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Abstract Background sounds, such as narration, music
with prominent staccato passages, and office noise impair
verbal short-term memory even when these sounds are
irrelevant. This irrelevant sound effect (ISE) is evoked
by so-called changing-state sounds that are characterized
by a distinct temporal structure with varying successive
auditory–perceptive tokens. However, because of the
absence of an appropriate psychoacoustically based
instrumental measure, the disturbing impact of a given
speech or nonspeech sound could not be predicted until
now, but necessitated behavioral testing. Our database for
parametric modeling of the ISE included approximately
40 background sounds (e.g., speech, music, tone sequen-
ces, office noise, traffic noise) and corresponding
performance data that was collected from 70 behavioral
measurements of verbal short-term memory. The hearing
sensation fluctuation strength was chosen to model the
ISE and describes the percept of fluctuations when
listening to slowly modulated sounds (fmod < 20 Hz).
On the basis of the fluctuation strength of background
sounds, the algorithm estimated behavioral performance

data in 63 of 70 cases within the interquartile ranges. In
particular, all real-world sounds were modeled adequately,
whereas the algorithm overestimated the (non-)disturbance
impact of synthetic steady-state sounds that were consti-
tuted by a repeated vowel or tone. Implications of the
algorithm’s strengths and prediction errors are discussed.
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Introduction

Certain background sounds disturb verbal short-term
memory. This so-called irrelevant sound effect (ISE) is an
empirically robust phenomenon and occurs even when
backgrounds sounds are irrelevant to the task and are
ignored. A multitude of studies have explored the necessary
sound characteristics for an ISE to be elicited (for a
summary, see Hellbrück & Liebl, 2008). Nonetheless, no
psychoacoustically based instrumental measurement proce-
dure has been made available that can predict the
detrimental impact of a given sound. Rather, the crucial
sound criteria are still described in qualitative–descriptive
terms, and behavioral experiments are indispensable in
determining the disturbance impact of a given sound. As
such, this article presents an algorithm that models the
adverse effects of speech and nonspeech sounds on verbal
short-term memory (i.e., the ISE) based on the hearing
sensation fluctuation strength. Thus, a link between a
psychoacoustical measure and cognitive performance is
provided. To understand the description of the algorithm
and its derivation, it is first necessary to consider the ISE
and characteristic features of performance-reducing back-
ground sounds in detail.

The corresponding author provides a DVD with all background
sounds included in the database upon request.
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Irrelevant sound effect

The standard task for measuring verbal short-term memory
capacity, and thus for ISE exploration, is verbal serial recall. In
the present study, unrelated verbal items (e.g., digits,
consonants, words) were presented successively and had to
be recalled afterwards in the exact presentation order. The
irrelevant background sound is typically played until the entire
recall task is completed. Colle and Welsh (1976) described a
reduction in verbal short-term memory during irrelevant
background speech for the first time. Since this initial
demonstration, numerous behavioral studies have explored
the characteristics of sounds that are necessary and sufficient
to adversely affect cognitive performance. The ISE is defined
as the performance decrement during a given background
sound as compared with performance during silence. For an
ISE to occur, the crucial factor is the inherent auditory–
perceptive properties of the irrelevant sound. Research has
suggested that short-term memory is reduced by irrelevant
speech and nonspeech sounds that are characterized by
changing-state features; that is, distinctive temporal–spectral
variations allow for perceptual segmentation of an irrelevant
sound while, at the same time from an auditory-perceptive
view, successive perceptual tokens also change. Likewise,
narration (e.g., Buchner, Irmen, & Erdfelder, 1996; Colle &
Welsh, 1976; Salamé & Baddeley, 1986, 1987), irrelevant
speech consisting of different consonants (e.g., Jones,
Madden, & Miles, 1992), music with prominent staccato
passages (e.g., Schlittmeier, Hellbrück, & Klatte, 2008a), and
sequences of different tones (e.g., Jones & Macken, 1993)
have been shown to impair verbal short-term memory.
Conversely, irrelevant sounds with no, or marginal,
changing-state features (so-called “steady-state” sounds) do
not affect performance, or do so significantly less than do
changing-state sounds. For example, music that is played
legato reduces performance significantly less than music that
is played staccato (Klatte, Kilcher, & Hellbrück, 1995;
Schlittmeier et al., 2008a); a repeatedly presented tone
impairs performance less than does a sequence of different
tones (e.g., Jones & Macken, 1993), and continuous noise
does not reduce performance relative to a silent control
condition (e.g., Ellermeier & Zimmer, 1997; Jones, Miles, &
Page, 1990).

Explanation of the ISE within short-term memory models

The crucial role of a sound’s changing-state characteristic for
ISE evocation is unquestionable. The changing-state hypoth-
esis proposed by Jones and co-authors has allowed for this
role, which is part of the object-oriented episodic record
(O-OER) model of short-term memory (e.g., Jones, 1993;
Jones, Beaman, & Macken, 1996; Macken, Tremblay,
Alford, & Jones, 1999). In addition, two other models

encompass the differing effects of changing-state and steady-
state sounds—namely, the feature model (Nairne, 1988,
1990; Neath, 1998, 2000) and primacy model (Page &
Norris, 1998, 2003). Please note, the first model to offer a
theoretical explanation of the ISE was the working memory
model by Baddeley (1986, 2000). Because this model does
not explicitly cover the decisive role of a sound’s changing-
state characteristic or the potential disturbance impact of
nonspeech sounds, it will not be considered in the following.

The O-OER model, feature model, and primacy model
differ with respect to cognitive mechanisms, which are
assumed to underlie the higher disturbance impact of
changing-state sounds as compared with steady-state
sounds. Within the O-OER model (Jones, 1993; Jones et
al., 1996; Macken et al., 1999), an irrelevant changing-state
sound results in enhanced interference processes with
memory material as compared with a steady-state sound.
Here, a changing-state sound is encoded as a sequence of
different objects in short-term memory, which are lined up
in order of occurrence. This automatically encoded order
information interferes with the order information that is
stored voluntarily to serially recall the memory items. An
irrelevant steady-state sound constitutes the encoding of a
single object with only self-referential and, thus, barely
concurrent, order information. These assumptions are
applied to irrelevant speech and nonspeech sounds within
the O-OER model, whereas the feature model restricts
interferences as the cause of the ISE to irrelevant speech. In
the present study, irrelevant changing-state speech was said
to degrade memory representations of to-be-remembered
items to a greater extent as compared with steady-state
speech. The feature model further assumes a higher burden
on attention and processing resources for irrelevant
changing-state speech and nonspeech sounds (Neath &
Surprenant, 2001), which is, for irrelevant nonspeech, the
sole cause of the observed disturbance impact. Finally, the
primacy model (Page & Norris, 1998, 2003) unites
assumptions that are similar to those of the O-OER model
and the feature model by assuming that more order
information is encoded for irrelevant changing-state sounds
than for steady-state sounds. This results in enhanced
consumption of cognitive resources, on the one hand, and
more noise among order information encoded for the
sequence of memory items, on the other hand (cf. Norris,
Baddeley, & Page, 2004).

Finally, each of these three short-term memory models
(O-OER model, feature model, and primacy model) refers
to a sound’s changing-state characteristic to explain its
disturbance impact on short-term memory in comparison
with less effective steady-state sounds. However, no model
to date has provided a criterion to estimate, quantitatively, a
given sound’s inherent changing-state characteristic. Thus,
these short-term memory models have low fidelity in terms
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of predicting how much a given sound will disrupt
performance.

Considering changing-state as a dimension

To date, changing-state has been described exclusively in
qualitative-descriptive terms—namely a changing-state sound,
which is a sound that can be perceptually clearly segmented
while successive perceptual tokens vary (see the previous
section). Consequently, steady-state sounds are considered to
lack cues necessary for segmentation (e.g., legato-music,
continuous noise) or to consist of a repeated perceptual token
(e.g., repeated presentation of a vowel, consonant, or tone).
This qualitative description suggests that changing-state and
steady-state sounds belong to two disjointed sound categories.
Rather, the changing-state characteristic of a sound should be
understood in terms of a continuum, with more changing-state
features resulting in greater disturbance. In fact, such a
dimensional view on changing-state sounds is in accordance
with the assumptions of short-term memory models that claim
to explain the ISE. Specifically, these models assume only
quantitative, but no qualitative, differences, between cognitive
mechanisms that are evoked by irrelevant changing-state and
steady-state sounds (cf. above).

Several empirical studies have demonstrated different
levels of this changing-state. In these studies, the back-
ground sound was manipulated in several steps and
corresponding gradual variations of its disturbance impact
on short-term memory were observed. Specifically, a
decrement of the impact of background speech disturbances
has been found by enhancing the extent of low-pass
filtering (Jones, Alford, Macken, Banbury, & Tremblay,
2000), increasing the level of continuous noise used for
superimposition (Ellermeier & Hellbrück, 1998), or by
reducing the pitch separation of successive speech tokens
(Jones, Alford, Bridges, Tremblay, & Macken, 1999).
These manipulations have one thing in common: They
reduce the acoustic mismatch between successive items in
an irrelevant sound sequence from an auditory-perceptive
view and, with this, the prominence of inherent changing-
state features.

Speech as maximum disturbance impact

Considering changing-state as a dimension leads to the
question of what sounds induce minimum and maximum
disturbance impacts on verbal short-term memory. The
answer is informative on psychoacoustical measures that
might correspond to changing-state characteristics of a
given sound and promise to be appropriate for algorith-
mic modeling of the ISE. Empirical data suggests that
the minimum disturbance impact is represented by
continuous noise. To our knowledge, no experiment has

verified any significant difference between performance
during continuous noise and that during silence (e.g.,
Ellermeier & Zimmer, 1997; Jones et al., 1990). On the
contrary, empirical evidence speaks in favor of speech
being the counterpart that induces the maximal distur-
bance impact.

It has been subject to debate whether nonspeech signals
can induce an ISE as high as that induced by background
speech (cf., e.g., LeCompte, Neely, & Wilson, 1997;
Tremblay, Nicholls, Alford, & Jones, 2000; Jones, Alford,
et al., 1999); however, it seems to be unquestioned that
narration has never been surpassed in behavioral measures
of the ISE. This holds true for our ISE experiments and for
all other published studies to date. Since 2001, we have
collected behavioral data for 40 background sounds in 70
behavioral measures. Among these sound conditions were
different speech signals and nonspeech sounds such as
background music, sequences of pure tones, animal sounds,
and so on (cf. Table 1). Figure 1 provides a visualization of
performance data that was collected in these behavioral
experiments with sound conditions sorted in descending
order of disturbance impact (See Table 1 for the assignment
of sound numbers to sound conditions). Further inspection
revealed that background speech elicited the highest level
of disturbance. Specifically, 17 of the 20 behavioral
measures that were found to have the highest disturbance
impact involved irrelevant changing-state speech, including
narration (mother tongue or foreign language) or sequences
of different consonants. The other three signals were
staccato music two times, sounds 8 and 17 in Fig. 1, and
one office noise recording, sound 19. Moreover, changing-
state speech signals were not found among the other 50
behavioral measures in which performance was reduced to
a lesser extent or not reduced at all. Consequently, we
assumed speech to be the sound condition that produced the
greatest disturbance impact known so far.

The hearing sensation fluctuation strength
as a psychoacoustical pendant of changing-state

The sound conditions that induced maximal and minimal
ISE (i.e., no disturbance impact) provided information on
the psychoacoustical measure that is appropriate for
algorithmically modeling the disturbance impact of back-
ground sounds. Specifically, continuous noise does not
impair performance; its distinguishing mark is a lack of
temporal and spectral variations. Conversely, background
speech disturbs short-term memory the most; it is charac-
terized by a clear temporal structure constituted by micro-
and macropauses and prominent spectral variations between
successive auditory–perceptive tokens. The unexcelled
disturbance impact of background speech suggests that
fluctuation strength is a promising measure for modeling
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the ISE. There are at least two reasons for this notion. First,
the hearing sensation fluctuation strength accounts for
amplitude and frequency modulations. Second, the percep-
tion of fluctuation strength reaches its maximum at 4 Hz.
This coincides with a well-known and prominent charac-
teristic of narration: Fluctuations of ~4 Hz in the temporal
envelope of speech are due to a syllable frequency of
typically about 4 Hz (Fastl, 1987).

Fluctuation strength is perceived when listening to
slowly modulated sounds. Up to approximately 20 Hz
modulation frequency, the auditory system is able to follow
variations in amplitude and frequency of a sound, which
results in a fluctuating percept that gives the quantity its
name. At modulation frequencies above 20 Hz, the
perception of fluctuation strength becomes the hearing
sensation roughness. Fluctuation strength reaches a maxi-
mum at modulation frequencies of 4 Hz, with the percept

quickly decaying for higher and lower modulation frequen-
cies. From experiments that employed well-defined tone
and noise stimuli, it is known that the major determinant
factors for fluctuation strength, F, are modulation depth
(ΔL) and modulation frequency (fmod). This leads to the
following simple equation:

F � ΔL

fmod=4Hzð Þ þ 4Hz=fmodð Þ ½vacil�: ð1Þ

The denominator in Eq. 1 assures that F reaches a
maximum at 4 Hz. The numerator takes into account the
modulation depth (ΔL). Note that ΔL does not refer to the
physical modulation depth; rather, it refers to the so-called
“temporal masking depth” (Fastl & Zwicker, 2010). This
temporal masking depth is a measure for perceived
modulation depth. Specifically, it takes temporal masking

Table 1 Specification of sound conditions

Sound Further specifications Sound Nos. in Fig. 1 with fluctuation strength (F) in
[vacil] in parentheses

Speech - Narration - (A) foreign language or (B) mother tongue (A) 1 (1.11), 2 (1.21), 3 (1.25), 16 (0.55), 33 (0.26);
(B) 10 (0.36), 11 (1.02), 12 (1.13), 13 (1.18), 14
(1.27), 15 (0.87), 30 (0.25)

- (A) high or (B) low speech intelligibility (A) 1 (1.11), 2 (1.21), 3 (1.25), 10 (0.36), 11 (1.02),
12 (1.13), 13 (1.18), 14 (1.27), 11 (1.02), 12 (1.13),
13 (1.18), 14 (1.27), 15 (0.87), 16 (0.55); (B) 30
(0.25), 33 (0.26)

- differing levels: (A) 60 dB,
(B) 55 dB, or (C) 35 dB

(A) 2 (1.21), 3 (1.25), 11 (1.02), 12 (1.13), 13 (1.18),
14 (1.27); (B) 1 (1.11), 15 (0.87); (C) 10 (0.36), 16
(0.55),30 (0.25), 33 (0.26)

- Babble noise (eight speakers) 23 (0.38)

- Sequence of different cv-combinations 4 (0.94), 5 (0.95), 6 (0.97), 7 (0.95), 9 (0.95), 18
(0.82), 20 (0.80)

- Repeated cv-combination or vowel 27 (0.79), 36 (0.80), 37 (0.77), 43 (0.80), 47 (0.80),
48 (0.80), 58 (0.80)

Instrumental Music - Staccato music 8 (0.49), 17 (0.68), 22 (0.68), 32 (0.68), 38 (0.68)

- Legato music 41 (0.20), 55 (0.12), 57 (0.12), 63 (0.12), 70 (0.12)

- Violin solo 31 (0.56)

- Strings concert 28 (0.16), 29 (0.21)

Tone Sequences - Changing-state tones: Sequence of different tones 39 (0.53), 40 (0.53), 42 (0.53)

- Steady-state tones: Repetition of one tone 21 (0.32), 62 (0.32), 68 (0.32)

Animal Sounds - Ducks’ quacking 34 (1.77)

- Tawny owl 52 (0.23)

Traffic Noise (A) 100 cars/hour at 60 dB, or 2000 cars/hour
at (B) 50 dB or (C) 60 dB or (D) 70 dB

(A) 46 (0.14); (B) 45 (0.12); (C) 60 (0.10); (D) 56
(0.08)

Office Noise Recordings of real office noise. Either (A)
played-back in isolation or superimposed
with (B) staccato-music, (C) legato-music
or (D) continuous noise

(A) 19 (0.41), 24 (0.41), 53 (0.41), 54 (0.46); (B) 25
(0.45), 26 (0.39), 44 (0.39); (C) 35 (0.28), 50
(0.31), 59 (0.28); (D) 51 (0.08), 67 (0.10), 69
(0.08)

Continuous Noise 49 (0.03), 61 (0.02), 64 (0.02), 65 (0.02), 66 (0.02)

The database for algorithmic modeling of the ISE encompassed about 70 behavioral measures of short-term memory during about 40 different
sounds
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effects, such as post masking into account, which, consid-
ering a perceptual perspective, fills the physical dips in a
modulated stimulus. Note that, Eq. 1 gives only an
estimate. For the final calculation of F, Eq. 1 must be
evaluated separately in the different critical frequency
bands. These different estimates then must be integrated,
considering the boundary condition that a stimulus with
1 kHz and 60 dB (which is fully amplitude modulated at
4 Hz) yields a fluctuation strength of F = 1 vacil (vacil
denotes the entity of fluctuation strength as defined by
Fastl, 1983). In general, F can vary between 0 and
approximately 2 vacil, with the latter value being reached
only by artificial sounds such as an amplitude-modulated
tone. Speech (F = 1 vacil) may be the one real-world sound
with maximum fluctuation strength. See Table 1 for
fluctuation strength values of all sounds in the present
database.

Research question

The question of interest is whether the hearing sensation
fluctuation strength is appropriate to model the ISE induced
by speech and nonspeech sounds. If the disturbance impact
of a given sound on verbal short-term memory can be
linked to this instrumental psychoacoustical measure, then
fluctuation strength might be an appropriate measure for the
inherent changing-state characteristic of a given back-
ground sound. In this case, a criterion for changing-state
would be available.

The algorithm

The database for modeling

For the algorithmic modeling of the ISE, a database
comprising approximately 40 background sounds and
corresponding performance data was used. The experiments
were conducted at the Catholic University of Eichstätt-
Ingolstadt, beginning in 2001. Of note, some data were
collected at the University of Oldenburg in 2001 and 2002.
The manipulated background sounds were speech, music,
continuous noise, animal sounds, tone sequences, office noise,
or traffic noise. Table 1 displays additional information about
the sound conditions included in the database. The behav-
ioral data were mainly published in peer-reviewed journals
(Schlittmeier & Hellbrück, 2009; Schlittmeier et al., 2008a,
2008b; Schlittmeier, Hellbrück, Thaden, & Vorländer, 2008c)
or in full congress contributions (Schlittmeier & Hellbrück,
2004; Schmid & Hellbrück, 2004). Furthermore, only few
data were obtained from unpublished diploma or doctoral
theses (Hauser, 2005; Schlittmeier, 2005), or have not yet
been published.

Participants

The sample sizes for the behavioral experiments ranged
from 18 to 36 participants. Participants were students who
were enrolled at the Catholic University of Eichstätt–
Ingolstadt or the University of Oldenburg. All participants
responded to a notice for participation and reported normal
hearing. A small allowance or credit points were given for
participation.

Procedure

All experiments employed a verbal serial recall task, which
is the standard paradigm for measuring verbal short-term
memory. The digits 1 to 9 were presented successively in a
randomized order. Participants were asked to recall the
exact presentation order after a short retention period of

Fig. 1 Verbal short-term memory was explored during different
background sounds in 70 experimental measurements. Squares
represent the relative error rates found in behavioral experiments and
are complemented by interquartile ranges. Positive values indicate
enhanced error rates during irrelevant sound as compared with
performance during silence. Crosses represent the algorithmically
calculated relative error rates
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10 s. Each trial encompassed an item presentation period,
retention period, and recall period. The ISE was defined as
the impairment of task performance in the presence of
certain irrelevant background sounds as compared with
performance in the control condition. The control condition
was silence except for one experiment, which used
continuous noise as the control. Researchers have demon-
strated no impairment in serial recall using this control
sound (e.g., Ellermeier & Hellbrück, 1998; Schlittmeier et
al., 2008a).

In each experiment included in the database, short-term
memory was examined during three to seven different
sound conditions. Depending on the experiment, there were
15–20 trials in each sound condition. For each participant,
error rates were averaged over all trials in a condition. The
participant’s performance during silence (baseline) was then
subtracted from this value. The resulting value served as a
measure of relative error and indicated the participant’s
performance decrement in the presence of the given
background sound. The median of these individual error
rates was calculated for each background sound condition.1

In the following, the median error rates are presented as
percentages.

During the test condition, the items to be remembered
were presented visually or auditorily. Perfect intelligibility
of auditory items in the presence of background sounds was
confirmed by speech identification tests. In all experiments,
background sounds were presented via loudspeakers or
head phones (diotically) at a moderate level of 35–60 dB
(A). For loudspeaker presentation, the sound pressure level
was measured by a Brüel & Kjær 2231 sound level meter or
a NoiseBook 2.0 (HEAD acoustics GmbH). For headphone
presentations, a Brüel & Kjær 4153 artificial ear was used.

Estimating a given sound’s disturbance impact
from its fluctuation strength

For algorithmic modeling of the ISE, the fluctuation
strengths of background sounds used in the behavioral
experiments included in the database were measured
instrumentally. Therefore, the sound files were limited to
representative samples of 30 s, which corresponded to the
duration of a trial (item presentation, retention interval, and
recall). Each sound file was adjusted to the sound pressure
level used in the corresponding behavioral ISE experiment.

Then, fluctuation strength for each sound file was measured
using the software PAK® (Müller-BBM VibroAkustik
Systeme GmbH). This software calculates fluctuation
strength according to a model proposed by Aures (1985);
a more recent description of this model can be found in
Fastl and Zwicker (2010). The model operates on time-
varying specific loudness patterns. This model accounts for
the fact that, for complex real-world sounds, modulation
depth (ΔL cf. the introduction section and Eq. 1) is often
not available, but corresponding differences in specific
loudness can be used instead. In the present study,
calculating the arithmetic mean of fluctuation strength over
time led to a single value for each background sound.

A background sound, eliciting error-rates with small
interquartile range, was considered an appropriate reference
sound condition for the algorithm. Specifically, music with
prominent staccato passages (sound 22 in Fig. 1), was
chosen for this purpose. The disturbing impact of this
background sound was 7.5%, which means that the median
of error rates in the verbal short-term memory task
increased by 7.5% during staccato music as compared with
the silence condition. Short-term memory performance in
the presence of the reference sound, in addition to
fluctuation strength of the sound (0.68 vacil), was used to
normalize the algorithm. The algorithm then estimated the
disturbing impact of a given sound on verbal short-term
memory (ISE) according to Eq. 2, with F representing the
fluctuation strength (in vacil) of the given sound:

ISE ¼ F

0:68 vacil
� 7:5 %½ �: ð2Þ

This algorithm was developed at Technische Universität
München in a student research paper (first conference
presentation: Weißgerber, Schlittmeier, Kerber, Fastl, &
Hellbrück, 2008).

Results

Equation 2 was used to calculate the ISE for all 70
experimental measurements. Figure 1 illustrates the esti-
mated and observed error rates for each sound condition.

As indicated in Fig. 1, the algorithm predicted the
observed results within the interquartile range in 63 of 70
behavioral measurements. Additionally, the algorithm
yielded valid estimates for all sounds that significantly
disrupted verbal short-term memory (e.g., speech, staccato
music, office noise) as compared with the control condition.
The algorithm also adequately modeled the absence of an
effect of the continuous steady-state sounds on cognitive
performance (e.g., legato music, traffic noise, continuous
noise). Despite these findings, the algorithm marginally
underestimated the detrimental effect of sound 23, which

1 The median is, like the mean, a measure of central tendency. It is the
middle score in a set of scores above and below which lie 50% of the
other scores. Here, for example, the error rates of all participants
during a certain background sound condition are placed in ascending
order of size from the smallest to the largest; the median is the middle
score. The median is an appropriate measure of central tendency in the
present study because the data is not symmetrically distributed in all
behavioral experiments.
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was a speech babble noise that was constituted by the
superimposition of eight speakers. Furthermore, the algo-
rithm overestimated the effect of six synthetic sounds,
which had no significant behavioral effect on short-term
memory. These sounds included synthetic steady-state
sounds and were characterized by a periodically reoccurring
auditory–perceptual event, such as a repeatedly presented
vowel (sounds 36, 47, 48, 58), consonant (sound 37), or
duck’s quacking sounds (sound 34).

Estimated and observed error rates were significantly
correlated yielding a Spearman correlation coefficient of
rs = .74 (p < .01). The corresponding coefficient of
determination (r2 = .55) indicated that the estimated and
observed error rates shared 55% of the overall variance.
These coefficients of correlation and determination were
surprisingly high, considering the fact that fluctuation
strength was the only auditory–perceptive parameter of a
background sound for which the algorithm accounted.
Thus, a large part of the variance in performance can be
explained by a single psychoacoustic measure.

Discussion

The ISE describes the empirically robust finding that back-
ground sounds, with distinct temporal–spectral variations,
significantly reduce verbal short-term memory. Although
researchers have widely explored this phenomenon in behav-
ioral experiments, predicting the effect of a given sound on
cognitive performance, to date, has not been possible. As such,
the present algorithm provides the missing link between an
instrumentally measurable psychoacoustical parameter of an
irrelevant sound and its impact on verbal short-term memory.

Fluctuation strength indicates the ISE caused by irrelevant
speech and nonspeech

Based on the hearing sensation fluctuation strength, the
current algorithm correctly modeled 63 of 70 behavioral
ISE measurements within the interquartile ranges. Specif-
ically, the performance impact of all background sounds in
the database, which are found in real-world settings, were
estimated correctly. These findings apply to performance-
reducing changing-state sounds, which include background
speech, staccato music, and office noise, as well as
nondisturbing continuous steady-state sounds, such as
legato music and traffic noise. Six of the seven sounds that
the current algorithm did not adequately estimate included
synthetic sounds, characterized by a single, periodically
reoccurring auditory–perceptual token (e.g., a consonant or
a vowel). Such steady-state sounds have marginal or no
effect on short-term memory in behavioral experiments (see
the introduction section); however, the algorithm over-

estimated the impact of these sounds. This overestimation
occurred because the algorithm does not “hear” that
successive auditory-perceptual tokens are identical (e.g., A
A A A A A) or different (e.g., A I U O E I) from each other.
Rather, such repeating and nonrepeating sequences differ in
fluctuation strength only marginally. In the future, a
refinement of the present algorithm may be accomplished
so that such artificial steady-state sounds are estimated
correctly. This might be realized by introducing a period-
icity or pattern identifier to correct for the steady-state that
is constituted by the repetition of an auditory–perceptive
token.

Nonetheless, already in its present form, the algorithm
satisfactorily predicted the detrimental impact of back-
ground speech and nonspeech sounds on short-term
memory. With this, the hearing sensation fluctuation
strength outperformed the first ambitious efforts to relate
instrumentally measurable sound characteristics and cogni-
tive performance by Hongisto (2005). The author aimed to
describe the quality of acoustics in open-plan offices via the
speech transmission index (STI), an instrumental measure
of speech intelligibility in rooms (Steeneken & Houtgast,
1980). Though, the STI is an index of speech intelligibility
and cannot account for the effects of irrelevant nonspeech
sounds (e.g., nonspeech office noise, background music,
etc.). Because office employees report background speech
as the most disturbing background sound, this restriction
might not be a crucial point to evaluate office acoustics (cf.
Haka et al., 2009). However, even for background speech,
applying fluctuation strength might be of greater precision
than applying the STI in certain cases. For example, the STI
cannot adequately estimate the intelligibility of extremely
low-pass filtered and low-level speech signals as tested by
Schlittmeier et al. (2008c). In this study, the level of speech
was reduced to 35 dB(A) either in a broadband filter
condition (speech intelligibility remained high) or in a low-
pass filter condition with 60 dB(A) attenuation around
4,000 Hz (low speech intelligibility), and verbal short-term
memory was measured in these background speech con-
ditions. For the intelligibility of such speech signals,
however, various factors, such as decreased modulation
depth and different modulation perceptions near the
listening threshold, play a role that is not covered by the
STI. In contrast, the present algorithm accurately estimated
the succession of sound conditions with respect to induced
error rates. In more detail, the algorithm reproduced that
unaltered speech induced the highest error rates, fol-
lowed by speech that was reduced in level. A combined
reduction of speech level and intelligibility reduced error
rates; however, the algorithm expected still more errors
than during the silent control condition as was observed
in the performance experiment (cf. Schlittmeier et al.,
2008c).
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Does fluctuation strength indicate a sound’s inherent
changing-state characteristic?

The present investigation revealed that a background
sound’s fluctuation strength and disturbance impact are
highly correlated; specifically, with rising fluctuation
strength, disturbance impact increased. Consequently, this
hearing sensation is suggested as an external criterion that
allows predictions on the degree a given background sound
disturbs short-term memory. Nonetheless, the algorithm
might not suffice in providing a psychoacoustical measure
for a sound’s changing-state characteristic.

As was described in the introduction section, earlier
studies have developed the changing-state definition to
include two criteria: (a) segmentability from a temporal–
spectral perspective, and (b) successive auditory–perceptive
tokens being different from each other. Fluctuation strength
appears to account for the first changing-state criterion
because of its increment with rising modulation depth, ΔL,
in the temporal envelope (cf. the introduction section,
Eq. 1). However, the second changing-state criterion cannot
be evaluated by this hearing sensation because the
considered parameters (i.e., modulation depth, ΔL, and
modulation frequency, fmod) do not allow for identifying
whether successive auditory–perceptive tokens are differ-
ent. For the same reason, the algorithm could be expected
to emulate incorrect behavioral data that demonstrates the
role of auditory–perceptive grouping processes in ISE
evocation. Such experiments have shown that the two
changing-state criteria (temporal segmentation, different
tokens) must be fulfilled within one coherent auditory-
perceptual stream to evoke an ISE. Imagine, for example, a
high and a low tone that alternates by a frequency of 2 Hz
(i.e., two tones per second). For small to moderate
frequency differences between the two tones, one sequence
of two alternating tones is perceived (high–low–high–low–
high, etc.). If the frequency deviance between the two tones
exceeds about 10 semitones, the percept of 1 two-token
sequence turns into the percept of 2 one-token sequences
(high–high–high, etc.; low–low–low, etc.; van Noorden,
1975). The latter two steady-state sequences, however,
reduced short-term memory significantly less than the
changing-state sequence constituted by two alternating
tones (Jones, Alford, et al., 1999). According to the hearing
sensation fluctuation strength, the present algorithm does
not account for these differential sound effects due to
primitive auditory streaming by pitch (cf. Bregman, 1990;
further example: streaming by location; Jones, Saint-Aubin,
& Tremblay, 1999).

Even if the algorithm simply represents an index of
segmentability, it succeeds for 90% of the sounds in the
database and, in particular, on all real-world sounds. Thus,
the algorithm might serve in the future as a component of a

more complete model because it models one necessary
sound characteristic (segmentability) for ISE evocation,
even though it must be complemented by modeling of
further characteristics (i.e., successive segments must differ
from each other, auditory–perceptual streaming processes)
to account for all aspects of the phenomenon. In addition,
experimental validation of the potential cause–effect rela-
tionship between fluctuation strength and disturbance
impact is needed. This might be accomplished by system-
atically varying the fluctuation strength of a given back-
ground sound in several steps while measuring the impact
of these sounds on performance. A procedure used by
Ellermeier and Hellbrück (1998) might be appropriate for
this purpose. Specifically, the authors superimposed irrele-
vant speech by continuous noise of different signal-to-noise
ratios (SNR). With decreasing SNR (i.e., noise becomes
louder than the speech signal) memory impairment de-
creased. This result is most probably due to the fact that
continuous noise partially masks (i.e., makes less percep-
tible) soft, yet necessary, cues for the segmentation of
speech (e.g., consonants) and fills up micro- and macro-
pauses in the speech signal. This is accomplished more
efficiently as louder noise is compared to the speech signal
(i.e., the smaller the SNR). With decreasing SNR, however,
fluctuation strength decreases and corresponding perfor-
mance effects can be explored. In a replication of the
aforementioned experiment (Ellermeier & Hellbrück,
1998), which includes an extension to nonspeech sounds
(e.g., music, office noise, or sequences of different tones),
behavioral testing must show whether the disturbance
impact of these signals on verbal short-term memory vary
with their fluctuation strength.

A special role for speech in ISE evocation?

In the present database, background speech induced the
highest disturbance impact on behavioral measures of
verbal short-term memory. Undoubtedly, speech plays a
significant role in human cognition and information
processing. Furthermore, it is not farfetched to assume that
speech plays a special role with respect to its detrimental
impact if heard in the background while performing a
cognitive activity. However, whether speech-like qualities
of an irrelevant sound are relevant with respect to ISE
evocation is still debatable (cf., e.g., Jones et al., 1992;
Jones & Macken, 1993; LeCompte et al., 1997; Salamé &
Baddeley, 1989). Whereas the O-OER model (e.g., Jones &
Macken, 1993) assumes irrelevant speech and nonspeech to
function equivalently, the feature model (e.g., Neath &
Surprenant, 2001) and the primacy model (e.g., Page &
Norris, 1998, 2003) ascribe speech as having a qualitatively
different role than nonspeech signals in ISE evocation (cf.
the Introduction section).
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One might assume that two results of the present study are
informative concerning a special role for speech. Firstly, the
algorithm verified that fluctuation strength is suitable for
modeling the detrimental impact of both speech and non-
speech signals. However, the signals were not matched for
fluctuation strength; rather, the nonspeech signals included in
the database yielded lower fluctuation strengths than did the
changing-state speech signals. Thus, it cannot be inferred
whether irrelevant speech and nonspeech function equivalent-
ly (O-OER model) or qualitatively different (feature model,
primacy model). Secondly, speech was the background sound
with a maximum disturbance impact. This result is consistent
with both the feature model and the primacy model; however,
it could also fit into the O-OER model. This is the case when
speech is the signal with the highest changing-state tested
because the O-OER model attributes a sound’s disturbance
impact exclusively to its inherent changing-state characteristic.

The question arises, why the behavioral effect of irrelevant
speech is unexcelled. In our opinion, this is most likely
because speech signals best fulfill the criteria for sounds to
gain automatic and obligatory access to short-term memory.
At first, heard speech is just a complex time-varying acoustic
signal. The perceived sequences of auditory–perceptive
tokens may convey meaning; however, because of the
sequential nature of speech, higher level interpretations often
necessitate temporary and sequential storage of auditory input
(cf. Davis & Johnsrude, 2007). Thus, it might be reasonable
to assume that humans are not able to prevent heard speech
from gaining access to short-term memory; however, its
semantic content is not a suitable access criterion. Such
criteria might include clear temporal structures and signifi-
cant changes in spectrum as the applicability of the hearing
sensation fluctuation strength for modeling the ISE suggests.

Heard speech, no doubt, is distinguished by more than just
spectral and temporal variations. Obviously, a speech signal’s
semantic content is not accounted for by the instrumental
measure of fluctuation strength. Several ISE studies have found
a contribution of semantics to error rates (Buchner & Erdfelder,
2005; Buchner, Rothermund, Wentura, & Mehl, 2004;
LeCompte et al., 1997; but cf. Jones et al., 1990, and Klatte
et al., 1995, for different results). This finding, however, is
most likely due to attention capture adding to short-term
memory interference (i.e., the ISE; cf. Klatte, Lachmann,
Schlittmeier, & Hellbrück, 2010, for a discussion). Thus, a
semantic effect is not in contradiction to the proposal that the
fluctuation strength of an irrelevant sound is the crucial factor
for ISE evocation. Apart from the question of what the
underlying cognitive mechanisms of this semantic effect are,
semantics, obviously, cannot contribute to the disturbance
impact of many background sounds that have been found to
impair short-term memory due to these sounds’ lacking any
semantic content—that is, sequences of different consonants
(e.g., Jones et al., 1992), foreign language (e.g., Colle &

Welsh, 1976), and nonspeech sounds (e.g. Schlittmeier et al.,
2008a). Conversely, fluctuation strength is an overarching
sound parameter that can be instrumentally calculated for all
potential background sounds and does not apply to only a
subgroup of sounds. And it does account for a large part of
observed performance variance during real-world background
sounds, whether speech or nonspeech. The important
strengths of the proposed algorithm lie, in particular, in these
aspects.
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