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Abstract. We explore the three main avenues of research still unsolved
in the algorithmic graph-minor theory literature, which all stem from a
key min-max relation between the treewidth of a graph and its largest
grid minor. This min-max relation is a keystone of the Graph Minor
Theory of Robertson and Seymour, which ultimately proves Wagner’s
Conjecture about the structure of minor-closed graph properties.

First, we obtain the only known polynomial min-max relation for
graphs that do not exclude any fixed minor, namely, map graphs and
power graphs. Second, we obtain explicit (and improved) bounds on
the min-max relation for an important class of graphs excluding a mi-
nor, namely, K3,k-minor-free graphs, using new techniques that do not
rely on Graph Minor Theory. These two avenues lead to faster fixed-
parameter algorithms for two families of graph problems, called minor-
bidimensional and contraction-bidimensional parameters. Third, we dis-
prove a variation of Wagner’s Conjecture for the case of graph contrac-
tions in general graphs, and in a sense characterize which graphs satisfy
the variation. This result demonstrates the limitations of a general the-
ory of algorithms for the family of contraction-closed problems (which
includes, for example, the celebrated dominating-set problem). If this
conjecture had been true, we would have had an extremely powerful tool
for proving the existence of efficient algorithms for any contraction-closed
problem, like we do for minor-closed problems via Graph Minor Theory.

1 Introduction

Graph Minor Theory is a seminal body of work in graph theory, developed
by Robertson and Seymour in a series of over 20 papers spanning the last 20
years. The original goal of this work, now achieved, was to prove Wagner’s Con-
jecture [39], which can be stated as follows: every minor-closed graph property
(preserved under taking of minors) is characterized by a finite set of forbidden mi-
nors. This theorem has a powerful algorithmic consequence: every minor-closed
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graph property can be decided by a polynomial-time algorithm. A keystone in
the proof of these theorems, and many other theorems, is a grid-minor theo-
rem [37]: any graph of treewidth at least some f(r) is guaranteed to have the
r×r grid graph as a minor. Such grid-minor theorems have also played a key role
for many algorithmic applications, in particular via the bidimensionality theory
(e.g., [20,13,15,11,18,17,19]), including many approximation algorithms, PTASs,
and fixed-parameter algorithms.

The grid-minor theorem of [37] has been extended, improved, and re-proved.
The best bound known for general graphs is superexponential: every graph of
treewidth more than 202r5

has an r × r grid minor [43]. This bound is usually
not strong enough to derive efficient algorithms. Robertson et al. [43] conjecture
that the bound on f(r) can be improved to a polynomial rΘ(1); the best known
lower bound is Ω(r2 lg r). A tight linear upper bound was recently established
for graphs excluding any fixed minor H: every H-minor-free graph of treewidth
at least cH r has an r × r grid minor, for some constant cH [18]. This bound
leads to many powerful algorithmic results on H-minor-free graphs [18,17,19].

Three major problems remain in the literature with respect to these grid-
minor theorems in particular, and algorithmic graph-minor theory in general.
We address all three of these problems in this paper.

First, to what extent can we generalize algorithmic graph-minor results to
graphs that do not exclude a fixed minor H? In particular, for what classes
of graphs can the grid-minor theorem be improved from the general superex-
ponential bound to a bound that would be useful for algorithms? To this end,
we present polynomial grid-minor theorems for two classes of graphs that can
have arbitrarily large cliques (and therefore exclude no fixed minors). One class,
map graphs, is an important generalization of planar graphs introduced by Chen,
Grigni, and Papadimitriou [10], characterized via a polynomial recognition al-
gorithm by Thorup [45], and studied extensively in particular in the context of
subexponential fixed-parameter algorithms and PTASs for specific domination
problems [12,9]. The other class, power graphs, e.g., fixed powers of H-minor-
free graphs (or even map graphs), have been well-studied since the time of the
Floyd-Warshall algorithm.

Second, even for H-minor-free graphs, how large is the constant cH in the
grid-minor theorem? In particular, how does it depend on H? This constant
is particularly important because it is in the exponent of the running times
of many algorithms. The current results (e.g., [18]) heavily depend on Graph
Minor Theory, most of which lacks explicit bounds and is believed to have very
large bounds. (To quote David Johnson [32], “for any instance G = (V,E) that
one could fit into the known universe, one would easily prefer |V |70 to even
constant time, if that constant had to be one of Robertson and Seymour’s.”
He estimates one constant in an algorithm for testing for a fixed minor H to

be roughly 2 ↑ 2222↑(2↑Θ(|V (H)|))

, where 2 ↑ n denotes a tower 222 ..
.

involving n
2’s.) For this reason, improving the constants, even for special classes of graphs,
and presumably using different approaches from Graph Minors, is an important
theoretical and practical challenge. To this end, we give explicit bounds for the



case of K3,k-minor-free graphs, an important class of apex-minor-free graphs
(see, e.g., [4,7,26,27]). Our bounds are not too small but are a vast improvement
over previous bounds (in particular, much smaller than 2 ↑ |V (H)|); in addition,
the proof techniques are interesting in their own right, being disjoint from most
of Graph Minors. To the best of our knowledge, this is the only grid-minor
theorem with an explicit bound other than for planar graphs [43] and bounded-
genus graphs [13]. Our theorem also leads to several algorithms with explicit and
improved bounds on their running time.

Third, to what extent can we generalize algorithmic graph-minor results to
graph contractions? Many graph optimization problems are closed (only de-
crease) under edge contractions, but not under edge deletions (i.e., minors).
Examples include dominating set, traveling salesman, or even diameter. Bidi-
mensionality theory has been extended to such contraction-closed problems for
the case of apex-minor-free graphs; see, e.g., [11,13,18,17,23]. The basis for this
work is a modified grid-minor theorem which states that any apex-minor-free
graph of treewidth at least f(r) can be contracted into an “augmented” r × r
grid (e.g., allowing partial triangulation of the faces). The ultimate goal of this
line of research, mentioned explicitly in [16,23], is to use this grid-contraction
analog of the grid-minor theorem to develop a Graph Contraction Theory par-
alleling as much as possible of Graph Minor Theory. In particular, the most
natural question is whether Wagner’s Conjecture generalizes to contractions: is
every contraction-closed graph property characterized by a finite set of excluded
contractions? If this were true, it would generalize our algorithmic knowledge of
minor-closed graph problems in a natural way to the vast array of contraction-
closed graph problems. To this end, we unfortunately disprove this contraction
version of Wagner’s Conjecture, even for planar bounded-treewidth graphs. On
the other hand, we prove that the conjecture holds for outerplanar graphs and
triangulated planar graphs, which in some sense provides a tight characterization
of graphs for which the conjecture holds.

Below we detail our results and techniques for each of these three problems.

1.1 Our Results and Techniques

Generalized grid-minor bounds. We establish polynomial relations between tree-
width and grid minors for map graphs and for powers of graphs. We prove in
Section 2 that any map graph of treewidth at least r3 has an Ω(r)×Ω(r) grid
minor. We prove in Section 3 that, for any graph class with a polynomial rela-
tion between treewidth and grid minors (such as H-minor-free graphs and map
graphs), the family of kth powers of these graphs also has such a polynomial
relation, where the polynomial degree is larger by just a constant, interestingly
independent of k.

These results extend bidimensionality to map graphs and power graphs, im-
proving the running times of a broad class of fixed-parameter algorithms for
these graphs. See Section 4 for details on these algorithmic implications. Our re-
sults also build support for Robertson, Seymour, and Thomas’s conjecture that
all graphs have a polynomial relation between treewidth and grid minors [43].



Indeed, from our work, we refine the conjecture to state that all graphs of tree-
width Ω(r3) have an Ω(r)×Ω(r) grid minor, and that this bound is tight. The
previous best treewidth-grid relations for map graphs and power graphs were
given by the superexponential bound from [43].

The main technique behind these results is to use approximate min-max
relations between treewidth and the size of a grid minor. In contrast, most pre-
vious work uses the seminal approximate min-max relation between treewidth
and tangles or between branchwidth and tangles, proved by Robertson and Sey-
mour [42]. We show that grids are powerful structures that are easy to work
with. By bootstrapping, we use grids and their connections to treewidth even to
prove relations between grids and treewidth.

Another example of the power of this technique is a result we obtain as a
byproduct of our study of map graphs: every bounded-genus graph has tree-
width within a constant factor of the treewidth of its dual. This is the first
relation of this type for bounded-genus graphs. The result generalizes a conjec-
ture of Seymour and Thomas [44] that, for planar graphs, the treewidth is within
an additive 1 of the treewidth of the dual, which has apparently been proved
in [35,5] using a complicated approach. Such a primal-dual treewidth relation is
useful, e.g., for bounding the change in treewidth when performing operations
in the dual. Our proof crucially uses the connections between treewidth and grid
minors, and this approach leads to a relatively clean argument. The tools we
use come from bidimensionality theory and graph contractions, even though the
result is not explicitly about either.

Explicit (improved) grid-minor bounds. We prove in Section 5 that the constant
cH in the linear grid-minor bound for H-minor-free graphs can be bounded by an
explicit function of |V (H)| when H = K3,k for any k: for an explicit constant c,
every K3,k-minor-free graph of treewidth at least ckr has an r×r grid minor. This
bound makes explicit and substantially improves the constants in the exponents
of the running time of many fixed-parameter algorithms from bidimensionality
theory [13,11,18] for such graphs. K3,k-minor-free graphs play an important role
as part of the family of apex-minor-free graphs that is disjoint from the family of
single-crossing-minor-free graphs (for which there exist a powerful decomposition
in terms of planar graphs and bounded-treewidth graphs [41,20]). Here the family
of X -minor-free graphs denotes the set of X-minor-free graphs for any fixed
graph X in the class X . K3,k is an apex graph in the sense that it has a vertex
whose removal leaves a planar graph. For k ≥ 7, K3,k is not a single-crossing
graph in the sense of being a minor of a graph that can be drawn in the plane
with at most one crossing: K3,k has genus at least (k−2)/4, but a single-crossing
graph has genus at most 1 (because genus is closed under minors).

There are several structural theorems concerning K3,k-minor-free graphs.
According to Robertson and Seymour (personal communication—see [7]), K3,k-
minor-free graphs were the first step toward their core result of decomposing
graphs excluding a fixed minor into graphs almost-embeddable into bounded-
genus surfaces, because K3,k-minor-free graphs can have arbitrarily large genus.
Oporowski, Oxley, and Thomas [36] proved that any large 3-connected K3,k-



minor-free graph has a large wheel as a minor. Böhme, Kawarabayashi, Maharry,
and Mohar [3] proved that any large 7-connected graph has a K3,k minor, and
that the connectivity 7 is best possible. Eppstein [26,27] proved that a subgraph
P has a linear bound on the number of times it can occur in K3,k-minor-free
graphs if and only if P is 3-connected.

Our explicit linear grid-minor bound is based on an approach of Diestel et
al. [24] combined with arguments in [4,3] to find a K3,k minor. Using similar
techniques we also give explicit bounds on treewidth for a theorem decomposing
a single-crossing-minor-free graph into planar graphs and bounded-treewidth
graphs [41,20], when the single-crossing graph is K3,4 or K−

6 (K6 minus one
edge). Both proofs must avoid Graph Minor Theory to obtain the first explicit
bounds of their kind.

Contraction version of Wagner’s Conjecture. Wagner’s Conjecture, proved in [39],
is a powerful and very general tool for establishing the existence of polynomial-
time algorithms; see, e.g., [28]. Combining this theorem with the O(n3)-time al-
gorithm for testing whether a graph has a fixed minor H [38], every minor-closed
property has an O(n3)-time decision algorithm which tests for the finite set of
excluded minors. Although these results are existential, because the finite set of
excluded minors is not known for many minor-closed properties, polynomial-time
algorithms can often be constructed [14].

A natural goal is to try to generalize these results even further, to handle
all contraction-closed properties, which include the decision versions of many
important graph optimization problems such as dominating set and traveling
salesman, as well as combinatorial properties such as diameter. Unfortunately,
we show in Section 6 that the contraction version of Wagner’s Conjecture is not
true: there is a contraction-closed property that has no complete finite set of
excluded contractions. Our counterexample has an infinite set of excluded con-
tractions all of which are planar bounded-treewidth graphs. On the other hand,
we show that the contraction version of Wagner’s Conjecture holds for trees, tri-
angulated planar graphs, and 2-connected outerplanar graphs: any contraction-
closed property characterized by an infinite set of such graphs as contractions can
be characterized by a finite set of such graphs as contractions. Thus we nearly
characterize the set of graphs for which the contraction version of Wagner Con-
jecture’s is true. The proof for outerplanar graphs is the most complicated, and
uses Higman’s theorem on well-quasi-ordering [31].

The reader is referred to the full version of this paper (available from the
first author’s website) for the proofs. See also [16] for relevant definitions.

2 Treewidth-Grid Relation for Map Graphs

In this section we prove a polynomial relation between the treewidth of a map
graph and the size of the largest grid minor. The main idea is to relate the
treewidth of the map graph, the treewidth of the radial graph, the treewidth of
the dual graph, and the treewidth of the union graph.



Theorem 1. If the treewidth of the map graph M is r3, then it has an Ω(r)×
Ω(r) grid as a minor.

This theorem cannot be improved from Ω(r3) to anything o(r2):

Proposition 1. There are map graphs whose treewidth is r2 − 1 and whose
largest grid minor is r × r.

Robertson, Seymour, and Thomas [43] prove a stronger lower bound of
Θ(r2 lg r) but only for the case of general graphs.

3 Treewidth-Grid Relation for Power Graphs

In this section we prove a polynomial relation between the treewidth of a power
graph and the size of the largest grid minor. The technique here is quite different,
analyzing how a radius-r neighborhood in the graph can be covered by radius-
(r/2) neighborhoods—a kind of “sphere packing” argument.

Theorem 2. Suppose that, if graph G has treewidth at least crα for constants
c, α > 0, then G has an r×r grid minor. For any even (respectively, odd) integer
k ≥ 1, if Gk has treewidth at least crα+4 (respectively, crα+6), then it has an
r × r grid minor.

We have the following immediate consequence of Theorems 1 and 2 and the
grid-minor theorem of [18] mentioned in the introduction:

Corollary 1. For any H-minor-free graph G, and for any even (respectively,
odd) integer k ≥ 1, if Gk has treewidth at least r5 (respectively, r7), then it has
an Ω(r)×Ω(r) grid minor. For any map graph G, and for any even (respectively,
odd) integer k ≥ 1, if Gk has treewidth at least r7 (respectively, r9), then it has
an Ω(r)×Ω(r) grid minor.

4 Treewidth-Grid Relations: Algorithmic and
Combinatorial Applications

Our treewidth-grid relations have several useful consequences with respect to
fixed-parameter algorithms, minor-bidimensionality, and parameter-treewidth
bounds.

A fixed-parameter algorithm is an algorithm for computing a parameter P (G)
of a graph G whose running time is h(P (G))nO(1) for some function h. A typical
function h for many fixed-parameter algorithms is h(k) = 2O(k). A celebrated ex-
ample of a fixed-parameter-tractable problem is vertex cover, asking whether an
input graph has at most k vertices that are incident to all its edges, which admits
a solution as fast as O(kn + 1.285k) [8]. For more results about fixed-parameter
tractability and intractability, see the book of Downey and Fellows [25].



A major recent approach for obtaining efficient fixed-parameter algorithms
is through “parameter-treewidth bounds”, a notion at the heart of bidimen-
sionality. A parameter-treewidth bound is an upper bound f(k) on the tree-
width of a graph with parameter value k. Typically, f(k) is polynomial in k.
Parameter-treewidth bounds have been established for many parameters; see,
e.g., [1,33,29,2,6,34,30,12,20,21,22,11,15,13]. Essentially all of these bounds can
be obtained from the general theory of bidimensional parameters (see, e.g., [16]).
Thus bidimensionality is the most powerful method so far for establishing param-
eter-treewidth bounds, encompassing all such previous results for H-minor-free
graphs. However, all of these results are limited to graphs that exclude a fixed
minor.

A parameter is minor-bidimensional if it is at least g(r) in the r×r grid graph
and if the parameter does not increase when taking minors. Examples of minor-
bidimensional parameters include the number of vertices and the size of various
structures, e.g., feedback vertex set, vertex cover, minimum maximal match-
ing, face cover, and a series of vertex-removal parameters. Tight parameter-
treewidth bounds have been established for all minor-bidimensional parameters
in H-minor-free graphs for any fixed graph H [18,11,13].

Our results provide polynomial parameter-treewidth bounds for all minor-
bidimensional parameters in map graphs and power graphs:

Theorem 3. For any minor-bidimensional parameter P which is at least g(r) in
the r× r grid, every map graph G has treewidth tw(G) = O(g−1(P (G)))3. More
generally suppose that, if graph G has treewidth at least crα for constants c, α >
0, then G has an r×r grid minor. Then, for any even (respectively, odd) integer
k ≥ 1, Gk has treewidth tw(G) = O(g−1(P (G)))α+4 (respectively, tw(G) =
O(g−1(P (G)))α+6). In particular, for H-minor-free graphs G, and for any even
(respectively, odd) integer k ≥ 1, Gk has treewidth tw(G) = O(g−1(P (G)))5

(respectively, tw(G) = O(g−1(P (G)))7).

This result naturally leads to a collection of fixed-parameter algorithms, using
commonly available algorithms for graphs of bounded treewidth:

Corollary 2. Consider a parameter P that can be computed on a graph G in
h(w)nO(1) time given a tree decomposition of G of width at most w. If P is
minor-bidimensional and at least g(r) in the r × r grid, then there is an al-
gorithm computing P on any map graph or power graph G with running time
[h(O(g−1(k))β)+2O(g−1(k))β

]nO(1), where β is the degree of O(g−1(P (G)) in the
polynomial treewidth bound from Theorem 3. In particular, if h(w) = 2O(w) and
g(k) = Ω(k2), then the running time is 2O(kβ/2)nO(1).

The proofs of these consequences follow directly from combining [11] with
Theorems 1 and 2 below.

In contrast, the best previous results for this general family of problems in
these graph families have running times [h(2O(g−1(k))5)+22O(g−1(k))5

]nO(1) [11,14].



5 Improved Grid Minor Bounds for K3,k

Recall that every graph excluding a fixed minor H having treewidth at least cHr
has the r × r grid as a minor [18]. The main result of this section is an explicit
bound on cH when H = K3,k for any k:

Theorem 4. Suppose G is a graph with no K3,k-minor. If the treewidth is at
least 204kr, then G has an r × r grid minor.

In [43], it was shown that if the treewidth is at least f(r) ≥ 202r

, then G
has an r × r grid as a minor. Our second theorems use this result to show the
following. A separation of G is an ordered pair (A,B) of subgraphs of G such
that A ∪ B = G and there are no edges between A − B and B − A. Its order
is |A ∩ B|. Suppose G has a separation (A,B) of order k. Let A+ be the graph
obtained from A by adding edges joining every pair of vertices in V (A)∩ V (B).
Let B+ be obtained from B similarly. We say that G is the k-sum of A+ and B+.
If both A+ and B+ are minors of G other than G itself, we say that G is the
proper k-sum of A+ and B+.

Using similar techniques as the theorem above, we prove the following two
structural results decomposing K3,4-minor-free and K−

6 -minor-free graphs into
proper k-sums:

Theorem 5. Every K3,4-minor-free graph can be obtained via proper 0-, 1-, 2-,
and 3-sums starting from planar graphs and graphs of treewidth at most 20215

.

Theorem 6. Every K−
6 -minor-free graph can be obtained via proper 0-, 1-, 2-,

and 3-sums starting from planar graphs and graphs of treewidth at most 20215
.

These theorems are explicit versions of the following decomposition result
for general single-crossing-minor-free graphs (including K3,4-minor-free and K−

6 -
minor-free graphs):

Theorem 7. [41] For any fixed single-crossing graph H, there is a constant wH

such that every H-minor-free graph can be obtained via proper 0-, 1-, 2-, and
3-sums starting from planar graphs and graphs of treewidth at most wH .

This result heavily depends on Graph Minor Theory, so the treewidth bound
wH is huge—in fact, no explicit bound is known. Theorems 5 and 6 give rea-
sonable bounds for the two instances of H we consider. Our proof of Theorem 5
uses a 15× 15 grid minor together with the result in [40]. The latter result says
roughly that, if there is a planar subgraph H in a non-planar graph G, then H
has either a non-planar “jump” or “cross” in G such that the resulting graph is
a minor of G. Our approach is to find a K3,4-minor in a 13× 13 grid minor plus
some non-planar jump or cross. Similar techniques allow us to prove almost the
same result for K−

6 -free graphs in Theorem 6.



6 Contraction Version of Wagner’s Conjecture

Motivated in particular by Kuratowski’s Theorem characterizing planar graphs
as graphs excluding K3,3 and K5 as minors, Wagner conjectured and Robertson
and Seymour proved the following three results:

Theorem 8 (Wagner’s Conjecture). [39] For any infinite sequence G0, G1,
G2, . . . of graphs, there is a pair (i, j) such that i < j and Gi is a minor of Gj.

Corollary 3. [39] Any minor-closed graph property4 is characterized by a finite
set of excluded minors.

Corollary 4. [39,38] Every minor-closed graph property can be decided in poly-
nomial time.

The important question we consider is whether these theorems hold when
the notion of “minor” is replaced by “contraction”. The motivation for this
variation is that many graph properties are closed under contractions but not
under minors (i.e., deletions). Examples include the decision problems associated
with dominating set, edge dominating set, connected dominating set, diameter,
etc.

One positive result along these lines is about minor-closed properties:

Theorem 9. Any minor-closed graph property is characterized by a finite set of
excluded contractions.

For example, we obtain the following contraction version of Kuratowski’s
Theorem, using the construction of the previous theorem and observing that all
other induced supergraphs of K3,3 have K5 as a contraction.

Corollary 5. Planar graphs are characterized by a finite set of excluded con-
tractions.

Another positive result is that Wagner’s Conjecture extends to contractions
in the special case of trees. This result follows from the normal Wagner’s Con-
jecture because a tree T1 is a minor of another tree T2 if and only if T1 is a
contraction of T2:

Proposition 2. For any infinite sequence G0, G1, G2, . . . of trees, there is a pair
(i, j) such that i < j and Gi is a contraction of Gj.

Unfortunately, the contraction version of Wagner’s Conjecture does not hold
for general graphs:

Theorem 10. There is an infinite sequence G0, G1, G2, . . . of graphs such that,
for every pair (i, j), i 6= j, Gi is not a contraction of Gj.

4 A property is simply a set of graphs, representing the graphs having the property.



Corollary 6. There is a contraction-closed graph property that cannot be char-
acterized by a finite set of excluded contractions.

The graphs Gi = K2,i+2 that form the counterexample of Theorem 10 and
Corollary 6 are in some sense tight. Each Gi is a planar graph with faces of
degree 4. If all faces are smaller, the contraction version of Wagner’s Conjecture
holds. A planar graph is triangulated if some planar embedding (or equivalently,
every planar embedding) is triangulated, i.e., all faces have degree 3. Recall that
the triangulated planar graphs are the maximal planar graphs, i.e., planar graphs
in which no edges can be added while preserving planarity.

Theorem 11. For any infinite sequence G0, G1, G2, . . . of triangulated planar
graphs, there is a pair (i, j) such that i < j and Gi is a contraction of Gj.

Another sense in which the counterexample graphs Gi = K2,i+2 are tight
is that they are 2-connected and are 2-outerplanar, i.e., removing the (four)
vertices on the outside face leaves an outerplanar graph (with all vertices on
the new outside face). However, the contraction version of Wagner’s Conjecture
holds for 2-connected (1-)outerplanar graphs:

Theorem 12. For any infinite sequence G0, G1, G2, . . . of 2-connected embedded
outerplanar graphs, there is a pair (i, j) such that i < j and Gi is a contraction
of Gj.

Corollary 7. Every contraction-closed graph property of trees, triangulated pla-
nar graphs, and/or 2-connected outerplanar graphs is characterized by a finite
set of excluded contractions.

We can use this result to prove the existence of a polynomial-time algorithm
to decide any fixed contraction-closed property for trees and 2-connected outer-
planar graphs, using a dynamic program that tests for a fixed graph contraction
in a bounded-treewidth graph.

7 Open Problems and Conjectures

One of the main open problems is to close the gap between the best current
upper and lower bounds relating treewidth and grid minors. For map graphs, it
would be interesting to determine whether our analysis is tight, in particular,
whether we can construct an example for which the O(r3) bound is tight. Such
a construction would be very interesting because it would improve the best
previous lower bound of Ω(r2 lg r) for general graphs [43]. We make the following
stronger claim about general graphs:

Conjecture 1. For some constant c > 0, every graph with treewidth at least cr3

has an r × r grid minor. Furthermore, this bound is tight: some graphs have
treewidth Ω(r3) and no r × r grid minor.



This conjecture is consistent with the belief of Robertson, Seymour, and
Thomas [43] that the treewidth of general graphs is polynomial in the size of the
largest grid minor.

We also conjecture that the contraction version of Wagner’s Conjecture holds
for k-outerplanar graphs for any fixed k. If this is true, it is particularly inter-
esting that the property holds for k-outerplanar graphs, which have bounded
treewidth, but does not work in general for bounded-treewidth graphs (as we
have shown in Theorem 10).
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