte-
nan
e 
an be even more 
ostly in the expli
it 
ommu-
ni
ation of substantial routing information and the us-
age of s
ar
ity memory of wireless network nodes. The
geometri
 nature of the multi-hop ad-ho
 wireless net-
works allows a promising idea: lo
alized routing pro-
to
ols. Lo
alized routing does not require the nodes to
maintain routing tables, a distin
t advantage given the
s
ar
e storage resour
es and the relatively low 
ompu-
tational power available to the wireless nodes. More
importantly, given the numerous 
hanges in topology
expe
ted in ad-ho
 networks, no re-
omputation of the
routing tables is needed and therefore we expe
t a
signi�
ant redu
tion in the overhead. Thus lo
alized
routing is s
alable. Lo
alized routing is also uniform,
in the sense that all the nodes exe
ute the same pro-
to
ol when de
iding to whi
h other node to forward
a pa
ket. Mauve et al. [26℄ 
ondu
ted an ex
ellent
survey of position-based lo
alized routing proto
ols.
Thus, we will not repeat it here.

Energy 
onservation is a 
riti
al issue in ad ho

wireless network for the node and network life, as the
nodes are powered by batteries only. In the most 
om-
mon power-attenuation model, the power needed to
support a link uv is kuvk�, where kuvk is the Eu
lidean
distan
e between u and v, � is a real 
onstant between
2 and 5 dependent on the wireless transmission envi-
ronment. This power 
onsumption is typi
ally 
alled
path loss. In this survey, we assume that the path loss
is the major part of power 
onsumption to transmit
signals.

Noti
e that, pra
ti
ally, there is some other over-
head 
ost for ea
h devi
e to re
eive and then pro
ess
the signal. For simpli
ity, this overhead 
ost 
an be
integrated into one 
ost, whi
h is almost the same for
all nodes. Thus, we will use 
 to denote su
h 
onstant
overhead. In most results surveyed here, it is assumed
that 
 = 0.

The rest of the survey is organized as follows. In

Se
tion 2, we review some geometry stru
tures, de�ne
the graph spanners, and introdu
e the lo
alized algo-
rithm 
on
ept. In Se
tion 3, we review the stru
tures
with bounded stret
h fa
tor, or with bounded node
degree, or planar stru
tures. In Se
tion 4, we summa-
rize the 
urrent status of 
ontrolling the transmission
power so the total or the maximum transmission power
is minimized without sa
ri�
ing the network 
onne
-
tivity. In Se
tion 5, state of the art of 
onstru
ting
virtual ba
kbone for wireless networks is reviewed. As
there are many heuristi
s proposed in this area, we

on
entrate on the ones that have theoreti
 perfor-
man
e guarantees or are popular. Se
tion 6 reviews
the broad
asting proto
ols that We 
on
lude the sur-
vey in Se
tion 7 by pointing out some possible future
resear
h questions.

2 Geometry Stru
tures

Several geometri
al stru
tures have been studied re-

ently both by 
omputational geometry s
ientists and
network engineers. Here we review the de�nitions of
some of them whi
h 
ould be used in the wireless net-
working appli
ations. Let G = (V;E) be a geometri

graph de�ned on V .

The minimum spanning tree of G, denoted by
MST(G), is the tree belong to E that 
onne
ts all
nodes and whose total edge length is minimized.
MST(G) is obviously one of the sparsest possible 
on-
ne
ted subgraph, but its stret
h fa
tor 
an be as large
as n� 1.

The relative neighborhood graph, denoted by
RNG(G), is a geometri
 
on
ept proposed by Tous-
saint [27℄. It 
onsists of all edges uv 2 E su
h that
there is no point w 2 V with edges uw and wv in
E satisfying kuwk < kuvk and kwvk < kuvk. Thus,
an edge uv is in
luded if the interse
tion of two 
ir-

les 
entered at u and v and with radius kuvk do not

ontain any vertex w from the set V su
h that edges
uw and wv are in E. Noti
e if G is a dire
ted graph,
then edges uw and wv also are dire
ted in the above
de�nition, i.e., we have �!uw and �!wv instead of uw and
wv.

Let disk(u; v) be the disk with diameter uv.
Then, the Gabriel graph [28℄ GG(G) 
ontains an edge
uv from G if and only if disk(u; v) 
ontains no other
vertex w 2 V su
h that there exist edges uw and wv
from G satisfying kuwk < kuvk and kwvk < kuvk.
Same to the de�nition of RNG(G), if G is a dire
ted
graph, then edges uw and wv also are dire
ted in the
above de�nition of GG(G), i.e., we use �!uw and �!wv in-
stead. GG(G) is a planar graph (that is, no two edges
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ross ea
h other) if G is the 
omplete graph. It is easy
to show that RNG(G) is a subgraph of the Gabriel
graph GG(G). For an undire
ted and 
onne
ted graph
G, both GG(G) and RNG(G) are 
onne
ted and 
on-
tain the minimum spanning tree of G.

The Yao graph with an integer parameter k � 6,

denoted by
��!
Y Gk(G), is de�ned as follows. At ea
h

node u, any k equally-separated rays originated at u
de�ne k 
ones. In ea
h 
one, 
hoose the shortest edge
uv among all edges from u, if there is any, and add
a dire
ted link �!uv. Ties are broken arbitrarily. The
resulting dire
ted graph is 
alled the Yao graph. See
Figure 1 for an illustration. Let Y Gk(G) be the undi-
re
ted graph by ignoring the dire
tion of ea
h link in��!
Y Gk(G). If we add the link �!vu instead of the link
�!uv, the graph is denoted by

 ��
Y Gk(G), whi
h is 
alled

the reverse of the Yao graph. Some resear
hers used a
similar 
onstru
tion named �-graph [29℄, the di�eren
e
is that, in ea
h 
one, it 
hooses the edge whi
h has the
shortest proje
tion on the axis of the 
one instead of
the shortest edge. Here the axis of a 
one is the angu-
lar bise
tor of the 
one. For more detail, please refer
to [29℄.

u v u v u

RNG GG Yao

Figure 1: The de�nitions of RNG, GG, and Yao on
point set. Left: The lune using uv is empty for RNG.
Middle: The diametri
 
ir
le using uv is empty for
GG. Right: The shortest edge in ea
h 
one is added
as a neighbor of u for Yao.

Noti
e all these de�nitions are exa
tly the 
on-
ventional de�nitions [30, 31, 32, 33℄ when graph G is
the 
ompleted Eu
lidean graph K(V ). We will use
RNG(V ), GG(V ), and Yao(V ) to denote the 
orre-
sponding resulting graph if G is the 
omplete graph
K(V ).

We 
ontinue with the de�nition of Delaunay tri-
angulation. Assume that there are no four verti
es
of V that are 
o-
ir
ular. A triangulation of V is a
Delaunay triangulation, denoted by Del(V ), if the 
ir-

um
ir
le of ea
h of its triangles does not 
ontain any
other verti
es of V in its interior. A triangle is 
alled
the Delaunay triangle if its 
ir
um
ir
le is empty of
verti
es of V . The Voronoi region, denoted by Vor(p),
of a vertex p 2 V is a 
olle
tion of two dimensional
points su
h that every point is 
loser to p than to any

other vertex of V . The Voronoi diagram for V is the
union of all Voronoi regions Vor(p), where p 2 V . The
Delaunay triangulation Del(V ) is also the dual of the
Voronoi diagram: two verti
es p and q are 
onne
ted in
Del(V ) if and only if Vor(p) and Vor(q) share a 
om-
mon boundary. The shared boundary of two Voronoi
regions Vor(p) and Vor(q) is on the perpendi
ular bi-
se
tor line of segment pq. The boundary segment of a
Voronoi region is 
alled the Voronoi edge. The inter-
se
tion point of two Voronoi edge is 
alled the Voronoi
vertex. The Voronoi vertex is the 
ir
um
enter of some
Delaunay triangle.

Besides these geometri
 stru
tures, some graph
notations will also be used in this survey. A subset
S of V is a dominating set if ea
h node u in V is
either in S or is adja
ent to some node v in S. Nodes
from S are 
alled dominators, while nodes not is S
are 
alled dominatees. A subset C of V is a 
onne
ted
dominating set (CDS) if C is a dominating set and
C indu
es a 
onne
ted subgraph. Consequently, the
nodes in C 
an 
ommuni
ate with ea
h other without
using nodes in V �C. A dominating set with minimum

ardinality is 
alled minimum dominating set, denoted
by MDS. A 
onne
ted dominating set with minimum

ardinality is denoted by MCDS.

A subset of verti
es in a graph G is an indepen-
dent set if for any pair of verti
es, there is no edge
between them. It is a maximal independent set if no
more verti
es 
an be added to it to generate a larger in-
dependent set. It is amaximum independent set (MIS)
if no other independent set has more verti
es.

Due to the limited resour
es of the wireless nodes,
it is preferred that the underlying network topology

an be 
onstru
ted in a lo
alized manner. Stojmenovi

et al. �rst de�ned what is a lo
alized algorithm in sev-
eral pioneering papers [34, 35℄. Here a distributed al-
gorithm 
onstru
ting a graphG is a lo
alized algorithm
if every node u 
an exa
tly de
ide all edges in
ident
on u based only on the information of all nodes within
a 
onstant hops of u (plus a 
onstant number of addi-
tional nodes' information if ne
essary). It is easy to see
that the Yao graph YG(V ), the relative neighborhood
graph RNG(V ) and the Gabriel graph GG(V ) 
an be

onstru
ted lo
ally. However, the Eu
lidean minimum
spanning tree EMST(V ) and the Delaunay triangula-
tion Del(V ) 
an not be 
onstru
ted by any lo
alized
algorithm. Gabriel graph was used as a planar sub-
graph in the Fa
e routing proto
ol [34, 36, 37℄ and the
GPSR routing proto
ol [38℄. Right hand rule is used to
guarantee the delivery of the pa
ket in [34℄. Relative
neighborhood graph RNG was used for eÆ
ient broad-

asting (minimizing the number of retransmissions) in
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one-to-one broad
asting model in [39℄. In this survey,
we are interested in lo
alized algorithms that 
onstru
t
sparse and power eÆ
ient network topologies.

3 Spanners

Spanners have been studied intensively in re
ent years
[40, 41, 42, 43, 44, 45, 46, 47, 32℄. Let G = (V;E) be
a n-vertex 
onne
ted weighted graph. The distan
e in
G between two verti
es u; v 2 V is the total weight
(length) of the shortest path between u and v and is
denoted by dG(u; v). A subgraph H = (V;E0), where
E0 � E, is a t-spanner of G if for every u; v 2 V ,
dH(u; v) � t � dG(u; v). The value of t is 
alled the
stret
h fa
tor.

Consider any uni
ast �(u; v) in G (
ould be di-
re
ted) from a node u 2 V to another node v 2 V :

�(u; v) = v0v1 � � � vh�1vh; where u = v0; v = vh:

Here h is the number of hops of the path �. The total
transmission power p(�) 
onsumed by this path � is
de�ned as

p(�) =
hX
i=1

kvi�1vik�

Let pG(u; v) be the least energy 
onsumed by all paths

onne
ting nodes u and v in G. The path in G 
on-
ne
ting u; v and 
onsuming the least energy pG(u; v)
is 
alled the least-energy path in G for u and v. When
G is the unit disk graph UDG(V ), we will omit the
subs
ript G in pG(u; v).

Let H be a subgraph of G. The power stret
h
fa
tor of the graphH with respe
t to G is then de�ned
as

�H(G) = max
u;v2V

pH(u; v)

pG(u; v)

If G is a unit disk graph, we use �H(V ) instead of
�H(G). For any positive integer n, let

�H(n) = sup
jV j=n

�H(V ):

Similarly, we de�ne the length stret
h fa
tors `H(G)
and `H(n). When the graph H is 
lear from the 
on-
text, it is dropped from notations.

It is not diÆ
ult to show that, for anyH � G with
a length stret
h fa
tor Æ, its power stret
h fa
tor is at
most Æ� for any graph G. In parti
ular, a graph with
a 
onstant bounded length stret
h fa
tor must also
have a 
onstant bounded power stret
h fa
tor, but the
reverse is not true. Finally, the power stret
h fa
tor
has the following monotoni
 property: If H1 � H2 �

G then the power stret
h fa
tors of H1 and H2 satisfy
�H1

(G) � �H2
(G).

Previous algorithms that 
onstru
t a t-spanner of
the Eu
lidean 
omplete graph K(V ) in 
omputational
geometry are 
entralized methods. The rapid devel-
opment of the wireless 
ommuni
ation presents a new

hallenge for algorithm designing and analysis. Dis-
tributed algorithms are favored than the more tradi-
tional 
entralized algorithms.

In this se
tion, we study the power stret
h fa
-
tor of several new sparse spanners for unit disk graph.
A trade-o� 
an be made between the sparseness of
the topology and the power eÆ
ien
y. The power eÆ-

ien
y of any spanner is measured by its power stret
h
fa
tor, whi
h is de�ned as the maximum ratio of the
minimum power needed to support the 
onne
tion of
two nodes in this spanner to the least ne
essary in the
unit disk graph.

3.1 RNG, GG, and Yao

Sin
e the relative neighborhood graph has the length
stret
h fa
tor as large as n�1, then obviously its power
stret
h fa
tor is at most (n�1)�. Li et al. [48℄ showed
that it is a
tually n � 1. Thus, any graph 
ontains
the Eu
lidean minimum spanning tree has the power
stret
h fa
tor at most n� 1.

The Gabriel graph has length stret
h fa
tor be-

tween
p
n

2 and 4�
p
2n�4
3 [43℄. Li et al. [48℄ proved that

its power stret
h fa
tor is at most
�
4�
p
2n�4
3

��
.

The Yao graph has length stret
h fa
tor 1
1�2 sin �

k

.

Thus, its power stret
h fa
tor is no more than
( 1
1�2 sin �

k

)� . Li et al. [48℄ proved a stronger result:

its power stret
h fa
tor is at most 1
1�(2 sin �

k
)� .

Li et al. [49℄ also proposed to apply the Yao stru
-
ture on top of the Gabriel graph stru
ture (the result-

ing graph is denoted by
���!
Y GGk(V )), and apply the

Gabriel graph stru
ture on top of the Yao stru
ture

(the resulting graph is denoted by
���!
GY Gk(V )). These

stru
tures are sparser than the Yao stru
ture and the
Gabriel graph stru
ture and they still have a 
onstant
bounded power stret
h fa
tor. These two stru
tures
are 
onne
ted graphs if the UDG is 
onne
ted, whi
h

an be proved by showing that RNG is a subgraph of
both stru
tures.

The two-phased approa
h by Wattenhofer et al.
[50℄ 
onsists of a variation of the Yao graph followed by
a variation of the Gabriel graph. They tried to prove
that the 
onstru
ted spanner has a 
onstant power
stret
h fa
tor and the node degree is bounded by a

onstant. Unfortunately, there are some bugs in their
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proof of the 
onstant power stret
h fa
tor and their
result is erroneous, whi
h was dis
ussed in detail in
[48℄.

Li et al. [51℄ proposed a stru
ture that is similar
to the Yao stru
ture for topology 
ontrol. Ea
h node
u �nds a power pu;� su
h that in every 
one of de-
gree � surrounding u, there is some node that u 
an
rea
h with power pu;�. Here, nevertheless, we assume
that there is a node rea
hable from u by the maxi-
mum power in that 
one. Then the graph G� 
ontains
all edges uv su
h that u 
an 
ommuni
ate with v us-
ing power pu;�. They proved that, if � � 5�

6 and
the UDG is 
onne
ted, then graph G� is a 
onne
ted
graph. On the other hand, if � > 5�

6 , they showed
that the 
onne
tivity of G� is not guaranteed by giv-
ing some 
ounter-example [51℄.

3.2 Bounded Degree Spanners

Noti
e that although the dire
ted graphs
��!
Y Gk(V ),���!

GY Gk(V ) and
���!
Y GGk(V ) have a bounded power

stret
h fa
tor and a bounded out-degree k for ea
h
node, some nodes may have a very large in-degree.
The nodes 
on�guration given in Figure 2 will result
a very large in-degree for node u. Bounded out-degree
gives us advantages when apply several routing algo-
rithms. However, unbounded in-degree at node u will
often 
ause large overhead at u. Therefore it is of-
ten imperative to 
onstru
t a sparse network topology
su
h that both the in-degree and the out-degree are
bounded by a 
onstant while it is still power-eÆ
ient.

v

α

v

v
1

u
v

i

v
i+1

α
α

2
v

n-1

n-2

Figure 2: Node u has degree (or in-degree) n� 1.

3.2.1 Sink Stru
ture

Arya et al. [41℄ gave an ingenious te
hnique to gen-
erate a bounded degree graph with 
onstant length
stret
h fa
tor. In [48℄, Li et al. applied the same te
h-
nique to 
onstru
t a sparse network topology with a
bounded degree and a bounded power stret
h fa
tor
from Y G(V ). The te
hnique is to repla
e the dire
ted
star 
onsisting of all links toward a node u by a di-
re
ted tree T (u) of a bounded degree with u as the

sink. Tree T (u) is 
onstru
ted re
ursively. The algo-
rithm is as follows.

Algorithm: Constru
ting-YG�

1. Ea
h node u 
omputes the set of in-
oming nodes

I(u) = fv j �!vu 2 ��!
Y Gk(V )g.

2. Node u uses Tree(u,I(u)) to build tree T (u).

Algorithm: Constru
ting-T (u) Tree(u,I(u))

1. Chooses k equal-sized 
ones: C1(u), C2(u), � � � ,
Ck(u) to partition the unit disk 
entered at u.

2. Finds the nearest node yi 2 I(u) in Ci(u), for 1 �
i � k, if there is any. Link �!yiu is added to T (u)
and yi is removed from I(u). For ea
h 
one Ci(u),
if I(u) \ Ci(u) is not empty, 
all Tree(yi,I(u) \
Ci(u)) and add the 
reated edges to T (u).

Figure 3 (a) illustrates a dire
ted star 
entered
at u and Figure 3 (b) shows the dire
ted tree T (u)

onstru
ted to repla
e the star with k = 8. The union

of all trees T (u) is 
alled the sink stru
ture
��!
Y G�

k(V ).
Noti
e that, node u 
onstru
ts the tree T (u) and

then broad
asts the stru
ture of T (u) to all nodes in
T (u). Sin
e the total number of edges in the Yao stru
-
ture is at most k � n, where k is the number of 
ones
divided, the total number of edges of T (u) of all node
u is also at most k � n. Thus, the total 
ommuni
ation

ost of broad
asting the T (u) to all its neighbors is
still at most k � n. Re
all that k is a small 
onstant.

u u

(a) (b)

Figure 3: (a) Star formed by links toward to u. (b)
Dire
ted tree T (u) sinked at u.

The algorithm uses a dire
ted tree T (u) to repla
e
the dire
ted star for ea
h node u. Therefore, if nodes

u and v are 
onne
ted by a path in
��!
Y Gk, they are also


onne
ted by a path in
��!
Y G�k. It is already known that��!

Y Gk is strongly 
onne
ted if UDG(V) is 
onne
ted, so

does
��!
Y G�k. Li et al. [48℄ showd that the power stret
h

fa
tor of the graph
��!
Y G�k(V ) is at most ( 1

1�(2 sin �
k
)�
)2,

the maximum degree of the graph
��!
Y G�k(V ) is at most

(k + 1)2 � 1, and the maximum out-degree is k.
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Noti
e that the sink stru
ture and the Yao graph
stru
ture do not have to have the same number of

ones, and the 
ones do not need to be aligned. For
setting up a power-eÆ
ient wireless networking, ea
h
node u �nds all its neighbors in Y Gk(V ), whi
h 
an
be done in linear time proportional to the number of
nodes within its transmission range.

3.2.2 YaoYao Stru
ture

In this se
tion, we review another algorithm proposed
by Li et al. [49℄ that 
onstru
ts a sparse and power
eÆ
ient topology. Assume that ea
h node vi of V
has a unique identi�
ation number ID(vi) = i. The
identity of a dire
ted link �!uv is de�ned as ID(�!uv) =
(jjuvjj; ID(u); ID(v)).

Node u 
hooses a node v from ea
h 
one, if there
is any, so the dire
ted link �!vu has the smallest ID(�!vu)
among all dire
ted links �!wu in Y G(V ) in that 
one.
The union of all 
hosen dire
ted links is the �nal net-
work topology, denoted by

��!
Y Y k(V ). If the dire
-

tions of all links are ignored, the graph is denoted

as Y Yk(V ). The dire
ted graph
��!
Y Y k(V ) is strongly


onne
ted if UDG(V ) is 
onne
ted and k > 6, see [49℄.

It was proved in [52, 49℄ that
��!
Y Y k(V ) is a spanner

in 
ivilized graph. Here a unit disk graph is 
ivilized
graph if the distan
e between any two nodes in this
graph is larger than a positive 
onstant �. In [53℄, they

alled the 
ivilized unit disk graph as the �-pre
ision
unit disk graph. Noti
e the wireless devi
es in wireless
networks 
an not be too 
lose or overlapped. Thus, it
is reasonable to model the wireless ad ho
 networks as
a 
ivilized unit disk graph.

The experimental results by Li et al. [49℄ showed
that this sparse topology has a small power stret
h

fa
tor in pra
ti
e. They [49℄ 
onje
tured that
��!
Y Y k(V )

also has a 
onstant bounded power stret
h fa
tor the-
oreti
ally in any unit disk graph. The proof of this

onje
ture or the 
onstru
tion of a 
ounter-example
remain a future work.

3.2.3 Symmetri
 Yao Graph

In [49℄, Li et al. also 
onsidered another undire
ted
stru
ture, 
alled symmetri
 Yao graph Y Sk(V ), whi
h
guarantees that the node degree is at most k. Ea
h
node u divides the region into k equal angular regions

entered at the node, and 
hooses the 
losest node in
ea
h region, if any. An edge uv is sele
ted to graph
Y Sk(V ) if and only if both dire
ted edges �!uv and �!vu
are in the Yao graph

��!
Y Gk(V ). Then it is obvious that

the maximum node degree is k.

Li et al. [48℄ proved that the graph Y Sk(V ) is
strongly 
onne
ted if UDG(V ) is 
onne
ted and k �
6 by showing that RNG is a subgraph of Y Sk(V ) if
k � 6. This immediately implies the 
onne
tivity of
the Yao graph, sink stru
ture, and the YaoYao graph
as RNG is also the subgraph of all these stru
tures.

The experiment by Li et al. also showed that it
has a small power stret
h fa
tor in pra
ti
e. However,
it was shown in [54℄ re
ently that Y Sk(V ) is not a
spanner theoreti
ally. The basi
 idea of the 
ounter
example is similar to the 
ounter example for RNG
proposed by Bose et al. [43℄. For the 
ompleteness of
the presentation, we still review the 
ounter example
here.

Let nodes v1 and v0 have distan
e half unit from
ea
h other. Assume the ith 
one of v1 
ontains v0,
and the i0th 
one of v0 
ontains v1. Then draw two
lines l1 = v1v3 and l2 = v0v2 su
h that both the an-
gles \v3v1v0 and \v2v0v1 are

�
2 ��, where � is a very

small positive number. Let's �rst 
onsider even n, say
n = 2m. Figure 4 illustrates the 
onstru
tion of the
point set V . The node v2j is pla
ed on l2 in the ith

one of v2j�1 and it is very 
lose to the upper bound-
ary of the ith 
one of v2j�1. The node v2j+1 is pla
ed
on l1 in the i0th 
one of v2j 
lose to the upper bound-
ary of that 
one. Using this method, pla
e all nodes
from v2 to v2m in order. Then it is easy to show that
the Y Sk(V ) does not 
ontain any edge v2jv2j+1 and
v2j+1v2j+2 for 0 � j � m � 1. The nearest neighbor
of v2j is v2j+1, but for v2j+1, the nearest neighbor is
v2j+2. So although in Y Sk(V ) there is a path from v1
to v2, its length is kv1v2m�1k+kv2m�1v2mk+kv2mv2k.
So when � is appropriately small, the length stret
h
fa
tor of Y Sk(V ) 
annot be bounded by a 
onstant.
Similarly, its power stret
h fa
tor 
annot be bounded
also. When n is odd, the 
onstru
tion is similar.

3.3 Planar Spanner

Given a set of nodes V , it is well-known that the De-
launay triangulation Del(V ) is a planar t-spanner of
the 
ompleted graph K(V ). This was �rst proved
by Dobkin, Friedman and Supowit with 
onstant t =
1+

p
5

2 � � 5:08. Then Kevin and Gutwin improved
the upper bound on t to be 2�

3 
os �
6

� 2:42. How-

ever, it is not appropriate to require the 
onstru
-
tion of the Delaunay triangulation in the wireless

ommuni
ation environment be
ause of the possible
massive 
ommuni
ations it requires. Given a set of
points V , let UDel(V ) be the graph of removing all
edges of Del(V ) that are longer than one unit, i.e.,
UDel(V ) = Del(V ) \ UDG(V ). Li et al. [55℄ 
on-
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Figure 4: An example that Y Sk(V ) has a large stret
h
fa
tor.

sidered the unit Delaunay triangulation UDel(V ) for
planar spanner of UDG, whi
h is a subset of the Delau-
nay triangulation. In [55℄, they proved that UDel(V )
is a t-spanner of the unit disk graph UDG(V ). Spe
if-
i
ally, they showed that, for any two verti
es u and v
of V ,

jj�UDel(V )(u; v)jj � 1 +
p
5

2
� � jj�UDG(V )(u; v)jj:

Noti
e that, Kevin and Gutwin [56℄ showed that
the Delaunay triangulation is a t-spanner for a 
on-
stant t � 2:42. They proved this using indu
tion on
the order of the lengths of all pair of nodes (from the
shortest to the longest). It 
an be shown that the path

onne
ting nodes u and v 
onstru
ted by the method
given in [56℄ also satis�es that all edges of that path
is shorter than kuvk. Consequently, we know that

the unit Delaunay triangulation UDel(V ) is a 4
p
3

9 �-
spanner of the unit disk graph UDG(V ).

3.3.1 Lo
alized Delaunay triangulation

Li et al. [55℄ gave a lo
alized algorithm that 
on-
stru
ts a sequen
e graphs, 
alled lo
alized Delaunay
LDel(k)(V ), whi
h are supergraphs of UDel(V ). We
begin with some ne
essary de�nitions before present-
ing the algorithm.

Unit Gabriel graph It 
onsists of all edges uv su
h
that kuvk � 1 and the open disk using uv as di-
ameter does not 
ontain any vertex from V . Su
h

edge uv is 
alled the Gabriel edge. We denote the
unit Gabriel graph by GG(V ) hereafter.

k-lo
alized Delaunay triangle Triangle 4uvw is

alled a k-lo
alized Delaunay triangle if the in-
terior of the 
ir
um
ir
le of 4uvw, denoted by
disk (u; v; w) hereafter, does not 
ontain any ver-
tex of V that is a k-neighbor of u, v, or w; and all
edges of the triangle 4uvw have length no more
than one unit.

k-lo
alized Delaunay graph The k-lo
alized De-
launay graph over a vertex set V , denoted by
LDel (k)(V ), has exa
tly all unit Gabriel edges and
edges of all k-lo
alized Delaunay triangles.

α vu

w

Figure 5: LDel: The disk(u; v; w) is not ne
essarily

overed by unit disks 
entered at u and v. But it is
empty of other verti
es from N1(u) [N1(v) [N1(w).

A sequen
e of lo
alized Delaunay graphs
LDel (k)(V ), where 1 � k � n is de�ned. All graphs
are t-spanner of the unit-disk graph with the following
properties [55℄: (1) UDel(V ) � LDel (k)(V ), for all

1 � k � n; (2) LDel (k+1)(V ) � LDel (k)(V ), for all

1 � k � n; (3) LDel (k)(V ) are planar graphs for all

2 � k � n; and (4) LDel (1)(V ) is not always planar.

Noti
e that, although LDel (1)(V ) is not a planar

graph, graph LDel (1)(V ) has thi
kness 2; see [55℄.
Although the graph UDel(V ) is a t-spanner for

UDG(V ), it is unknown how to 
onstru
t it lo
ally.

We 
an 
onstru
t LDel (2)(V ), whi
h is guaranteed to
be a planar spanner of UDel(V ), but a total 
ommuni-

ation 
ost of this approa
h is O(m logn) bits, where
m is the number of edges in UDG(V ) and 
ould be as
large as O(n2). This is more 
ompli
ated than some
other non-planar t-spanners, su
h as the Yao stru
-
ture [32℄ and the �-graph [56℄ (although the lattes are
not planar). In order to redu
e the total 
ommuni-

ation 
ost to O(n logn) bits, they do not 
onstru
t

LDel (2)(V ), and instead they extra
t a planar graph

PLDel(V ) out of LDel (1)(V ). They provided a novel

algorithm to 
onstru
t LDel (1)(V ) using linear 
om-
muni
ations and then make it planar in linear 
ommu-
ni
ation 
ost. The �nal graph still 
ontains UDel(V )
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as a subgraph. Thus, it is a t-spanner of the unit-disk
graph UDG(V ). In the following des
ription of the al-
gorithm 
onstru
ting LDel, the order of three nodes
in a triangle is immaterial.

Algorithm 1 Lo
alized Unit Delaunay Triangulation

1. Ea
h node u broad
asts its identity and lo
ation
and listens to the messages from other nodes.

2. Node u 
omputes Del(N1(u)) of its 1-neighbors
N1(u) and u itself.

3. If angle \wuv � �
3 and kvwk � 1, node u

broad
asts a message proposal(u; v; w) to form a 1-

lo
alized Delaunay triangle 4uvw in LDel (1)(V ).

4. When u re
eives a message proposal(u; v; w), u a
-

epts the proposal of 
onstru
ting4uvw if 4uvw
belongs to Del(N1(u)) by broad
asting message
a

ept(u; v; w); otherwise, it reje
ts the proposal
by broad
asting message reje
t(u; v; w).

5. Node u adds the edges uv and uw to its set of in-

ident edges if 4uvw is in Del(N1(u)), kvwk � 1,
and both v and w have sent either a

ept(u; v; w)
or proposal(u; v; w).

It was proved that the graph 
onstru
ted by the
above algorithm is LDel (1)(V ). Indeed, for ea
h trian-

gle 4uvw of LDel (1)(V ), one of its interior angle is at
least �=3 and 4uvw is in Del(N1(u)), Del(N1(v)) and
Del(N1(w)). So one of the nodes amongst fu; v; wg
will broad
ast the message proposal(u; v; w) to form a
1-lo
alized Delaunay triangle 4uvw.

As Del(N1(u)) is a planar graph, and a proposal
is made only if \wuv � �

3 , node u broad
asts at most
6 proposals. And ea
h proposal is replied by at most
two nodes. Therefore, the total 
ommuni
ation 
ost is
O(n log n) bits. The above algorithm also shows that

LDel (1)(V ) has O(n) edges. Consequently, the lo
al

Delaunay 
onstru
tion method generates LDel (1)(V )
with total 
ommuni
ation 
ost O(n logn) bits [55℄.

We then review the algorithm to extra
t from
LDel (1)(V ) a planar subgraph.

Algorithm 2 Planarize LDel (1)(V )

1. Ea
h node u broad
asts the Gabriel edges in
ident
on u and the triangles 4uvw of LDel (1)(V ).

2. Assume u gathered the Gabriel edge and 1-lo
al
Delaunay triangles information of all nodes from
N1(u). For two interse
ted triangles 4uvw and
4xyz known by u, node u removes the triangle
4uvw if its 
ir
um
ir
le 
ontains a node from
fx; y; zg.

3. Ea
h node u broad
asts all the triangles whi
h it
has not removed in the previous step.

4. Node u keeps the edge uv in its set of in
ident
edges if it is a Gabriel edge, or if there is a triangle
4uvw su
h that u, v, and w have all announ
ed
they have not removed 4uvw in Step 2.

They denoted the graph extra
ted by the algo-
rithm above by PLDel(V ). Note that any triangle

of LDel (1)(V ) not kept in the last step of the Pla-

narization Algorithm is not a triangle of LDel (2)(V ),

and therefore PLDel(V ) 
ontains LDel (2)(V ). Thus,

UDel(V ) � LDel (2)(V ) � PLDel(V ) � LDel (1)(V ).

Similar to the proof that LDel (2)(V ) is a planar
graph, they showed that the algorithm does generate
a planar graph.

The total 
ommuni
ation 
ost to 
onstru
t the
graph PLDel(V ) is a O(logn) times the number of

edges of the graph LDel (1)(V ), whi
h is O(n). In sum-

mary, PLDel(V ) is planar 4
p
3

9 �-spanner of UDG(V ),
and 
an be 
onstru
ted with total 
ommuni
ation 
ost
O(n log n) bits.

3.3.2 Partial Delaunay triangulation

Stojmenovi
 and Li [57℄ also proposed a geometry
stru
ture, namely the partial Delaunay triangulation
(PDT ), that 
an be 
onstru
ted in a lo
alized manner.
Partial Delaunay triangulation 
ontains Gabriel graph
as its subgraph, and itself is a subgraph of the Delau-
nay triangulation, more pre
isely, the subgraph of the
unit Delaunay triangulation UDel(V ). The algorithm
for the 
onstru
tion of PDT goes as follows.

Let u and v be two neighboring nodes in the net-
work. Edge uv belongs to Del(V ) if and only if there
exists a disk with u and v on its boundary, whi
h does
not 
ontain any other point from the set V . First test
whether disk(u; v) 
ontains any other node from the
network. If it does not, the edge belongs to GG and
therefore to PDT . If it does, 
he
k whether nodes
exist on both sides of line uv or on only one side. If
both sides of line uv 
ontain nodes from the set inside
disk(u; v) then uv does not belong to Del(V ).

Suppose now that only one side of line uv 
on-
tains nodes inside the 
ir
le disk(u; v), and let w be
one su
h point that maximizes the angle \uwv. Let
� = \uwv. Consider now the largest angle \uxv on
the other side of the mentioned 
ir
le disk(u; v), where
x is a node from the set S. If \uwv+\uxv > �, then
edge uv is de�nitely not in the Delaunay triangula-
tion Del(V ). The sear
h 
an be restri
ted to 
ommon
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neighbors of u and v, if only one-hop neighbor infor-
mation is available, or to neighbors of only one of the
nodes if 2-hop information (or ex
hange of the infor-
mation for the purpose of 
reating PDT is allowed) is
available. Then whether edge uv is added to PDT is
based on the following pro
edure.

Assume only N1(u) is known to u, and there is
one node w from N1(u) that is inside disk(u; v) with
the largest angle \uwv. Edge uv is added to PDT
if the following 
onditions hold: (1) there is no node
from N1(u) that lies on the di�erent side of uv with w
and inside the 
ir
um
ir
le passing through u, v, and
w, (2) sin� > d

R
, where R is the transmission radius of

ea
h wireless node, d is the diameter of the 
ir
um
ir
le
disk(u; v; w), and � = \uwv (here � � �

2 ).
Assume only 1-hop neighbors are known to u and

v, and there is one node w from N1(u) [ N1(v) that
is inside disk(u; v) with the largest angle \uwv. Edge
uv is added to PDT if the following 
onditions hold:
(1) there is no node from N1(u) [ N1(v) that lies on
the di�erent side of uv with w and inside the 
ir
um-

ir
le passing u, v, and w, (2) 
os �

2 > d
2R , where R

is the transmission radius of ea
h wireless node and
� = \uwv.

Obviously, the partial Delaunay triangulation is a
subgraph of UDel(V ). Thus, the spanning ratio of the
partial Delaunay triangulation 
ould be very large.

α
w

vu
α

w

vu

Figure 6: Left: Only one hop information is known
to u. Then it requires disk(u; v; w) to be 
overed by
the transmission range of u (denoted by the shaded
region) and is empty of neighbors of u. Right: Node
u knows N1(u) and node v knows N1(v). The 
ir-

um
ir
le disk(u; v; w) is 
overed by the union of the
transmission ranges of u and v and is empty of other
verti
es.

3.3.3 Restri
ted Delaunay Graph

Gao et al. [58℄ also proposed another stru
ture, 
alled
restri
ted Delaunay graph RDG and showed that it has
good spanning ratio properties and is easy to maintain
lo
ally. A restri
ted Delaunay graph of a set of points
in the plane is a planar graph and 
ontains all the De-
launay edges with length at most one. In other other

words, they 
all any planar graph 
ontaining UDel(V )
as a restri
ted Delaunay graph. They des
ribed a dis-
tributed algorithm to maintain the RDG su
h that at
the end of the algorithm, ea
h node u maintains a set
of edges E(u) in
ident to u. Those edges E(u) satisfy
that (1) ea
h edge in E(u) has length at most one unit;
(2) the edges are 
onsistent, i.e., an edge uv 2 E(u)
if and only if uv 2 E(v); (3) the graph obtained is
planar; (4) The graph UDel(V ) is in the union of all
edges E(u).

The algorithm works as follows. First, ea
h node
u a
quires the position of its 1-hop neighbors N1(u)
and 
omputes the Delaunay triangulation Del(N1(u))
on N1(u), in
luding u itself. In the se
ond step, ea
h
node u sends Del(N1(u)) to all of its neighbors. Let
E(u) = fuv j uv 2 Del(N1(u))g. For ea
h edge uv 2
E(u), and for ea
h w 2 N1(u), if u and v are in N1(w)
and uv 62 Del(N1(u)), then node u deletes edge uv
from E(u).

They proved that when the above steps are �n-
ished, the resulting edges E(u) satisfy the four prop-
erties listed above. However, unlike the lo
al Delaunay
triangulation, the 
omputation 
ost and 
ommuni
a-
tion 
ost of ea
h node needed to obtain E(u) is not
optimal within a small 
onstant fa
tor.

Figure 7 gives some 
on
rete examples of the ge-
ometry stru
tures dis
ussed before.

4 Transmission Power Control

In the previous se
tions, we have assumed that the
transmission power of every node is equal and is nor-
malized to one unit. We relax this assumption for a
moment in this subse
tion. In other words, we assume
that ea
h node 
an adjust its transmission power a
-

ording to its neighbors' positions. A natural question
is then how to assign the transmission power for ea
h
node su
h that the wireless network is 
onne
ted with
optimization 
riteria being minimizing the maximum
(or total) transmission power assigned.

A transmission power assignment on the verti
es
in V is a fun
tion f from V into real numbers. The

ommuni
ation graph, denoted by Gf , asso
iated with
a transmission power assignment f , is a dire
ted graph
with V as its verti
es and has a dire
ted edge ��!vivj
if and only if jjvivj jj� � f(vi). We 
all a transmis-
sion power assignment f 
omplete if the 
ommuni
a-
tion graph Gf is strongly 
onne
ted. Re
all that a
dire
ted graph is strongly 
onne
ted if, for any given
pair of ordered nodes s and t, there is a dire
ted path
from s to t.

The maximum-
ost of a transmission power as-
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UDG(V ) Del(V )

PLDel(V ) PDel(V )

MST (V ) Y ao(GG(V ))

RNG(V ) GG(V )

Y G(V ) Y G�(V )

Y Y (V ) Y S(V )

Figure 7: Di�erent topologies from UDG(V ).

signment f is de�ned as m
(f) = maxvi2V f(vi). And
the total-
ost of a transmission power assignment f is
de�ned as s
(f) =

P
vi2V f(vi).

The min-max assignment problem is then to �nd a

omplete transmission power assignment f whose 
ost
m
(f) is the least among all 
omplete assignments.
The min-total assignment problem is to �nd a 
omplete
transmission power assignment f whose 
ost s
(f) is
the least among all 
omplete assignments.

Given a graph H , we say the power assignment f
is indu
ed by H if

f(v) = max
(v;u)2E

jjvujj� ;

where E is the set of edges of H . In other words, the
power assigned to a node v is the largest power needed
to rea
h all neighbors of v in H .

Transmission power 
ontrol has been well-studied
by peer resear
hers in the re
ent years. Monks et
al. [59℄ 
ondu
ted simulations whi
h show that im-
plementing power 
ontrol in a multiple a

ess environ-
ment 
an improve the throughput performan
e of the
non-power 
ontrolled IEEE 802.11 by a fa
tor of 2.
Therefore it provides a 
ompelling reason for adopting
the power 
ontrolled MAC proto
ol in wireless net-
work.

The min-max assignment problem was studied by
several resear
hers [60, 61℄. Let EMST(V ) be the
Eu
lidean minimum spanning tree over a point set
V . Both [60℄ and [61℄ use the power assignment in-
du
ed by EMST(V ). The 
orre
tness of using mini-
mum spanning tree is proved in [60℄. Both algorithms

ompute the minimum spanning tree from the fully

onne
ted graph. Noti
e that Kruskal's or Prim's min-
imum spanning tree algorithm has time 
omplexity
O(m + n logn), where m is the number of edges of
the graph. Thus, the approa
h by [60℄ and [61℄ has
time 
omplexity O(n2) in the worst 
ase. In addition,
di�erent distributed implementation of this algorithm
is not feasible be
ause of the information ea
h node has
to store and pro
ess. In 
ontrast, Li [62℄ gave a sim-
ple O(n logn) time 
omplexity 
entralized algorithm
and also show how this algorithm 
an be implemented
eÆ
iently for distributed 
omputation.

For an optimum transmission power assignment
fopt, 
all a link uv the 
riti
al link if jjuvjj� = m
(fopt).
It was proved in [60℄ that the longest edge of the Eu-

lidean minimum spanning tree EMST(V ) is always
the 
riti
al link.

The best distributed algorithm [63, 64, 65℄ 
an

ompute the minimum spanning tree in O(n) rounds
using O(m + n logn) 
ommuni
ations for a general
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graph with m edges and n nodes. The relative neigh-
borhood graph, the Gabriel graph and the Yao graph
all have O(n) edges and 
ontain the Eu
lidean mini-
mum spanning tree. This implies that the distributed
min-max assignment problem 
an be solved in O(n)
rounds using O(n log n) 
ommuni
ations.

The min-total assignment problem was studied by
Kiroustis et al. [66℄ and by Clementi et al. [67, 68, 69℄.
Kiroustis et al. [66℄ �rst proved that the min-total as-
signment problem is NP-hard when the mobile nodes
are deployed in a three-dimensional spa
e. A simple 2-
approximation algorithm based on the Eu
lidean min-
imum spanning tree was also given in [66℄. The algo-
rithm guarantees the same approximation ratio in any
dimensions. Then Clementi et al. [67, 68, 69℄ proved
that the min-total assignment problem is still NP-hard
when the mobile nodes are deployed in a two dimen-
sional spa
e.

Re
ently, C�alines
u et al. [70℄ gave a method that
a
hieves better approximation ratio than the approa
h
by the minimum spanning tree by using idea from the
minimum Steiner tree.

5 Clustering, Virtual Ba
kbone

While all the stru
tures dis
ussed so far are 
at stru
-
tures, there are another set of stru
tures, 
alled hier-
ar
hi
al stru
tures, are used in wireless networks. In-
stead of all nodes are involved in relaying pa
kets for
other nodes, the hierar
hi
al routing proto
ols pi
k a
subset of nodes that server as the routers, forwarding
pa
kets for other nodes. The stru
ture used to build
this virtual ba
kbone is usually the 
onne
ted domi-
nating set.

5.1 Centralized Methods

Guha and Khuller [71℄ studied the approximation of
the 
onne
ted dominating set problem for general
graphs. They gave two di�erent approa
hes, both of
them guarantee approximation ratio of �(H(�)). As
their approa
hes are for general graphs and thus do not
utilize the geometry stru
ture if applied to the wireless
ad ho
 networks.

One approa
h is to grow a spanning tree that in-

ludes all nodes. The internal nodes of the spanning
tree is sele
ted as the �nal 
onne
ted dominating set.
They �rst pi
k the node (marked with bla
k) with the
maximum node degree and all of its neighbors as its

hildren (marked with gray). They give two rules for
sele
ting nodes (either gray node or a gray node and a
white node adja
ent to it) to grow the spanning tree:

(1) the gray node with the maximum number of white
neighbors; (2) two adja
ent nodes, one is gray and one
is white, with the maximum number of white neigh-
bors. They [71℄ proved that this approa
h has approx-
imation ratio 2(H(�) + 1).

The other approa
h is �rst approximating the
dominating set and then 
onne
ting the dominating
set to a 
onne
ted dominating set. It runs in two
phases. At the start of the �rst phase all nodes are

olored white. Ea
h time a vertex is in
luded into
the dominating set, we 
olor it bla
k. Dominators are

olored gray. In this �rst phase, the algorithm pi
ks
a node at ea
h step and 
olors it bla
k and 
olors all
its adja
ent nodes gray (as dominators). A pie
e is de-
�ned as a white node, or a bla
k 
onne
ted 
omponent.
At ea
h step, pi
k a node to 
olor bla
k that gives the
maximum non-zero redu
tion in the number of pie
es.
In the se
ond phase, re
ursively 
onne
t pairs of bla
k

omponents by 
hoosing a 
hain of verti
es, until there
is only one bla
k 
onne
ted 
omponent. The �nal 
on-
ne
ted dominating set is the set of bla
k verti
es. They
[71℄ proved that this approa
h has approximation ratio
ln� + 3.

One 
an also use the Steiner tree algorithm to

onne
t the dominators. This straightforward method
gives approximation ratio 
(H(�) + 1), where 
 is the
approximation ratio for the unweighted Steiner tree
problem. Currently, the best ratio is 1 + ln 3

2 ' 1:55,
due to Robins and Zelikovsky [72℄.

By de�nition, any algorithm generating a maxi-
mal independent set is a 
lustering method. We �rst
review the methods that approximates the maximum
independent set, the minimum dominating set, and the
minimum 
onne
ted dominating set.

Hunt et al. [73℄ and Marathe et al. [74℄ also
studied the approximation of the maximum indepen-
dent set and the minimum dominating set for unit disk
graphs. They gave the �rst PTASs for MDS in UDG.
The method is based on the following observations: a
maximal independent set is always a dominating set;
given a square 
 with a �xed area, the size of any
maximal dominating set is bounded by a 
onstant C.
Assume that there are n nodes in 
. Then, we 
an
enumerate all sets with size at most C in time �(nC).
Among these enumerated sets, the smallest dominat-
ing set is the minimum dominating set. Then, using
the shifting strategy proposed by Ho
hbaum [75℄, they
derived a PTAS for the minimum dominating set prob-
lem.

Sin
e we have PTAS for minimum dominating set
and the graph V irtG 
onne
ting every pair of dom-
inators within at most 3 hops is 
onne
ted [11℄, we
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have an approximation algorithm (
onstru
ting a min-
imum spanning tree V irtG) for MCDS with approxi-
mation ratio 3+�. Noti
e that, Berman et al. [76℄ gave
an 4

3 approximation method to 
onne
t a dominating
set and Robins et al. [72℄ gave an 4

3 approximation
method to 
onne
t an independent set. Thus, we 
an
easily have an 8

3 approximation algorithm for MCDS,
whi
h was reported in [77℄. Re
ently, Cheng et al. [78℄
designed a PTAS for MCDS in UDG. However, it is
diÆ
ult to distributize their method eÆ
iently.

5.2 Distributed Methods

Many distributed 
lustering (or dominating set) algo-
rithms have been proposed in the literature [9, 79, 80,
81, 24, 82℄. All algorithms assume that the nodes have
distin
tive identities (denoted by ID hereafter).

In the rest of se
tion, we will inter
hange the
terms 
luster-head and dominator. The node that is
not a 
luster-head is also 
alled dominatee. A node is

alled white node if its status is yet to be de
ided by
the 
lustering algorithm. Initially, all nodes are white.
The status of a node, after the 
lustering method �n-
ishes, 
ould be dominator with 
olor bla
k or domi-
natee with 
olor gray. The rest of this se
tion is de-
voted for the distributed methods that approximates
the minimum dominating set and the minimum 
on-
ne
ted dominating set for unit disk graph.

5.2.1 Clustering without Geometry Property

For general graphs, Jia et al. [83℄ des
ribed and an-
alyzed some randomized distributed algorithms for
the minimum dominating set problem that run in
polylogarithmi
 time, independent of the diameter of
the network, and that return a dominating set of
size within a logarithmi
 fa
tor from the optimum
with high probability. Their best algorithm runs in
O(log n log�) rounds with high probability, and ev-
ery pair of neighbors ex
hange a 
onstant number
of messages in ea
h round. The 
omputed dominat-
ing set is within O(log�) in expe
tation and within
O(log n) with high probability. Their algorithm works
for weighted dominating set also.

The method proposed by Das et al. [6, 84℄ 
on-
tains three stages: approximating the minimum domi-
nating set, 
onstru
ting a spanning forest of stars, ex-
panding the spanning forest to a spanning tree. Here
the stars are formed by 
onne
ting ea
h dominatee
node to one of its dominators. The approximation
method of MDS is essentially a distributed variation
of the the 
entralized Chvatal's greedy algorithm [85℄

for set 
over. Noti
e that the dominating set prob-
lem is essentially the set 
over problem whi
h is well-
studied. It is then not surprise that the method by
Das et al. [6, 84℄ guarantees a H(�) for the MDS
problem, where H is the harmoni
 fun
tion and � is
the maximum node degree.

While the algorithm proposed by Das et al. [6, 84℄
�nds a dominating set and then grows it to a 
onne
t-
ing dominating set, the algorithm proposed by Wu and
Li [86, 7℄ takes an opposite approa
h. They �rst �nd a

onne
ting dominating set and then prune out 
ertain
redundant nodes from the CDS. The initial CDS C


ontains all nodes that have at least two non-adja
ent
neighbors. A node u is said to be lo
ally redundant if it
has either a neighbor in C with larger ID whi
h dom-
inate all other neighbors of u, or two adja
ent neigh-
bors with larger ID whi
h together dominates all other
neighbors of u. Their algorithm then keeps removing
all lo
ally redundant nodes from C . They showed that
this algorithm works well in pra
ti
e when the nodes
are distributed uniformly and randomly, although no
any theoreti
al analysis is given by them both for the
worst 
ase and for the average approximation ratio.
However, it was shown by Alzoubi et al. [9℄ that the
approximation ratio of this algorithm 
ould be as large
as n

2 .

Stojmenovi
 et al. [8℄ proposed several syn
hro-
nized distributed 
onstru
tions of 
onne
ting dominat-
ing set. In their algorithms, the 
onne
ting dominat-
ing set 
onsists of two types of nodes: 
lusterhead and
border-nodes (also 
alled gateway or 
onne
tors else-
where). The 
lusterhead nodes are just a maximal
independent set, whi
h is 
onstru
ted as follows. At
ea
h step, all white nodes whi
h have the lowest rank
among all white neighbors are 
olored bla
k, and the
white neighbors are 
olored gray. The ranks of the
white nodes is updated if ne
essary. Here, the follow-
ing rankings of a node are used in various methods:
the ID only [80, 79℄, the ordered pair of degree and ID
[87℄, and an ordered pair of degree and lo
ation [8℄.
After the 
lusterhead nodes are sele
ted, border-nodes
are sele
ted to 
onne
t them. A node is a border-node
if it is not a 
lusterhead and there are at least two 
lus-
terheads within its 2-hop neighborhood. It was shown
by [9℄ that the worst 
ase approximation ratio of this
method is also n

2 , although it works well in pra
ti
e.

In [88, 89, 87℄, several resear
hers studied how
to maintain the 
lustering in mobile wireless ad ho

networks. It uses a general weight as a 
riterion for
sele
ting the node as the 
lusterhead, where the weight

ould be any 
riteria used before.
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5.2.2 Clustering with Geometry Property

Noti
e that none of the above algorithm utilizes the
geometry property of the underlying unit disk graph.
Re
ently, several algorithms were proposed with a 
on-
stant worst 
ase approximation ratio by taking ad-
vantage of the geometry properties of the underlying
graph. These methods typi
ally use two messages sim-
ilar to IamDominator and IamDominatee, and typi
ally
have the following pro
edures: a white node 
laims it-
self to be a dominator if it has the smallest ID among
all of its white neighbors, if there is any, and broad-

asts IamDominator to its 1-hop neighbors. A white
node re
eiving IamDominator message marks itself as
dominatee and broad
asts IamDominatee to its 1-hop
neighbors. The set of dominators generated by the
above method is a
tually a maximal independent set.
Here, we assume that ea
h node knows the IDs of all
its 1-hop neighbors, whi
h 
an be a
hieved by asking
ea
h node to broad
ast its ID to its 1-hop neighbors
initially. This approa
h of 
onstru
ting MIS is well-
known. For example, Stojmenovi
 et al. [8℄ also used
this method to 
ompute the MIS.

The se
ond step of ba
kbone formation is to �nd
some 
onne
tors (also 
alled gateways) among all the
dominatees to 
onne
t the dominators. Then the 
on-
ne
tors and the dominators form a 
onne
ted dominat-
ing set. Re
ently, Wan, et al. [10℄ proposed a 
ommu-
ni
ation eÆ
ient algorithm to �nd 
onne
tors based
on the fa
t that there are only a 
onstant number of
dominators within k-hops of any node. The following
observation is a basis of several algorithms for CDS.
After 
lustering, one dominator node 
an be 
onne
ted
to many dominatees. However, it is well-known that a
dominatee node 
an only be 
onne
ted to at most �ve
dominators in the unit disk graph model. Generally,
it was shown in [10, 11℄ that for ea
h node (dominator
or dominatee), there are at most a 
onstant number of
dominators that are at most k units away.

Given a dominating set S, let V irtG be the graph

onne
ting all pairs of dominators u and v if there is
a path in UDG 
onne
ting them with at most 3 hops.
It is also well-known that, V irtG is 
onne
ted. It is
natural to form a 
onne
ted dominating set by �nd-
ing 
onne
tors to 
onne
t any pair of dominators u
and v if they are 
onne
ted in V irtG. This strategy
is also adopted by Wan, et al. [10℄. Noti
e that, in
the approa
h by Stojmenovi
 et al. [8℄, they set any
dominatee node as the 
onne
tor if there are two dom-
inators within its 2-hop neighborhood. This approa
h
is very pessimisti
 and results in very large number of

onne
tors in the worst 
ase [9℄. Instead, Wan et al.
suggested to �nd only one unique shortest path to 
on-

ne
t any two dominators that are at most three hops
away.

We �rst brie
y review their basi
 idea of forming
a CDS in a distributed manner. Let �UDG(u; v) be
the path 
onne
ting two nodes u and v in UDG with
the smallest number of hops. Let's �rst 
onsider how
to 
onne
t two dominators within 3 hops. If the path
�UDG(u; v) has two hops, then u �nds the dominatee
with the smallest ID to 
onne
t u and v. If the path
�UDG(u; v) has three hops, then u �nds the node, say
w, with the smallest ID su
h that w and v are two
hops apart. Then node w sele
ts the node with the
smallest ID to 
onne
t w and v.

Wang and Li [11℄ and Alzoubi et al. [10℄ dis
ussed
in detail some approa
hes to optimize the 
ommuni-

ation 
ost and the memory 
ost. We brie
y review
the approa
hes proposed by Wang and Li [11℄. Noti
e
that, for example, it is not obvious how node u 
an
�nd su
h node w eÆ
iently. In addition that, using
the smallest ID is not eÆ
ient be
ause we may have to
postpone the sele
ting of 
onne
tors till the node 
ol-
le
ts the IDs of all its one-hop neighbors. Instead of
using the intermediate node with the smallest ID, we
pi
k any node that 
omes �rst to the noti
e of the node
that makes the sele
tion of 
onne
tors. Their method
uses the following primitive messages (some messages
are used in forming 
lusters):

� IamDominator(u): node u tells its 1-hop neighbors
that u is a dominator;

� IamDominatee(u; v): node u tells its 1-hop neigh-
bors that u is a dominatee of node v;

� 2HopsPath(u;w; v): node u tells its 1-hop neigh-
bors that u has a 2-hops path uwv and w is the
unique node sele
ted by u among all intermediate
nodes that 
an 
onne
t u and v.

� 3HopsPath(x; u; w; v): node x tells its 1-hop neigh-
bors that x has a 3-hops path xuwv and u and w
are the uniquely sele
ted nodes among all inter-
mediate nodes. Node u is sele
ted by node x and
node w is sele
ted by node u.

Noti
e that the message IamDominator(u) is only
broad
asted at most on
e by ea
h node; the message
IamDominatee(u; v) is only broad
asted at most �ve
times by ea
h node u for all possible dominators v;
2HopsPath(u;w; v) and 3HopsPath(x; u; w; v) are also
broad
asted at most a 
onstant times by ea
h node
for all possible dominator v.

To save the memory 
ost of ea
h wireless node,
they [11℄ also designed the following link lists for ea
h
node u:
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� Dominators: it stores all dominators of u if there is
any. Noti
e that if the node itself is a dominator,
no value is assigned for Dominators.

� Conne
tor2HopsPath: for ea
h dominator v that
are 2-hops apart from u, node u stores (w; v),
where the intermediate node w is sele
ted by u
to 
onne
t u and v.

� Conne
tor3HopsPath: for ea
h dominator v that
are 3-hops apart from u, node u stores (w; x; v)
su
h that there is a path uwxv, and w is sele
ted
by u and x is the node sele
ted by w to 
onne
t
v.

Noti
e that for ea
h node, there are at most �ve
dominators. So the size of link list Dominators is at
most �ve. Then for ea
h node u, there are at most `k
number of dominators v that are k-hops apart from u.
Therefore, the sizes of link lists Conne
tor2HopsPath,
Conne
tor3HopsPath are bounded by `2 and `3 respe
-
tively. Then we are in the position to review the dis-
tributed algorithm proposed by Wang and Li [11℄ to
�nd the 
onne
tors eÆ
iently. Assume that a maximal
independent set is already 
onstru
ted by a 
luster al-
gorithm.

Algorithm 3 Finding Conne
tors

1. Every dominatee node w broad
asts to its 1-hop
neighbors a message IamDominatee(w; v) for ea
h
dominator v stored at Dominators.

2. Assume node u re
eives a message IamDomina-
tee(w; v) for the �rst time. If u 6= v, v is not in
Dominators list of u, and there is no pair (�; v) in
Conne
tor2HopsPath, then u adds (w; v) to Con-
ne
tor2HopsPath. Here � denotes any node ID.
If u is a dominatee, then it broad
asts message a
2HopsPath(u;w; v) to its 1-hop neighbors. If node
u is a dominator, node u already knows a path
uwv to 
onne
t a 2-hops apart dominator v.

Node u will dis
ard any message IamDomina-
tee(�; v) afterward.

3. When a node w (it must be a dominatee here)
re
eives the message 2HopsPath(u;w; v), node w
marks itself as a 
onne
tor, if u is a dominator.

4. Assume a dominator x re
eives the message
2HopsPath(u;w; v), where x 6= w. If there is
no triple (�; �; v) in Conne
tor3HopsPath, then x
adds (u;w; v) to Conne
tor3HopsPath and broad-

asts the message 3HopsPath(x; u; w; v) to its 1-
hop neighbors. Then node x already knows a path
xuwv to 
onne
t a 3-hops apart dominator v.

5. When a node u (it must be dominatee here) re-

eives the message 3HopsPath(x; u; w; v), node u
marks itself as a 
onne
tor. Node u sends a mes-
sage to node w asking w to be a 
onne
tor.

Noti
e that it is possible that, given any two nodes
u and v, the path found by node u to 
onne
t v is dif-
ferent from the path found by v to 
onne
t u. This
in
reases the robustness of the ba
kbone. When only
one 
onne
ting path between any pair of dominators
is needed, they suggested to add the following restri
-
tions: a dominator node u stores a 2-hops or 3-hops
path 
onne
ting it to another dominator node v if and
only if node u has a smaller ID. In other words, the
de
ision to sele
t the 
onne
tors is always made by the
node with smaller ID.

The graph 
onstru
ted by the above algorithm is

alled a CDS graph (or ba
kbone of the network). If
we also add all edges that 
onne
t all dominatees to
their dominators, the graph is 
alled extended CDS,
denoted by CDS'.

Wang and Li [11℄ proved that the number of 
on-
ne
tors found is at most `3 times of the minimum.
The size of the 
onne
ted dominating set found by the
above algorithm is within a small 
onstant fa
tor of
the minimum.

5.2.3 The Properties of Ba
kbone

It was shown in [11℄ that CDS is a sparse graph, i.e.,
the total number of edges is O(k), where k is the num-
ber of dominators. Moreover, the graph CDS' is also
a sparse graph be
ause the total number of the links
from dominatees to dominators is at most 5(n � k).
Noti
e that we have at most n � k dominatees, ea
h
of whi
h is 
onne
ted to at most 5 dominators. The
node degree in CDS is bounded, however, the degree
of some dominator node in CDS' may be arbitrarily
large.

After we 
onstru
t the ba
kbone CDS and the in-
du
ed graph CDS', if a node u wants to send a message
to another node v, it follows the following pro
edure.
If v is within the transmission range of u, node u di-
re
tly sends message to v. Otherwise, node u asks
its dominator to send this message to v (or one of
its dominators) through the ba
kbone. They showed
that CDS' (plus all impli
it edges 
onne
ting domina-
tees that are no more than one unit apart) is a good
spanner in terms of both hops and length. The hops
stret
h fa
tor of CDS' is bounded by a 
onstant 3 and
the length stret
h fa
tor of CDS' is bounded by a 
on-
stant 6.
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Several routing algorithms require the underlying
topology be planar. Noti
e in the formation algorithm
of CDS, we do not use any geometry information. The
resulting CDS maybe non-planar graph. Even using
some geometry information, the CDS still is not guar-
anteed to be a planar graph. Then Li et al. [52℄
proposed a method to make the graph CDS planar
without losing the spanner property of the ba
kbone.
Their method applies the lo
alized Delaunay triangu-
lation [55℄ on top of the indu
ed graph from CDS, de-
noted by ICDS. It was proved in [55℄ that LDel(G) is
a spanner if G is a unit disk graph. Noti
e that ICDS
is a unit disk graph de�ned over all dominators and

onne
tors. Consequently, LDel(ICDS) is a spanner
in terms of length. In addition, LDel(ICDS) has 
on-
stant bounded hop-stret
h fa
tor and a bounded node
degree [52℄.

6 Broad
asting & Multi
asting

Minimum-energy broad
ast/multi
ast routing in a
simple ad ho
 networking environment has been ad-
dressed by the pioneering work in [90, 91, 92, 93℄. To
assess the 
omplexities one at a time, the nodes in
the network are assumed to be randomly distributed
in a two-dimensional plane and there is no mobility.
Nevertheless, as argued in [93℄, the impa
t of mobil-
ity 
an be in
orporated into this stati
 model be
ause
the transmitting power 
an be adjusted to a

ommo-
date the new lo
ations of the nodes as ne
essary. In
other words, the 
apability to adjust the transmission
power provides 
onsiderable \elasti
ity" to the topo-
logi
al 
onne
tivity, and hen
e may redu
e the need
for hand-o�s and tra
king. In addition, as assumed
in [93℄, there are suÆ
ient bandwidth and trans
eiver
resour
es. Under these assumptions, 
entralized (as
opposed to distributed) algorithms were presented by
[93℄ for minimum-energy broad
ast/multi
ast routing.
These 
entralized algorithms, in this simple network-
ing environment, are expe
ted to serve as the ba-
sis for further studies on distributed algorithms in
a more pra
ti
al network environment, with limited
bandwidth and trans
eiver resour
es, as well as the
node mobility.

6.1 Broad
asting

Three greedy heuristi
s were proposed in [93℄ for the
minimum-energy broad
ast routing problem: MST
(minimum spanning tree), SPT (shortest-path tree),
and BIP (broad
asting in
remental power). The MST
heuristi
 �rst applies the Prim's algorithm to obtain

a MST, and then orient it as an arbores
en
e rooted
at the sour
e node. The SPT heuristi
 applies the
Dijkstra's algorithm to obtain a SPT rooted at the
sour
e node. The BIP heuristi
 is the node version of
Dijkstra's algorithm for SPT. It maintains, through-
out its exe
ution, a single arbores
en
e rooted at the
sour
e node. The arbores
en
e starts from the sour
e
node, and new nodes are added to the arbores
en
e
one at a time on the minimum in
remental 
ost basis
until all nodes are in
luded in the arbores
en
e. The
in
remental 
ost of adding a new node to the arbores-

en
e is the minimum additional power in
reased by
some node in the 
urrent arbores
en
e to rea
h this
new node. The implementation of BIP is based on the
standard Dijkstra's algorithm, with one fundamental
di�eren
e on the operation whenever a new node q is
added. Whereas the Dijkstra's algorithm updates the
node weights (representing the 
urrent knowing dis-
tan
es to the sour
e node), BIP updates the 
ost of
ea
h link (representing the in
remental power to rea
h
the head node of the dire
ted link). This update is
performed by subtra
ting the 
ost of the added link
pq from the 
ost of every link qr that starts from q to
a node r not in the new arbores
en
e.

They have been evaluated through simulations in
[93℄, but little is known about their analyti
al perfor-
man
es in terms of the approximation ratio. Here, the
approximation ratio of a heuristi
 is the maximum ra-
tio of the energy needed to broad
ast a message based
on the arbores
en
e generated by this heuristi
 to the
least ne
essary energy by any arbores
en
e for any set
of points. The analyti
al performan
e is very essen-
tial and more 
onvin
ing in evaluating these heuristi
s,
be
ause one may 
ome up with several seemingly rea-
sonable greedy heuristi
s. But it is hard to tell from
simulation outputs whi
h one is better or worse in the
worst 
ase s
enario.

For a pure illustration purpose, another slight
variation of BIP was dis
ussed in detail in [94℄. This
greedy heuristi
 is similar to the Chvatal's algorithm
[95℄ for the set 
over problem and is a variation of
BIP. Like BIP, an arbores
en
e, whi
h starts with the
sour
e node, is maintained throughout the exe
ution of
the algorithm. However, unlike BIP, many new nodes

an be added one at a time. Similar to the Chvatal's
algorithm [95℄, the new nodes added are 
hosen to
have the minimal average in
remental 
ost, whi
h is
de�ned as the ratio of the minimum additional power
in
reased by some node in the 
urrent arbores
en
e
to rea
h these new nodes to the number of these new
nodes. They 
alled this heuristi
 as the Broad
ast Av-
erage In
remental Power (BAIP). In 
ontrast to the
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1 + logm approximation ratio of the Chvatal's algo-
rithm [95℄, where m is the largest set size in the Set
Cover Problem, they showed that the approximation
ratio of BAIP is at least 4n

lnn � o (1), where n is the
number of re
eiving nodes.

Wan et al. [94, 96℄ showed that the approxima-
tion ratios of MST and BIP are between 6 and 12 and
between 13

3 and 12 respe
tively; on the other hand, the
approximation ratios of SPT and BAIP are at least n

2
and 4n

lnn � o (1) respe
tively, where n is the number of
nodes. We then dis
uss in detail of their proof te
h-
niques.

Any broad
ast routing is viewed as an arbores-

en
e (a dire
ted tree) T , rooted at the sour
e node
of the broad
asting, that spans all nodes. Let fT (p)
denote the transmission power of the node p required
by T . For any leaf node p of T , fT (p) = 0. For any
internal node p of T ,

fT (p) = max
pq2T

kpqk� ;

in other words, the �-th power of the longest distan
e
between p and its 
hildren in T . The total energy
required by T is

P
p2P fT (p). Thus the minimum-

energy broad
ast routing problem is di�erent from
the 
onventional link-based minimum spanning tree
(MST) problem. Indeed, while the MST 
an be solved
in polynomial time by algorithms su
h as Prim's al-
gorithm and Kruskal's algorithm [97℄, it is still un-
known whether the minimum-energy broad
ast rout-
ing problem 
an be solved in polynomial time. In its
general graph version, the minimum-energy broad
ast
routing 
an be shown to be NP-hard [98℄, and even
worse, it 
an not be approximated within a fa
tor
of (1� �) log�, unless NP � DTIME

�
nO(log logn)

�
,

where � is the maximal degree and � is any arbitrary
small positive 
onstant. However, this intra
tability
of its general graph version does not ne
essarily imply
the same hardness of its geometri
 version. In fa
t,
as shown later in the survey, its geometri
 version 
an
be approximated within a 
onstant fa
tor. Neverthe-
less, this suggests that the minimum-energy broad
ast
routing problem is 
onsiderably harder than the MST
problem. Re
ently, Clementi et al. [90℄ proved that
the minimum-energy broad
ast routing problem is a
NP-hard problem and obtained a parallel but weaker
result to those of [94, 96℄.

Wan et al. [94, 96℄ gave some lower bounds on
the approximation ratios of MST and BIP by study-
ing some spe
ial instan
es in [94, 96℄. Their deriving
of the upper bounds relies extensively on the geomet-
ri
 stru
tures of Eu
lidean MSTs. They �rst observed
that as long as the 
ost of a link is an in
reasing fun
-

tion of the Eu
lidean length of the link, the set of
MSTs of any point set 
oin
ides with the set of Eu-

lidean MSTs of the same point set. In parti
ular, for
any spanning tree T of a �nite point set P , parameterP

e2T kek2 a
hieves its minimum if and only if T is
an Eu
lidean MST of P . For any �nite point set P ,
let mst (P ) denote an arbitrary Eu
lidean MST of P .
The radius of a point set P is de�ned as

inf
p2P

sup
q2P

kpqk :

Thus, a point set of radius one 
an be 
overed by a
disk of radius one. A key result in [94, 96℄ is an upper

bound on the parameter
P

e2mst(P ) kek2 for any �nite
point set P of radius one. Note that the supreme of
the total edge lengths of mst (P ),

P
e2mst(P ) kek, over

all point sets P of radius one is in�nity. However, the
parameter

P
e2mst(P ) kek2 is bounded from above by

a 
onstant for any point set P of radius one. They use

 to denote the supreme of

P
e2mst(P ) kek2 over all

point sets P of radius one. They [94, 96℄ proved that

 is at most 12. The proof of this theorem involves

ompli
ated geometri
 arguments.

Note that for any point set P of radius one, the
length of ea
h edge in mst (P ) is at most one. There-
fore, for any point set P of radius one and any real
number � � 2,X

e2mst(P )

kek� �
X

e2mst(P )

kek2 � 
 � 12:

The next theorem proved in [94, 96℄ explores a
relation between the minimum energy required by a
broad
asting and the energy required by the Eu
lidean
MST of the 
orresponding point set.

Lemma 1 [94, 96℄ For any point set P in the plane,
the total energy required by any broad
asting among P
is at least 1




P
e2mst(P ) kek�.

Proof. Let T be an arbores
en
e for a broad
asting
among P with the minimum energy 
onsumption. For
any none-leaf node p in T , let Tp be an Eu
lidean MST
of the point set 
onsisting p and all 
hildren of p in T .
Suppose that the longest Eu
lidean distan
e between
p and its 
hildren is r. Then the transmission power
of node p is r� , and all 
hildren of p lie in the disk

entered at p with radius r. From the de�nition of 
,
we have X

e2Tp

�kek
r

��
� 
;

whi
h implies that

r� � 1




X
e2Tp

kek� :
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Let T � denote the spanning tree obtained by su-
perposing of all Tp's for non-leaf nodes of T . Then the

total energy required by T is at least 1



P
e2T� kek� ,

whi
h is further no less than 1



P
e2mst(P ) kek� . This


ompletes the proof.

Consider any point set P in a two-dimensional
plane. Let T be an arbores
en
e oriented from some
mst (P ). Then the total energy required by T is at

most
P

e2Tp kek
�
. From Lemma 1, this total energy is

at most 
 times the optimum 
ost. Thus the approx-
imation ratio of the link-based MST heuristi
 is at
most 
. This observation implies that the approxima-
tion ratio of the link-based MST heuristi
 is at most 
,
and therefore is at most 12 [94, 96℄. In addition, they
derived an upper bound on the approximation ratio of
the BIP heuristi
: For any broad
asting among a point
set P in a two-dimensional plane, the total energy re-
quired by the arbores
en
e generated by the BIP al-
gorithm is at most

P
e2mst(P ) kek� . On
e again, the

Eu
lidean MST plays an important role.

6.2 Forwarding Neighbors

The simplest broad
asting me
hanism is to let every
node retransmit the message to all its one-hop neigh-
bors when re
eiving the �rst 
opy of the message,
whi
h is 
alled 
ooding in the literature. Despite its
simpli
ity, 
ooding is very ineÆ
ient and 
an result
in high redundan
y, 
ontention, and 
ollision. One
approa
h to redu
ing the redundan
y is to let a node
only forward the message to a subset of one-hop neigh-
bors who together 
an 
over the two-hop neighbors. In
other words, when a node retransmits a message to its
neighbors, it expli
itly ask a subset of its neighbors to
relay the message.

C�alines
u et al. [99℄ gave two pra
ti
al heuris-
ti
s for this problem (they 
alled sele
ting forwarding
neighbors). The �rst algorithm runs in time O(n log n)
and returns a subset with size at most 6 times of the
minimum. The se
ond algorithm has an improved ap-
proximation ratio 3, but with running time O(n2).
Here n is the number of total two-hop neighbors of
a node. When all two-hop neighbors are in the same
quadrant with respe
t to the sour
e node, they gave
an exa
t solution in time O(n2) and a solution with
approximation fa
tor 2 in time O(n logn). Their al-
gorithms partition the region surrounding the sour
e
node into four quadrants, solve ea
h quadrants using
an algorithm with approximation fa
tor �, and then

ombine these solutions. They proved that the 
om-
bined solution is at most 3� times of the optimum

solution.
Their approa
h assumes that every node u 
an


olle
t its 2-hop neighbors N2(u) eÆ
iently. Noti
e
that, the 1-hop neighbors of every node u 
an be 
ol-
le
ted eÆ
iently by asking ea
h node to broad
ast its
information to its 1-hop neighbors. Thus all nodes get
their 1-hop neighbors information by using total O(n)
messages. However, until re
ently, it is unknown how
to 
olle
t the 2-hop neighbors information with O(n)

ommuni
ations. The simplest broad
asting of 1-hop
neighbors N1(u) to all neighbors u does let all nodes
in N1(u) to 
olle
t their 
orresponding 2-hop neigh-
bors. However, the total 
ommuni
ation 
ost of this
approa
h is O(m), where m is the total number of
links in UDG. Re
ently, C�alines
u [100℄ proposed an
eÆ
ient approa
h to 
olle
t N2(u) using the 
onne
ted
dominating set [10, 52℄ as forwarding nodes. Assume
that the node position is known. He proved that the
approa
h takes total 
ommuni
ations O(n), whi
h is
optimum within a 
onstant fa
tor.

7 Con
lusion

Wireless ad ho
 networks has attra
ted 
onsiderable
attentions re
ently due to its potential wide appli
a-
tions in various areas and the moreover, the ubiquitous

omputing. Many ex
ellent resear
hes have been 
on-
du
ted to study the ele
troni
 part of the wireless ad
ho
 networks, the networking part of the wireless ad
ho
 networks. For networking, there are also many
interesting topi
s su
h as topology 
ontrol, routing,
energy 
onservation, QoS, mobility management, and
so on. In this survey, we present an overview of the
re
ent progress of applying 
omputational geometry
te
hniques to solve some questions, su
h as topology

onstru
tion and broad
asting, in wireless ad ho
 net-
works. Nevertheless, there are still many ex
ellent re-
sults, su
h as lo
alized routing methods, 
onne
tivity
and 
apa
ity results of wireless networks, and lo
ation
sevi
es, are not 
overed in this survey due to spa
e
limit.
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