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Abstract

Energy consumption is a major concern for designers of embedded devices. Es-
pecially for battery operated systems (like many embedded systems), the energy
consumption limits the time for which a device can be active, and the amount of
processing that can take place. In this thesis we study how the energy consumption
can be reduced for certain classes of real-time applications.

To minimise the energy consumption, we introduce several algorithms that com-
bine power management techniques with scheduling (algorithmic power manage-
ment). ¿e power management techniques that we focus on are speed scaling and
sleepmodes. When the processor (or some peripheral) is active, its speed, and with
it the supply voltage, can be decreased to reduce the power consumption (speed
scaling), while when the processor is idle it can be put in a low power mode (sleep
modes). ¿e resulting problem is to determine a schedule, speeds for the processors
(which may vary over time) and/or times when a device is put to sleep.

We discuss energy minimisation for three classes of real-time systems, namely (1)
real-time systems with agreeable deadlines, (2) real-time systems with precedence
constraints, and (3) frame-based real-time systems. In the subsequent paragraphs
we elaborate on these classes of real-time systems.

(1) For real-time systems with agreeable deadlines it holds that an earlier arrival
time implies an earlier deadline (and vice versa). Many telecommunication and
multimedia applications can be modelled as tasks with agreeable deadlines. In
Chapter 4 we present uniprocessor speed scaling techniques for such applications,
where we use the fact that a lower speed results in a decreased power consumption.
For energy e�ciency, it is well-known that—due to the convexity of the power
function—it is also important not to change the speed unnecessarily. All our al-
gorithms use this fact to minimise the energy consumption. Furthermore, our
algorithms take static power into account. We do not only avoid speed changes in
the o�ine situation, where the workload of tasks is known before they are executed,
but also in the online situation, where the workload is not known before execution
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and only predictions and an upper bound of the workload is available. Compared
to existing methods our algorithms can reduce the energy consumption by up to
54% for the consideredmultimedia workloads, and our evaluation shows that these
algorithms are near optimal even with inaccurate predictions.

(2) ¿e second class of real-time systems we focus on are tasks with precedence
constraints that must be scheduled on amulticore system and for which the speeds
have to be determined. To specify the optimal speeds for an application with a
given schedule, the amount of parallelism must be taken into account. In case the
system uses a relatively high speed at times when the parallelism is low, additional
time is available to decrease the speed at times when the parallelism is high. ¿en
more energy is used by only a few cores when the parallelism is low, while energy
is saved by many cores when the parallelism is high. ¿is may lead to a decreased
total energy consumption.

In the literature a theoretical study of energy-e�cient scheduling of tasks with
precedence constraints onmulticore systems is missing. In Chapter 5 we present an
in-depth study of energy-aware scheduling for real-time systems with precedence
constraints that are executed on a global speed scaling system (where all cores use
the same speed simultaneously), with the aim tominimise the energy consumption
under deadline constraints. ¿e focus of this chapter is on the restricted problem
where all tasks have a common arrival time and a common deadline (which is al-
ready NP-hard). To minimise the energy consumption, both scheduling and speed
selection must be considered simultaneously. We derive a scheduling criterion that
implicitly assigns speeds and minimises the energy consumption. In this context
no new multicore scheduling algorithms are introduced because there are already
many good existing algorithms. Instead, we present general techniques to relate
the makespan (schedule length) criterion to the aforementioned scheduling crite-
rion. A major insight is that a scheduling algorithm that minimises the makespan
is energy optimal for two cores, while a counter example shows that this does not
generally hold for more than two cores.

Furthermore, we present expressions for the optimal speeds of a given schedule
and show that an energy reduction of up to 30% can be achieved with respect to
state-of-the-art methods. We use these results in Chapter 6 to derive a technique
to calculate the optimal speeds for the more general case, wherein each task has
an individual arrival time and an individual deadline. ¿is technique uses a sub-
stitution of variables to transform the global speed scaling multicore problem to
the uniprocessor problem with agreeable deadlines. ¿e previously developed al-
gorithms for the uniprocessor problem with agreeable deadlines can then be used
to solve the o�ine problem and to solve a restricted version of the online problem.

(3) In the third setting (Chapter 7), we study the optimal combination of speed
scaling, sleep modes and scheduling for frame-based real-time systems. While
the literature considers only trivial schedules for this problem, we study energy
optimal schedules for such systems. Our scheduling algorithms create optimal idle
periods in which devices can be put to sleep to minimise the energy consumption.
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Furthermore, we prove that for frame-based real-time systems, scheduling �rst and
then determining the speed scaling and sleep mode settings is optimal, and give
algorithms that �nd these settings. Applying these algorithms can lead to energy
savings of up to 50% compared to techniques from the literature.





Samenvatting

Het energieverbruik van een embedded systeem is erg belangrijk voor ontwerpers
van dergelijke systemen. Hoelang en hoezeer een systeem dat op batterijen werkt
(zoals vele embedded systemen) actief kan zijn, wordt met name beperkt door het
energieverbruik. In dit proefschri bestuderen we hoe we het energieverbruik voor
bepaalde klassen realtime-systemen kunnen reduceren.

Om het energieverbruik te minimaliseren introduceren we een aantal algoritmen
die energiebeheertechnieken combineren met het maken van een planning (algo-
rithmic power management). De energiebeheertechnieken waar we ons op richten
zijn snelheidsschaling en slaapmodi. Wanneer de processor (of een ander randap-
paraat) actief is, kunnen snelheid en voedingsspanning worden verlaagd om het
vermogensverbruik terug te brengen (snelheidsschaling of speed scaling), terwijl
een inactieve processor naar een slaapmodus geschakeld kan worden (slaapmodi of
sleep modes). Dit leidt tot een probleemwaarin zowel een planning, snelheden voor
processoren (variërend over tijd) en/of tijden wanneer apparaten slapen moeten
worden bepaald.

We bespreken energieminimalisatie van drie klassen van realtime-systemen, na-
melijk (1) realtime-systemen met agreeable deadlines, (2) realtime-systemen met
volgorde-eisen en (3) frame-based realtime-systemen. In de onderstaande paragra-
fen gaan we in op deze klassen van realtime-systemen.

(1) Voor realtime-systemen met agreeable deadlines impliceert een eerdere aan-
komsttijd een eerdere deadline (en vice versa). Veel telecommunicatie- enmultime-
diatoepassingen kunnen gemodelleerd worden als taken met agreeable deadlines.
In hoofdstuk 4 presenteren we een aantal snelheidsschalingstechnieken voor der-
gelijke applicaties die op een enkele processor draaien, waarbij we gebruik maken
van het feit dat een lagere snelheid resulteert in een lager vermogensverbruik. Het
is welbekend dat voor energie-e�ciëntie, vanwege convexiteit van de vermogens-
functie, het ook belangrijk is om onnodige snelheidsveranderingen te vermijden.
Al onze algoritmen gebruiken dit feit om energieverbruik te minimaliseren. Tevens
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houden onze algoritmen rekening met statisch vermogensverbruik. We vermijden
niet alleen onnodige veranderingen van de snelheid in de o�ine situatie waarbij
de werklast van taken bekend is voordat ze worden uitgevoerd, maar ook in de
online situatie, waarin de werklast voor de uitvoering van een taak onbekend is
en alleen voorspellingen en een bovengrens van de werklast beschikbaar zijn. In
vergelijking met andere methoden en algoritmen zijn onze algoritmen in staat om
het energieverbruik met 54% terug te brengen voor de beschouwde multimedia-
werklast. De evaluatie laat zien dat onze algoritmen nagenoeg optimaal zijn, zelfs
met onnauwkeurige voorspellingen.

(2) De tweede klasse van realtime-systemen waar we ons op richten, zijn taken met
volgorde-eisen die ingeplandmoeten worden op eenmulticore-systeem enwaarvoor
de snelhedenmoeten worden bepaald. Omde optimale snelheden voor een applica-
tie met een gegeven planning te bepalen, moet de hoeveelheid parallellisme worden
beschouwd. Wanneer het systeem op een relatief hoge snelheid loopt wanneer er
weinig parallelle taken worden uitgevoerd, gee dit extra tijd om de snelheid te
verlagen wanneer er relatief veel parallelle taken worden uitgevoerd. In dat geval
wordt er meer energie gebruikt door een paar cores gedurende de perioden waarin
het parallellisme laag is, terwijl energie bespaard wordt door veel cores gedurende
perioden waarin het parallellisme hoog is. Dit kan het totale energieverbruik terug-
brengen.

Een theoretisch onderzoek naar het energie-e�ciënt inplannen van taken met
volgorde-eisen op multicore-systemen ontbreekt in de literatuur. In hoofdstuk 5
onderzoeken we het energiebewust plannen van realtime-systemen met volgorde-
eisen die uitgevoerd worden op een processor waarvan alle cores gelijktijdig de-
zelfde snelheid gebruiken, met als doel om het energieverbruik gegeven deadlines
te minimaliseren. Het hoofdstuk richt zich op het ingeperkte probleem waarbij alle
taken een gezamenlijke aankomsttijd en een gezamenlijke deadline hebben (dit pro-
bleem is al NP-moeilijk). Om het energieverbruik te minimaliseren moeten zowel
het planningsprobleem, als de snelheidskeuze, gelijktijdig beschouwd worden. We
leiden een planningscriterium af dat impliciet optimale snelheden veronderstelt
en energieverbruik minimaliseert. In deze context introduceren we geen nieuwe
planningsalgoritmen, omdat er al vele goede algoritmen bestaan. In plaats daarvan
presenteren we algemene technieken om het zogenaamde makespan-criterium aan
het eerder genoemde planningscriterium te koppelen. Een belangrijk inzicht is dat
een planningsalgoritme dat de makespan minimaliseert ook energie-optimaal is
voor twéé cores, terwijl een tegenvoorbeeld aantoont dat dit niet in het algemeen
geldt voor meer dan twee cores.

Verder geven we een karakterisatie van de optimale snelheden voor een gegeven
planning en tonen we aan dat een energiereductie van 30% ten opzichte van de sta-
tus quo mogelijk is. Deze resultaten gebruiken we in hoofdstuk 6 voor het a�eiden
van een techniek voor het bepalen van de optimale snelheden in het generieke ge-
val, waarin elke taak een individuele aankomsttijd en deadline hee . Deze techniek
maakt gebruik van een substitutie van variabelen omhet globale snelheidsschalings-
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probleem te vertalen naar het enkeleprocessorprobleem met agreeable deadlines.
Het eerder genoemde algoritme voor dit probleemmet agreeable deadlines kan toe-
gepast worden om zowel het o�ine probleem als het ingeperkte online probleem
op te lossen.

(3) In de derde situatie, beschreven in hoofdstuk 7, bestuderen we de optimale com-
binatie van snelheidsschaling, slaapmodi en planning van frame-based realtime-
systemen. Terwijl de literatuur slechts triviale planningen voor dit probleem be-
schouwt, bestuderen wij energie-optimale planningen voor dergelijke systemen.
Onze planningsalgoritmen creëren optimale perioden van inactiviteit waarin appa-
raten in slaapmodus gezet kunnen worden om het energieverbruik laag te houden.
Verder bewijzen we dat het voor frame-based realtime-systemen optimaal is om
eerst een planning te bepalen en vervolgens de instellingen voor snelheidsschaling
en slaapmodi. We geven algoritmen die deze instellingen vinden. Het toepassen
van deze algoritmen kan een energiebesparing tot 50% opleveren in vergelijking
met technieken uit de literatuur.
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Chapter 1

Introduction

Reducing the energy consumption of computing devices is of major importance, in
particular for computers in data centers and embedded systems. In 2006, 7.3% of
the total Dutch energy consumption was due to Information and Communications
Technology (ICT) equipment and ICT related services [28], and this total energy
consumption is still increasing. For embedded systems, energy imposes major
design restrictions. ¿e energy that is available for battery operated embedded
systems is limited and for many devices, like smartphones, it does not increase at
the same pace as their energy consumption. Smartphone users are faced with this
development, and as a result many users charge their smartphone daily [77].

To deal with these problems caused by the increasing energy consumption, we
propose techniques to lower the energy consumption of computing deviceswithout
reducing the quality of service. ¿is quality of service depends on whether so ware
tasksmeet their (strict) deadlines. So ware is capable of changing hardware settings
like the speed of a device, or putting the device in a low power sleep mode. With
these settings, so ware can provide a trade-o� between time and energy. Since
computing devices are o en highly overdimensioned, and the deadlines are met by
a wide margin, large energy reductions are possible by adapting the speed of the
devices and using sleep modes. ¿is is the topic of this thesis:

Methods for energy minimisation of computing devices under real-time constraints.

Since it is impossible to cover all possible applications, we restrict ourselves to a
subset of applications (Section 1.1). We apply power management techniques to
minimise the energy consumption that is due to the execution of these applications.
For this thesis, the two most relevant power management techniques are speed
scaling, implemented as Dynamic Voltage and Frequency Scaling (DVFS) see Sec-
tion 1.2, and sleep modes, implemented as Dynamic Power Management (DPM)
see Section 1.3. ¿e problem statement of this thesis is discussed in Section 1.4 and
the contributions are listed in Section 1.5.

1



2

C
h
a
p
t
e
r
1
ś
In
t
r
o
d
u
c
t
io
n

1.1 Real-time streaming applications

A large number of the applications for embedded systems have very speci�c stream-
ing characteristics. Many of these applications are Digital Signal Processing (DSP)
applications, for example, audio and video decoding/encoding, communication,
RADAR and GPS. ¿ese applications have in common that a stream of data enters
the system, is processed, and the result appears as a stream of output data.

A streaming application typically consists of tasks, which are relatively small por-
tions of computation that together produce the desired result. Many streaming
applications can be modelled using a Directed Acyclic Graph (DAG). In this graph,
tasks represent vertices (nodes) in the graph, while the precedence (or ordering)
constraints of the tasks are described using edges. ¿e data is streamed through
this graph: vertices with incoming edges receive data and vertices with outgoing
edges produce the results.

Many streaming applications are real-time applications, which means that the tasks
have deadlines. ¿ere are many types of real-time applications, for example, hard
real-time, �rm real-time and so real-time applications. Missing a deadline in a
hard real-time system leads to a (possibly catastrophic) system failure, in a �rm
real-time application a late result is useless but not catastrophic, while in a so 
real-time system a late result is less useful.

A good example of a �rm real-time streaming application is a video decoder. In
the context of a video decoding application, a task can be the processing of a frame
and the deadlines can be the display times of the video frames. When a deadline
is missed in a video application, this may result in dropped frames, since some
frames are not decoded before the intended display time. Hence, the result (the de-
coded frame) is useless, making the application �rm real-time. Similarly, a missed
deadline in an audio application may result in distortion.

1.2 Speed scaling

¿e speed (operations per second) of many devices can be decreased to lower the
power consumption. ¿is technique is called speed scaling. Usually speed scaling
results in a decreased energy consumption, despite the fact that the power is con-
sumed for a longer time¹. A popular speed scaling technique that is used inmodern
microprocessors is DVFS. DVFS is used to decrease the clock frequency (and with
it, the voltage), leading to a reduced speed and power consumption. Speed scaling
is also used in other devices, such as �ash storage, hard drives, and network cards
[55, 74].
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Figure 1.1 ś ¿ree alternative speed scaling settings.

1.2.1 globally optimal speed scaling

Many existing speed scaling approaches are of a greedy nature, and determine
the lowest speed for each individual task in an attempt to minimise the energy
consumption for that task. Take for example the application consisting of two tasks
(T1 , T2) that is depicted in Figure 1.1a. As both tasks �nish well before their deadline
(at respectively d1 , d2) at the nominal speed (s

NOM), speed scaling can be deployed
to reduce the energy consumption. ¿is �gure gives the time (horizontal axis),
speed (vertical axis) and the amount of work of a task (time×speed, i.e. the area
of the task in the �gure). Figure 1.1b shows the greedy approach to speed scaling,
whereby the lowest allowed speed for task T1 is chosen such that the deadline d1 is
just met, and similarly for task T2. However, from this �gure, the impact of greedy
speed scaling on the energy consumption is not immediately clear. For this, we
need to know the power consumption at each speed. For illustration purposes, we
use a cubic relation between the speed and the power consumption (energy per
unit time), as is depicted in Figure 1.1d. For an application that consists of two
tasks, this �gure also shows the average power consumption pAVG (the dot on the
dashed line) at the average speed (sAVG) of the application. ¿e cubic power curve
is signi�cantly below the average power, and therefore executing both tasks at the

1Energy is power multiplied by time.
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average speed reduces the power consumption signi�cantly. As a consequence, the
energy consumption is also signi�cantly reduced. ¿is new speed assignment is
feasible because both deadlines are still met (Figure 1.1c). Since the energy savings
can be tremendous, this result is emphasised by the following proposition.

Proposition 1.1 (Average speed). ¿e energy consumption of a single processor with
a convex power function never decreases when the average speed is used.

In Chapter 2, we show that this proposition generally holds.

1.2.2 speed scaling and multiprocessor scheduling

In multicore situations, especially when precedence constraints are involved, opti-
mal speed scaling becomes a nontrivial problem. Instead of using a single (average)
speed for all tasks, it is worthwhile to increase the speed during the time period a sin-
gle processor is active, and decrease it during the periods wheremultiple processors
are in use. In this situation, slightly more energy is consumed when a single core
is active, while the energy consumption decreases when multiple cores are active.
¿is can lead to a reduction of the total energy consumption (see Section 2.6.6).

However, not only the selection of speeds is relevant when minimising the energy
consumption: also the schedule has a great in�uence. To illustrate this, consider
a simple application with three processors where four tasks arrive at time 0, have
a common deadline at time d and are executed without interruptions. In this
case, only the assignment of tasks to processors is relevant, while the order in
which tasks are executed does not in�uence the energy consumption. When speed
scaling is applied to the schedule from Figure 1.2a, each processor receives the
lowest speed that ensures that their tasks meet their common deadline. ¿is is
depicted by Figure 1.2b. Note, that the �rst and second processor use a relatively
high speed, while the third processor uses a relatively low speed. In this situation
it is impossible to use an average speed (over all processors), but it is possible to
balance the workload, and then use speeds closer to the average speed. ¿is is done
in the schedule that is shown in Figure 1.3a, with the corresponding speed scaling as
shown in Figure 1.3b. ¿is new schedule and speed assignment requires less energy
than our �rst attempt, because the speed deviation from the average is smaller.

In general, �rst scheduling to minimise the execution time, and then assigning the
speeds is suboptimal (and vice versa). ¿is leads to the following proposition, that
is thoroughly discussed in Chapter 5.

Proposition 1.2. Generally, for optimal results, scheduling and speed scaling should
be considered simultaneously.

In many cases the optimal combination of scheduling and speed scaling is NP-hard.
¿is follows from the fact thatmultiprocessor scheduling, which is alreadyNP-hard,
is a special case of the general combined speed scaling and scheduling problem of
tasks with a common deadline.
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Figure 1.3 ś Alternative schedule with speed scaling.

1.3 Sleep modes

Besides speed scaling, many devices support switching to a low power sleep mode
to reduce the energy consumption. Whereas speed scaling reduces the energy
consumption when the device is active, switching to a sleep mode reduces the
energy consumption when the device is idle. A device may have multiple sleep
modes, where higher energy savings and higher transition latencies² are associated

2Transition latency: time required to transition to a sleep mode and back.
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Table 1.1 ś Task characteristics.

Task Amount of work Arrival time Deadline

T1 3 0 29

T2 4 0 29

T3 7 0 29

T4 2 0 29

T5 2 10 12

with deeper sleep modes. Both speed scaling and sleep modes can be combined
to attain a further energy reduction. Typically, it is harder to minimise the energy
consumption using sleep modes than with speed scaling.

When a device is idle, itmay be put to sleep if the energy reduction of the idle period
outweighs the energy costs for the transition to the sleepmode and back. ¿e length
of the time interval for which switching to a sleep mode becomes sensible is called
the break-even time. In general, not only the break-even time, but also the schedule
in�uences the e�ectiveness of power management with sleep modes.

¿e following example illustrates the complexity of the scheduling trade-o�s. Con-
sider �ve tasks with the characteristics given in Table 1.1. We require that tasks
may not be interrupted a er they have started their execution, i.e. preemptions are
not allowed. ¿e tasks are to be scheduled on a single processor, and we assume
that the processor is active before time 0 and a er time 29. ¿e processor has a
power consumption of 1 when idle, 0 when asleep (i.e. in this example we assume a
sleeping processor consumes no power) and has a break-even time of 10 time units.
¿e active power during the execution of the tasks is ignored, since it cannot be
in�uenced in the context of this example.

Because task T5 must be scheduled at time 10, each other task is either executed
before or a er task T5. An example of a schedule is given by Figure 1.4a. Both the
idle periods in this schedule are shorter than the break-even time, therefore sleep
modes cannot be used to reduce the energy consumption for this schedule.

¿e unique optimal schedule (modulo task ordering) is shown in Figure 1.4b. ¿e
di�culty of obtaining this optimal schedule is that the set of tasks without task T5

has to be partitioned in sets with a total execution time of respectively 10 and 6,
because only this partition creates an idle period longer than the break-even time.
In general, the problem is NP-hard, as the subset sum problem can be reduced to
it. ¿e above example informally illustrates the basic idea of the reduction.

¿e example shows that, as with speed scaling, scheduling plays a fundamental role
when sleep modes are used, as is stated by the following proposition.

Proposition 1.3. Generally, for optimal results, scheduling and sleep modes should
be considered simultaneously.
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Figure 1.4 ś Schedules for speed scaling.

1.4 Problem statement

¿e problem studied in this thesis is energy minimisation under time constraints,
whereby algorithms are used to determine the optimal power management settings.
¿is approach of using optimal algorithms or approximation algorithms to deter-
mine a schedule together with power management settings is commonly referred
to as algorithmic power management, which explains the title of this thesis.

Since the schedule in�uences to which extend power management techniques can
be e�ectively used, energy e�cient scheduling is researched in this thesis. Accord-
ing to the survey by Chen and Kuo [25] “. . . energy-e�cient scheduling for jobs with
precedence constraints with theoretical analysis is still missed in multiprocessor sys-
tems”. ¿ere are several variants of speed scaling for multiprocessor systems, where
processors (i) receive the same speed (global speed scaling), (ii) receive an individ-
ual speed (local speed scaling) and (iii) are clustered in groups (“islands”) that each
receive a common speed. Global speed scaling (in the form of global DVFS) is com-
monly used by modern microprocessors and systems such as the Intel Itanium, the
PandaBoard (dual-core ARM Cortex A9), IBM Power7 and the NVIDIA Tegra 2
[50, 51, 66]. Implementing the global DVFS hardware in a processor is less complex
and less expensive than implementing local DVFS [24, 66], which explains why
global DVFS occurs more o en in practice. ¿is research focuses on global speed
scaling, because it is o en used in practise and is not yet widely researched in the
algorithm oriented literature.

¿e following research questions are studied in this thesis:

» What are the optimal speeds for global speed scaling?

» What characterises the energy minimising schedule?

» How well do existing scheduling algorithms minimise the energy consump-
tion?

Interestingly, even for speed scaling with a single device, not all important problems
are solved in the literature. For example, no algorithm takes static power into
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account properly, and no practical algorithm comes close to minimising the energy
consumption in the online situation where the exact amount of work is unknown
before a task is executed and only a prediction of this amount of work is available.
As it is worthwhile to �rst solve the uniprocessor case before dealing with the
multiprocessor problem, in this thesis, the following research questions for single
devices are studied:

» What are the optimal speeds when static power is present?

» How to choose the optimal speeds online when only (possibly inaccurate)
predictions of the amounts of work for tasks are available?

» How can speed scaling be combined with sleep modes?

In most cases, we restrict ourselves to tasks with agreeable deadlines³ and frame-
based real-time systems.

1.5 Claims and contributions

¿e research that is described in this thesis is mostly theory oriented, and based on
commonly accepted models. It explores globally optimal power management, and
presents e�cient algorithms together with proofs of optimality. As an introduction
to this theoretical �eld, we give an overview of themodels and related theory (Chap-
ter 2), and present—besides an overview of directly related research—an extensive
survey of existing o�ine energy minimisation algorithms (Chapter 3).

Many papers (somehow) predict the amount of work of a task, and use this pre-
diction to set the speed of the task greedily, such that it minimises the energy
consumption for this task. We show that this approach consumes much more en-
ergy than what can be theoretically obtained when considering all tasks globally.
With the o�ine solution—which knows all future workload—in mind, we derive
an algorithm called RA-SS that uses the predictions to obtain the speeds that guar-
antee deadlines are met while the energy is minimised (Chapter 4). We evaluate
a variant of this algorithm (with constant time complexity) that does not require
any predictions of the amount of work of tasks, but only requires a prediction of
the average amount of work. Furthermore, it keeps the number of speed changes
to a minimum, while keeping the speeds as low as possible.

We evaluate this algorithm with an MPEG2 workload. ¿e greedy approach with
perfect predictions (i.e. the predicted amount of work is the actual amount of work)
is used as a baseline, and we show that the optimal solution requires up to 55% less
energy. Our, easy to implement, constant time algorithm saves only one percentage
point less energy than the optimal solution.

We extend some of these results to multiple processor cores with global speed
scaling, where tasks have precedence constraints. First, we study a simpli�ed (yet

3Tasks have agreeable deadlines when the tasks can be ordered such that the arrival times and
deadlines of these tasks have an increasing order.
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still NP-hard) problem where all tasks share a common arrival time and a common
deadline (Chapter 5). ¿is problem involves both scheduling and speed scaling,
which have to be considered simultaneously to obtain the optimal solution. We
prove that for two cores any schedule of minimal length is energy optimal, and
show that this does no longer hold for more than two cores. Instead, we give a
scheduling criterion that does minimise the energy consumption, and implicitly
takes the optimal speeds into account. In addition, we show how to calculate the
optimal speed for any schedule, and give an approximation ratio4 for a class of
scheduling algorithms with respect to the energy consumption.

Second, for the global speed scaling case, in which all tasks have individual arrival
times and deadlines, we present a transformation to the aforementioned single core
problem (Chapter 6). ¿is problem can be solved in quadratic time when no static
power is present, and in cubic time when static power is present.

Instead of choosing between speed scaling and sleep modes, both techniques can
be combined to reduce the energy consumption even further. We show how to use
a combination of these techniques to minimise the energy consumption for unipro-
cessor frame-based real-time systems in either constant or linear time, depending
on workload characteristics (Chapter 7).

In general, the research in this thesis aims to unify the theory onpowermanagement
for problems that arise with modern computer architectures. A part of the theoreti-
cal work the from literature does not consider important practical restrictions. On
the other hand, application oriented research projects rarely use the existing theory.
Summarising, the general contributions of this thesis are algorithms and concepts
that are straightforward to implement and use in practice.

1.6 Structure of this thesis

¿e theory from Chapter 2 is required to understand Chapters 3–7. It is advised
to read Chapter 3 to get an understanding of existing algorithms. When time is
limited, the following reading guidelines can be used (see also Figure 1.5).

For Chapter 2, we assume that the reader has a basic understanding of approxima-
tion algorithms, convex optimisation, and scheduling. An introduction to these
subjects can be found in Appendix A. Chapters 3, 4, 5 and 7 can be read inde-
pendently a er reading Chapter 2. Since Chapter 6 combines the theory from
chapters 4 and 5, these chapters must be understood before reading Chapter 6. Fi-
nally, in Chapter 8, conclusions are given, and some suggestions for future work
are provided.

4¿e costs of an algorithm with the approximation ratio ρ are at most ρ times the optimal costs
(see Appendix A).



10

C
h
a
p
t
e
r
1
ś
In
t
r
o
d
u
c
t
io
n

Chapter 2

Appendix A

Chapter 3

Chapter 4

Chapter 5

Chapter 7

Chapter 6

Chapter 1

Figure 1.5 ś Chapter reading dependencies.



Chapter 2

Background

Abstract ś ¿is chapter provides the necessary background on algorithmic

power management that is required to understand the topics presented in

this thesis. Herein, modelling and notation of tasks and energy are discussed

in the context of speed scaling and sleep modes. For these models, many

theoretical results from the literature are discussed.

2.1 Introduction

¿is chapter describes o en used power management models and results. Tasks
and the notation used for properties of tasks are introduced in Section 2.2. In Sec-
tion 2.3 speed scaling is introduced, where the focus is on models for speed scaling
for microprocessors. Sleep modes are discussed in Section 2.4, where real-world
devices and their characteristics are given as examples. Finally, in Section 2.5 a no-
tation to describe general algorithmic power management problems is presented.

¿ere are a lot of algorithmic power management results that are not limited to a
single power management problem. Section 2.6 covers many di�erent algorithmic
power management results. ¿is theoretical section is required for understanding
Chapters 3–7. Because of the mathematical content of this chapter (especially Sec-
tion 2.6), a basic understanding of convex optimisation and scheduling is essential.
Appendix A provides an introduction to these subjects.

2.2 Tasks

In this thesis, we assume that an application is subdivided into small chunks of
work, called tasks. ¿e mathematical notation for task properties is introduced in
Section 2.2.1. Some particular types of aperiodic real-time systems are of special
importance, and are introduced in Section 2.2.2.

11
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Figure 2.1 ś Overview of notation.
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Figure 2.2 ś Example of a timeline with agreeable tasks.

2.2.1 notation

In this thesis we consider applications that consist of N tasks that we denote by
T1 , . . . , TN . ¿ese tasks have to be scheduled on M processors, where in many
casesM≙1. Each task has an execution time en , an arrival time an and a deadline dn .
¿ese times de�ne the active interval of a task, which is the time interval ∥an , dn∥
during which task Tn must be executed. ¿e tasks have to be completely scheduled
within this interval, meaning that a begin time bn and completion time cn have to
be speci�ed such that an ≤ bn ≤ cn ≤ dn . ¿e time between the begin time of
the �rst task that begins until the completion time of the last task that is �nished
is called themakespan. If the tasks have to be executed without interruptions, we
furthermore have cn ≙ bn + en . To ease the notation for boundary situations, we
de�ne a0 ∶≙ 0 and aN+1 ∶≙ dN . For a relation between the above concepts and
notation, see Figure 2.1.

In some cases, tasks have precedence constraints, denoted by Tn ≺ Tm , meaning that
task Tm can only start a er task Tn is �nished.

2.2.2 types of aperiodic real-time systems

In addition to precedence constraints, the arrival times and deadlines of tasks may
have further restrictions. ¿e most general real-time system has arbitrary arrival
times and deadlines. We refer to tasks in such real-time systems as general tasks.
Problems of this general form are relatively hard to solve, while this generality is not
always required or even desired. Because of that, real-time systems with additional
restrictions on arrival times and deadlines are studied. One of the most extreme
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examples is a real-time system that has a common arrival time and a common
deadline for all tasks, i.e. an≙a and dn≙d for all n and for some constants a and d.

When for a real-time system holds that an ≤ am if and only if dn ≤ dm (i.e. tasks
with earlier arrival times have earlier deadlines and vice versa), this real-time system
is said to have agreeable deadlines. For real-time systems with agreeable deadlines,
we assume (without loss of generality) that the tasks are ordered such that an ≤
an+1 and dn ≤ dn+1. For an example of arrival times and deadlines of a real-time
application with agreeable deadlines, see Figure 2.2.

A real-time system is called a laminar instance whenever for each set of tasks, the
active interval (∥an , dn∥ for task Tn) of any two tasks do not overlap, or one is
completely contained within the other. Formally, when for every two tasks Ti and
Tj it either holds that ∥a i , d i∥ ⊆ ∥a j , d j∥, ∥a j , d j∥ ⊆ ∥a i , d i∥ or ∥a i , d i∥∩∥a j , d j∥ ≙ ∅
[11]. In a graphical representation of this property, the active interval of task Ti

is drawn on top of the active interval of task Tj when ∥a i , d i∥ ⊂ ∥a j , d j∥, which
creates layers of tasks and explains the term “laminar instances” (for an example, see
Figure 2.3). According to Li et al. [60] these structures occur in recursive programs.
Since the tasks can be arranged in a tree structure that expresses this recursive
structure, laminar instances are also referred to as tree-structured tasks [60].

2.3 Speed scaling

In Section 2.3.1, speed scaling is introduced, with a focus on speed scaling of mi-
croprocessors. ¿e notation we use for speed scaling is introduced in Section 2.3.2.

2.3.1 processor models

An important objective of the majority of papers considered in the survey in the
next chapter is energy minimisation of microprocessors. Hence, in the following
we concentrate on speed scaling of microprocessors.

Microprocessors have a clock frequency, which represents the speed of the proces-
sor. For many systems the speed of the computer memory (and other peripherals)
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does not scale with the clock frequency of the processor because it is a separate
device that does not necessarily use the same clock frequency. In other words, the
speed of the overall system (and of tasks) does not scale linearly with the clock
frequency [32]. However, all algorithms that we survey assume that the speed does
scale linearly with the clock frequency, and hence we will also assume this through-
out this thesis. ¿is assumption leads to an underestimation of the speed when
the clock frequency is decreased with respect to some reference clock frequency,
which means that in practice tasks �nish earlier than was predicted using the mod-
els. Note, that for a multicore processor with only local memories (e.g., scratchpad
memory) the speed does scale linearly with the processor clock frequency.

As a consequence of the above mentioned assumption, clock frequency and speed
are synonyms, and therefore we use s to denote both the speed and clock frequency.
In this thesis, we mostly use the terms speed and speed scaling, instead of clock
frequency and DVFS, in line with the majority of papers on algorithmic power
management. We come back to the practical implications of the assumption that
speed scales linearly with the clock frequency in Chapter 4.

For multicore processors, there are twomain �avours of speed scaling, namely local
speed scaling and global speed scaling. While local speed scaling changes the speed
per individual core, global speed scaling makes these changes for the entire chip.
For this reason, the optimal solutions to the local and global speed scaling problems
are not interchangeable. Global speed scaling is in practice the most common of
these techniques, since it is cheaper to implement [24, 66]. Examples of modern
processors and systems that use global speed scaling are the Intel Itanium, the
PandaBoard (dual-core ARM Cortex A9), IBM Power7 and the NVIDIA Tegra 2
[50, 51, 66, 92].

Nowadays, most modern microprocessors are built using Complementary Metal
Oxide Semiconductor (CMOS) transistors. When the clock frequency of a CMOS
processor is decreased, the voltage may be decreased as well. Dynamic Voltage and
Frequency Scaling (DVFS) [84] is a power management technique that allows the
clock frequency and voltage to be changed at run-time. Both the clock frequency
and the voltage in�uence the power consumption of a processor. Hereby, the energy
consumption is obtained by integrating power over time.

In general, there are two major types of power consumption, namely dynamic
power and static power. Dynamic power is consumed due to activities of the proces-
sor, i.e., due to transitions of logic gates. A CMOS transistor charges and discharges
(parasitic) capacitances when it switches between logical zero and logical one. ¿e
dynamic power is given by ACV 2

dds, where Vdd is the supply voltage, s is the clock
frequency (i.e., speed), C is the capacitance and A is the activity factor (average
number of transitions per second) [48]. For a given clock frequency, the mini-
mal voltage is bounded and many papers (implicitly) simplify this relation using
Vdd ≙ βs for some constant β > 0 (e.g., [43, 90]). ¿is gives the dynamic power
model

pdyn(s) ≙ γ1sα , (2.1)
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where α is a system dependent constant (usually, α ≈ 3) and γ1 ≙ ACβ
α−1 contains

both the average activity factor and switched capacitance. Most papers assume that
γ1 is constant for the entire application. Some papers use a separate constant γ1(n)
for each task (referred to as nonuniform loads [54] or nonuniform power), because
the activity may deviate for di�erent types of tasks. ¿is makes the power function
in practice (to some extent) nonuniform, but throughout this thesis we assume γ1
is constant. ¿is is done to keep the notation simple, and when the power function
is nonuniform we assume that the theory that we present in Section 2.6.7 is applied.

Static power is the power that is consumed independently of the activity of the
transistors, which is independent of the clock frequency. However, there are two
di�erent de�nitions of static power that are used in the literature. ¿e�rst de�nition
of static power, popular in algorithmic papers (e.g., [26]), takes static power as a
constant function (i.e., independent of the clock frequency), and is given by

pstatic(s) ≙ γ2 ,
where γ2 is a systemdependent constant. ¿e second de�nition—o en used in com-
puter architecture papers—uses the voltage to express the static power. Although it
is physically modelled using an exponential equation, the following linear approxi-
mation with system dependent constants γ2 and γ3 is popular [68]:

pstatic(Vdd) ≙ γ2 + γ3

β
Vdd ,

and the relation between the voltage and the clock frequency (Vdd ≙ βs) gives

pstatic(s) ≙ γ2 + γ3s.
Note, that this relation makes the static power—that is directly independent of the
clock frequency—indirectly dependent on the clock frequency. For this reason
static power depends, in our context, on the clock frequency. ¿e resulting static
energy for w work is γ2

w
s
+ γ3w, when it is assumed that static power is consumed

until all work is completed (see the discussion in Section 2.6.3). ¿is shows that
the constant γ3 does not in�uence the choice of the optimal clock frequency in the
case of energy minimisation, which is the focus of this thesis. ¿us, we can assume
without loss of generality that γ3 ≙ 0 and use pstatic(s) ≙ γ2 to model the static
power. Since both models lead to the same optimal solution, it is for optimisation
not relevant which of the two static power models is used.

For microprocessors, the power function does not fully describe all energy that is
used, since changing the clock frequency also has an energy and time overhead.
¿e recent article by Park et al. [68] shows that the time and energy overheads of
DVFS are in the same order of magnitude as the overhead of context switching. For
example, the transition delay overhead is at most 62.68µs on an Intel Core2 Duo
E6850 [68]. Furthermore, most algorithms avoid changing the clock frequency
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o en because of the convexity of the power function (see Section 2.6.1), hence the
number of speed changes is relatively low. Because of these two reasons, we may
assume that the energy overhead of changing the clock frequency is negligible in
case of DVFS. We make this assumption throughout this thesis.

In practice, it is important to consider whether DVFS can be used to decrease the
energy consumption or not. Increasing the speed, such that all tasks �nish earlier
and the processor can be turned o�, is not always possible. For example, in the
common situation where there are arrival times, increasing the speed may only
result in relatively small idle periods during which the processor cannot be put to
sleep. In such situations, it is empirically shown that DPM cannot be applied and
DVFS still works well [80].

2.3.2 speed scaling notation

Generally, we de�ne the total power consumption (both static and dynamic) as a
power function p ∶ R+0 → R

+

0 , that maps the speed to power, i.e. for a speed s the
power consumption is given by p(s). ¿e static power is consumed from time tB ,
the time the device is powered on, until time tC , the time the device is powered o�.
Both tB and tC are problem dependent, and typically tC ≙maxn{dn} or maxn{cn}
(i.e. the processor is powered down a er the last task is �nished, or a er the last
deadline).

For task Tn we denote by wn the amount of work (e.g., in number of clock cycles).
To ease the notation, we generally use the term work instead of amount of work.
We denote the speed at which the task is executed by sn , leading to an execution
time of en ≙

wn

sn
. In some cases, the speed is changed during the execution of a task.

¿en we slightly abuse notation, and use the speed function s ∶ R+0 → R
+

0 that gives
the speed as a function of the time.

¿e speed can be chosen from a set S , which is either a continuous set (S ≙ R+0 ) or
a �nite discrete set with K speeds (S ≙ {s̄1 , . . . , s̄K}, where we assume without loss
of generality that s̄1 < ⋅ ⋅ ⋅ < s̄K). When a speed must be chosen from a continuous
(discrete) set, we call this speed a continuous (discrete) speed, and refer to a problem
with such restriction as a continuous (discrete) speed scaling problem.

2.4 Sleep modes

Many devices allow transitions to a low power mode, which is referred to as sleep
mode. A device that transitions to a sleepmode is usually (partially) powered down.
When, for example, a processor is transitioned to a sleep mode, its state is stored.
¿is state is recovered when the processor is awakened, which costs energy.

A device can have multiple sleep modes. ¿e deeper the sleep mode, the more time
and energy it costs to wake up. Many devices have in common that a cost in both
latency and energy is associated with switching to a sleep mode and waking up.
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Table 2.1 ś Power consumption and break-even time for some devices in given sleepmodes.

Device Power Latency
Break-even

time

Sensor node [78]
1040/400/270/

200/10mW

5/15/

20/50ms

8/20/

25/50ms

Harddisk (Hitachi DK23AA-60) [63] 0.77/0.0W 10.61 s 24.41 s

Network card (Linksys NP 100) [63] 0.76/0.0mW 2.75 s 3.61 s

Harddisk (IBM Ultrastar 36Z15) [94] 10.2/2.5W 12.4 s 15.2 s

Beowolf cluster node [42] 1/0.766/0.1/0.1¹ 3/7/70 s 6/10/100 s

Laptop LCD [56] 21.1/17.1W 7.6 s 15.6 s

WLAN card [83] 0.9/0W 0.3 s 0.7 s

Ethernet card (WaveLAN) [62] 1.43/0.05W 0.34 s 0.39 s

O en for the wakeup, a state has to be restored, or some physical action is required,
such as spinning up a harddisk.

¿e power required by a devicem in sleep mode ℓ is denoted by Pm ,ℓ . Furthermore,
the total time required to transition a device m from the active mode to the sleep
mode ℓ, and back to the active mode is denoted by Tm ,ℓ . ¿is time is called the
(transition) latency.

Transitioning to a sleep mode and back consumes energy. To balance between
the energy savings and the energy costs of transitioning to/from sleep modes, the
break-even time is o en used in the literature. ¿is is the minimal time for which it
is worthwhile to transition to a sleep mode (i.e. the energy consumption decreases).
It is commonly assumed (e.g., [12]) that the transition latency is lower than the
break-even time. It was shown empirically that algorithms that use this assumption
still work well when the latency is taken into account [46]. Table 2.1 shows some
example devices for which this assumption holds.

If an idle interval of length I occurs, we should use the sleep mode ℓ of a device
m with Bm ,ℓ ≤ I (hereby Bm ,ℓ denotes the break-even time of sleep mode ℓ of
devicem) that has the lowest energy consumption of all sleep modes. ¿e idle-time
energy consumption in the best sleep mode together with the transition energy for
this mode can be expressed as a function of the length of the idle period, denoted
by Esl, and is referred to as the idle-time energy function. Figure 2.4 shows the
energy consumption of the sensor node from Table 2.1 as a function of the length
of the idle period. ¿e function Esl is in general an increasing concave piecewise-
linear function. Clearly, an idle period of zero length consumes no energy, hence
Esl(0) ≙ 0.
When there aremultiple devices involved, the total energy consumption is obtained
by summing over all devices. Since the sum of increasing concave piecewise-linear
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Figure 2.4 ś Concave idle-time energy function (Esl) for a sensor node [78].

functions is again an increasing concave piecewise-linear function, we de�ne Esl

such that it includes the energy consumption of all devices.

¿e modelling of sleep modes is extensively discussed in Chapter 7.

2.5 Problem notation

¿is section introduces a compact notation (based on Grahams three �eld nota-
tion for scheduling problems [35]) to describe a wide variety of algorithmic power
management problems. ¿e notation is similar to what is used in the algorithmic
power management literature (e.g., [16]), but avoids several ambiguities by making
explicit what kind of power management techniques are used. We use this notation
extensively to describe the power management problems in the following chapters.

We specify a general power management problem by three �elds a∣b∣c, where a de-
notes the system properties, b describes the tasks and their constraints, and c is the
objective for optimisation. ¿e �elds with their possible entries and their meaning
are given in Table 2.2. For convenience, this table is repeated in Appendix B. A
brief discussion of this notation follows below.

» a: ¿e system �eld a describes the architecture of the system. ¿is includes
the number of processors, whether speed scaling (ss) and/or sleepmodes (sl)
are used, and properties of the system with respect to speed scaling and/or
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Table 2.2 ś Notation for algorithmic power management problems.

Field Entry Meaning

a

1 Single processor

PM M parallel processors

ss Speed scaling is supported

nonunif A nonuniform power function is used (ss implied)

disc Discrete speed scaling is used (ss implied)

global Global speed scaling is used (ss implied)

sl Sleep modes supported

b

an Arrival time

an=a Same arrival time a for all tasks

dn Deadline constraint

dn=d Same deadline constraint d for all tasks

wn=w All tasks have workload w

agree Agreeable deadlines (an ≤ am ⇔ dn ≤ dm)

lami
Laminar instances

(∥a i , d i∥ ⊂ ∥a j , d j∥ ∨ ∥a j , d j∥ ⊂ ∥a i , d i∥ ∨ ∥a i , d i∥ ∩ ∥a j , d j∥ = ∅)
prec Tasks have precedence constraints

pmtn Preemptions are allowed

prio Tasks have a �xed priority

migr Task migration is allowed

sched A schedule is given

c E Minimise the energy consumption

sleep modes (see Table 2.2). ¿e entries nonunif, disc and global all imply
speed scaling (ss) to keep the notation concise.

» b: ¿e second �eld, b, contains the task characteristics like arrival time,
deadline, restrictions on the ordering of timing constraints of tasks (agree,
prec, lami), and scheduling properties (migr, pmtn, prio, sched). When an
occurs in this �eld, it means that tasks have arrival times, otherwise an≙0
(for all n) is implied.

We study energy minimisation under deadline constraints. For this reason,
dn always occurs in b and implies that deadlines must be met.

» c: ¿e third �eld, c, contains the scheduling objective. In the context of this
thesis, third �eld c only contains “E” to denote that the energy should be
minimised.

2.6 Theoretical results

Over the years, many theoretical results on algorithmic power management have
been obtained. Some of these results form the basis of many algorithms, and some
other results relate problems to each other such that the solution to one problem
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can be used to �nd a solution to another problem. ¿is section introduces the
fundamental theoretical results and concepts in the area of algorithmic power man-
agement. One of the most important results is that it is optimal to use a constant
speed between begin and completion time of tasks due to the convexity of the
power function (Section 2.6.1). Although this result only holds for convex power
functions, using the techniques presented in Section 2.6.2, all power functions can
be “made” convex. Even when a constant speed is used, one has to be careful that
this speed is not too low because then static power may dominate (Section 2.6.3).

When only a �nite number of speeds is available, many speed scaling problems
(with a given schedule) can be formulated as a linear program (Section 2.6.4). In
the single processor case, it is furthermore straightforward to derive the solution to
this discrete problem from the solution to the continuous problem (Section 2.6.5).

In the optimal solution of several multiprocessor problems, the power consump-
tion remains constant over time. ¿is fact is referred to as the power equality (Sec-
tion 2.6.6). In Section 2.6.7, the situation where every task has a di�erent power
function is discussed. A simple transformation is presented that transforms this
problem to the problem where all tasks have the same power function.

2.6.1 constant speed

Whenever a single processor executes a single task using varying speeds, the energy
consumption can be decreased by running it at the average speed. ¿is even holds
when the task is executed with interruptions (i.e. on times given by any �nite
set T ). ¿is result holds for all convex power functions, where this property does
not form a restriction as is discussed in Section 2.6.2. We formalise this result,
which is a direct consequence of Jensen’s inequality [47], in the following theorem
(see Appendix A).

¿eorem 2.1. Given a task with w work which is executed at the times given by
the set T (i.e. w ≙ ∫T s(τ)dτ) and is executed on a processor with a convex power
function. ¿en the following inequality holds:

p(w
e
) e ≤ ∫

T

p(s(τ))dτ.
Proof. ¿e in�nite version of Jensen’s inequality states:

p( 1

∫T 1dτ
∫
T

s(τ)dτ) ≤ 1

∫T 1dτ
∫
T

p(s(τ))dτ.
Multiplying this equation by ∫T 1dτ directly leads to the result of the lemma.

¿eorem 2.1 shows that for continuous speed scaling, there always exists a constant
speed that is optimal for a single task. Many papers (e.g., [43, 60, 90]) use the idea
behind¿eorem 2.1, and show that minimising unnecessary speed �uctuations on
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a single processor is optimal also for situations with more than one task, i.e. N > 1.
However, when there are arrival times, deadlines, etc., the optimal constant speed
may change on these speci�c times, meaning that the optimal speed function is
piecewise constant.

2.6.2 nonconvex power function

¿e previous section (and with it, a large part of the literature) assumes that the
power function is convex, but for technical reasons this is not always the case.
However, it is possible to circumvent this by not using the speedswhere the function
is not convex, since we can show that these speeds are not e�cient. ¿is process
is �rst explained for discrete speed scaling. When the assumption that p is convex
does not hold, an additional step is required to “make” the power function convex,
based on the following observation.

Assume three given speeds s̄ i < s̄ j < s̄k (let s̄ j ≙ λs̄ i + (1 − λ)s̄k for some λ ∈ (0, 1))
and w work, where

p(s̄ j)w ≤ p(s̄ i)λw + p(s̄k)(1 − λ)w , (2.2)

does not hold. ¿en executing the work at speed s̄ j would cost more energy than
executing a part of the work at s̄ i and the remaining work at s̄k . In this case we call
s̄ j an ine�cient speed.

Based on the above, we may assume that all speeds in S are e�cient speeds, thus
(2.2) holds for all speeds (i.e. ine�cient speeds are “discarded”) [41]. ¿is implies
that we can always assume without loss of generality that the power function is
convex.

Bansal et al. [18] state that a similar procedure can be followed for continuous
speed scaling. Note, that the static and dynamic power models from Section 2.3.1
are already convex.

2.6.3 critical speed

Only using the fact that the power function is convex may not be enough to �nd
the optimal solution to some speed scaling problem. ¿is has to do with the static
power, which is the power consumed independent of the speed.

In practice, processors consume static power (γ2 > 0), i.e. the power consumption
at the speed 0 is nonnegative (p(0) > 0). Unfortunately, most papers do not clearly
de�ne for which time period they take the static power into account. For example,
Yao et al. [90] only assume that the power function is convex and do not mention
static power. However, their result only holds when the static power cannot be
in�uenced, i.e. when it is accounted for until the deadline of the last task and not
only to the completion time of the last task. In this case, static power cannot be
in�uenced, hence the situation where p(0) ≙ 0 gives the same solution as the case
where p(0) > 0. ¿is scenario is mentioned by Irani et al. [47].
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Figure 2.5 ś Speed scaling functions.

For the other scenario, where the static power is active until the last task has �n-
ished, not only the power function should be studied, but also the energy-per-work
function:

p̄(s) ≙ p(s)
s

.

¿is function gives the energy consumption of a unit work (instead of a unit time),
has a global minimiser scrit (called the critical speed [49]), and is increasing on
s ≥ scrit [47]. Since scrit is a global minimiser, all speeds below scrit require more
energy per unit work, while it takes longer to execute. Hence, if the schedule length
can be decreased by increasing speeds to scrit, the energy consumption is reduced.

Example 2.1. For the power function given in Figure 2.5a, the respective energy-per-
work function is given by Figure 2.5b. In Figure 2.5a, the static power is indicated
using γ2. ¿is shows that more energy is required per unit work for speeds below scrit.

2.6.4 discrete speed scaling as a linear program

Besides static power, many processors have the restriction that only a small set of
speeds is allowed (discrete speed scaling). Many discrete speed scaling problems
with a given schedule can be formulated as a linear program, as we show below.

When discrete speed scaling is considered withK discrete speeds, the decision to be
made is to determine the amount of work of task Tn that is executed at speed s̄k . If
we denote this amount bywn ,k (i.e. ∑

K
k=1 wn ,k ≙ wn), the total energy consumption

of all tasks together is given by

N

∑
n=1

K

∑
k=1

p(s̄k)wn ,k ,
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which is a linear function of the decision variables wn ,k . ¿ese variables, together
with the begin time of tasks, form the decision variables of the linear program.

Constraints like arrival time, deadline and precedence constraints can all be formu-
lated as linear constraints. ¿erefore, many discrete speed scaling problems (with
or without a given schedule) can be formulated as a linear program [54, 75] and,
thus, be solved in polynomial time.

2.6.5 relation between continuous and discrete speed scaling

Writing discrete speed scaling problems as a linear program and solving it with lin-
ear programming so ware provides few insights. Instead, a tailored algorithm for
�nding the optimal speeds is desirable. Such algorithms are described in many
papers (e.g., [43, 72, 90]) for continuous speed scaling, while in practice most pro-
cessors support only discrete speed scaling. When a single task is considered, the
optimal speed s resulting from the continuous case can be used to determine the
optimal speeds for the discrete case. When the speed s is not one of the available
discrete speeds, using the neighbouring speeds s̄ i ≤ s ≤ s̄ i+1 leads to an optimal
solution. More precisely, the �rst part of the work is executed at speed s̄ i+1 and the
remaining work is executed at speed s̄ i . Hereby, the fractions are calculated such
that the overall time remains the same. We refer to this as simulating continuous
speed scaling.

Simulating is optimal within the execution interval of a single task. For multiple
tasks we require a convex power function in the case of continuous speed scaling.
In case of discrete speed scaling, we use multiple speeds for a task, hence we must
somehow relate these multiple speeds to a convex power function. We do this by
taking the average speed of a task, and derive a function that gives the average
power for each of these speeds (called average power function). Hsu and Feng
[41], Kwon and Kim [54] have proven that this average power function is a convex
piecewise linear function. Hence, any continuous speed scaling algorithm that
assumes convexity can be used to �nd the optimal average speeds, a er which the
discrete assignment can be determined using simulation.

2.6.6 power equality

¿e previous sections mainly focussed on the single processor case. In the multi-
processor case with precedence constraints, new issues arise that are best illustrated
with an example.

Example 2.2. Consider the three tasks from Figure 2.6 each withw work, which are to
be executed on a local speed scaling multiprocessor system. Task T1 has to be �nished
before tasks T2 and T3 can be executed, and the application as a whole has a global
arrival time 0 and a global deadline d. An example of a naive speed assignment is
s1 ≙ s2 ≙ s3 ≙

2w
d
. Note that¿eorem 2.1 cannot be used to argue that this assignment

is optimal. In fact, this assignment is not optimal, since it can be improved by slightly
increasing s1 such that task T1 consumes slightly more energy, while two tasks T2 and
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T1

T2

T3

Figure 2.6 ś Task graph.

T3 can decrease their energy consumption. ¿e speed of task T1 should not be too high,
because then its energy consumption is no longer (over)compensated by tasks T1 and
T2.

¿is example illustrates that the optimal speeds depend on the amount of paral-
lelism of the scheduled tasks. Pruhs et al. [72] introduce the power equality for
tasks with a common arrival time and deadline: in the optimal solution, the power
consumption remains constant. ¿us, the power is constant, and the speeds can
be calculated using this power and the number of parallel executed tasks. ¿is
generalises ¿eorem 2.1. For this concrete situation of Figure 2.6, this means that
p(s1) ≙ p(s2) + p(s3).
Example 2.3. Consider again the task graph from Figure 2.6 with the power function
p(s) ≙ s3, and assume that all the tasks have 10 work (i.e. w1 ≙ w2 ≙ w3 ≙ 10),
and the global deadline is 40. A naive speed assignment uses the constant speed
s1 ≙ s2 ≙ s3 ≙

1
2
.

As in an optimal solution, tasks T2 and T3 complete simultaneously, we get s2 ≙ s3.
Due to the power equality, for the optimal solution it holds that

p(s1) ≙ p(s2) + p(s3) ≙ 2p(s2).
Using p(s) ≙ s3 and some elementary algebra gives s1 ≙

3
√
2s2. Furthermore, the

energy consumption is minimised when w1

s1
+

w2

s2
≙ 40.¿us s1 ≙

1+
3
√
2

4
.

2.6.7 nonuniform power

Most papers assume that uniform power is used (see Section 2.3.1), while in practice
the parameter γ1 of the power function is not constant (i.e. nonuniform) for all
tasks [54], and a task speci�c factor γ1(n) for the dynamic power should be used
for each task Tn . ¿e resulting power function can also be related to the previous
section on the power equality; where γ1 o en contains the number of active cores
(see Chapter 6).
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¿e dynamic energy consumption for N tasks with nonuniform power functions
is given by (see (2.1) and Section 2.3.1):

E ≙
N

∑
n=1

γ1(n)sαn wn

sn
. (2.3)

Fortunately there is an elegant transformation due to Kwon and Kim [54] that
can reduce this expression to one with a constant power parameter γ1. Using the

substitution of variables ẘn ≙
α

√
γ1(n)wn and s̊n ≙

α

√
γ1(n)sn , (2.3) becomes

E ≙
N

∑
n=1

s̊αn
ẘn

s̊n
, (2.4)

the execution time of task Tn becomes
ẘn

s̊n
, and γ1 ≙ 1 for all tasks.

¿e newly obtained problem has uniform power, can be solved using classic algo-
rithms, and the resulting solution can be transformed back to a solution to the
problem with nonuniform power.

2.6.8 flow problems

Several power management problems can be reduced to a (convex) �ow problem.
However, as these formulations as a �ow problem depend on the concrete algorith-
mic power management problem, we do not discuss this technique in more detail.
We refer the interested readers to three papers [6, 10, 15] where such techniques
are used to solve the problem PM ; ss ∣ an ; dn ; pmtn;migr ∣E; in Section 3.3.1 a brief
discussion on these papers is given.

2.7 Conclusions

Using the models presented in this chapter, an application that consists of tasks and
powermanagement decisions can bemodelled. ¿e considered powermanagement
techniques are speed scaling and sleep modes. Speed scaling is available as DVFS
on multiprocessors, while sleep modes are available as DPM. Both techniques can
be used individually and in isolation, and in all cases the schedulemay in�uence the
energy savings. Many theoretical results from the algorithmic power management
literature were discussed, and will be used in the following chapters.





Chapter 3

RelatedWork

Abstract ś ¿is chapter discusses previous research that is related to the

subjects of this thesis. First, algorithmic power management research on

energy minimisation respecting real-time constraints is discussed (both the

uniprocessor and multiprocessor cases). Second, the work related to chap-

ters 4–7 is discussed. ¿is literature overview shows that online speed scal-

ing for uniprocessor systems is not fully explored, global speed scaling for

tasks with precedence constraints is missing and desired, and the optimal

combination of speed scaling and sleep modes for frame-based real-time

systems is not given in the literature.

3.1 Introduction

¿is chapter provides an overview of power management research. We start with a
survey of algorithmic power management papers on o�ine energy minimisation
under deadline constraints, closely related to the core topic of this thesis. ¿e �rst
part of the survey discusses uniprocessor algorithms (Section 3.2) and the second
part discusses multicore algorithms (Section 3.3).

¿e remaining part of this chapter contains sections on speci�c subtopics which are
in the focus of this thesis, namely online energy minimisation (Section 3.4), global
speed scaling (Section 3.5), and energy minimisation of frame-based real-time
systems (Section 3.6).

3.2 Uniprocessor problems

¿is section surveys algorithms for uniprocessor powermanagement problems (see
Table 3.1), and relates these (when applicable) to the results that were presented in
Section 2.6.

27
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Table 3.1 ś Uniprocessor power management problems.

Section Problem Papers

Arbitrary

ordering of tasks

(Section 3.2.1)

1; ss ∣ an ; dn ; pmtn ∣ E [17, 61, 90]

1; disc ∣ an ; dn ; pmtn ∣ E [41, 41, 61]

1; ss ∣ an ; dn ; pmtn; prio ∣ E [73]

1; ss ∣ an ; dn ∣ E [11, 16]

1; ss; nonunif ∣ an ; dn ; pmtn ∣ E [54]

1; ss; nonunif ; disc ∣ an ; dn ∣ E [54]

1; sl ∣ an ; dn ; pmtn ∣ E [19]

1; ss; sl ∣ an ; dn ; pmtn ∣ E [4, 47]

Agreeable

deadlines

(Section 3.2.2)

1; ss ∣ an ; dn ; agree ∣ E [43, 86]

1; sl ∣ an ; dn ; agree ∣ E [9]

1; sl; ss ∣ an ; dn ; agree ∣ E [14]

Laminar

instances

(Section 3.2.3)

1; ss ∣ an ; dn ; pmtn; lami ∣ E [60]

1; ss ∣ an ; dn = d; pmtn ∣ E [60]

1; ss ∣ an = a; dn ; pmtn ∣ E [60]

Recall that for each task Tn we have a workload wn , an arrival time an , and a
deadline dn before which the task has to �nish. In the case of speed scaling, a speed
sn is to be determined, leading to an execution time en . We use bn and cn to denote
the begin and completion time of task Tn respectively.

¿e problems in this section are grouped depending on restrictions on the ordering
of the timing constraints of tasks. For all problems discussed in this section, the
problem consists of �nding a schedule together with speeds and/or sleep decisions.

First, the problems without any restrictions on the timing constraints are discussed
in Section 3.2.1. Several variations of this problem have a high polynomial time
complexity, or are NP-hard. Second, in Section 3.2.2, simpler problems with agree-
able deadlines are discussed. For many variants of these problems, algorithms with
a quadratic time complexity are known. ¿ird, laminar instances are discussed in
Section 3.2.3.

3.2.1 general tasks

First we start with general tasks, tasks have arbitrary arrival times and deadlines,
and preemptions are allowed (1; ss ∣ an ; dn ; pmtn ∣E). According to Albers et al. [6],
this is themost extensively studied speed scaling problem in the algorithm oriented
literature. Yao et al. [90] present the well-known YDS algorithm (named a er the
authors) to solve this problem. ¿is algorithm is o en used as a subroutine by other
algorithms, and in complexity proofs.

¿e considered problem involves both scheduling and speed scaling. When the
optimal speeds are given, and a feasible schedule exists, scheduling the tasks in
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Table 3.2 ś Tasks for Example 3.1.

Task Arrival time Deadline Workload

T1 0 30 30

T2 5 10 10

T3 15 55 10

T4 25 35 10

order of their deadline using the Earliest Deadline First (EDF) algorithm always
leads to such a feasible schedule [90]. YDS uses this to solve the scheduling part
of the problem, subsequently only speeds remain to be calculated. For this, the
YDS algorithm avoids unnecessary speed changes (see Section 2.6.1), and has the
property that the speeds in the optimal solution cannot be lowered to decrease the
energy consumption without violating deadlines.

¿e YDS algorithm works with time intervals of the form I i , j ≙ ∥a i , d j∥, where
a i < d j . ¿e density of such an interval is de�ned as

g(I i , j) ≙ ∑n wn

d j − a i
,

where the sum is taken over the workload of all tasks Tn with ∥an , dn∥ ⊆ I i , j . ¿e
density determines the minimal average speed that has to be used to execute these
tasks completely within this interval. ¿e YDS algorithm takes a so-called critical
interval—an interval I i , j with the highest density—and assigns to all tasks that
have to be executed completely within this interval this density as speed. ¿e
algorithm removes these tasks from the task set and for the remaining tasks which
have deadlines in the interval, the deadlines are adopted in such a way that they
coincide with the beginning of the critical interval, and for tasks which have arrival
time within the interval, the arrival times are adopted to coincide with the end of
the interval (i.e. are set to dn). By construction, YDS avoids unnecessary speed
�uctuations.

Example 3.1 (YDS algorithm). Consider the tasks from Table 3.2 of which the arrival
times and deadlines are depicted in Figure 3.1a. ¿e YDS algorithm �rst determines
the critical interval, which is I2,2 in the �rst iteration of the algorithm (see Table 3.3).
Since the density of this interval is g(I2,2) ≙ 2, task T2 is assigned the speed s2 ≙ 2.
Next, the interval I2,2 is removed, and the arrival times and deadlines of the other
tasks are adapted accordingly (see Figure 3.1b).

In the second iteration, Interval I1,4 yields the critical density g(I1,4) ≙ 4
3
(see Ta-

ble 3.3), which is assigned as speed to task T1 and T4 (i.e. s1 ≙ s4 ≙
4
3
). A er removing

these tasks, only task T3 remains in the last iteration (see Figure 3.1c), which is as-
signed the speed s3 ≙

1
2
. An EDF schedule with the aforementioned speeds ensures

that the deadlines are met and the energy consumption is minimised.
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Table 3.3 ś Interval densities for Example 3.1.

Interval
Iteration 1 Iteration 2 Iteration 3

g(I i , j) g(I i , j) g(I i , j)

I1,1
40

30
≈ 1.333 30

25
= 1.2

I1,2
10

10
= 1

I1,3
50

55
≈ 0.909 50

50
= 1

I1,4
50

35
≈ 1.429 40

30
≈ 1.333

I2,1
10

25
= 0.4

I2,2
10

5
= 2

I2,3
30

50
= 0.6

I2,4
20

30
≈ 0.667

I3,1 0 0

I3,2 0

I3,3
20

40
= 0.5 20

40
= 0.5 10

20
= 0.5

I3,4
10

20
= 0.5 10

20
= 0.5

I4,1 0 0

I4,2 0

I4,3
10

30
≈ 0.333 10

30
≈ 0.333

I4,4
10

10
= 1 10

10
= 1

In a schedule created by this YDS algorithm, the processor as scheduled by YDS is
active from the arrival of the �rst task to the deadline of the last task (unless there
are no tasks in some interval). Hence, because of static power, this algorithm is
only optimal when it is assumed that the processor remains active until the last
deadline [47]. To the best of our knowledge, there is no known optimal algorithm
for the situation where no static energy is consumed a er the last executed task.

¿e original implementation of the YDS algorithm has a time complexity ofO(N3)
[61]. Bansal et al. [17] use the Karush-Kuhn-Tucker (KKT) conditions [21] to prove
optimality of YDS for the power function p(s) ≙ sα . Li et al. [61] give a di�er-
ent proof, and present an e�cient implementation of YDS with time complexity
O(N2 logN). ¿ey also provide anO(KN logN) algorithm for the variantwith dis-
crete speed scaling with K speeds (1; disc ∣ an ; dn ; pmtn ∣E). An alternative method
for obtaining the optimal speeds in the discrete case is by applying the YDS algo-
rithm, and then simulate the obtained speeds as discussed in Section 2.6.5 [41, 54].

¿e YDS algorithm schedules tasks in order of their deadlines. ¿is implies that
when tasks have a �xed priority, these tasks must be scheduled in the order of these
priorities, and the YDS algorithm cannot be used [73]. Yun and Kim [91] show that
the �xed priority variant of this problem (1; ss ∣ an ; dn ; pmtn; prio ∣E) is NP-hard,
and give an FPTAS¹ for the problem.

1Fully Polynomial-Time Approximation Scheme, see Appendix A.
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(a) Iteration 1
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0
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3
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a
4
≙
20

d
1
≙
25

d
4
≙
30

d
3
≙
50

(b) Iteration 2

a
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20

(c) Iteration 3

a
1
≙
0
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2
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5

d
2
≙
10

a
3
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a
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≙
25

d
1
≙
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d
4
≙
35

d
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≙
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T2

T1 T1 T4

T3

(d) Optimal solution

Figure 3.1 ś Arrival times, deadlines and optimal solution for Example 3.1.

¿ere exist several other variations to the problem that was introduced by Yao
et al. [90]. ¿e variant of the original problem that does not allow preemptions of
tasks (1; ss ∣ an ; dn ∣E) is NP-hard [11], and this problem was studied by Bampis et al.
[16]. ¿ey show that the best known approximation ratio (see Section A.2) for this
problem is (1 +wmax/wmin)α , where wmax and wmin are upper and lower bounds
on the work of tasks.

Kwon and Kim [54] study another variation, where the dynamic power is not equal
for all tasks (1; ss; nonunif ∣ an ; dn ; pmtn ∣E), for example due to switched capaci-
tances. ¿ey solve this problem using a substitution of variables (see Section 2.6.7)
and for discrete speed scaling (1; ss; nonunif ; disc ∣ an ; dn ; pmtn ∣E) they formulate
the problem as a linear program (see Section 2.6.4).



32

C
h
a
p
t
e
r
3
ś
R
e
l
a
t
e
d
W
o
r
k

¿e sleep mode counterpart of the YDS problem is 1; sl ∣ an ; dn ; pmtn ∣E. Baptiste
et al. [19] present an algorithm that is commonly referred to as BCD (named a er
the authors), that uses dynamic programming to solve the problem in O(N4) time.
¿eir algorithm is restricted to instances where processors have only a single sleep
mode.

Other authors [4, 47] study the combination of speed scaling and sleep modes,
namely 1; ss; sl ∣ an ; dn ; pmtn ∣E, which is an NP-hard problem. ¿e heuristic by
Irani et al. [47] is a 2-approximation (see Section A.2) and is relatively easy to im-
plement. ¿is heuristic uses YDS to determine the speeds, and whenever YDS
determines a speed sn<s

crit, this speed is replaced by the speed scrit (this is called
an scrit-schedule). ¿ese changes create idle time, that can be used to put the pro-
cessor into a sleep mode. As long as there are tasks available, they are consecutively
executed, followed by an idle period of maximal length. ¿is scheduling method is
used to create relatively large idle periods. Albers and Antoniadis [4] use a similar
method, but with the cut-o� speed s∗ instead of scrit, where s∗ is determined by
solving p̄(s∗) ≙ 4

3
p̄(scrit). Furthermore, they use BCD instead of the scheduling

algorithm by Irani et al. [47]. ¿is results in a 4/3-approximation, but has a higher
time complexity (O(N4)) because the use of BCD.
3.2.2 agreeable deadlines

In applications like multimedia and telecommunication, the arrival times and dead-
lines are usually in the same order (i.e. an < am⇔ dn ≤ dm). Such applications are
said to have agreeable deadlines. For systems with such agreeable deadlines there
exist e�cient speed scaling and sleep mode algorithms.

Speed scaling for systems with agreeable deadlines (1; ss ∣ an ; dn ; agree ∣E) is studied
by many authors (e.g., [43, 86]). Huang and Wang [43] present an algorithm that
calculates the optimal speeds in quadratic time. ¿eir algorithm �rst chooses a
single speed for all tasks, such that the last deadline is met exactly. ¿en, a task Tn

with the largest violation of an arrival or a deadline is used to divide the set of tasks
into two subsets: the tasks before and the tasks a er the violation. For a deadline
violation, the completion time of task Tn is �xed, while for an arrival time violation
the begin time of task Tn is �xed. ¿en the procedure is recursively repeated for
both subsets. Furthermore, a solution to the problemwith preemption can be easily
translated to a solution without preemption with the same energy consumption
[16].

In a variant of this problem, themaximal rate of change of the speed has the constant
R as an upper bound (i.e. maxt ∣s′(t)∣ ≤ R, for some R > 0). For this case, the
algorithm by Wu et al. [86] �nds the optimal solution in quadratic time.

Next to agreeable deadlines with speed scaling, also the problem with sleep modes
and the combination of speed scaling and sleepmodes are studied. For the problem
where the processor has a single sleep mode (1; sl ∣ an ; dn ; agree ∣E), the algorithm
by Angel et al. [9] can be applied to �nd the energy optimal schedule. ¿e authors
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Table 3.4 ś Multiprocessor power management problems.

Section Problem Papers

Arbitrary

ordering of tasks

(Section 3.3.1)

PM ; ss ∣ an = a; dn = d ∣ E [5, 72]

PM ; ss ∣ an ; dn ; pmtn;migr ∣ E [6, 10, 15, 20]

PM ; ss ∣ an ; dn ; pmtn ∣ E [5, 37]

Agreeable

deadlines

(Section 3.3.2)

PM ; ss ∣ an ; dn ;wn = 1; agree ∣ E [16]

observe that there always exists an optimal solution in which every task Tn starts
at either (i) an , (ii) cn−1, or (iii) dn − en . Note, that the options for the completion
time cn−1 depends on the begin times of tasks T1 , . . . , Tn−1. By this, for each task
Tk (tasks ordered in EDF order), there are O(k) possible begin times, leading to
a quadratic time complexity. ¿is result by Angel et al. [9] is extended by Bampis
et al. [14] such that the optimal combination of speed scaling and sleep modes
(1; sl; ss ∣ an ; dn ; agree ∣E) is found in cubic time.
3.2.3 laminar instances

In this section we study tasks with a nested structure, called laminar instances (see
Section 2.2.2). Just as for the problem with agreeable deadlines, this restriction
makes the problem easier to solve. In fact, the case where all deadlines or all arrival
times are the same has both agreeable deadlines and is a laminar instance.

Li et al. [60] give an e�cient polynomial algorithm to �nd the optimal speeds for
laminar instances (1; ss ∣ an ; dn ; pmtn; lami ∣E). Two important subproblems are (i)
all tasks have a shared deadline (1; ss ∣ an ; dn ≙ d; pmtn ∣E) and (ii) all tasks arrive
at the same time (1; ss ∣ an≙a; dn ; pmtn ∣E). For both problems, Li et al. [60] give a
linear time solution.

3.3 Multiprocessor problems

¿is section discusses multiprocessor algorithmic power management problems
(see Table 3.4 for an overview). ¿e problems in this section consist of �nding a
multiprocessor schedule together with speeds and/or sleep decisions. ¿e problem
with general tasks, tasks without special restrictions on arrival times and deadlines,
is discussed in Section 3.3.1. Algorithms for tasks with agreeable deadlines are
discussed in Section 3.3.2.
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3.3.1 general tasks

We �rst consider the relatively simple variant of the problem, where all tasks arrive
at time 0, have a shared global deadline, and optimal scheduling and local speed
scaling is used (PM ; ss ∣ an ≙ a; dn ≙ d ∣E). ¿is problem is NP-hard [5], since the
3-partition problem can be reduced to it. Pruhs et al. [72] show that the problem
of minimising the makespan under an energy constraint can be formulated as the
problem ofminimising the ℓα norm of the processor loads (where α is the exponent
in the dynamic power function, see Section 2.3). For the last problem, a Polynomial
Time Approximation Scheme (PTAS) exists [8]. In a similar fashion, a PTAS can
be derived for energy minimisation under a global deadline constraint.

¿ere are several variations of the problem with arbitrary arrival times and dead-
lines of task. ¿ey di�er depending on whether preemptions and migrations of
tasks are allowed or not. A widely studied problem considers the combination of
local speed scaling and scheduling, where preemptions and migrations of tasks are
allowed (PM ; ss ∣ an ; dn ; pmtn;migr ∣E). ¿is problem was �rst studied by Bingham
and Greenstreet [20]. ¿ey show that the problem is convex, and present an al-
gorithm that involves solving a linear programming problem. ¿eir algorithm is
polynomial in the number of tasks, but according to the authors, the complexity
is too high for practical applications. However, as they also discuss properties of
the optimal solution, their paper is important when studying multiprocessor speed
scaling with preemptions and migrations. Albers et al. [6] present a more e�cient
polynomial time algorithm for the same problem. ¿eir algorithm uses repeated
maximum �ow computations to minimise the energy consumption. A closely re-
lated approach byAngel et al. [10] also usesmaximum�ow computations to �nd the
optimal solution in polynomial time. ¿e resulting algorithm only is more e�cient
than that of Albers et al. [6] when a reduced accuracy is allowed. Another approach
to the same problem is discussed in the paper by Bampis et al. [15], wherein the opti-
mal speeds are determined by solving a convex cost �ow problem. In this approach,
execution times correspond to amounts of �ow, which have to be sent through
the network. ¿e algorithm that solves this problem has a time complexity that
depends on the latest deadline. Although the dependency of the complexity on the
deadline is a drawback, the presented approach is straightforward and its concepts
are interesting for future research in this direction.

Albers et al. [5] study a variant of the problem where migrations are not allowed
(PM ; ss ∣ an ; dn ; pmtn ∣E). ¿ey show that the problem is NP-hard, even for tasks
with unit workload. ¿e di�cult part of this problem is the assignments of tasks
to processors. If such an assignment is given, determining the optimal speeds and
scheduling order is straightforward, since YDS can be used for the tasks on each
individual processor. ¿e heuristic by Albers et al. [5] sorts the tasks in order of
non-decreasing deadlines, and assigns the tasks in this order to the processor with
the lowest amount of work assigned to it. ¿is heuristic has an approximation ratio
of 2(2 − 1

N
)α . A more general version of this problem that has a weighted sum of

the energy consumption and �ow time as objective is studied by Greiner et al. [37].



35

3
.3
.2
ś
A
g
r
e
e
a
b
l
e
d
e
a
d
l
in
e
s

3.3.2 agreeable deadlines

Just as for the uniprocessor problemwith agreeable deadlines, in themultiprocessor
case a solution to the preemptive problem with no migration can be transformed
to a non-preemptive solution with no migration with the same costs [16].

Albers et al. [5] present an optimal algorithm for the multiprocessor agreeable
deadline problem where tasks have a unit workload (PM ; ss ∣ an ; dn ;wn≙1; agree ∣E).
¿is algorithm sorts the tasks in order of nondecreasing deadlines, assigns them to
the processors using round robin scheduling and applies an algorithm that solves
1; ss ∣ an ; dn ;wn ≙ 1; agree ∣E (e.g., YDS) to the task sets for each individual proces-
sor. For tasks with an arbitrary workload they give an algorithm with an αα24α-
approximation.

3.4 Online uniprocessor speed scaling algorithms

One of the main topics of Chapter 4 is online speed scaling for a uniprocessor.
¿e term “online speed scaling algorithm” is used in various ways, depending on
the context. In scheduling books (e.g., [70]), “online” means that tasks arrive at
an unknown time, but when they arrive their processing time (execution time) is
known. In this thesis we use a di�erent de�nition: tasks are known beforehand
(arrival times and deadlines are known), except for their exact workloads. Only a
prediction or an upper bound of the work may be given. Online applications that
are considered in this thesis are streaming applications, such as multimedia (e.g.,
video decoders) and telecommunication applications.

A vast amount of the research on online speed scaling assumes no prior knowledge
of the future work. Especially for video decoders, it is popular to use feedback
control [7, 23, 64, 79, 85]. Decoded video frames are placed inside a bu�er, and the
bu�er occupancy levels are used to control the speed. When the bu�er is depleted,
a relatively high speed is used, while a relatively low speed is used when the bu�er
is almost full. ¿e feedback controller serves two purposes: it (implicitly) predicts
the work and steers the speed accordingly. ¿e (P)RA-SS algorithm presented in
Chapter 4 separates the work prediction from the calculation of speeds. For the
work prediction, any prediction technique can be used. Separating the prediction
from control gives additional insights, andmakes further energy reduction possible.
¿e latter is illustrated using the approach by Tan et al. [81] that uses predictions.
¿eir approach has lower costs thanwhen using a feedback controller. Furthermore,
they note that it is hard to determine the feedback gain.

Using predictions of work to decrease the energy consumption is not new. Several
papers [27, 71] predict future work and use it to scale the speed of a video decoder
in a greedy fashion. ¿ey set the speed to the minimal speed that still executes
the tasks in a feasible fashion. ¿e greedy approach by Pillai and Shin [69] is de-
signed for real-time systems that are scheduled using EDF or RateMonotonic (RM).
However, with greedy algorithms, it may happen that the speed is decreased signi�-
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cantly, while a later task has to use a much higher speed, which increases the energy
consumption signi�cantly. ¿e algorithm presented in Chapter 4 avoids such �uc-
tuations of the speed (see also Section 1.2.1). Furthermore, greedy approaches based
on predictions may miss deadlines, while the algorithm from Chapter 4 is robust
against mispredictions. A further advantage of the approach from Chapter 4 is that
it works for a larger class of applications whereas, for example, the approach by Tan
et al. [81] can only be used in a video decoding context to calculate a speed for a
single MPEG Group Of Pictures (GOP). Finally the approach in Chapter 4 is less
complex than other approaches and it reserves slack for tasks arriving in the future.

¿e considered problem and solution of Zitterell and Scholl [96] is the most similar
to what is presented in Chapter 4. Similar to our approach, they do not assume
that the work is known beforehand and determine the optimal speed. ¿ey use
stochastic information of the tasks to calculate the optimal speed, while we allow
arbitrary predictors. However, the method by Zitterell and Scholl does not always
�nd an optimal solution because the constraints in their optimisationmodel are too
restrictive. When this occurs, they must fall back to a (sub-optimal) heuristic. ¿e
approach in Chapter 4 does not have this restriction and always �nds an optimal
solution.

3.5 Global speed scaling of tasks with precedence constraints

Chapters 5 and 6 of this thesis focus on minimising the energy for tasks that have
to respect precedence constraints on a global speed scaling system. Several papers
have studied global speed scaling under di�erent circumstances, e.g., [24, 44, 51,
66, 92]. ¿e recent survey article by Zhuravlev et al. [95] discusses many energy-
cognisant scheduling techniques, butmentions nowork that researches the optimal
combination of global speed scaling and scheduling. To the best of our knowledge,
the research presented in Chapter 5 is the �rst research that studies the theoretical
interplay between optimal scheduling and determining optimal speeds for global
speed scaling.

Chapter 5 of this thesis focuses on tasks with precedence constraints that share a
common deadline and that can be described using a task graph. Herein, we study
the problem PM ; global ∣ an ≙ a; dn ≙ d; prec ∣E. In the survey article by Kwok and
Ahmad [53] and in the article by Tobita and Kasahara [82] references to a lot of
these applications are given. A popular benchmark set is the “Standard Task Graph
Set” by Tobita and Kasahara [82], which contains both synthetic task graphs and
task graphs derived from applications. We use this benchmark set in our evaluation
in Chapter 5.

Several authors [13, 38] discuss scheduling and speed selection of general tasks
on multiprocessor and multicore systems with a single deadline. In other works
[22, 30, 57, 65, 75, 93], tasks with precedence constraints are considered. All these
publications have in common that they either focus on local speed scaling or that
they use a single speed for the entire run-time of the application. ¿e works that
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use a single speed for the entire run-time can only minimise the energy consump-
tion when speci�c conditions are met. In contrast, our research in Chapter 5 does
consider multiple speeds and minimises the energy consumption under all circum-
stances.

¿e state of the art with respect to solving the so-called server problem (energy
minimisation under a deadline constraint) for local speed scaling (PM ; ss ∣ an ≙
a; dn ≙ d; prec ∣E) is given by Li [59]. He discusses and evaluates several scheduling
algorithms and speed selection algorithms. ¿ese algorithms perform notably well
for a special class of applications, namely the applications that can be described by
using wide task graphs. Most of his work focuses on local speed scaling, however
a part of the work also describes how to schedule and use speed scaling with the
assumption that the entire application uses the same speed. Solving this speci�c
case also gives a solutionwhich can also be used for global speed scaling. We use the
case where a single speed is used for the application as a reference in our evaluation
in Chapter 5. Our approach varies the multicore chip-wide speed over time and is
optimal for global speed scaling, in contrast to using either a single speed for each
task or a single speed for the entire application as is done in the work by Li [59].

Few papers study the combination of speed scaling and scheduling in a theoretical
way. Chapter 5 presents an extensive study of speed scaling and scheduling of
precedence constrained applications on a global speed scaling system. In Chapter 6,
the problem is solved where tasks have individual arrival times and deadlines, and
a schedule is given (PM ; global ∣ an ; dn ; sched; prec ∣E).
3.6 Frame-based real-time systems

Chapter 7 discusses energy minimisation for frame-based real-time systems. ¿ese
are periodic real-time systems, where tasks are executed within a frame. A frame-
based real-time system means that for a period T the n-th invocation of each task
does not start before the (shared) arrival time an ≙ (n − 1)T and does not �nish
later than the deadline dn ≙ nT . Hence, the active interval of tasks in di�erent
frames do not overlap, making speed scaling a relatively simple problem. However,
the sleep mode problem is worth investigating because the idle time intervals of
adjacent frames can be merged to a single (longer) idle time interval.

¿e state of the art work by Devadas and Aydin [32] addresses energyminimisation
using a combination of speed scaling and sleep modes for frame-based systems. In
this work, the authors demonstrate the e�ectiveness of their models and algorithms
experimentally. We used their theoretical results in Chapter 7 to �nd the optimal
speeds in the case speeds can be chosen from a continuous interval. Devadas and
Aydin [32] implicitly assume that invocations of tasks start as soon as they arrive.
¿is is a valid assumption since the authors study the interplay of speed scaling
and sleep modes for individual frames. In contrast, we allow tasks to start at any
time within the frame as long as their deadlines are met, which allows that the
global optimum can be found. Although scheduling becomes slightly harder to
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implement, we show that by allowing tasks to start at any time within the frame,
the energy consumption can be signi�cantly reduced.

¿e approach from [32] produces a local minimiser, while our approach produces
a global minimiser, leading to a lower overall energy consumption. In some situa-
tions, their algorithm cannot �nd any opportunities to use sleep modes and save
energy that way, while our approach considers the problem globally and �nds ev-
ery opportunity to save energy and never requires more energy compared to the
approach presented by Devadas and Aydin [32]. In addition, we give a solution for
the case that only a �nite number of speeds is available. A comparison between
both approaches shows that our approach can reduce the energy consumption by
up to 50%.

Similar work was done in [52], where minimising the energy using speed scaling
and sleep modes in presence of multiple tasks that use multiple devices is modelled
as an Integer Linear Program (ILP). In contrast to this work, we assume that all
devices are active during the execution of any task, and we do not solve an ILP, but
give an analytic solution that can be found in polynomial time. ¿e combination of
speed scaling and sleep modes has been studied in a stochastic setting by Xu et al.
[87], while our approach is deterministic. Our results on sleep modes can also be
applied in a stochastic setting.

In the research by Baptiste et al. [19], an optimal sleep mode schedule for aperiodic
jobs is found in polynomial time, but only works when there is only an active mode
and a sleep mode. In our work, we do not restrict the number of low power modes
and also optimise for speed scaling.

3.7 Conclusions

In this chapter we surveyed many power management algorithms that aim to min-
imise energy under time constraints. ¿ese algorithms combine speed scaling
and/or sleep modes with energy-aware task scheduling to minimise the energy
consumption.

Missing in the literature are approaches for online energy minimisation for real-
time systems with agreeable deadlines, energy-aware scheduling to minimise the
energy consumption of real-time systems with precedence constraints, and the
optimal combination of speed scaling and sleep modes for frame-based real-time
systems. ¿ese topics are discussed in the subsequent chapters.



Chapter4

Uniprocessor Speed Scaling

Abstract ś Many speed scaling algorithms assume that the work for each

task is known. However, when this work is not known beforehand, a so-

called online algorithm has to be used. ¿is chapter presents an online algo-

rithm for uniprocessor real-time systems with agreeable deadlines that uses

optimal slack time reclamation. ¿is algorithm uses predictions of future

workload to determine the optimal speeds, while it remains robust against

mispredictions. If the workload is correctly predicted, the presented algo-

rithm calculates speeds that are provably optimal under the given restric-

tions. For applications with periodic arrival times and deadlines, it attains

a near-optimal energy consumption while using easy to obtain predictions.

¿e developed algorithm is compared with algorithms and techniques from

the literature for a video decoder workload. Compared to existing methods,

our algorithm can reduce the energy consumption by up to 54% for the con-

sidered multimedia workloads, where the time complexity of our algorithm

is signi�cantly lower.

4.1 Introduction

In this chapter, we consider speed scaling for minimising the energy consumption
of a uniprocessor system that executes tasks with agreeable deadlines. We develop
an approach and evaluate the practical impact of these algorithms. For the design
of the algorithms we only assume that the power function is convex. Section 2.6.2
shows that assuming this is not a real restriction and that we may assume con-
vexity generally holds. It is well-known [43, 47, 48, 90] that because of convexity,
speed �uctuations have to be avoided to minimise the energy consumption (see
Section 2.6.1).

Parts of this chapter have been presented in [MG:3] and [MG:4].
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Whereas in the previous chapter mainly o�ine optimisation algorithms were sur-
veyed, the focus of this chapter is on online optimisation, meaning that the future
workload is not known, but can only be predicted. For the problem that we consider,
a solution is characterised by a feasible begin time and speed assignment for tasks
and the optimal solution is a solution that minimises the total energy consumption.
While o�ine optimisation algorithms commonly keep the �uctuations of the speed
to a minimum, this is rarely done by online approaches. When real-time behavior
is important, online approaches that use predictions still must ensure that dead-
lines are met when predictions are incorrect. ¿e online algorithm must be robust
against such incorrect predictions. If a task �nishes before its deadline, the next
tasks may use this spare time—slack time—to run at a lower speed to decrease the
energy consumption when this is allowed by the arrival times of these tasks. Many
online speed scaling algorithms [27, 71] are greedy with regard to this slack time.
¿ey use all slack time when it becomes available, or even run at a low speed before
slack time is available. Such approaches are in general not optimal since they result
in many unnecessary speed �uctuations.

We present algorithms that minimise the speed �uctuations while taking static
power into account. ¿ese algorithms use predictions of the workload, and since
the predictions can be incorrect, special precautions are required to ensure that all
deadlines are met. ¿e presented algorithms and solutions are robust, meaning that
the deadlines are met regardless of the quality of the predictions.

In this chapter, we present two (alternative) robust algorithms for online energy
minimisation that are executed each time before a new task is started. ¿e �rst algo-
rithm, which we call Robust and Adaptive speed scaling (RA-SS), is an algorithm
that works for tasks with aperiodic deadlines, while the second algorithm called
Periodic RA-SS (PRA-SS) focuses on applications with periodic deadlines, and has
a very low complexity. ¿e input to the algorithms is the available slack time, ar-
rival times, deadlines and predictions of the future workload. ¿e algorithms use
predictions of future work to calculate the optimal speed. If the predictions are
perfect (i.e. the predicted workload is the actual workload), the algorithms give the
minimal energy consumption while respecting the given constraints (robustness
and deadlines). ¿e cost of robustness is marginal: our evaluation shows that the
energy consumption, when perfect predictions are used, is only one percentage
point higher than that of the solution found using o�ine optimisation. Further-
more, even when the workload is signi�cantly lower than was predicted, the energy
consumption increases only slightly.

¿e main contributions in this chapter are:

» An optimal algorithm for the o�ine problem that takes static power into
account (Section 4.3).

» Two algorithms, called RA-SS and PRA-SS, to determine the optimal speed
by using predictions of future work (Section 4.4).

» ¿ese algorithms are robust against mispredicting future work (Section 4.4).
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» A derivation that shows that (and reasons why) (P)RA-SS performs close to
the theoretical optimum (Section 4.4).

» ¿e algorithms (P)RA-SS do not impose many speed changes, hence the
overhead of speed scaling is relatively low (Section 4.4).

» A reasoning that PRA-SS with an extremely conservative prediction of the
work—namely, the Worst Case Work (WCW)—performs signi�cantly bet-
ter than the greedy speed scaling approach that uses perfect predictions
(Section 4.4).

» A method (PRA-SS) that can achieve a near-optimal energy reduction for
a realistic workload, even with very inaccurate predictions, which means
an improvement of up to 51% in terms of energy reduction compared to
approaches that are used in a vast amount of the literature.

» An algorithm ((P)RA-SS) that is very robust against inaccuracies in the
model.

¿e remainder of this chapter is organised as follows. Section 4.2 discusses our
applicationmodel and energymodel. Section 4.3 discusses a well-known algorithm,
which we use to �nd an exact solution to the o�ine energy minimisation problem.
Although o�ine optimisation is not the main topic of this chapter, we use it as
the basis for robust and adaptive online optimisation, and we introduce a new
algorithm for a speci�c o�ine optimisation problemwith nonzero static power. We
derive a model for online optimisation in Section 4.4, where we present the optimal
solution under robustness constraints. ¿e e�ciency of our approach is evaluated
in Section 4.5 using video decoder workloads. In this section, we show that our
results are close to the theoretical minimum (without robustness constraints), and
show how our method compares to related work. Section 4.6 concludes with a
short summary and discussion.

4.2 Modelling assumptions

¿e modelling assumptions speci�c to this chapter are discussed in Section 4.2.1,
followed by a discussion about modelling simpli�cations and their impact in Sec-
tion 4.2.2.

4.2.1 model

We consider applications that consist ofN tasks that are executed on a uniprocessor.
TaskTn haswn work, for which in the online situation this work is not known before
the task Tn has �nished. ¿e work of all tasks has the same upper bound, theWorst
Case Work (WCW), denoted by wmax (i.e. for all n: wn ≤ w

max). We assume that
predictions ŵn ≤ w

max of the work are available (for all n), for example by using
the research discussed in Section 3.4.

In this chapter, we assume that a continuous speed sn (restricted to a given interval∥smin , smax∥) can be assigned to each task Tn . When based on the outcome of some
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algorithm a speed sn < smin is assigned to a task, setting sn to smin is optimal
in the restricted case. Because of this, we assume without loss of generality that
smin
≙ 0. Furthermore, we do not need to adapt the o�ine algorithm to take smax

into account. In Section 4.4 we show that the bound smax is of special importance
for online optimisation.

Besides the work wn , each task Tn has an arrival time an and a deadline dn . ¿e
task Tn gets a begin time bn assigned to it, is executed without interruptions for
en ≙

wn

sn
time units and completes its execution at time cn ≙ bn + en . We assume

that a task Tn can always meet its deadline when it begins at the deadline of task
Tn−1, i.e. dn−1 +

wn

smax ≤ dn . ¿e chosen begin times and speeds are feasible when
an ≤ bn and cn ≤ dn .

In this chapter, we study real-time applications with agreeable deadlines, and we
assume without loss of generality that the tasks Tn and Tm are ordered such that
whenever n ≤ m, it also holds that an ≤ am and dn ≤ dm . It is known that a non-
preemptive EDF schedule is optimal for such system [16], hence tasks are scheduled
in the order T1 , T2 , . . . , TN . Many streaming applications can be modelled as real-
time applications with agreeable deadlines.

In this chapter, we assume that the power function p is convex. For uniproces-
sor systems this is always a valid assumption, because there is a straightforward
workaround when this is not the case (see Section 2.6.2).

Recall that the application begins at some given time tB , and the power consump-
tion of the processor is accounted for until some time tC , meaning that the static
energy consumption is given by (tC − tB)p(0). As we measure the static power
until the end of the application or until the deadline of the last task, we take tB ≙ a1,
while for the end time we assume that either tC ≙ dN or tC ≙ cN ; both situations
are discussed when we present a solution to the problem.

4.2.2 discussion on simplifications

In practice, many processors only support a discrete set {s̄1 , . . . , s̄K} of speeds, as
opposed to continuous speeds. ¿e standard approach is to solve the continuous
variant of the speed scaling problem, and then simulate the continuous speeds (see
Section 2.6.5). In this chapter, we use another approach, namely using the speed
s̄ i+1 (when s̄ i ≤ sn ≤ s̄ i+1) since this signi�cantly decreases the number of speed
changes. In the evaluation we come back to this point, and discuss the implications
of using discrete speed scaling.

We assume throughout this thesis that the speed is linearly dependent on the clock
frequency. In practice, this is not the case and the execution time is shorter than
was predicted (see the discussion in Section 2.3). ¿is assumption has the same
e�ect as taking a conservative prediction for the work; in our evaluation we show
that this has little impact on the performance and applicability of our algorithms.
¿e evaluation (Section 4.5.4) contains a discussion on this assumption.
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¿e results in Section 4.5 show that because of the convexity of the power function,
our algorithms reduce the number of speed changes signi�cantly. In addition, re-
ducing the number of speed changes has another e�ect, namely the overhead of
changing the speed decreases. ¿e recent article by Park et al. [68] shows that the
transition delay overhead for changing the clock frequency is at most 62.68µs [68]
on an Intel Core2 Duo E6850. Because of these two reasons, we may assume that
the energy overhead of changing the clock frequency is negligible in case of DVFS.

¿e discussion in Section 4.5.4 shows that our algorithms are only marginally in-
�uenced by the assumptions that continuous speeds are available, the assumption
that clock frequency scales linearly with the speed, and the assumption that the
overheads for changing the speeds are negligible.

4.3 Offline optimisation

¿is section presents algorithms that solve the o�ine speed scaling problem with
agreeable deadlines. In principle we can use any convex optimisation tool to solve
this o�ine variant of our problem. However, there are a few reasons to develop
a tailored method. Firstly, such an approach is speci�c to our problem, and may
therefore be more e�cient. Secondly, the tailored approach as presented in the
following provides insights that we can use for online algorithms such that they can
use slack in an optimal way. More precisely, our online speed scaling algorithms
uses the o�ine algorithms as a subroutine.

With respect to static energy, we consider two sub-problems. Section 4.3.1 considers
the case where the static energy consumption has to be taken into account for a
given �xed period of time (tC ≙ dN ), therefore the solution does not in�uence the
static energy consumption. In Section 4.3.2 we extend the results from Section 4.3.1
to take static energy into accounted until the last task has �nished its execution
(tC ≙ cN ).

4.3.1 fixed static energy

In this subsection we assume that the processor is active until the deadline of the
last task TN (i.e. t

C
− tB is constant). ¿is means that the static energy consumption

can no longer be in�uenced by the selected speeds, i.e. we may assume without loss
of generality that p(0) ≙ 0 [47] (see Section 2.6.3).
For the o�ine problem we have to minimise the energy consumption of N tasks
with agreeable deadlines, such that all deadlines are met. ¿e energy consumption
for all tasks together is given by

N

∑
n=1

p(sn)wn

sn
.

However, not all speeds are allowed. Constraints are required to ensure that tasks do
not begin before they arrive, do not �nish a er their deadline, and that the processor
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executes atmost one task at a time. ¿is leads to the following optimisation problem
with decision variables s1 , . . . , sN and b1 , . . . , bN .

Optimisation Problem 4.1.

min
s1 , . . . ,sN
b1 , . . . ,bN

N

∑
n=1

p(sn)wn

sn
,

s.t. bn +
wn

sn
≤ dn , for all n ∈ {1, . . . ,N},

bn ≥ an , for all n ∈ {1, . . . ,N},
bn +

wn

sn
≤ bn+1 , for all n ∈ {1, . . . ,N−1},

sn ≤ s
max , for all n ∈ {1, . . . ,N}.

¿is problem is a convex problem (the cost function and constraints are convex, see
Appendix A), which implies that every local minimiser is also a global minimiser.
To �nd a minimiser, we adopt the “RecursiveSmoothing” algorithm of Huang and
Wang [43], resulting in the function optspeed (see Algorithm 4.1). For correctness
and optimality of this algorithm, we refer to the article of Huang and Wang [43].

Algorithm 4.1 Optimal speeds.

(sx , . . . , sz) = Function optspeed (x,z,tB ,tC)

F ≙
∑z

i=x w i

tC − tB

y ∶≙ argmax j∈{x , . . . ,z}max (tB + ∑
j
i=x w i

F
− d j , a j − t

B
−
∑

j
i=x w i

F
)

if tB +
∑

y
i=x w i

F
− dy > 0 then {y misses its deadline}(sx , . . . , sy) = optspeed (x,y,tB , dy)(sy+1 , . . . , sz) = optspeed (y + 1,z,dy , t

C)

else if ay−t
B
−
∑

y
i=x w i

F
> 0 then {y violates arrival}

(sx , . . . , sy−1) = optspeed (x,y − 1,tB , ay)(sy , . . . , sz) = optspeed (y,z,ay , t
C)

else {no task is infeasible}(sx , . . . , sz) ≙ (F , . . . , F)
end if
return (sx , . . . , sz)

¿e idea behind Algorithm 4.1 is as follows. Unnecessary speed �uctuations have
to be eliminated to reach optimality, because otherwise the speeds of consecutive
tasks can be replaced by a common speed, leading to a decrease of the energy
consumption (see Section 2.6.1 and Figure 1.1d). ¿is means that the speed is only
changed when a task arrives or when a task meets its deadline.
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Table 4.1 ś Characteristics of tasks in Example 4.1.

Task Arrival time Deadline Work Cumulative work

T1 0 25 3 3

T2 10 35 10 13

T3 20 45 8 21

T4 30 55 1 22

T5 40 65 9 31

¿is idea is implemented by the algorithm as follows. First a candidate solution
with a constant speed F is determined for the complete interval, hence F is chosen
such that all tasks (T1 , . . . , TN ) are executed between a1 and dN . However, in this
solution some tasks can miss their deadline or are required to begin too early. To
avoid unnecessary speed �uctuations, the task with the greatest deadline/arrival
time violation is determined, this task is denoted by Ty . ¿e algorithm enforces
the begin or completion time for this task such that it does not violate a constraint
anymore. Task Ty with the largest violation of an arrival or a deadline is used to
divide the set of tasks into two subsets: the tasks before and the tasks a er the
violation. ¿e algorithm is then recursively applied to both groups of tasks and the
optimal solution follows. ¿e working of the algorithm is clari�ed by the following
example.

Example 4.1 (Optimal solution). Consider an application that consists of N≙5 tasks,
with work, arrival times and deadlines as given by Table 4.1. ¿is application is
constructed such that the e�ects of the algorithm are emphasised and the optimal
speed �uctuates a lot. For a realistic workload this is typically not the case as we
demonstrate in Section 4.5. Figure 4.1 shows the arrival times, deadlines and the
optimal solution. ¿e squares on the optimal graph indicate the begin and completion
times of tasks. ¿e graph that represents a feasible solution should remain under the
graph that gives the arrival times, while it should stay above the graph that represents
the deadlines. ¿e speed is the slope of the graph that represents the (optimal) solution.
Algorithm 4.1 �nds the optimal solution that minimises speed �uctuations, while the
speeds are as low as possible.

4.3.2 variable static energy

In this section, we consider the case that the processor is switched o� a er the last
task is completed, i.e. we choose tC ≙ cN . ¿is means that it may pay o� to increase
the speed for the last tasks, such that the processor can be turned o� earlier and
the static energy consumption decreases.

Before we treat this problem, we restrict our attention to a much simpler problem,
namely the uniprocessor problem with an≙0 for all n ∈ {1, . . . ,N} (i.e. arrival
times are not taken into account). In this relaxed problem, it is optimal to start
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Figure 4.1 ś ¿e optimal solution from Example 4.1.

task Tn+1 immediately when task Tn is �nished, since that minimises the static
energy consumption. Based on this, the problem becomes as follows.

Optimisation Problem 4.2.

min
s1 , . . . ,sN
b1 , . . . ,bN

tC

(tC − tB)p(0) + N

∑
n=1

∥p(sn) − p(0)∥ wn

sn
,

s.t. bn +
wn

sn
≤ dn , for all n ∈ {1, . . . ,N},

bn +
wn

sn
≤ bn+1 , for all n ∈ {1, . . . ,N−1},

sn ≤ s
max , for all n ∈ {1, . . . ,N},

bN +
wN

sN
≤ tC .

¿e cost function gives the total energy consumption for all N tasks, by summing
static and dynamic energy consumption. ¿ese costs are minimised under the
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constraints that all deadlines are met, speeds are below the maximal speed, and
the last task does not �nish a er the end of the application (i.e. the time the static
power is accounted for).

In the optimal solution for this problem there is only one idle period during which
the processor is turned o�, namely an idle period a er the last task of the applica-
tion. Increasing the speed also increases the length of the period during which the
processor is o�, and with it the static energy consumption decreases. More speci�-
cally, no speed sn < s

crit should be used, because changing sn to s
crit decreases the

energy consumption (see Section 2.6.3).

Summarising, for the optimal solution, �uctuations of the speed have to be avoided,
and no speeds below scrit are used. ¿e optimal solution to this problem can be
determined using Algorithm 4.2 (i.e. by calling optspeed2(1,N , tB , tC)). ¿is
algorithm chooses the lowest speeds, which leads to a schedule respecting the dead-
lines of the tasks, while avoiding unnecessary speed changes. ¿e intuition behind
Algorithm 4.2 is similar to the intuition behind Algorithm 4.1. ¿e algorithm deter-
mines a task Th , and a constant speed s that is used from the current task to task Th ,
such that task Th completes at its deadline and s is maximal.

Algorithm 4.2 Solution to Problem 4.2.

(sℓ , . . . , sN) = Function optspeed2(ℓ,N ,tB ,tC)
j ≙ ℓ
while j ≤ N do

h ≙max(argmaxn∈{ j , . . . ,N}∑n
i= j

w i

dn − d j−1

)
s j , . . . , sh ≙max(scrit ,∑h

i= j

w i

dh − d j−1

)
j ≙ h + 1

end while

¿e following example illustrates Algorithm 4.2.

Example 4.2. In this example we use Algorithm 4.2 to �nd the optimal solution for
the tasks given by Table 4.2.

In the �rst iteration, the algorithm starts with task T1 ( j ≙ 1), and determines a set
of 4 candidate speeds. ¿e criterion for each speed is that when tasks T1 , . . . , Th are
executed at this speed (h ∈ {1, . . . , 4}), task Th �nishes at its deadline. ¿e three
candidate solutions are depicted by the dashed lines in Figure 4.2a, where the slope
of the dashed line is the candidate speed. ¿e algorithm picks the highest speed (e.g.,
the top dashed line, which also has the highest slope), which leads to h ≙ 1.

Figure 4.2b and Figure 4.2c show the next two iterations of the algorithm. Finally,
Figure 4.2d shows the optimal solution.
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Table 4.2 ś Task characteristics for Example 4.2.

Task Deadline Workload

T1 10 10

T2 20 2

T3 30 6

T4 40 2
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(d) Optimal solution

Figure 4.2 ś Iterations for Example 4.2.

¿eorem 4.1. Algorithm 4.2 gives the optimal solution to Optimisation Problem 4.2.

Proof. We show that the solution s1 , . . . , sN (with speed function s(τ)), produced
by Algorithm 4.2, is optimal. ¿e optimal solution is unique since the cost function
is a strictly convex function that is minimised on a closed convex set.

Assume the theorem is false and the unique optimal solution is given by s̃1 , . . . , s̃N
(we denote the respective speed function by s̃(τ)). Since using any speed s̃ i < scrit
is not optimal, we may assume that s̃ i ≥ s

crit.
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Now, consider the �rst smallest m such that sm ≠ s̃m . We consider two possible
cases:

(i) s̃m > sm :

In this case let n be the smallest n > m, such that s̃n < sn . Such a value
does exist, since otherwise the optimal solution requires more energy than
the solution found by Algorithm 4.2, which is a contradiction. It holds that
s̃m > sm > sn > s̃n , since the sequence s1 , . . . , sN produced by Algorithm 4.2
is non-increasing.

For all tasks Tm , . . . , Tn−1, we have c̃ i < c i ≤ d i . We now take a value t > 0,
such that s̃m t ≤ wm , and s̃n t ≤ wn , and t <maxi∈{m , . . . ,n−1} d i − c̃ i .

We consider two small portions of workw′m ≙ s̃m t from task Tm , andw
′

n ≙ s̃n t
from task Tn . For w

′

m and w′n , we change the speeds to s ≙
1
2
s̃m +

1
2
s̃n .

¿e total execution time of these two portions of work remains 2t, while the
energy consumption becomes

p(s)2t ≙ p( 1
2
s̃m +

1

2
s̃n)

<
1

2
p(s̃m)2t + 1

2
(s̃n)2t

≙ p(s̃m)t + p(s̃n)t.
Here, the strict inequality is due to strict convexity of the power function p.

Note that we may choose the portions of work and the speeds such that no
deadline is violated, while the energy consumption of the optimal solution
decreases. ¿is contradicts the assumption that the solution s̃ is optimal.

(ii) s̄m < sm :

Note, that in this case the solution from Algorithm 4.2 is constant for tasks
Tm , . . . , Tn (for some n ≥ m), where cn ≙ dn . Hence, theremust be some time
b̄m < t ≤ dn such that: ∫

t

b̄m
s(τ)dτ ≙ ∫ t

b̄m
s̄(τ)dτ, otherwise task Tn misses its

deadline in the optimal solution s̄.

But this means that the optimal solution can be improved by using the con-
stant speed sm on the interval ∥bm , t∥, which contradicts the assumption that
the solution is optimal.

Both cases contradict the assumption that Algorithm 4.2 is not optimal, which
proves the theorem.

In the following, we combine Algorithm 4.1 and Algorithm 4.2 to solve the original
problem with arrival times. In an optimal solution there is some task Tℓ which is
the last task that �nishes exactly on the arrival time of the next task, i.e. cℓ ≙ aℓ+1.
When no such task exists, we take ℓ ≙ 0.

Clearly, the processor is active from the start of task T1 until the arrival of task Tℓ+1.
¿e static energy consumption during this period is constant. Hence, the results
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from Section 4.3.1 can be used to determine the best solution for this period; the
optimal speeds for tasks T1 , . . . , Tℓ can be determined using optspeed (1,ℓ,a1,aℓ+1).

For tasks Tn ∈ {Tℓ+1 , . . . , TN} it holds by de�nition that cn > an+1. Hence, when
calculating the optimal solution, the arrival times do not have to be considered.
¿is means that we can use Algorithm 4.2 to �nd the optimal speeds.

Now it has become straightforward to calculate the optimal speeds. For a given
ℓ, Algorithm 4.1 and Algorithm 4.2 can be used for tasks T1 , . . . , Tℓ and tasks
Tℓ+1 , . . . , TN respectively. ¿e value ℓ is determined by iterating over all possible
values of ℓ, namely 0, . . . ,N , and choosing the value that gives a feasible solution
with the lowest cost.

4.4 Online speed scaling

¿e previous section presented an algorithm that calculates the optimal speeds
and begin times (together called the optimal solution) for a given workload. In
Section 4.4.1 we derive the Robust and Adaptive Speed Scaling (RA-SS) algorithm,
which is used in the online situation where only a prediction of the work is avail-
able. Based on this, in Section 4.4.2 we present the algorithm Periodic Robust and
Adaptive Speed Scaling (PRA-SS), which is an algorithm that is very e�cient, and
can be applied when the arrival times and deadlines of the tasks have a certain
periodic structure.

4.4.1 ra-ss

In the following we derive our RA-SS algorithm, that is executed every time a task
Tk−1 has �nished its execution to determine the begin time and speed for the next
task Tk . ¿e inputs to this algorithm are arrival times, deadlines and predictions
of the work of all future tasks. Although this input can be used to �nd a solution
by using Algorithm 4.1, the resulting solution is not robust. ¿is means that, when
the speeds that are found by Algorithm 4.1 are used, deadlines may be missed if the
predictions are not completely correct.

To be robust, the deadlines should be met, regardless of the quality of the predic-
tions. ¿is means that, when during the execution of task Tk already ŵk work has
been done and the task is not �nished, there should still be enough time to �nish
the task before its deadline by using a higher “emergency” speed for the remaining
work. It is possible to do this because the work of each individual task wn is never
higher than the Worst Case Work (WCW), i.e. wn ≤ w

max for all n.

To realise robustness we de�ne a robust deadline d̂k(ŵk) that depends on the pre-
dicted amount of work ŵk . ¿e predicted work has to be �nished before the robust
deadline, i.e. bk +

ŵk

sk
≤ d̂k(ŵk). When the actual work is higher than the predicted

work, the remaining work of at most wmax
− ŵk work is executed at the speed s

max

a er time d̂k(ŵk). By choosing d̂k(ŵk) properly, the deadline is guaranteed to be
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Figure 4.3 ś Relation between the robust deadline and the deadline of task Tk .

met under worst case conditions, i.e. d̂k(ŵk) should satisfy:
d̂k(ŵk) + wmax

− ŵk

smax
≤ dk .

In our algorithm, we use the highest value that is permitted for d̂k(ŵk), such that
the perfect predictorminimises the energy consumption, hence the robust deadline
is given by:

d̂k(ŵk) ∶≙ dk −
wmax

− ŵk

smax
.

¿e RA-SS algorithm introduced below uses this constraint not only for the next
task Tk , but for all future tasks Tn (where n > k) such that this takes the future
where tasks Tn become active into account. ¿is ensures that slack time is also
reserved for future tasks, and not greedily consumed by task Tk . Summarising, the
following constraints are required:

bn +
ŵn

sn
≤ d̂n(ŵn), for n ∈ {k+1, . . . ,N}.

¿e relation between dk and d̂k(ŵk) is illustrated in Figure 4.3.
Our goal is to minimise the energy consumption when a perfect predictor (i.e.
ŵk ≙ wk) is used, while taking the robustness constraints discussed above into
account. Such an algorithm is robust against mispredictions, and gives the best
performance when the best possible predictor is used. ¿is leads to the following
minimisation problem.
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Optimisation Problem 4.3.

min
sk , . . . ,sN
bk , . . . ,bN

N

∑
n=k

p(sn) ŵn

sn
,

s.t. bn +
ŵn

sn
≤ d̂n(ŵn), for all n ∈ {k, . . . ,N},

bn ≥ an , for all n ∈ {k, . . . ,N},
bn +

ŵn

sn
≤ bn+1 , for all n ∈ {k, . . . ,N−1},

sn ≤ s
max , for all n ∈ {k, . . . ,N}.

¿is optimisation problem has the same form as Optimisation Problem 4.1, but
now d̂n(ŵn) is used as deadline to make the solution robust against mispredictions.
To summarise, RA-SS works as shown in Algorithm 4.3.

Algorithm 4.3¿e RA-SS algorithm.

{ Repeated for each task Tk }

1. Use any predictor to predict future work ŵk , . . . , ŵN .

2. Calculate sk by solving Optimisation Problem 4.3 using Algorithm 4.1.

3. Start the execution of task Tk at speed sk .

4. When ŵk work has been executed and the task is not �nished, switch to the
speed smax.

RA-SS has a good performance when the predictions are higher than the actual
work, because switching to smax results in a performance penalty. If it can be guar-
anteed that ŵn ≥ wn for all tasks, then the actual deadline can be used instead of
the robust deadline.

RA-SS produces an optimal robust solution when the predictions are correct. In
that case, it is not required to increase the speed during the execution of a task, and
the task uses a constant speed (satisfying the conditions of ¿eorem 2.1).

4.4.2 pra-ss

¿e RA-SS algorithm presented in the previous section requires predictions of all
future tasks, which may imply that a signi�cant computational overhead occurs for
applications that have many tasks. For some types of applications, we can use the
structure to reduce the complexity of the algorithm. In this section we consider
applications have tasks with equidistantly spaced (i.e. periodic) arrival times and
deadlines. Examples of such applications can for instance be found in speci�c
multimedia and telecommunication applications.

More precisely, an application consists of N tasks, with an unknown workload for
each task, and a �xed amount T of time between the arrival times and deadlines of
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two consecutive tasks, i.e. for all tasks Tn :

an ≙ a
0
+ nT ,

dn ≙ d
0
+ nT ,

where the constants a0 and d0 represent the phase of the arrival times and deadlines.
Note, that it is possible that d0 is greater than some of the �rst arrivals a1 , a2 , . . . ,
meaning that there can be several tasks that have already arrived, but for which the
deadline has not yet passed.

In practice, only predictions of the work of a few future tasks are available. How-
ever, the evaluation (Section 4.5) shows that predictions of only a small number
of future tasks are su�cient to obtain near-optimal results. We denote the maxi-
mum number of future tasks for which predictions are available by ρ. ¿e tasks
Tk , . . . , Tk+ρ−1 together are called the prediction window. For the remaining tasks
Tn ∈ {Tk+ρ , . . . , TN}, we use the mean of the work (wAVG) as predictor for the
work, i.e. ŵn ≙ w

AVG. For this, we assume that either this mean is known or ap-
proximated using a moving average. In the evaluation in Section 4.5 we show that
this is a good predictor for work outside the prediction window.

¿e following theorem proves that the optimal speed does not change during the
aggregated tasks.

¿eorem 4.2. For the optimal robust solution of the considered problem it holds that
sk+ρ+1 ≙ ⋅ ⋅ ⋅ ≙ sN−1.

Proof. For this proof, we use the function optspeed from Algorithm 4.1. Assume
the theorem is not true and some task Ty ∈ {Tk+ρ+1 , . . . , TN−1} has a di�erent
speed than task Ty−1 or task Ty+1 from the same set. ¿en task Ty was selected
by the second statement in the function optspeed that operates on some tasks{Tx , . . . , Tz}. ¿e algorithm assigns speed F to this task Ty .

When task Ty was selected because it misses its deadline, it directly follows from
the function optspeed that

y ≙ argmax
i∈{x , . . . ,z}

tB +
ŵ i

F
− d̂ i(ŵ i). (4.1)

¿en

tB +
∑

y
i=x ŵ i

F
− d̂y(ŵy) > tB +

∑
ρ+k
i=x ŵ i

F
− d̂k+ρ(ŵk+ρ)

⇒
∑

y

i=k+ρ+1
wAVG

F
− Ty > −T(k + ρ)

⇒
(y − (k + ρ))wAVG

F
> T(y − (k + ρ))

⇒
wAVG

F
− T > 0. (4.2)
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Using this inequality we can derive:

tB +
∑

y
i=x ŵ i

F
− d̂y(ŵy) > tB +

∑N
i=x ŵ i

F
− d̂N(ŵN)

⇒(wAVG

F
− T) y > (wAVG

F
− T)N

⇒y > N .

¿e �rst inequality is true due to (4.1), since y is the result of the argmax operator,
and the second inequality is true due to (4.2), leading to a contradiction.

When task Ty is selected because it is scheduled to start before it arrives, a con-
tradiction can be derived in a similar way. Since this contradicts the assumption
Ty ∈ {Tk+ρ+1 , . . . , TN−1}, the theorem holds.

Based on this the tasks Tk+ρ+1 , . . . , TN−1 can be aggregated to a single task. More
precisely, we aggregate the tasks Tk+ρ+1 , . . . , TN−1 outside the prediction window,
to a new task that has the work of tasks Tk+ρ , . . . , TN−1 together and has the arrival
time of task Tk+ρ+1 and deadline of task TN−1. Aggregating these tasks does not
in�uence the solution since the optimal speed does not change during any of these
tasks. Within our revised algorithm, called PRA-SS, tasks are aggregated and RA-
SS is executed to �nd the optimal solution of the resulting set of ρ + 1 tasks. Due
to the aggregation of tasks, PRA-SS is not quadratic in the number of tasks N , but
in the window length ρ. For example, with ρ ≙ 1, PRA-SS is executed in constant
time, and only a few operations are required.

¿e following example demonstrates the solution produced by RA-SS and PRA-SS.

Example 4.3 ((P)RA-SS). We again use the application from Example 4.1. Figure 4.4
shows both optimal solutions, namely the optimal robust solution obtained by RA-SS,
and the solution found by PRA-SS. For PRA-SS, we use a prediction window of ρ ≙ 1.
¿e �gure shows that (P)RA-SS follows the optimal solution closely, but there are slight
deviations which is the price for robustness. As RA-SS takes more information into
account, it has a better performance than PRA-SS.

4.5 Evaluation

4.5.1 application for evaluation

For the evaluation, we use an MPEG-2 decoder (libmpeg2 [40]) and consider de-
coding each video frame to be a separate task. To get sample data that is used to
evaluate all considered algorithms, we measured the work of decoding each video
frame of 34 di�erent video sequences on a 3GHz Intel Core Duo processor.

Although video decoding is not a hard real-time application, we show that we can
add robustness at no signi�cant cost. More precisely, we show that while we max-
imise the QoS (Quality of Service), the energy consumption is signi�cantly lower
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Figure 4.4 ś ¿e online solution from Example 4.3.

than that of approaches that do not guarantee that deadlines are met. Because (i)
MPEG-2 video decoding is a well-known application, (ii) MPEG-2 video decod-
ing has a �uctuating workload (due to I/P/B-frames), (iii) many standard video
sequences are available and (iv) our results are easy to reproduce, this is an excellent
application for evaluating our approaches. However, it should be noted that this
evaluation using MPEG-2 is only an example, and that the (P)RA-SS approach is
very generic and works for many di�erent types of applications.

We have used the CIF and 4SIF videos from [1] and encoded these sequences to
MPEG-2. ¿ese sequences have a signi�cant workload on a modern computer, but
still o�er enough opportunities for speed scaling. Because the work for the �rst few
frames cannot be accurately measured, we skip the �rst Group Of Pictures (GOP)
of 12 frames in all video sequences.

For the evaluation we must choose a size of the playback bu�er. Video decoders
use a bu�er for playback that can contain at least the frames within a single GOP
(i.e. at least 0.5s for our sequences), for both reordering of out-of-order frames and
for �exibility. We set this bu�er to one second and adapt the deadline of the �rst
frame accordingly, i.e. a0 ≙ 0 and d0

≙ 1.
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Figure 4.5 ś ¿e greedy solution from Example 4.4.

4.5.2 greedy algorithms

To compare our algorithms with related work, we consider two popular classes of
approaches to speed scaling, which we refer to as GreedySlack and Greedy .

Many papers (e.g., [67, 93]) use the slack time of a task to decrease the speeds of
subsequent tasks by greedily choosing the local optimal speed. ¿e GreedySlack
approach is straightforward: all slack time that is created by task Tk−1 is used to
decrease the speed of a task Tk . It calculates the speed for task Tk by

sk ≙
wmax

dk − bk
.

Other papers (e.g., [27, 69, 71]) use predictions of the work to decrease the speed
in a greedy fashion, by choosing the lowest speed sk that is allowed by the deadline
of task Tk . We do not compare our approach with individual papers, but compare
it to the entire class of such greedy approaches. For fairness, we assume that the
predictor is perfect (i.e. ŵk ≙ wk), which is the goal of the predictors in all these
papers. We refer to this approach as Greedy. For Greedy, the speed for a task Tk
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is calculated by

sk ≙
ŵk

dk − bk
.

¿e results of these techniques are o en far from the theoretical optimum given in
Section 4.3. ¿e following example illustrates this.

Example 4.4 (Greedy speed scaling approaches). We again use the application from
Example 4.1. When GreedySlack is used, the speeds are initially high because there
is no slack, but this is only a start-up e�ect. Figure 4.5 demonstrates GreedySlack.

We compare this approach with Greedy, for which we use a perfect predictor. From
Figure 4.5 it is clear that both greedy approaches result in many speed �uctuations
and are not optimal, although GreedySlack has a reasonable performance for this
speci�c example and performs better than Greedy.

¿is di�erence between the two approaches is remarkable, since inmany papers the
focus is on predicting the work and using an approach similar to Greedy, while
a simple approach as GreedySlack attains a much lower energy consumption
without using any predictor. Still, both greedy speed scaling approaches—despite
their popularity [27, 69, 71]—require signi�cantly more energy than the optimal
energy consumption, because the speed �uctuates a lot. ¿is is contrary to what is
accomplished by the optimal o�ine algorithm from Section 4.3.

4.5.3 evaluation of online algorithms

In our evaluation, Greedy with a perfect predictor is used as a baseline. Greedy-
Slack is less greedy than Greedy, and guarantees that deadlines are always met
and does not require any predictor. In addition to this robustness, GreedySlack
requires less energy for the tested video sequences, as Table 4.3 shows in the column
GreedySlack. Because it is less greedy, the slack time is saved for future tasks
and this leads to less �uctuations of the speed, which explains why less energy is
consumed. Note that the greedy approaches work reasonably well for the sequences
“bridge_close_cif ” and “bridge_far_cif ”. Because these video sequences do not
contain a lot of motion, these sequences are not very representative.

¿e theoretical lower bound for the energy consumption can be found by o�ine
speed scaling. Hereby perfect knowledge of the entire future is used to calculate the
optimal speeds. Table 4.3 shows the energy consumption of the optimal solution
(o�ine speed scaling) as percentage of the energy consumption of Greedy in
the column “Optimal”, which shows that in theory, the energy can be reduced by
up to 55% for these sequences. ¿is number increases signi�cantly by enlarging
d0 (meaning that the bu�er size is increased). Table 4.3 shows that the optimal
solutions require almost no speed changes (about 1 for every 300 frames), while the
greedy approaches require that the speed is changed for every one or two frames.
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Table 4.3 ś Evaluation: Energy consumption % of Greedy (% of frames that change the

speed). Lower is better.

Filename Optimal
PRA-SS

(perfect)
PRA-SS

(WCW)

Greedy-

Slack

(perfect)

akiyo_cif 77 (0.000) 78 (11) 78 (9) 93 (53)

bowing_cif 76 (0.000) 77 (10) 78 (10) 91 (55)

bridge_close_cif 91 (0.001) 91 (4) 91 (4) 95 (47)

bridge_far_cif 91 (0.001) 91 (5) 91 (4) 96 (50)

bus_cif 45 (0.000) 46 (11) 49 (10) 69 (50)

city_4cif 88 (0.000) 89 (22) 89 (21) 97 (80)

city_cif 80 (0.000) 80 (11) 81 (11) 95 (53)

coastguard_cif 81 (0.000) 81 (7) 81 (8) 97 (65)

container_cif 78 (0.000) 78 (7) 78 (8) 94 (55)

crew_4cif 88 (0.000) 89 (45) 89 (46) 97 (87)

�ower_cif 77 (0.000) 77 (13) 78 (12) 96 (71)

football_422_4sif 83 (0.003) 83 (34) 84 (32) 96 (86)

football_422_cif 83 (0.000) 83 (7) 84 (8) 96 (69)

foreman_cif 81 (0.000) 81 (8) 81 (8) 97 (62)

galleon_422_4sif 81 (0.000) 82 (17) 82 (17) 97 (75)

galleon_422_cif 77 (0.003) 78 (11) 78 (11) 93 (55)

garden_sif 62 (0.000) 62 (17) 63 (17) 96 (82)

hall_monitor_cif 79 (0.000) 79 (6) 79 (5) 96 (53)

harbour_4cif 89 (0.000) 89 (21) 89 (20) 98 (83)

highway_cif 92 (0.000) 92 (7) 92 (7) 95 (46)

ice_4cif 87 (0.002) 87 (18) 87 (16) 98 (84)

ice_cif 79 (0.000) 79 (5) 79 (5) 97 (61)

intros_422_4sif 83 (0.000) 84 (25) 84 (26) 98 (74)

intros_422_cif 80 (0.003) 81 (11) 81 (11) 95 (60)

mad900_cif 88 (0.002) 89 (6) 89 (6) 96 (54)

mobile_cif 79 (0.004) 80 (14) 82 (15) 93 (63)

news_cif 77 (0.000) 78 (8) 78 (8) 93 (60)

paris_cif 87 (0.002) 87 (7) 88 (7) 94 (50)

sign_irene_cif 86 (0.004) 87 (8) 87 (7) 97 (60)

silent_cif 79 (0.000) 79 (8) 79 (8) 96 (60)

stefan_sif 80 (0.000) 82 (6) 80 (6) 93 (63)

students_cif 86 (0.001) 87 (6) 87 (6) 94 (51)

tempete_cif 77 (0.000) 78 (11) 78 (11) 94 (61)

vtc1nw_422_4sif 81 (0.000) 82 (21) 82 (18) 96 (71)
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In the previous section, we mentioned that a single prediction (ρ≙1) is o en su�-
cient for a good performance. In our evaluation, we use the moving average of the
last twelve frames (the GOP size) for wAVG and we use a perfect predictor ŵk . ¿e
result is shown in the column “PRA-SS (perfect)”, which shows that with a good
prediction for the work of the next frame, PRA-SS obtains results that are close to
the theoretical optimum found using the results from Section 4.3 (approximately
one percentage point di�erence). ¿is shows that the additional robustness of PRA-
SS does not decrease the performance signi�cantly. ¿e di�erence is this small,
because the cost of robustness is only due to a start-up e�ect. Only the �rst few
tasks may execute at a too high speed because no slack is available. For later tasks,
slack has been built up. Using only a single prediction does not have a negative
e�ect in our evaluation, because for the considered application the average work
provides enough information to determine the amount of slack time that has to
be kept back for the entire future; �ne grained predictions for tasks further in the
future are not required.

Hence, with a perfect prediction (P)RA-SS has a near optimal performance. How-
ever, a perfect prediction is not realistic in practice, hence we want to known what
happens when an extremely imperfect and conservative predictor is used. We eval-
uate this by using the Worst Case Work (WCW) as a prediction (i.e. ŵk ≙ w

max),
which is shown in the column “PRA-SS (WCW)” of Table 4.3. ¿e table shows
that using ŵk ≙ w

max works surprisingly well. ¿e main reason for this is that this
approach is very conservative with using slack. Slack time is not used at �rst, but
a er a short while, there is plenty of slack time available. Hence overpredicting
the work decreases the performance initially, but this is again only a start-up e�ect.
We noticed that when d0 is much smaller, using the WCW as a prediction gives a
decreased performance, but remains competitive with GreedySlack and Greedy
(with optimal predictions). Furthermore, we used a prediction window of size one
(ρ≙1), hence PRA-SS has a constant time complexity, and the number of steps the
algorithm requires is very small.

Figure 4.6 depicts the evaluation results from Table 4.3. Since the energy consump-
tion is normalised to Greedy, Greedy is shown as 100%. In the optimal solution,
the speed is rarely changed (for less than 1% of the frames), and, therefore, these
solutions are on the bottom of this plot. In the top right area of this plot, the results
for Greedy and GreedySlack are clustered, which means that such approaches
require many speed changes and have a relatively high energy consumption.

Our PRA-SS algorithmwith theWCWas predictor has a performance that is nearly
identical to PRA-SS with a perfect predictor for the work. With a perfect predictor
the energy consumption is slightly lower, while the speed is sometimes changed
less o en than when theWCW is used to predict the work. PRA-SS has an excellent
performance for both predictors, compared toGreedy andGreedySlack. ¿e en-
ergy consumption is near the theoretical optimum, while for most video sequences
the speed is changed for every 5-10 frames. ¿is shows that when RA-SS or PRA-SS
are used, the overhead due to the number of speed changes is negligible.
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Figure 4.6 ś Scatter plot with the energy consumption and speed changes for the sequences

from Table 4.3.

¿is evaluation demonstrates that little can be gained by spending a lot of e�ort at
predicting the work of tasks for video decoding applications. It is more important
to have a good estimate of the average work of future tasks—which is in practice
easy to approximate by using a moving average—and to use this information to
decrease the number of speed changes.

4.5.4 simplifying assumptions

In Section 4.2.2, we gave some simplifying assumptions that we used to ease the
notation and discussion. We assumed for instance that the speed scales linearly
with the clock frequency, and that the speed is decreased with respect to the maxi-
mal speed. Because of this assumption, the actual execution time is lower than is
predicted by the model. However, this is the same as using a work prediction that
is too high. But as the evaluation shows, overpredictions of the work have almost
no negative e�ects on the (P)RA-SS algorithm.

Furthermore, we assumed that continuous speeds are available. However, in prac-
tice many processors have only a few (discrete) speeds. When we use the nearest
discrete speed that is higher than the optimal (continuous) speed, the task �nishes



61

4
.6
ś
C
o
n
c
l
u
si
o
n
s

earlier than our algorithm predicts. Again, this is in e�ect similar to an overpredic-
tion of the work, and we have shown that the negative e�ect of overpredicting the
work is relatively small.

In Section 4.2.2, we assumed that the overhead of changing the speed is negligible.
Our evaluation (see Table 4.3 and Figure 4.6) shows that the number of speed
changes for (P)RA-SS is very low (typically every 5–10 frames). For video, tasks are
large (in the evaluation 40ms), and the speed is not changed for every task. ¿e
transition delay overhead is at most 62.68µs [68] on an Intel Core2 Duo E6850.
Because the transition delay overhead is low and speed changes by our algorithms
are rare (approximately every 0.25s–0.5s), the overhead is negligible.

4.6 Conclusions

¿is chapter discusses both o�ine and onlineminimisation of the energy consump-
tion of uniprocessor systems executing tasks with agreeable deadlines. ¿e power
consumption consists of both static and dynamic power. For the static power, we
considered two di�erent scenarios in Section 4.3: (i) static power is consumed until
the deadline of the last task, (ii) static power is consumed until the last task has
�nished. For uniprocessor systems, the �rst problem was already solved in the liter-
ature, while for the second problem we gave an optimal algorithm in Section 4.3.2.
¿is algorithm is a contribution to the theory of single core speed scaling.

A second aspect considered in this chapter concerns the knowledge about the work
of future tasks. Many speed scaling techniques use either a feedback controller
to decrease the speed, or use predictions of the work of a task to greedily adjust
the speed. ¿e RA-SS and PRA-SS algorithms presented in this chapter generalise
both techniques mentioned above: we use predictions of the work, calculate the
optimal speed, and use the available slack time as feedback for the next control
step. Our algorithms accept predictions for an arbitrary number of tasks, but we
have shown that and argued why using only a single prediction is o en su�cient
for near-optimal energy consumption.

Many papers use predictions in a greedy fashion: each task is executed at a speed
that is only locally optimal. Not all greedy approaches are robust, and they require
signi�cantly more energy than our algorithms, because the speed is changed very
o en. We show that greedy approaches—o en used in the literature on work pre-
diction for speed scaling—require up to twice the amount of energy required when
RA-SS is used. Surprisingly, in the evaluation our approach with a very inaccurate
and conservative predictor (namely, the WCW) works signi�cantly better than the
greedy approach with a perfect predictor. ¿is demonstrates that it is not always
important to have good predictions for speed scaling to work well. Instead, it is
crucial to have a good estimation of the average work, which is in practice easier
to obtain, and to avoid speed �uctuations by distributing slack among future tasks.

We have evaluated our algorithms using video decoder work, and compared the
energy consumption and the number of speed changes of our approaches to the
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most common speed scaling approaches from the literature. Compared to the
approaches from the literature, our approach reduces the energy consumption and
the number of speed changes signi�cantly. Our evaluation shows that with PRA-SS,
the speed is (on average) changed for every 5-10 frames (i.e. tasks), while for the
greedy approaches from the literature it is changed every one to two frames.

Finally, in case the predicted work is always higher than the actual work, the ro-
bustness constraints that we introduce can be relaxed (i.e. use dn in RA-SS instead
of d̂n(ŵn)), and the energy consumption can be further reduced.



Chapter5

Scheduling for Global Speed

Scaling

Abstract ś While a large part of the theory oriented literature focuses on lo-

cal speed scaling, where every core’s speed can be set separately, this chapter

presents a study of the theoretical aspects of the in practice more common

global speed scaling, that makes speed changes for the entire chip.

¿is chapter shows how to choose the optimal speeds, which minimise the

energy for global speed scaling, and it discusses the relationship between

scheduling and optimal global speed scaling. Formulas are given to �nd this

optimum under time constraints, including proofs thereof. ¿e NP-hard

problem of simultaneously choosing speeds, and a schedule that together

minimise the energy consumption, is discussed. A scheduling criterion is

derived that implicitly assigns speeds and minimises energy consumption.

Furthermore, this chapter studies the e�ectiveness of a large class of schedul-

ing algorithms with regard to the derived criterion, and a bound on the

maximal relative deviation from the optimum is given. Simulations show

that with our techniques an energy reduction of up to 30% can be achieved

with respect to state-of-the-art methods.

5.1 Introduction

¿e previous chapter deals with optimal speed scaling for uniprocessors. Lately,
multicore processors have become popular, but theory on optimal speed scaling for
real-time applications that are executed on such processors is still missing. ¿ere
are two important �avours of multicore speed scaling, namely local speed scaling
and global speed scaling. Where local speed scaling can set the speed for each

Major parts of this chapter have been submitted for publication [MG:2].
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core separately, global speed scaling sets the speed for the entire chip [66]. Global
speed scaling occurs more o en in practice, because global speed scaling hardware
is easier and cheaper (see, e.g., [24, 66]) to implement in a microprocessor than
local speed scaling. However, local speed scaling has more freedom in choosing
speeds, and therefore, it is o en capable of saving more energy than global speed
scaling. Furthermore, it requires completely di�erent algorithms to �nd the optimal
schedules and speeds.

In this chapter, we focus on global speed scaling, since it is the most popular tech-
nique in practical systems nowadays. Examples of modern processors and systems
that use global speed scaling are the Intel Itanium, the PandaBoard (dual-core ARM
Cortex A9), IBM Power7 and the NVIDIA Tegra 2 [50, 51, 66].

A popular approach to program multicore systems divides the application into sev-
eral sequential tasks such that the concurrency becomes explicit. Since these tasks
cannot be executed in an arbitrary order, the ordering relations of tasks have to be
speci�ed. ¿is is done via a so-called task graph in which the tasks are represented
by vertices and dependencies between tasks are represented by edges. Furthermore,
the applications that we consider have a global time constraint on the completion
of the entire application. To be able to execute an application on amulticore system,
a schedule for its tasks needs to be speci�ed.

While several important theoretic results on local speed scaling and scheduling are
given in recent publications [26, 58, 72], to the best of our knowledge, no theoretic
results on the interplay of scheduling and global speed scaling are given in the liter-
ature. ¿e problem that we study in this chapter is energy minimisation of a global
speed scaling system that executes tasks with precedence constraints and a com-
mon deadline (PM ; global ∣ an ≙ a; dn ≙ d; prec ∣E). A simple and practice oriented
approach would be to use a single speed for the entire application, for example
by using the state-of-the-art work by Li [59]. However, for most applications on a
global speed scaling system, such an approach does not lead to an optimal solution.
We prove that the approach that we present gives an optimal solution. We use the
single speed approach as a reference to compare against, to show the signi�cance of
the energy gains. In contrast to other approaches, our approach takes parallelism
into account.

We furthermore show that to determine both optimal speeds and an optimal sched-
ule, the problems should not be considered separately, but as a single optimisation
problem. For a given application, modelled as a task graph, we determine a crite-
rion for an optimal schedule and show how to calculate the speeds that minimise
energy consumption, while still meeting the application deadline. ¿is scheduling
criterion, in contrast to other scheduling criteria for energy minimisation, takes
this interplay between scheduling and speed selection into account. It implicitly as-
signs optimal speeds, and minimises the energy consumption. As many of the well-
known scheduling algorithms aim at minimising the makespan (schedule length)
of an application, we investigate how well these algorithms perform at minimising
our scheduling criterion (which minimises the energy consumption).
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To derive our results, we characterise schedules of applications in terms of paral-
lelism, which gives for each number of cores the work (e.g., in number of clock
cycles) for which exactly that many cores are active. ¿is model abstracts from
the actual tasks and their precedence constraints, but still allows for the required
analysis. For a given schedule, we calculate the speed for each “number of active
cores” and thereby obtain an abstract expression in terms of the parallelism. ¿is
expression is substituted into the cost function, to obtain the costs of a schedule
with optimal clock frequencies as a function of the weighted makespan (to be dis-
cussed), which we use as scheduling criterion. For a given makespan and total
amount of work of all tasks, we use the weighted makespan to determine the best
and worst possible parallelism (i.e. distribution of work over the cores). Using
these bounds we derive an approximation ratio for the weighted makespan (that
minimises total energy) in terms of the makespan (schedule length). With these
results, we derive theoretical results on energy optimal scheduling and we study
the energy reduction resulting from scheduling algorithms that were designed to
minimise the makespan.

Summarising, this chapter �lls a gap in the literature by answering the following
research questions:

» Given a schedule, how can we determine the speeds that minimise the en-
ergy consumption by using global speed scaling?

» What is the relation between scheduling and optimal global speed scaling?

» How does the presented approach compare against an approach that uses a
single speed for the entire application?

¿e remainder of this chapter is structured as follows. In Section 5.2, mathematical
models of the power consumption and applications are given. To be able to derive
analytical results on speed selection and scheduling, modelling assumptions must
be made, such as neglecting speed scaling overhead and the in�uence of shared
caches. ¿e implications of these assumptions are also discussed in Section 5.2.
Using the presented model, Section 5.3 gives an algorithm to calculate the globally
optimal speeds and shows that the optimal speeds depend on the amount of paral-
lelism. Whereas Section 5.3 gives optimal speeds for a given schedule, Section 5.4
discusses the theoretic relation between scheduling and optimal speed scaling. ¿is
section proves that for two cores an energy minimal solution can be achieved by
minimising the makespan. For three or more cores, we show that minimising the
makespan does not necessarily minimise the energy consumption. Furthermore,
we give a scheduling criterion that, when minimised, does minimise the energy
consumption. Since many popular scheduling algorithms aim at minimising the
makespan, we give an approximation ratio that shows how e�cient these algorithms
are at minimising the energy consumption. ¿e evaluation in Section 5.5 compares
our work to the state of the art (that uses one speed for the entire application), and
shows that in theory, for 16 cores the energy consumption can be reduced by up to
44%.
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5.2 Model

¿e application model speci�c to this chapter is given in Section 5.2.1, while the
power model used in this chapter is given in Section 5.2.2. ¿ese sections recap
the relevant aspects already given in Chapter 2. Since for global speed scaling the
model can be simpli�ed a er scheduling, we discuss a model that uses the amount
of parallelism in Section 5.2.3.

5.2.1 application model

We consider an application running on a Chip Multi Processor (CMP) system with
M > 1 homogeneous processor cores (the single core case is trivial). We assume that
the cores are coupledwith highly e�cient communicationmechanisms (e.g., shared
memory) as in [59]. ¿e application consists of N tasks, denoted by T1 , . . . , TN , for
which we use the assumption that all tasks arrive at time 0 (i.e. an ≙ 0 for all n).
¿ese tasks are executed without preemption or migration. For each pair of tasks
Ti and Tj there may be a precedence constraint denoted Ti ≺ Tj , meaning that
task Ti should be executed before task Tj . In the context of this chapter, we use a
single deadline d for the entire application (i.e. dn ≙ d for all n), or equivalently,
for the last task that �nishes.

Each taskTn haswn work (measured, e.g., in clock cycles), leading to a total work for
the applicationW ≙ ∑N

n=1 wn .¿e length of the schedule in terms of work, called
the makespan, is denoted by S. To be independent of the speed the makespan is
measured in terms of work, in contrast to a makespan in seconds that does depend
on the speed.

We assume that the speed can be changed at any time, also during execution of a
task. As global speed scaling is used, this speed is used for the entire chip. In this
way, the speed can be given by a function s ∶ R+ → R

+ that maps a moment in time
to a normalised speed.

For our study, some assumptions are made, to be able to calculate optimal speeds
and determine a criterion for optimal scheduling. We assume that the speed of the
cores scale linearly with the clock frequency, andwe neglect the in�uence of caching
and shared resources. If we take as base speed a speed which is larger than or equal
to all used speeds, this assumptions does not lead to a violation of deadlines since
decreasing speed does not decrease the speed of the memory access. Furthermore,
as is common in the literature [26, 32, 38, 75, 89, 90], we do not consider the e�ect
of caches because it is very application speci�c, and it makes deriving an optimal
scheduling criterion infeasible.

If for a given application the speeds are speci�ed, then the execution times of the
tasks are known and it can easily be checked whether the application meets its
deadline. Since the completion time for the last task depends on the schedule (i.e.
the makespan) and on the chosen speeds, the completion time of the last task can
be considered to be a speed dependent makespan.
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5.2.2 power model

We consider a homogeneous CMP system that employs global speed scaling, which
means that at any time t allM cores use the same speed. ¿e power consumption
consists of dynamic power and static power. For a uniprocessor system, the power
consumption is given by (see Section 2.3.1):

p(s) ≙ γ1sα + γ2 + γ3s.
As is argued in Section 2.3.1, we may assume without loss of generality that γ3 ≙ 0.
We assume that the processor is powered down a er the last task is �nished.

¿e power consumption of a multicore system depends on how many cores are
active, i.e. how many cores have tasks scheduled on them. By using clock gating,
the speed (e.g., clock frequency) of an inactive core can be set to zero with little
overhead. ¿e power function pm now gives for a given number m of active cores
the total power as a function of the speed, which is the dynamic power times the
number of active cores m, plus the static power:

pm(s) ≙ γ1msα + γ2 ,

and the respective energy-per-work function is given by:

p̄m(s) ≙ pm(s)
s

.

Since s(t) gives the speed for a certain time, pm(s(t)) gives the power consumed
bym active cores operatingwith speed s(t) at time t. ¿us, the energy consumption
during a time interval ∥t1 , t2∥ in which always m cores are active can be calculated
by integrating power over time:

∫
t2

t1
pm(s(τ))dτ.

Note that the power function is strictly convex. We use this fact to prove that,
when the number of active cores is constant for some interval, it is optimal to use
a constant speed for this interval (equivalent to the uniprocessor case):

Lemma 5.1. If the number of active cores remains constant (equal to m) during the
entire time interval ∥t1 , t2∥, there is a constant speed that is optimal for this interval.
Proof. ¿e proof of ¿eorem 2.1 also works for this lemma, because m is constant
on the interval ∥t1 , t2∥.
Following this lemma, we assume without loss of generality in the remainder of this
chapter that the speed function is constant on intervals where the number of active
cores is constant. ¿is avoids unnecessary switching of the speed and makes the
analysis of the problem easier, while the solution remains optimal. ¿is lemma only
shows that for the periods where the number of active cores does not change, the
speed should be constant, the actual calculation of the optimal speeds is discussed
in Section 5.3.
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5.2.3 parallelism based model

¿e model given above uses the perspective of tasks. In the following, we use
an alternative formulation from the viewpoint of parallelism, since this simpli�es
the analysis in the remainder of this chapter. Furthermore, task-centric reasoning
does not make sense for speed selection in a global speed scaling system, since an
individual task cannot be assigned its own speed.

In total, there areM cores on which N tasks have to be scheduled, while respecting
the precedence constraints. For a given schedule, the relative order in which tasks
are executed is una�ected by the speeds that are used, since all cores run at the
same speed. In other words, when tasks Ti and Tj �nish at the same time for some
speed assignment, they �nish at the same time for all other speed assignments (i.e.
where a higher/lower speed is used, both tasks run equally faster/slower). ¿is is
in contrast to local speed scaling, where the relative ordering of tasks can change if
not all cores run at the same speed. We use this property to decrease the complexity
of calculating the optimal speeds: only the number of active cores at any moment
has to be considered. ¿e following corollary is used to simplify the speed scaling
problem.

Corollary 5.1. Consider two time intervals ∥t1 , t2∥ and ∥t3 , t4∥, during which exactly
m cores are active. If in an optimal solution both intervals are assigned constant
speeds, then these speeds are the same for both intervals.

Proof. ¿eproof of¿eorem 2.1 also works for this corollary, becausem is constant
on the intervals ∥t1 , t2∥ and ∥t3 , t4∥.
¿is corollary implies that the amount of work of a task is no longer relevant a er
scheduling to determine the optimal speeds, only the number of cores that are
active at a certain interval is. For this, let ωm denote the total duration of work
(measured again, e.g., in clock cycles) for which exactly m cores are active. Hence,
the total work is given byW ≙ ∑M

m=1 mωm ≙ ∑
N
n=1 wn .¿us, whenever the schedule

is known, we only have to consider the values ω1 , . . . ,ωM , since these contain all
the relevant information for solving the problems under consideration. ¿e values
ω1 , . . . ,ωM together are referred to as the amount of parallelism of the schedule of
an application. For example, the amount of parallelism if all work W is done by
always using allM cores is given by ωM ≙W/M and ωm ≙ 0 for m ≠ M, while the
amount of parallelism for all work being done on one core is given by ω1 ≙W and
ωm ≙ 0 for m ≠ 1. ¿e variables ω1 , . . . ,ωM fully describe the relevant structure of
a schedule that we need for analysis, meaning that we no longer need the individual
tasks and their precedence constraints.

Since the optimal speeds only depend on the number of active cores, we use sm
to denote the speed that is used when exactly m cores are active. It is important
to note, that in contrast with the previous chapter, where sm denotes the speed of
a task, now sm denotes the speed for all intervals with m active cores. Now the
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Figure 5.1 ś Graph for precedence constraints in Example 5.1.

total energy consumption can be calculated by multiplying the energy-per-work
function by the work:

E(s1 , . . . , sM) ≙ M

∑
m=1

p̄m(sm)ωm (5.1)

≙

M

∑
m=1

[γ1msα−1m ωm+γ2
ωm

sm
] . (5.2)

Since ωm

sm
gives the execution time of all the parts of the application that require

exactly m active cores, the total execution time of the application is given by:

M

∑
m=1

ωm

sm
.

¿e notation and ideas from this section are illustrated in the following example.

Example 5.1. Consider an application that consists of six tasks (N ≙ 6) and with a
deadline d ≙ 100, that has to be scheduled on a multicore system with M ≙ 3 cores.
¿e precedence constraints are given by T1 ≺ Ti and Ti ≺ T6 for i ∈ {2, . . . , 5} as
depicted in Figure 5.1. ¿e work of the tasks is given by w ≙ (10, 20, 15, 40, 15, 10),
and the total work is given byW ≙ w1 + ⋅ ⋅ ⋅ +w6 ≙ 110.

Figure 5.2 gives a schedule that minimises the makespan. ¿e relevant intervals of
the schedule with length I1 , . . . , I6 (in workload) are presented horizontally, where
a new interval begins at the times where a task starts or stops. During intervals 1, 5
and 6, exactly one core is active, hence ω1 ≙ I1 + I5 + I6 ≙ 30. Similarly it holds that
ω2 ≙ I4 ≙ 10 and ω3 ≙ I2 + I3 ≙ 20. ¿e makespan is given by the work duration
between starting task T1 and completing task T6, hence S ≙ I1+I2+I3+I4+I5+I6 ≙ 60
or alternatively S ≙ ω1 + ω2 + ω3 ≙ 60. ¿e total work can be calculated in terms of
ωm ,W ≙ ω1 + 2ω2 + 3ω3+ ≙ 110.
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Proc. 1 T1 T2

Proc. 2 T3 T5

Proc. 3 T4

T6

I 1
≙
10

I 2
≙
15

I 3
≙
5

I 4
≙
10

I 5
≙
10

I 6
≙
10

Figure 5.2 ś Schedule from Example 5.1.

Corollary 5.1 states that intervals with the same amount of parallelism should receive
the same constant speeds in an optimal assignment. Hence, intervals 1, 5 and 6 receive
the same speed (namely s1) since exactly one core is active during these intervals. In
contrast, intervals 3 and 4 have respectively two and three active cores andmay require
di�erent speeds (respectively s2 and s3). Although the speed may change while a task
is active, changing the speed always coincides with the begin or completion time of
some task, which makes it easier to implement in a scheduler. For example, during
the execution of task T4 the speed could be changed three times: a er completing tasks
T3, T2 and T5.

For illustration purposes, we use (normalised) speeds from the interval ∥0, 1∥ and
use the power function pm(s) ≙ ms3. ¿is leads to an energy consumption of
E ≙ s21 30 + 2s

2
210 + 3s

2
320.

¿e optimal speeds (as will be shown in Section 5.3) are s1 ≈ 0.714, s2 ≈ 0.567 and
s3 ≈ 0.495, with an optimal energy consumption of 36.47. When a single speed is
used for the entire application (s1 ≙ s2 ≙ s3), the optimal speed is

S
d
≙ 0.6 (where S is

the makespan of 60 and d is the deadline of 100). In that case, the energy consumption
is 39.60. ¿e formulas used to calculate the optimal speeds are given in the following
section.

5.3 Optimal speeds

In the previous section we presented a model that gives the energy in terms of
the amount of parallelism. In this section, we use this model and show how to
minimise the total energy consumption for a given schedule under the constraint
that the single deadline d for the entire application is met.



71

5
.3
ś
O
p
t
im

a
l
sp
e
e
d
s

For now (until Section 5.4), we assume that a schedule is given, hence ω1 , . . . ,ωM

are known. ¿e energy consumption for this schedule can be calculated using (5.2),
meaning that this is the cost function we have to minimise. ¿e constraint for the
minimisation is that the deadline d has to be met, i.e.,∑M

m=1
ωm

sm
≤ d .¿is leads to

the following convex optimisation problem.

Optimisation Problem 5.1.

min
s1 , . . . ,sM

M

∑
m=1

[γ1msα−1m ωm + γ2
ωm

sm
] ,

s.t.
M

∑
m=1

ωm

sm
≤ d .

Beforewe solve this problem, we discuss a necessary property of its optimal solution.
Assume, that we use a single speed for the entire application, i.e. s1 ≙ ⋅ ⋅ ⋅ ≙ sM .
Since this solution does not take the amount of parallelism into account, we can
improve it by slightly increasing s1 and slightly decreasing sm (for some m > 1),
while keeping the total execution time the same. ¿is implies that for one core
the energy consumption is increased, while for m cores the energy consumption
is decreased. Due to the superlinear relation (depending on α) between the speed
and the energy consumption, there is a bound (depending on α) on how far s1
should be increased and sm should be decreased. ¿e following lemma formalises
this aspect and shows that there is a �xed factor between the optimal values for sn
and sm that depends on α, m and n:

Lemma 5.2. For the optimal solution s1 , . . . , sM to Optimisation Problem 5.1, it holds
for every pair n,m ∈ {1, . . . ,M}, with ωn ,ωm > 0 that:

sn
α
√
n ≙ sm

α
√
m. (5.3)

Proof. Since sn and sm are positive real numbers, there exists an x > 0 such that:

sm ≙ snx . (5.4)

What remains to be proven is that x ≙ α

√
n
m
. We show that when the sum of the exe-

cution times of the work on n and m cores remains �xed, the energy consumption
is minimised when x ≙ α

√
n
m
.

Assume that the sum of the time during which either m or n cores are active is
given by the constant tn ,m . Using (5.4) this term can be expressed by:

tn ,m ≙
ωn

sn
+
ωm

sm

≙

ωn +
ωm

x

sn
.
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Now sn and sm can be written as a function of x:

sn(x) ≙ ωn +
ωm

x

tn ,m
,

sm(x) ≙ xωn + ωm

tn ,m
.

Using this, the energy consumption En ,m for the terms that belong to n and m can
be written as a function of x:

En ,m(x) ≙ γ1n (sn(x))α−1 ωn + γ2
ωn

sn(x)
+ γ1m (sm(x))α−1 ωm + γ2

ωm

sm(x)
≙ γ1n (sn(x))α−1 ωn + γ1m (sm(x))α−1 ωm + γ2 tn ,m .

As we consider an optimal solution, the factor x has to minimise En ,m(x) for the
given execution time tn ,m . Because the function En ,m(x) is strictly convex, the crit-
ical point of this function is a global minimiser. Hence, the value x that minimises
En ,m can be calculated by solving:

d

dx
En ,m(x) ≙ γ1n(α − 1) (sn(x))α−2 (− ωm

x2 tn ,m
)ωn

+ γ1m(α − 1) (sm(x))α−2 ωn

tn ,m
ωm

≙ 0.

¿is gives the minimiser xmin ≙
α

√
n
m
, and the lemma is proven.

We use Lemma 5.2 to prove the following theorem.

¿eorem 5.1. ¿e optimal speeds for Optimisation Problem 5.1 are given by:

s̊ ≙max{ α

√
γ2

γ1(α − 1) , ∑
M
m=1 ωm

α
√
m

d
} , (5.5)

sm ≙ s̊
α

√
1

m
, for m ∈ {1, . . . ,M}. (5.6)

Proof. By Lemma 5.2, any two speeds sn and sm are related by a factor that only
depends on n and m. We exploit this idea by de�ning a new variable s̊ ≙ sn

α
√
n,

for some n with ωn > 0. Because of (5.6), this implies that s̊ ≙ sm
α
√
m, for all

m ∈ {1, . . . ,M} with ωm > 0. Substitution of sm ≙
s̊

α
√
m
into Optimisation Prob-

lem 5.1 gives:
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min
s̊
(γ1 s̊α−1 + γ2

s̊
)[ M

∑
m=1

ωm
α
√
m] ,

s.t.
∑M

m=1 ωm
α
√
m

s̊
≤ d .

¿is is a strictly convex problem in a single variable (s̊), similar to the problem for
uniprocessor systems (see Section 2.6.1). ¿e solution is either

s̊ ≙
∑M

m=1 ωm
α
√
m

d
,

which is the lowest speed that is allowed by the deadline, or

s̊ ≙ α

√
γ2

γ1(α − 1) ,
which is the (unconstrained) minimiser of the cost function, i.e. the “generalised”
critical speed s̊ (see Section 2.6.3). Equation (5.5) chooses the highest of the two,
to ensure that the deadline is met and the speeds are at least the critical speed.

¿e proof of this theorem shows that the critical speed (the speed below which all
speeds are energy ine�cient, see Section 2.6.3) for m active cores is given by:

scritm ≙ α

√
γ2

mγ1(α − 1) . (5.7)

5.4 Scheduling and speed scaling

In the previous section, we assumed that a schedule was given. ¿is section studies
the problem of determining a schedule and a set of speeds that together minimise
the energy consumption while still meeting the deadline. Section 5.4.1 gives a
scheduling criterion for energy optimal scheduling, followed by the relation be-
tween this scheduling criterion and the makespan in Section 5.4.2. For the speci�c
situationM ≙ 2, Section 5.4.3 shows that minimising the makespan also minimises
the energy consumption.

5.4.1 scheduling criterion

It is appealing to �rst determine a schedule thatminimises themakespan (e.g., num-
ber of clock cycles) and calculate the optimal speeds for this schedule to solve the
overall problem a erwards. ¿is can lead to a suboptimal solution as the following
example demonstrates.

Example 5.2. Consider an application with T1 , . . . , T7, precedence constraints as
depicted in Figure 5.3 and workloads w ≙ (5.25, 5, 5, 5, 5, 5, 5.25). Assume that the
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T1

T2

T3

T4

T5

T6

T7

Figure 5.3 ś Example task graph.

deadline of this application is d ≙ 10 (in wall-clock time). ¿e unique schedule (up
to some reassignments to di�erent cores without changing the timing) that minimises
the makespan (to S ≙ 15.25, in work) for M ≙ 3 is given in Figure 5.4a. For this
schedule, ω1 ≙ 0, ω2 ≙ 10.25 and ω3 ≙ 5. All other schedules with di�erent values for
ω1 , . . . ,ω3 have a longer makespan (e.g., require more clock cycles). For illustration
purposes we use the dynamic power function pm(s) ≙ ms3 with s ∈ R+. For this
power function, using the optimal speeds leads to an energy consumption of 81.515.

Figure 5.4b shows an alternative schedule with makespan S ≙ 15.5. For this schedule,
ω1 ≙ 5.25, ω2 ≙ 0 and ω3 ≙ 10.25 and the minimal energy consumption is 80.397.
¿is shows that the alternative schedule, although it has a longer makespan (e.g.,
requires more clock cycles), requires less energy. An important reason for this is that
in the �rst schedule the work is distributed over either two or three cores, while in the
second schedule the work is distributed over one or three cores.

¿is example shows that minimising the makespan does not necessarily minimise
the energy consumption. Additional properties, like the amount of parallelism,
have in�uence on the optimal energy consumption. ¿erefore, in the following,
the in�uence of schedule properties like the amount of parallelism is thoroughly
discussed.

A straightforward implication of Example 5.2 is that the problems of scheduling and
speed selection should be considered simultaneously. ¿e approach in this section
is as follows: �rst we determine a scheduling criterion, such that when a schedule
that minimises this criterion is combined with the optimal speeds for this schedule,
the energy consumption is globally minimised. Our criterion (implicitly) takes
the optimal speeds into account to break the bi-directional dependence between
speed selection and scheduling. Next, we relate this criterion to the makespan, to
determine the impact of (minimising) the makespan on the energy consumption.

Consider the energy function given by (5.2). If we substitute (5.6), (5.5), and (5.7),
we get:

E(S̄) ≙ ⎧⎪⎪⎪⎨⎪⎪⎪⎩
[γ1 (scrit1 )α−1 + γ2

scrit
1

] S̄ , if S̄
d
≤ scrit1 ;

γ1
dα−1 S̄

α
+ γ2d , otherwise,
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Proc.1 T1 T2 T5

Proc.2 T7 T3 T6

Proc.3 T4

S ≙ 15.25

(a) Optimal makespan

Proc.1 T1 T2 T5

Proc.2 T3 T6

Proc.3 T4 T7

S ≙ 15.5

(b) Alternative schedule

Figure 5.4 ś Two schedules forM = 3.

where

S̄ ≙
M

∑
m=1

ωm
α
√
m.

Here the variable S̄, called the weighted makespan, is not only used to simplify the
notation, butmainly because this is a useful quantity that is important in the remain-
der of this chapter. ¿e cost function E(S̄) is continuous and strictly increasing
in S̄. Hence, a schedule that minimises S̄, also minimises the energy consumption
and vice versa. ¿is way, the minimal energy scheduling problem reduces to the
problem of �nding a schedule that minimises S̄. ¿e value S̄ is a weighted version
of the makespan, where the weights α

√
m are o en small and do not di�er a lot for

di�erent values of m, since in practice α is o en close to 3. For this reason, a small
makespan S o en results in a small weighted makespan S̄. We make the relation
between S and S̄ more precise in the next section.

5.4.2 using the makespan

Decades of research have been spent on �nding scheduling algorithms for minimis-
ing the makespan (for a survey, see [53]). However, for global energy minimisation,
a scheduling algorithm should minimise the weighted makespan S̄ as shown in the
previous section.
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Repeating and improving on all the known results on the common makespan for
the slightly di�erent criterion S̄ is not in the scope of this research. Instead, we
study how good existing scheduling algorithms are at minimising our criterion S̄
and thus the energy consumption.

For an application with total workW , we would like to know how energy e�cient
a schedule with makespan S can be. Recall that the value of S̄ (expressing energy
e�ciency) solely depends on the amount of parallelism of the schedule described
by ω1 , . . . ,ωM . Note that also the parallelism, which may be realised for a given
application, depends on the precedence constraints of the application. For a given
amount of total workW and a makespan S, we are thus interested in the best and
worst possible distribution of this work over all cores w.r.t. energy consumption, i.e.
the parallelism ω1 , . . . ,ωM . ¿is best and worst case distribution then bound the
weighted makespan S̄ (and thus the energy) of a given set of tasks with total work
W that has a schedule of length S. To determine the energy e�ciency of arbitrary
scheduling algorithms that minimise the makespan, we use these bounds to obtain
an approximation ratio for S̄ (i.e. energy e�ciency) in terms of the makespan.

To determine the best possible S̄ for a given schedule with makespan S and total
workW we get:

Optimisation Problem 5.2.

min
ω1 , . . . ,ωM

M

∑
m=1

ωm
α
√
m,

s.t.
M

∑
m=1

mωm ≙W ,

M

∑
m=1

ωm ≙ S ,

ωm ≥ 0.

Using the concavity (see SectionA.1) of α
√
⋅, the optimal solution of this optimisation

problem is given by the following lemma.

Lemma 5.3. ¿e optimal solution to Optimisation Problem 5.2 is given by

ωm ≙

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

MS−W
M−1

, for m ≙ 1;

W−S
M−1

, for m ≙ M;

0, otherwise.

(5.8)

Proof. Using elementary algebra, it can be veri�ed that the solution given by (5.8)
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is feasible, i.e.:

ω1 + ωM ≙ S ,

ω1 +MωM ≙W ,

ωm ≥ 0, for all m.

Now it remains to show that any other feasible solution leads to higher costs and,
thus, cannot be optimal. Consider any other feasible solution ω̃1 , . . . , ω̃M . We have
to show that:

ω1
α
√
1 + ωM

α
√
M <

M

∑
m=1

ω̃m
α
√
m.

For every m ∈ {1, . . . ,M}, we de�ne:
λm ≙

M −m

M − 1
∈ ∥0, 1∥.

Because α
√
⋅ is strictly concave and by using the de�nition of λm , we get:

λm
α
√
1 + (1 − λm) α

√
M < α

√
λm + (1 − λm)M

≙
α
√
m.

Using the de�nition of λm , S ≙ ∑
M
m=1 ω̃m and W ≙ ∑M

m=1 mω̃m we get by simple
algebraic manipulations:

M

∑
m=1

λm ω̃m ≙
MS −W

M − 1
≙ ω1 ,

M

∑
m=1

(1 − λm)ω̃m ≙
W − S

M − 1
≙ ωM .

Using this and the strict concavity of α
√
⋅ leads to:

ω1
α
√
1 + ωM

α
√
M ≙

M

∑
m=1

[λm ω̃m
α
√
1 + (1 − λm)ω̃m

α
√
M]

<

M

∑
m=1

ω̃m
α
√
m.

Hence, the choice for ω1 , . . . ,ωM as given by (5.8) minimises the energy consump-
tion and the lemma is proven.

¿e lemma shows that the energy consumption for a given workload andmakespan
is minimised when the maximal allowed work is assigned to M cores and the re-
mainder of the work on a single core. In a similar fashion, we can determine
the worst possible values for ω1 , . . . ,ωM (maximising S̄) for the situation with
makespan S and total workW by solving:
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Optimisation Problem 5.3.

max
ω1 , . . . ,ωM

M

∑
m=1

ωm
α
√
m,

s.t.
M

∑
m=1

mωm ≙W ,

M

∑
m=1

ωm ≙ S ,

ωm ≥ 0.

¿e following lemma gives the worst possible values for ω1 , . . . ,ωM for the energy
consumption.

Lemma 5.4. De�ning k ≙ ⌈W
S
− 1⌉, the optimal solution to Optimisation Problem 5.3

is given by

ωm ≙

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S(k + 1) −W , for m ≙ k;

W − kS , for m ≙ k + 1;

0, otherwise.

(5.9)

Proof. ¿e �rst part of the proof shows that for an optimal solution, it must hold
that ωm ≙ 0 when m ≠ k and m ≠ k+1. ¿e second part shows that the given
solution is the only feasible solution with this property.

Assume that there is a feasible solution ω̃1 , . . . , ω̃M for which ω̃m > 0 for some
m ∈ {1, . . . , k − 1, k + 2, . . . ,M}. We show that this solution is not optimal. First
we de�ne:

ω̊k ≙min{ω̃a
k − b

a − b
, ω̃b

a − k

a − b
} ,

ω̊a ≙ ω̊k
k − b

a − b
,

ω̊b ≙ ω̊k
a − k

a − b
.

for some a ≤ k < k + 1 ≤ b, with either a ≙ m or b ≙ m.

If we can demonstrate that decreasing ω̃a by ω̊a and decreasing ω̃b by ω̊b , while
increasing ω̃k by ω̊k improves the solution while keeping it feasible, we prove that
the solution ω̃1 , . . . , ω̃M is not optimal.

Using simple algebra, it can be readily checked that ω̊k ≙ ω̊a+ω̊b , kω̊k ≙ aω̊a+bω̊b ,
ω̊k ≥ 0, ω̊a ≤ ω̃a and ω̊b ≤ ωb . ¿en:

α
√
k ≙ α

√
kω̊k

ω̊k

≙
α

√
aω̊a + bω̊b

ω̊a + ω̊b

>
ω̊a

α
√
a + ω̊b

α
√
b

ω̊a + ω̊b

≙
ω̊a

α
√
a + ω̊b

α
√
b

ω̊k

,
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where the inequality is due to the strict concavity of α
√
⋅ and the equalities use the

relations given above. Hence,

ω̊k
α
√
k > ω̊a

α
√
a + ω̊b

α
√
b. (5.10)

As a consequence, we can increase the costs, by decreasing ω̃a by ω̊a , decreasing ω̃b

by ω̊b and increasing ω̃k by ω̊k . It is straightforward to check (using the equalities
above) that this new solution still satis�es the given constraints.

Based on the above, we may set ωm ≙ 0 for m ≠ k and m ≠ k+1. Now, for a feasible
solution the following equations have to hold:

ωk + ωk+1 ≙ S

kωk + (k + 1)ωk+1 ≙W .

¿is systemof equations has a unique solution given by (5.9), thus this is the optimal
solution and the lemma is proven.

Lemma 5.3 and Lemma 5.4 give values ω1 , . . . ,ωM that respectively minimise or
maximise the energy consumption (i.e. S̄) for some �xed makespan S and work
W . ¿is gives quantitative bounds to the energy consumption for scheduling algo-
rithms that aim at minimising the makespan S.

In the following, we investigate whether the parallelism (ω1 , . . . ,ωM) that min-
imises or maximises the energy consumption can be attained in practice. In fact,
the next lemma is more general and shows that, for any given desired parallelism
ω̄1 , . . . , ω̄M , there exists an application that has an optimal schedule (in terms of
makespan) with this parallelism.

Lemma 5.5. Given a desired parallelism ω̄1 , . . . , ω̄M , there exists an application
(characterised by tasks with work w1 , . . . ,wN and precedence constraints) such that,
for some schedule that minimises the makespan, we have ω1 ≙ ω̄1 , . . . ,ωM ≙ ω̄M .

Proof. We construct an application with N ≙ M tasks, no precedence constraints
and work such that ωm ≙ ω̄m for all m in an optimal solution.

We de�ne the work wn of all tasks Tn in terms of ω̄m :

wn ≙

M

∑
m=n

ω̄m .

¿e makespan for this task set is minimised by scheduling task Ti on core i. An
example forM ≙ 3 is given in Figure 5.5. It remains to show that for this schedule,
it holds that ω1 ≙ ω̄1 , . . . ,ωM ≙ ω̄M .

All cores are active for the duration of the task TM , which gives the workloadwM ≙

∑M
m=M ω̄m ≙ ω̄M , hence ωM ≙ ω̄M . At leastM − 1 cores are active during execution

of task TM−1 with work wM−1 ≙ ∑
M
m=M−1 ω̄m ≙ ω̄M−1 + ωM . A er subtracting the

part of the work done byM cores from wM−1, we get ω̄M−1 ≙ ωM−1. ¿is argument
can be repeated for all other coresM−2, . . . , 1.
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Proc.1 T1

Proc.2 T2

Proc.3 T3

ω̄1 + ω̄2 + ω̄3

ω̄2 + ω̄3

ω̄3

ω3 ω2 ω1

Figure 5.5 ś Illustration of Lemma 5.5.

Note, that Lemma 5.5 indicates that for instances without precedence constraints,
a lot of variability in the possible parallelism of feasible schedules can be achieved.
Adding precedence constraints can only reduce the variability. While Lemma 5.3
and Lemma 5.4 give bounds for the best and worst possible weighted makespan
(S̄) for a given makespan (S), it is still unclear how well algorithms that aim at
makespan minimisation perform at minimising the energy consumption. Given a
scheduling algorithmwith approximation ratio β (i.e. the algorithm�nds schedules
with makespan S, for which S ≤ βS∗ with S∗ the optimal makespan), we would like
to know how well this algorithm performs in terms of energy. More precisely, we
are interested in an approximation ratio for S̄ of this algorithm, i.e. a value β̄ such
that S̄ ≤ β̄S̄∗ where S̄∗ is the weighted makespan of the energy optimal schedule.
¿is ratio is given by the following theorem.

¿eorem 5.2. Let a scheduling algorithm A with the approximation ratio β for the
makespan be given. ¿is algorithm A has approximation ratio β̄ for the weighted
makespan, i.e. S̄ ≤ β̄S̄∗, where β̄ is given by:

β̄ ≙
(α − 1)β(M − 1)

α α

√(α − 1)β(M − α
√
M) α

¿ÁÁÀM −
α
√
M

α
√
M − 1

.

Proof. We have S̄ ≤ S α

√
W
S
, since:

S̄

S
≙
∑M

m=1 ωm
α
√
m

∑M
m=1 ωm

≤
α

¿ÁÁÀ∑M
m=1 ωmm

∑M
m=1 ωm
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≙
α

√
W

S
.

¿e inequality is due to the �nite form of Jensen’s inequality (see Appendix A).

¿e optimal schedule has a value S̄∗ for which by Lemma 5.3 holds that

S̄∗ ≥W(1 − α
√
M) + S∗ α

√
M −M)
1 −M

.

Lemma 5.5 shows that this value S̄∗ can occur in practice.

Now the approximation ratio is given by:

S̄

S̄∗
≤

S α

√
W/S

(W(1 − α
√
M) + S∗( α

√
M −M))/(1 −M)

≤
β

α

√
β

S∗ α

√
W/S∗

(W(1 − α
√
M) + S∗( α

√
M −M))/(1 −M) .

¿e right hand side is a strictly concave function of S∗ with a global maximum that
is found by taking the partial derivative with respect to S∗. ¿e value Ŝ∗ for which
this derivative becomes zero, the maximum, is:

Ŝ∗ ≙ (α − 1)W 1 −
α
√
M

α
√
M −M

.

Note that this maximum can be pessimistic, since it can be below W
M
, i.e. outside

the interval for S∗.

Now the approximation ratio can be determined by:

S̄

S̄∗
≤

β
α

√
β

S∗ α

√
W/S∗

(W(1 − α
√
M) + S∗( α

√
M −M))/(1 −M)

≤
(α − 1)β(M − 1)

α α

√(α − 1)β(M − α
√
M) α

¿ÁÁÀM −
α
√
M

α
√
M − 1

.

It is straightforward to check that this is an O (M1/α2
−1/α)-approximation (see Ap-

pendix A). Figure 5.6 shows for 2–10 cores and α ≙ 3 how close amakespan optimal
schedule (β ≙ 1) approximates the energy optimal schedule. ¿is shows that when
the makespan is minimised and up to six cores are used, S̄ is at most 10% higher
than its optimal value S̄∗. Furthermore, when the makespan is not optimal but has
an approximation ratio β, it accounts for a factor β/ α

√
β in our approximation ratio

β̄ that slightly reduces the negative e�ect of a suboptimal makespan. Note, that
¿eorem 5.2 works both for the situation with and without precedence constraints
(since the parallelism abstracts from this), while the precedence constraints are
taken into account in the approximation ratio of the scheduling algorithm.
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Figure 5.6 ś Approximation ratio S̄
S̄∗
(for α = 3, β = 1).

5.4.3 two cores

In Section 5.4.1, we have shown that a schedule that minimises S̄, also minimises
the energy consumption. Furthermore, Example 5.2 shows an optimal schedule
that minimises the makespan, but does not minimise S̄. However, for two cores
minimising the makespan also minimises S̄ and thus also the energy consumption,
as the following lemma shows.

Lemma 5.6. When M ≙ 2, the energy consumption is a strictly increasing function
of the makespan.

Proof. We have shown that the costs are strictly increasing with S̄ ≙ ∑M
m=1 ωm

α
√
m.

Now consider a schedule with somemakespan S. ¿enω1 ≙ 2S−W andω2 ≙W−S,
which is obtained by solving ω1 + ω2 ≙ S and ω1 + 2ω2 ≙W . Substitution into the
de�nition for S̄ gives:

S̄ ≙W (2 − 3
√
2) + S ( 3

√
2 − 1) .

Since the energy consumption strictly increases with S̄, and S̄ increases strictly with
S, the lemma holds.

Note that, because of Lemma 5.6, the two-processor scheduling problem can be
reduced to our global speed scaling problem in polynomial time; hence the global
speed scaling problem is also NP-hard.

When all tasks require the same amount of work and M ≙ 2, a schedule that min-
imises the makespan of an application with precedence constraints can be found
in polynomial time [29]. Since the optimal speeds can also be found in polyno-
mial time, the optimal schedule and speeds can be determined in polynomial time.
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In case no precedence constraints are present, a Polynomial Time Approximation
Scheme (PTAS)¹ exists for �nding the minimal makespan [39], hence also for opti-
mal global speed scaling withM ≙ 2. We emphasise these results in the following
proposition.

Proposition 5.1. For M ≙ 2, the following results hold:

(i) When w i ≙ W for all i (for some constant W), there is a polynomial time
solution to the global speed scaling problem.

(ii) When there are no precedence constraints, there is a PTAS for the global speed
scaling problem.

5.5 Evaluation

To the best of our knowledge there is no literature in which global speed scaling for
tasks with precedence constraints is studied algorithmically. However, there exist
several papers on local speed scaling that provide solutions that use a single speed
for all tasks (e.g., some algorithms from [59], the state of the art on local speed
scaling) and these algorithms can also be used on a system that supports global
speed scaling. ¿erefore, we compare our work to the class of algorithms that use
a single speed for the entire run time of the application. Section 5.5.1 compares the
dynamic energy consumption of our approach to the single speed case analytically.
For this, we use the bound that we obtained in Section 5.4. ¿en, in Section 5.5.2, we
compare both approaches using extensive simulations and demonstrate the e�ect
of static power.

5.5.1 analytic evaluation

First, we focus on the e�ect of using global speed scaling, and later, in the next
subsection we study the in�uence of static power. In this subsection, we assume
that γ1 ≙ 1 (normalised dynamic power) while we choose γ2 ≙ γ3 ≙ 0. While in
Section 5.5.2 we make a comparison based on a set of applications, in this section
we compare both approaches analytically.

For our analytic evaluation, we normalise the total work (W ≙ 1). When we use a
single speed for the entire run time of the application, the optimal speed is s ≙ S

d
.

¿e corresponding energy consumption is given by:

Esingle
≙
Sα−1

dα−1
W .

For the best distribution of tasks over cores and when global speed scaling is used
optimally, the bound on the energy consumption is given by (see Lemma 5.3):

Ebest
≙

(W( α
√
M − 1) + S∗(M − α

√
M)/(M − 1))α

dα−1
.

1Recall that a PTAS is a polynomial approximation algorithm that can �nd an approximation that
is arbitrarily close to the optimum.
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Figure 5.7 ś Energy reduction optimal global speed scaling.

¿e graphs in Figure 5.7 show the ratio (Ebest/Esingle), which is the potential energy
saving of optimal global speed scaling. ¿is �gure shows that, when optimal global
speed scaling is used for 16 cores, up to 44% energy might be saved.

5.5.2 simulations

¿eabove comparison gives theoretic bounds on the possible performance improve-
ments, but it does not take actual schedules into account. We use the Standard Task
Graph (STG) set that was created by Tobita and Kasahara [82], to compare our
approach—where the speed is varied over time—with an approach where a single
speed is used for the entire application.

From the STG set, we use the set of 180 graphs with each 50 tasks with precedence
constraints, and schedule these tasks using the Longest Processing Time (LPT) algo-
rithm [34], since this algorithm has a good approximation ratio for makespan min-
imisation. ¿is good approximation ratio implies that LPT (due to ¿eorem 5.2)
also works well for energy e�cient scheduling. Another reason to use LPT is that
it aims at maximising the workload assigned toM cores, which is a good strategy
as Lemma 5.3 suggests. In our evaluation we compare our global speed scaling
approach (aware of static power) to the approach that uses a single speed for the
entire application as is used by Li [59] (not aware of static power). We use LPT to
schedule 180 STG instances on 2 to 12 cores, use the deadline d ≙ 2W , determine
the optimal speeds (Lemma 5.1), and calculate the optimal energy consumption for
both approaches. For the energy consumption, we normalise γ1, choose γ3 ≙ 0 and
consider the cases γ2 ≙ 0 (no static power), γ2 ≙ 0.2 and γ2 ≙ 0.4 to evaluate the
e�ects of taking the static power consumption into account. When static power
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Table 5.1 ś Ratio (avg/min/max) Eglobal / Esingle .

M
Static power (γ2)

0 0.2 0.4

2 0.987 / 0.961 / 0.999 0.982 / 0.978 / 0.988 0.781 / 0.751 / 0.940

3 0.968 / 0.919 / 0.996 0.902 / 0.862 / 0.988 0.664 / 0.599 / 0.940

4 0.948 / 0.887 / 0.994 0.835 / 0.755 / 0.988 0.600 / 0.504 / 0.940

5 0.928 / 0.842 / 0.982 0.790 / 0.673 / 0.988 0.563 / 0.441 / 0.940

6 0.913 / 0.822 / 0.975 0.759 / 0.617 / 0.988 0.539 / 0.400 / 0.940

7 0.900 / 0.795 / 0.975 0.739 / 0.558 / 0.988 0.525 / 0.359 / 0.940

8 0.890 / 0.763 / 0.975 0.726 / 0.541 / 0.988 0.515 / 0.348 / 0.940

9 0.882 / 0.735 / 0.975 0.717 / 0.509 / 0.988 0.509 / 0.326 / 0.940

10 0.877 / 0.722 / 0.975 0.711 / 0.480 / 0.988 0.505 / 0.307 / 0.940

11 0.872 / 0.718 / 0.975 0.707 / 0.468 / 0.988 0.502 / 0.299 / 0.940

12 0.869 / 0.715 / 0.975 0.704 / 0.452 / 0.988 0.500 / 0.289 / 0.940

is present (γ2 > 0), the static energy consumption is added to both the energy
consumption for global speed scaling (Eglobal), and to the energy consumption for
using a single speed (Esingle).

Table 5.1 shows the average, minimal and maximal ratio Eglobal/Esingle. ¿e �rst
column shows that up to 28% energy can be saved when optimal global speed
scaling is used instead of a single speed. ¿e other columns show that, when static
power is present, the ratio between global speed scaling (aware of static power) and
single speed (not aware of static power) gets smaller; up to 72% of energy can be
saved by using global speed scaling and by taking static power into account.

In a next step we compare the two approaches using the three application graphs
from the STG set that are based on real applications, namely, a robotic control
application, the FPPPP SPEC benchmark and a sparse matrix solver. In Table 5.2
we present the dynamic energy consumption for these three task graphs by using
local speed scaling, global speed scaling and a single speed respectively. In all three
cases, we use the LPT schedule. For local speed scaling we obtained numerical
solutions using CVX [36] (which required a signi�cant amount of computational
time). Table 5.2 shows that by using global speed scaling instead of a single speed,
energy savings of more than 30% can be achieved for actual applications (FPPPP,
12 cores). In case a system has support for local speed scaling, even more energy
can be saved by using local speed scaling instead of global speed scaling, as should
be expected. Note, that while local speed scaling allows for higher energy savings,
global speed scaling hardware is cheaper to implement and the most popular of the
two approaches in practice.
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Table 5.2 ś Optimal energy consumption for several applications (single/global/local speed

scaling).

M
Application

Robot FPPPP Sparse

2 684 / 677 / 664 2054 / 2024 / 1972 498 / 496 / 495

3 419 / 399 / 335 1045 / 999 / 953 249 / 243 / 228

4 303 / 279 / 237 671 / 619 / 584 154 / 147 / 139

5 219 / 198 / 163 492 / 435 / 410 113 / 105 / 93

6 170 / 150 / 124 387 / 330 / 306 87 / 78 / 69

7 162 / 137 / 119 324 / 266 / 245 71 / 62 / 52

8 162 / 136 / 101 275 / 217 / 196 60 / 51 / 41

9 162 / 135 / 96 240 / 184 / 165 52 / 43 / 35

10 162 / 135 / 95 215 / 159 / 136 45 / 36 / 29

11 162 / 135 / 95 196 / 140 / 123 40 / 32 / 26

12 162 / 135 / 95 179 / 124 / 107 37 / 28 / 22

5.6 Conclusions

¿is chapter discussed the minimisation of the energy consumption of multicore
processorswith global speed scaling capabilities, where the tasks to be scheduled are
restricted by precedence constraints. We presented the theoretical relation between
scheduling and speed selection, and have shown how a combination of scheduling
and speed scaling minimises the energy consumption under a time constraint. ¿e
considered problem is a di�cult problem, since both scheduling and speed scaling
should be taken into account simultaneously.

We have shown that the optimal speeds depend on the number of active cores. ¿e
optimal speeds for the time periods when n cores are active and the time periods
when m cores are active are related by sm ≙ sn α

√
n
m
. We presented formulas that

determine the optimal speeds for a given schedule.

As scheduling has a signi�cant in�uence on the optimal speeds, it also in�uences
the energy consumption. We have shown that for two cores, �rst determining
a schedule that minimises the makespan and then determining the speeds that
minimise energy, globally minimises the energy consumption. ¿is result does not
hold in general for systemswithmore than two cores as shown by a counterexample.
To deal with this property, we presented a single scheduling criterion (the weighted
makespan, S̄) that can be used to �nd an energy optimal schedule.

Computational tests show that by using optimal speeds, up to 30% energy can be
saved compared to the state-of-the-art approaches, while the theory shows that
even larger improvements are possible (see Figure 5.7). As the number of cores
increases, the potential reduction increases signi�cantly, up to 44% for 16 cores.



Chapter6

Speed Selection for Global Speed

Scaling

Abstract ś In this chapter a transformation from a global speed scaling

(multicore) problem to a uniprocessor problem is presented, which uses the

amount of parallelism of an application. ¿is reduction allows us to use

existing single core algorithms to �nd the optimal solution for the multicore

case. More precisely, and in contrast to the previous chapter, the consid-

ered problem has arrival times and deadlines for individual tasks, and it is

assumed that a schedule is given.

6.1 Introduction

In the previous chapter, we studied optimal scheduling and speed scaling of prece-
dence constrained tasks with a common deadline on a global speed scaling system.
In contrast, in this chapter each task has an individual arrival time and deadline.
¿e presented solution method does not impose any restrictions on these charac-
teristics of the tasks.

We focus on determining optimal speeds for the entire run-time of an application.
Hereby, we assume that a feasible schedule for the tasks of the application is given.
Hence, in this chapter we study the global speed scaling problem that is formally
given by PM ; global ∣ an ; dn ; sched; prec ∣E. Since we consider global speed scaling,
the concrete assignment of speeds does not in�uence the relative order of the ex-
ecution of tasks and therefore does not in�uence the feasibility of a solution with
respect to precedence constraints.

Major parts of this chapter have been presented in [MG:4].

87



88

C
h
a
p
t
e
r
6
ś
S
p
e
e
d
S
e
l
e
c
t
io
n
f
o
r
G
l
o
b
a
l
S
p
e
e
d
S
c
a
l
in
g

Optimal speed selection is a nontrivial problem, since it may be e�cient to �nish
some tasks early, such that later tasks can run on a lower speed as several authors
have demonstrated [43, 90]. ¿is property makes the problem a global problem.
Furthermore, the amount of parallelism (i.e. number of active cores at a given time)
is important when calculating the optimal speeds [26].

In the previous chapter we have shown that it is better to increase the speed when
only a few cores are active (increasing the energy only for few cores) and to decrease
the speed whenmore cores are active (decreasing the energy formore cores). While
this trade-o� has been formally studied in a simpli�ed setting [26], in this chapter
we study it in the context of a nontrivial application with arbitrary arrival time and
deadline restrictions. For this, we extend some of the results from the previous
chapter and use the algorithms from Chapter 4.

¿e approach presented in this chapter solves the multicore problem by �rst trans-
forming it to a single core problem (depending on the amount of parallelism), then
solving this single core problem, and �nally transforming the solution of the single
core problem back to the original problem. We combine several existing techniques
from the literature to realise our transformation and to solve our problem. Using
this transformation and techniques from Chapter 4, a restricted form of the online
version of the global speed scaling problem can be solved.

¿e remainder of this chapter is structured as follows. First, we describe the appli-
cations using so called pieces, which we introduce in Section 6.2. ¿e reduction
from the multicore problem (with a given schedule) to an easier to analyse single
core problem is discussed in Section 6.3. We discuss the online global speed scal-
ing problem in Section 6.4. Finally, Section 6.5 presents a summary and a short
discussion.

6.2 Pieces

An application consists of multiple tasks, with a given schedule. Each task corre-
sponds to a certain amount of work, can have precedence constraints with other
tasks, and (in contrast with what we assumed in the previous chapter) also an in-
dividual arrival time and a deadline. We have assumed that a schedule is given,
and since we do not need the tasks in the following considerations, but only the
structure of the schedule, we do not introduce a formal notation for tasks. Instead,
we start with an example of an application.

Example 6.1. Consider an application that consists of N≙8 tasks with precedence
constraints. ¿e workload of the tasks T1 , . . . T8 is given by 4, 2, 3, 6, 2, 2, 2 and 2
respectively. Tasks T3 and T8 have the deadlines 30 and 150 respectively, tasks T3, T4

and T8 have arrival times 19, 5 and 140 respectively, the other tasks have no deadline
and are available from the beginning.

In the context of this example, the exact precedence constraints are (as for this whole
chapter) not relevant, only the fact that they create “gaps” in the schedule. A possible
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Proc.1 T1 T2 T5 T6 T8

Proc.2 T3 T7

Proc.3 T4

Π1 Π2 Π3 Π4 Π5 Π6 Π7

work

Figure 6.1 ś A feasible schedule for Example 6.1.

feasible schedule for the application is depicted in Figure 6.1, in which the tasks with
a deadline are highlighted.

In general, we assume (without loss of generality) that the given schedule does not
contain any period where all cores are idle. Since only static power is consumed
during these processor-wide idle periods, our assumption does not change the
optimal solution.

Note, that only at the start or completion of the execution of a task, the number of
active cores can change. Furthermore, timing constraints such as arrival times or
deadlines are also related to these start and completion times. ¿erefore, we can
focus on work intervals (a, b) where no tasks start or complete their execution.
¿e following corollary shows that it is optimal to use a single constant speedwithin
each of these intervals.

Corollary 6.1. Given work interval (a, b) during which no task starts or ends. ¿en
there is an optimal speed function s(t) that is constant during the execution of the
work in ∥a, b∥.
Proof. ¿is corollary is a direct consequence of Lemma 5.1.

Because the optimal speed is constant on the interval ∥a, b∥ as speci�ed in Corol-
lary 6.1, we subdivide the schedule into such intervals. We choose these intervals
such that they are as large as possible and call these intervals pieces.

De�nition 6.1 (Piece). A piece is a maximal interval ∥a, b∥ such that no task starts
or �nishes in (a, b).
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A given schedule uniquely subdivides into pieces. Let N be the number of these
pieces and let the n-th piece be denoted by Πn . In the following, we show that
algorithmically tasks and pieces are very similar.

Letmn denote the number of active cores within pieceΠn (this number is constant
duringΠn since no task starts or ends its execution during this piece). Furthermore,
let the workload of a single core within piece Πn be denoted by wn . Since all mn

cores have this amount of work wn , in total wnmn work is executed for this piece.
To ease the discussion, we callwn the work of pieceΠn . ¿e total workW obtained
by summing the work of all tasks, can now also be expressed in terms of pieces by
W ≙ ∑N

n=1 wnmn .

Let the actual begin time of piece Πn be denoted by bn and its completion time be
denoted by cn . ¿e actual values for bn and cn depend on the chosen speeds of the
pieces Π1 , . . . , Πn , which is discussed later. Furthermore, for each piece Πn we can
assign an arrival time an , which is the latest arrival time among all tasks that start
at the beginning of this piece. ¿is makes sure that the piece is not started before
the arrival time of any task in this piece. Similarly, for pieceΠn a deadline, denoted
by dn , can be derived; this is the earliest deadline of all tasks that are completed at
the end of this piece.

Example 6.2 (Continued from Example 6.1). In Figure 6.1, also the subdivision of
the schedule from Example 6.1 into seven pieces (Π1 , . . . , Π7) is given. A new piece
starts whenever a task starts or �nishes its execution. ¿e work of the pieces is given
byw ≙ (4, 2, 1, 2, 1, 2, 2). ¿e number of active cores is given bym ≙ (1, 3, 2, 2, 1, 2, 1).
PieceΠ3 has deadline d3 ≙ 30 (deadline of taskT3) and pieceΠ7 has deadline d7 ≙ 150
(deadline of task T8). ¿e arrival time of piece Π2 is a2 ≙ 19 ≙max{19, 5}. For piece
Π7, the arrival time is a7 ≙ 140.

During the execution of piece Πn the power function pmn
is used, since during the

entire execution of piece Πn exactly mn cores are active. To determine the energy
consumption, we consider the static and dynamic power separately.

Based on Corollary 6.1, we assign a constant speed sn to each piece Πn . For a given
speed assignment sn to piece Πn (n ∈ {1, . . . ,N}), the dynamic energy consump-
tion of piece Πn is the power consumption (mnγ1s

α
n) times the duration of piece

Πn at the chosen speed (wn

sn
) leading to a power consumption of mnγ1s

α−1
n wn . To

obtain the total dynamic energy consumption we have to sum this over all pieces.

Now the total energy consumption can be expressed in terms of pieces and consists
of the static and dynamic energy.

E ≙ γ2(tC − tB) + N

∑
n=1

mnγ1s
α−1
n wn ,

where tB and tC denote the times at which the static power consumption starts to
be accounted for and stops to be accounted for respectively.
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6.3 Optimisation model

Based on the discussion in the previous section, the problem considered in this
chapter reduces to energy minimisation, under constraints such as ordering con-
straints (pieceΠn is executed before pieceΠn+1), arrival times and deadlines. More
precisely, we get the following mathematical optimisation problem.

Optimisation Problem 6.1.

min
s1 , . . . ,sn
b1 , . . . ,bN

tC

γ2(tC − tB) + N

∑
n=1

mnγ1s
α−1
n wn , (6.1)

s.t. bn +
wn

sn
≤ dn , for all n ∈ {1, . . . ,N}, (6.2)

bn ≥ an , for all n ∈ {1, . . . ,N}, (6.3)
bn +

wn

sn
≤ bn+1 , for all n ∈ {1, . . . ,N − 1}, (6.4)

bN +
wN

sN
≤ tC . (6.5)

¿e energy consumption is given as a cost function (6.1), which has to beminimised.
¿e constraint (6.2) enforces that all pieces meet their deadline, (6.3) ensures that
pieces do not begin before their arrival time, and (6.4) enforces that piece Πn is
�nished before piece Πn+1 starts. ¿e last constraint (6.5) makes sure that the
application is not �nished a er the time for which the static energy consumption
is accounted for.

For this problem, standard approaches from the literature cannot be used, due
to the multicore aspect with weights mn in the cost function that result from the
number of active cores. We rewrite this problem to an easier to analyse problem.
For this, we substitute the variables for speeds and work. ¿is substitution cancels
out some terms, and the values mn—making the problem a multicore problem—
disappear from the equations. ¿e idea behind the substitution is based on the ratio
α

√
ma/mb between optimal speeds of amulticore processor for pieces with di�erent

numbers of active cores, described in the previous chapter, and the transformation
is inspired by several papers [54, 89].

¿e substitution of variables is as follows.

s̊n ≙ sn
α
√
mn , (6.6)

ẘn ≙ wn
α
√
mn . (6.7)

¿e variables s̊1 , . . . , s̊N can be interpreted as the speeds that take the optimal ratio
α

√
ma/mb between optimal speeds (depending on parallelism) into account. ¿e

transformation of the work to the variables ẘ1 , . . . , ẘN is chosen such that the
execution time remains the same.



92

C
h
a
p
t
e
r
6
ś
S
p
e
e
d
S
e
l
e
c
t
io
n
f
o
r
G
l
o
b
a
l
S
p
e
e
d
S
c
a
l
in
g

Substitution into the cost function (energy) gives:

E ≙ γ2(tC − tB) + N

∑
n=1

γ1 s̊
α−1
n ẘn ,

while substitution into the deadline constraint gives:

bn +
wn

sn
≙ bn +

ẘn

s̊n
≤ dn .

¿e other constraints can be transformed similarly. ¿is leads to the following
optimisation problem:

Optimisation Problem 6.2.

min
s̊1 , . . . , s̊n
b1 , . . . ,bN

tC

γ2(tC − tB) + N

∑
n=1

γ1 s̊
α−1
n ẘn ,

s.t. bn +
ẘn

s̊n
≤ dn , for all n ∈ {1, . . . ,N},

bn ≥ an , for all n ∈ {1, . . . ,N},
bn +

ẘn

s̊n
≤ bn+1 , for all n ∈ {1, . . . ,N − 1},

bN +
ẘN

s̊N
≤ tC .

¿e nice property of Problem 6.2 is that it has the same form as the problem of
energy minimisation for a real-time system with agreeable deadlines that was dis-
cussed in Chapter 4 (Optimisation Problem 4.1). In this uniprocessor problem, the
variable ẘn is the work of task T̊n , while s̊n is the optimal speed of task T̊n . Further-
more, deadlines and arrival times are again given by an and dn and the execution
order is predetermined. As this relation is used throughout this chapter, we give a
formal de�nition.

De�nition 6.2 (Equivalent uniprocessor problem). For a given schedule, the mul-
ticore global speed scaling problem with N pieces (Π1 , . . . , Πn) is equivalent to the
uniprocessor problem with N tasks (T̊1 , . . . , T̊n), where each piece Πn is represented
by a task T̊n with work ẘn ≙ wn

α
√
mn , speed s̊n ≙ sn α

√
mn , and the same completion

times and begin times.

Based on this, Problem 6.1, can be transformed to an equivalent uniprocessor prob-
lem. ¿is problem is then solved and the resulting solution is transformed back to
obtain the optimal speeds and begin times for the pieces. In the following, we give
an example of this transformation and solution technique.
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(a) Optimal speeds for the equivalent uniprocessor problem
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(b) Optimal speeds for the multicore problem

Figure 6.2 ś Optimal speeds for Example 6.3.
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Example 6.3 (Continued from Example 6.2). For illustration purposes, we use the
power function pm(s) ≙ ms3. ¿e pieces with workload w1 ≙ 4, w2 ≙ 2, w3 ≙ 1,
w4 ≙ 2, w5 ≙ 1, w6 ≙ 2 and w7 ≙ 2, together with the parallelism described by m1 ≙ 1,
m2 ≙ 3, m3 ≙ 2, m4 ≙ 2, m5 ≙ 1, m6 ≙ 2 and m7 ≙ 1 are transformed to ẘ1 ≙ 4,
ẘ2 ≙ 2

3
√
3, ẘ3 ≙

3
√
2, ẘ4 ≙ 2

3
√
2, ẘ5 ≙ 1, ẘ6 ≙ 2

3
√
2 and ẘ7 ≙ 2. Hence, the global

speed scaling problem with 7 pieces is now transformed to the equivalent uniprocessor
problem with 7 tasks.

We use Algorithm 4.1 to obtain the optimal speeds s̊1 ≙ s̊2 ≙ s̊3 ≈ 0.2715, s̊4 ≙ s̊5 ≙
s̊6 ≈ 0.0549 and s̊7 ≙ 0.2. Figure 6.2a shows the relation between the variables of
the equivalent uniprocessor problem. ¿e graph “Optimal” shows the cumulative
workload that has been executed at a given time. ¿e slope of this graph is the optimal
speed. ¿e completion times of the tasks are indicated using squares. ¿is graph must
stay above the graph “Deadline”, otherwise a deadline is missed. For example, at
time 30, exactly 4 + 2 3

√
3 + 3
√
2 ≈ 8.1444 work must have been done. Similarly, the

graph “Optimal” has to stay below the graph “Arrival time”, which depicts the arrival
times of the equivalent uniprocessor problem. Recall that a well-known property of the
solution of the uniprocessor problem is that—due to convexity of the power function
p1—the number of speed changes is kept to a minimum. ¿e solution s̊1 , . . . , s̊n , as
shown in Figure 6.2a, meets this property: if other speeds would be used they are
either too high, too low, or would imply unnecessary changes of the speed.

¿e optimal speeds for the originalmulticore global speed scaling problem are obtained
by transforming (using (6.6)) the optimal solution for the equivalent uniprocessor
problem s̊1 , . . . , s̊n back to s1 , . . . , sn . A er this transformation, the optimal speeds
for the original global speed scaling problem are given by s1 ≈ 0.2715, s2 ≈ 0.1882,
s3 ≈ 0.2155, s4 ≈ 0.0436, s5 ≈ 0.0549, s6 ≈ 0.0436 and s7 ≙ 0.2000. During the
execution of task T4 the speed changes four times.

6.4 Online speed scaling

¿e theory from the previous section can be applied when the work is known on
beforehand. In Chapter 4 we studied the online situation where the work of tasks
that are executed on a uniprocessor system is not known on beforehand. When
we assume that a schedule (processor assignments and ordering of tasks) is given,
and predictions of the future workload are available, we can use the transforma-
tion from Section 6.3 to solve the online global speed scaling problem. For this,
multicore tasks are transformed to pieces, and the RA-SS algorithm (Section 4.4)
are applied. When the arrival times and deadlines have a periodic behaviour, the
PRA-SS algorithm can be used to solve the problem.

Online global speed scaling was not evaluated, and we did not study the case where
a schedule was not given. ¿e evaluation from Chapter 5 suggests that a scheduling
algorithm inspired by LPTmay work well in practice. We leave a further discussion
of this topic for future work and come back to this in Section 8.3.
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6.5 Conclusions

We have translated the multicore global speed scaling problem to an equivalent
uniprocessor problem. For this, we subdivide a given schedule into so-called pieces.
¿e work of a piece is multiplied by α

√
m, where m is the number of active cores

of the piece. A er this transformation, all references to the amount of parallelism
disappear from the problem. We can consider these transformed pieces as tasks in
an equivalent uniprocessor problem. With this transformation we can use unipro-
cessor speed scaling techniques for multicore global speed scaling systems.





Chapter 7

SleepModes and Speed Scaling for

Frame-Based Systems

Abstract ś Sleepmodes and speed scaling are popular techniques for reduc-

ing the energy consumption. Algorithms for speed scaling do exist. However,

determining optimal sleep modes, and the optimal combination of speed

scaling and sleepmodes, is still an open problem formany real-time systems.

In this chapter well established models for sleep modes and speed scaling

for frame-based systems are considered. We show that it is not su�cient—

as some authors argue—to consider only individual frames. Instead, we

de�ne a schedule that also takes interactions over frames into account and

prove—in a theoretical fashion—that this schedule is optimal.

7.1 Introduction

In previous chapters, we focused on speed scaling. In contrast, in this chapter the
focus is �rst on scheduling methods which make optimal use of sleep modes. Later
in this chapter, we combine speed scaling and sleep modes to make further energy
reductions possible.

Sleep modes are widely used since many computers support the Advanced Con-
�guration and Power Interface (ACPI) [2]. With sleep modes, devices and/or the
microprocessor are switched to a low power sleep mode when they are not used,
resulting in a decreased energy consumption. Switching to a low power sleep mode
has non-negligible time and energy overheads, hence this switching only takes place
when the idle time of the processor is at least the break-even time. To calculate this
break-even time a trade-o� has to be considered, and in many cases minimising

Major parts of this chapter have been presented in [MG:1].
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the energy consumption for a real-time system by using sleepmodes is an NP-Hard
problem [31]. We show that for frame-based systems with energy costs concavely
depending on the idle period length, the optimum can be found in constant time
when all tasks have to execute the same amount of work, or in linear time for the
general case.

For the combination of sleep modes and speed scaling, trade-o�s between the two
techniques have to be considered. When speed scaling is used, the speed may be
decreased to reduce the energy consumption during the execution of tasks, lead-
ing to an increase of the execution time and decreased idle time. Decreasing the
speed can reduce the length of an idle period to such an extent that its length gets
below the break-even time. Hence, there is an interplay between speed scaling and
sleep modes that should be carefully considered when minimising the energy con-
sumption using both techniques. Neither maximising the length of the idle period
or minimising the speed results in a guaranteed minimised energy consumption,
instead a combination of both techniques is required (see Devadas and Aydin [32]).

One particular example of a real-time system is a frame-based system for which
optimal speed scaling [76, 88] and combinations of speed scaling and sleep modes
[32, 52] were studied. In contrast to prior work in this area, which considers the
problem for individual invocations, we consider the problem globally—rather than
for individual invocations—for systems that can use both speed scaling and sleep
modes and give an analytical and easy to calculate (with polynomial time complex-
ity) optimal solution to this problem. An example is given to show that with sleep
modes, considering only individual invocations can lead to high costs, while by
considering the global problem the costs can be minimised.

¿e contributions of this chapter are as follows.

» For the case where all tasks have the same amount of work, we present
a schedule for a frame-based system that globally minimises the energy
consumption for sleep modes (with multiple devices), and the combination
of sleep modes and speed scaling taking into account the interplay between
sleep modes and speed scaling.

» For the case where tasks have di�erent workload, we present a dynamic
programming approach where scheduling decisions are represented as a
path in a DAG.

» Important general properties of schedules that optimally use sleep modes
are given and proven.

» For both continuous and discrete speed scaling of a frame-based real-time
system we give the optimal speeds.

» For all problems that are considered in this chapter, we give algorithms that
�nd the schedules in either constant or linear time. ¿e optimal speeds can
be determined in polynomial time.
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¿e remainder of the chapter is organised as follows. In Section 7.2, themodel of the
considered system is discussed and the notation is introduced. Section 7.3 discusses
sleepmodes, general properties of optimal sleepmodes and the optimal solution for
frame-based systems, and Section 7.4 discusses the optimal combination of sleep
modes and speed scaling. An evaluation is given in Section 7.5, where the energy
savings that can be attained by real devices are shown. Section 7.6 concludes this
chapter with a summary and conclusions.

7.2 System model and notation

In Section 7.2.1 an application model is given. In Section 7.2.2 we present a sleep
mode, and in Section 7.2.3 we give a speed scaling model. ¿ese models are used
throughout this chapter.

7.2.1 application model

In this chapter we study frame-based real-time systems, which are a speci�c type
of real-time systems with periodic tasks. To ease the notation for these periodic
tasks, and in correspondence with the previous chapter, we assume that each task
is executed just once (i.e. we again use the notation for aperiodic tasks). Hence, if
a periodic task is executed N times, we now model this as N tasks.

¿e tasks are frame-based, meaning that for a period length T the n-th task has an
arrival time an ≙ (n − 1)T and a deadline dn ≙ nT . ¿is leads to the active interval
for task Tn , given by ∥(n − 1)T , nT∥, which is called a frame [32, 52, 76]. While we
assume that a frame contains a single task, our results still hold whenmultiple tasks
with the same period (∥(n − 1)T , nT∥) are executed within a frame, in that case all
tasks within a frame are executed consecutively and we group the tasks within a
frame to a single task to ease the notation (see Section 7.3). ¿is assumption has no
a negative impact on both sleep modes and speed scaling as will be discussed later.

In contrast to [32, 52], we do not assume that the begin time of the execution
of task Tn has to coincide with the arrival time an and denote the begin time by
bn ∈ ∥(n − 1)T , nT). Note that if a task Tn starts as early as possible, and if the next
task Tn+1 starts as late as possible, the idle periods of the two tasks of length In and
In+1 respectively are adjacent, leading to one big idle period of length In + In+1 as
depicted in Figure 7.1.

For a task Tn we denote its work bywn . ¿is work has theWorst CaseWork (WCW)
as upper bound (denoted by wmax), i.e. wn ∈ (0,wmax∥. ¿e execution time of
task Tn is denoted by en ∈ (0, T∥ and depends on the workload and the speed, as
is discussed later. We may assume without loss of generality (see Corollary 7.1) that
tasks are executed without interruptions, i.e. the completion time cn is given by
cn ≙ bn + en . Hence, within the frame with task Tn , the processor can be idle for a
time In ≙ T − en .
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n n+1
In + In+1

In In+1

Figure 7.1 ś Two idle periods (In and In+1) joined to one bigger idle period (In + In+1).

7.2.2 sleep modes

We assume that during the execution of a task, the processor and all peripheral
devices are active. When no task is executed, the processor and all peripheral
devices are unused and can be put to sleep. In total there areM devices that have
at least an idle mode and a sleep mode, although more low power sleep modes
can be available. Device m has Lm sleep modes, where for each sleep mode ℓ the
power consumption is Pm ,ℓ . To ease the notation, we assume that the idle mode
(the normal mode of operation during the idle period) is sleep mode 1 and for ease
of notation the active mode is denoted as mode 0. For switching to sleep mode
ℓ and back to the idle mode, Tm ,ℓ time is spent (called latency), while the costs
for both transitions are given by Em ,ℓ . Hence, switching to mode ℓ should only be
considered when the idle time is at least Tm ,ℓ . Similarly, switching to a low power
mode ℓ should only be considered when the energy consumption does not increase
due to switching. ¿is is the case whenever the idle time is at least:

Bm ,ℓ ≙
Em ,ℓ − Tm ,ℓPm ,ℓ

Pm ,1 − Pm ,ℓ

(see [32]), which is the minimal time before which switching to the sleep mode ℓ
saves more energy than it costs, called the break-even time. We assume (as in [12]
and discussed below) that

Tm ,ℓ ≤ Bm ,ℓ .

It was shown empirically that algorithms that were designed with this assumption
in mind still work well when the latency is higher than the break-even time [46].

¿e energy consumption of device m in the best sleep mode as function of the idle
time τ is given by

Esl
m(τ) ≙ min

ℓ∈{1, . . . ,Lm}
∥Em ,ℓ + Pm ,ℓ(τ − Tm ,ℓ)∥ .

A similar energy consumption model is used in [12]. In this model, the functions
Esl
m are increasing piecewise-linear concave. ¿e sum over all individual devices

determines the total energy consumed during the idle period, which is given by

Esl(τ) ≙ M

∑
m=1

Esl
m(τ).
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¿is expresses the total energy that is consumed during the entire idle period as a
function of the length of the idle period and is therefore called the idle-time-energy
function. Since the sum of increasing piecewise-linear concave functions is again
increasing piecewise-linear concave, the function that gives the total energy for the
idle time is also increasing piecewise-linear concave. To ease the notation of this
function, we use the fact that a piecewise-linear function Esl can be represented by
linear pieces and therefore can be described by:

Esl(τ) ≙ min
i∈{1, . . . ,D}

∥R iτ + Q i∥ ,
for some D and values Q i ≥ 0 and R i ≥ 0. We assume that Esl(0) ≙ 0, because an
idle period of zero length consumes no energy.

In the derivation of the sleep mode model, we assumed that the break-even time
is higher than the latency, i.e. Bm ,ℓ ≥ Tm ,ℓ . If we look at the devices in Table 2.1,
we can see that this assumption holds for many devices that occur in practice. For
ease of notation, we furthermore assume without loss of generality there is no idle
period before the �rst frame and a er the last frame, otherwise dummy tasks can
be added to re�ect this situation.

Scheduling in�uences the e�ectiveness of sleep modes. A scheduling algorithm
should create relatively many idle periods that are bigger than the break-even time.
In the following example, we illustrate how the break-even times in�uence the
scheduling decisions.

Example 7.1. We consider the characteristics from Table 2.1 together with some �c-
tional execution times to illustrate the trade-o�s that occur when determining the
optimal use of sleep modes. From this table we consider the sensor node from [78],
which has four power saving modes. For this device, the energy consumption for the
idle time depends on the length of the idle period, as is illustrated in Figure 7.2.

Let the period length be 100ms (T ≙ 100) and the execution times of the four subse-
quent frames be given by e1 ≙ 15, e2 ≙ 78, e3 ≙ 90, e4 ≙ 100 (all in ms). When it
is assumed (as in [32]) that all tasks are scheduled to start at the beginning at the
frame, the idle periods are as depicted as in Figure 7.3a. ¿e �rst idle period of 85ms
is long enough for the deepest sleep mode, the second idle period of 22ms which is long
enough for the second sleep mode and for the third idle period of 10ms only the �rst
sleep mode can be used. ¿e total idle-time energy consumption for this schedule is
336.92mJ.

An alternative schedule is shown in Figure 7.3b, for which the total idle-time energy
consumption is 330.01mJ.¿e energy consumption is lowerwith respect to the previous
schedule since instead of switching to sleep modes 1 and 2 for the last two idle periods,
these idle periods are merged to a single big idle period and only one transition to the
sleep mode 3 is used. ¿is schedule requires two transitions to a sleep mode that both
have high transition costs.
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Figure 7.2 ś Concave idle-time-energy function (Esl) for a sensor node ([78]).

A third possible schedule that avoids these high costs is shown in Figure 7.3c. ¿e total
transition energy is reduced because the device only transitions once to a deep sleep
mode instead of twice. Despite that the other idle period is not long enough for a deep
sleep mode, the total energy consumption (323.48mJ) is still lower than that of the
previous schedule. ¿ere are even more schedules possible, but it is easy to see that
this is the optimal schedule (see Section 7.3).

¿e example shows that the schedule in�uences the lengths of the idle periods and
thus also the depth of the sleep mode and how o en a transition to sleep modes is
made.

7.2.3 speed scaling

Whereas with sleep modes the energy consumption during idle time is considered,
with speed scaling the focus is on energy spent during the execution of a task.
Hereby, time can be “traded” for energy by changing the speed. ¿e speed of a
task Tn is given by a function that maps time to a speed, this function is called the
speed function and is denoted by sn ∶ R

+ → S . Note, that in the previous chapters
we used a single speed function for the entire application, whereas this chapter
uses a speed function for each individual task. Many papers (e.g., [48, 90]) assume
that this function is a continuous function that can attain any value in the interval
S ≙ ∥smin , smax∥, while other papers (e.g., [54]) use a �nite set of available speeds
(i.e. S ≙ {s̄1 , . . . , s̄K} ⊂ ∥smin , smax∥).
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85ms 22ms 10ms

(a) Schedule tasks at the beginning of the frame

85ms 32ms

(b) Alternative schedule

107ms 10ms

(c) Optimal schedule

Figure 7.3 ś ¿ree possible schedules for the tasks in Example 7.1.

Together with the amount of work wn , the speed determines the execution time of
each task Tn . For a task Tn , the execution time en , speed function sn and workload
wn have to satisfy

wn ≙ ∫
en

0
sn(τ)dτ. (7.1)

Note, that if the function sn is given, the execution time en can be determined by
(7.1).

7.3 Sleep modes

In this section, only scheduling in combination with the optimal use of sleepmodes
is considered. Since speed scaling is not yet applied, we assume that the processor
runs at a constant speed, i.e. for each task Tn , the execution time en is known.

7.3.1 properties of optimal sleep modes

Since the idle-time-energy function Esl is concave as we explained in Section 7.2.2
(e.g., see Figure 7.2), we can derive several properties of optimal solutions. We use
these properties to determine an optimal solution.

¿e �rst property shows that, instead of having two separate idle periods, it is better
to merge them to one single idle period.

Lemma 7.1. ¿e function Esl is sub-additive, i.e.,

Esl(x + y) ≤ Esl(x) + Esl(y).
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Proof. Recall that E(0) ≙ 0, i.e. an idle period of length 0 consumes no energy.
¿en by using the de�nition of concavity (see Appendix A) of Esl we get:

Esl(x) ≙ Esl ( x

x + y
(x + y) + y

x + y
0)

≥
x

x + y
Esl(x + y) + y

x + y
Esl(0)

≙
x

x + y
Esl(x + y).

Similarly Esl(y) ≥ y

x+y
Esl(x + y). A er adding these two inequalities, the result

directly follows.

¿e energy savings of merging two idle periods can grow up to 5o% as the following
consideration shows. Consider a device with a single sleep mode that requires zero
power (shutdown). Merging two idle periods of length x and y halves the energy
consumption during these idle periods when x and y are both larger than the
break-even time. ¿e reason for this is that the transition costs have to be taken
into account only once, instead of twice.

Lemma 7.1 and also the next lemma are not restricted to frame-based systems, since
they present properties of the sleep mode model and not of the task model (i.e. the
theory holds for all task models). For example, this lemma can also be applied to
systems with agreeable deadlines. In fact, this lemma can be combined with the
research by Angel et al. [9] on sleep modes for agreeable deadlines, to extend their
results with multiple devices.

Whereas Lemma 7.1 merges two idle periods of length x and y to decrease the
energy consumption, the next lemma shows that decreasing the length of one idle
period by δ and increasing the length of the other idle period by δ may decrease
the energy consumption (with δ ≙ x as a special case in Lemma 7.1).

Lemma 7.2. For 0 ≤ δ ≤ x ≤ y we have:

Esl(x − δ) + Esl(y + δ) ≤ Esl(x) + Esl(y).
Proof. For z1 ≙ x − δ, z2 ≙ y + δ, we get z1 ≤ x ≤ y ≤ z2. ¿ere exists a λ ∈ ∥0, 1∥
and µ ∈ ∥0, 1∥ with x ≙ λz1 + (1 − λ)z2 and y ≙ µz1 + (1 − µ)z2. It can be readily
checked that µ ≙ 1 − λ. ¿en by using Lemma 7.1 we get:

Esl(x) ≙ Esl(λz1 + (1 − λ)z2)
≥ λEsl(z1) + (1 − λ)Esl(z2)
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and

Esl(y) ≙ Esl(µz1 + (1 − µ)z2)
≙ Esl((1 − λ)z1 + λz2)
≥ (1 − λ)Esl(z1) + λEsl(z2).

Adding both inequalities gives:

Esl(x − δ) + Esl(y + δ) ≤ Esl(x) + Esl(y).

¿is shows that for two idle periods (of lengths x and y, with x ≤ y) that are
interrupted by the execution of a part of some task, it is better to unbalance the
lengths of the idle periods by starting the execution earlier or later such that the
smallest idle period (of length x) decreases in length, while the longest idle period
(of length y) increases in length.

A direct consequence of this lemma is given by the following corollary.

Corollary 7.1. Given a task that is interrupted by an idle period. ¿e energy con-
sumption does not increase when the task is executed without interruptions.

¿is corollary gives the reason why we may assume without loss of generality that
there is a single task within a frame: if there are multiple tasks within a frame, it is
best to execute them consecutively.

7.3.2 non-variable work

In general, determining an optimal schedule for a real-time system that exploits
sleep modes is NP-hard [31]. For several real-time systems we may use Lemma 7.2
to show that the optimal solution has certain properties which makes it easier to
�nd the optimal solution. In speci�c situations—like for frame-based real-time
applications—the following corollary can be used to determine the optimal sched-
ule directly.

Corollary 7.2. For frame-based systems, there is an optimal schedule in which each
task Tn starts either at time bn ≙ an or at time bn ≙ dn − en .

Proof. ¿is follows directly from Lemma 7.2.

¿is corollary shows that for frame-based systems with N tasks, each task has two
possible begin times, reducing the number of possible schedules to 2N . A direct
result is the following corollary.

Corollary 7.3. For any schedule given by b1 , . . . , bN with b1 > a1, the costs do not
increase when the begin time of task T1 is changed to a1.
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Proof. Recall that we assumed that the system was not idle before the �rst task,
and we consider the energy consumption from the beginning of the �rst frame
until the end of the last frame. Using this, the corollary is a direct consequence of
Lemma 7.2.

For the special case that all tasks have the same amount ofwork, an optimal schedule
can be determined by using the following theorem.

¿eorem 7.1. For a frame-based system where each task Tn has workload wn ≙W

(i.e. en ≙
W

smax ) for someW , the schedule implied by

bn ≙

⎧⎪⎪⎨⎪⎪⎩
an , if n is odd;

dn − en , if n is even,

globally minimises the energy consumption.

Proof. ¿e proof is omitted since it is a special case of¿eorem 7.2 (to be discussed
in Section 7.4).

As this result holds for any number of tasks, the �rst tasks are always scheduled in
the same optimal way.

¿e following examples show the implications of this result.

Example 7.2 (Global and local optimisation). Let the period be given by T ≙ 10,
execution times be given by en ≙ 5 for all n, and the break-even time be given by
B1,1 ≙ 6. If each task starts when the frame begins, the idle periods are of length 5
and are shorter than the break-even time. In the optimal schedule (see ¿eorem 7.1),
the idle periods have length 10, which is longer than the break-even time. Hence, the
schedule that executes the tasks at the beginning of each frame cannot switch to a
sleep mode, while the optimal schedule can use the sleep mode for each idle period.

¿e example illustrates that starting each task at the beginning of the frame—as
is done by some papers that were discussed in Section 3.6—may lead to a worst
possible energy consumption, while global minimisation (using¿eorem 7.1) can
lead to a signi�cant reduction of the energy consumption.

We have assumed that the function Esl is concave, and want to emphasise that the
results from this section do not necessarily hold when this function is not concave.
¿is is illustrated by the following example.

Example 7.3 (Non-concavity of Esl). Let the application consist of 3 tasks (N ≙ 3)
with T ≙ 100, and let the execution time be en ≙ 50 for n ∈ {1, 2, 3}, hence In ≙ 50.
¿en an optimal schedule is given by b1 ≙ 0, b2 ≙ 150, b3 ≙ 250, as shown in
Figure 7.4a.



107

7
.3
.3
ś
V
a
r
ia
b
l
e
W
o
r
k

100 50

(a) Schedule found by¿eorem 7.1

75 75

(b) Optimal schedule

Figure 7.4 ś Schedule for non-concave function Esl .

Now we consider the same scenario, but now Esl is not concave, but is given by the
following function (see Figure 7.5):

Esl(τ) ≙ ⎧⎪⎪⎨⎪⎪⎩
4τ, if τ < 75;

150 + 0.2τ, if τ ≥ 75.

¿e costs for the given schedule using this non-concave function Esl are 370. However,
as Corollary 7.2 does not hold for the function Esl, an optimal solution might start
the tasks elsewhere in a frame. In fact the unique optimal solution is given by b1 ≙ 0,
b2 ≙ 125 and b3 ≙ 250 (see Figure 7.4b) which has the costs 330. For this solution it
holds that

Esl(75) + Esl(75) ≤ Esl(100) + Esl(50).
¿is shows that when Esl is not concave, the schedule from¿eorem 7.1 is not neces-
sarily optimal.

7.3.3 variable work

For¿eorem 7.1 we assumed for each task Tn that wn ≙W . ¿e importance of this
assumption for optimality of the schedule given by¿eorem 7.1 is demonstrated by
the following example:

Example 7.4. Let the period be T ≙ 100 and let there be four tasks (N ≙ 4) with
execution times e ≙ (75, 25, 25, 75). Furthermore, assume that the processor can
operate in twomodes: an idlemode and a sleepmode. ¿e idle-time-energy function is
given by Esl(τ) ≙min{τ, 100+0.2τ}, where the break-even time is 125. ¿e schedule
given in ¿eorem 7.1 leads to the following begin times: b ≙ (0, 175, 200, 325) (see
Figure 7.6a). All resulting idle periods are too small for switching to the sleep mode,
hence the energy consumption cannot be reduced by using sleep modes. However, the
schedule given by b ≙ (0, 100, 275, 325) (see Figure 7.6b) creates an idle period of
length 150 between the second and the third task, hence the energy consumption can
be reduced using sleep modes (from 200 to 180).
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Figure 7.5 ś Non-concave function Esl .

100 100

(a) Schedule according to¿eorem 7.1

25 150 25

(b) Optimal schedule

Figure 7.6 ś Four tasks with variable work, B1,1 = 125.

¿is example shows that when not all tasks have the same workload, the schedule
that is suggested by¿eorem 7.1 does not necessarily produce an optimal result. In-
stead, other candidates for the optimal solution must be considered. As mentioned
before, there are 2N candidates for the optimal solution. In the following, we �rst
reduce the number of candidates, before we give a procedure that �nds the optimal
solution for variable work in linear time.

Given a task Tn with a begin time bn , there are at most two generally good choices
for bn+1. ¿e following lemma shows that when bn ≙ dn − en , the next scheduling
choice follows directly:
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Lemma 7.3. Given bn ≙ dn − en , then using bn+1 ≙ an+1 never costs more energy
than using bn+1 ≙ dn+1 − en+1.

Proof. When task Tn+1 is scheduled to start at bn+1 ≙ dn+1 − en+1, then there is an
idle period of length T − en+1 between task Tn and task Tn+1. Moving task Tn+1

to start at an+1 reduces the length of the idle period between Tn and Tn+1 from
T − en+1 to 0, and creates a new idle period of the same length a er task Tn+1, hence
the costs do not change. Moreover, when this idle period can be merged with the
following idle period, a bigger idle period is created and the energy consumption
may decrease (see Lemma 7.1).

Using Lemma 7.3, the energy minimisation problem can be solved using dynamic
programming. Given a scheduling choice (bn) for task Tn , there is a limited number
of choices for task Tn+1. First, if task Tn starts at bn ≙ an , the next task begins at
either bn+1 ≙ an+1, using an idle period for task Tn of which the costs can be directly
computed to be Esl(T − en), or the task begins at bn+1 ≙ dn+1 − en+1, leading to an
idle period starting in frame n and ending in frame n+ 1 for which the costs can be
directly computed to be Esl(2T−en−en+1). Second, if task Tn starts at bn ≙ dn−en ,
we can assume (by Lemma 7.3) that the next task begins at bn+1 ≙ an+1 and the costs
for the idle period following task Tn+1 depend on when task Tn+2 starts.

We depict our dynamic programming approach with a weighted directed acyclic
graph G—called the energy graph—in which the edges represent energy costs. A
vertex vn (n ∈ {1, . . . ,N}) represents the execution of task Tn at time bn ≙ an .
An additional vertex vN+1 is introduced as sink vertex that models the completion
of the computation, hence there are N+1 nodes in the energy graph. Clearly, the
vertices V(G) of energy graph G are given by v1 , . . . , vN , vN+1.

¿e edges represent the scheduling decisions: an edge (vn , vn+1) implies that tasks
Tn and Tn+1 are scheduled at bn ≙ an and bn+1 ≙ an+1, while an edge (vn , vn+2)
implies that tasks Tn , Tn+1 and Tn+2 are scheduled at bn ≙ an , bn+1 ≙ dn+1−en+1 and
bn+2 ≙ an+2. Note that, given the previous discussion, these are the only relevant
scheduling choices (i.e. edges that skip more tasks do not have to be considered).
¿e weight of an edge (vn , vm) (denoted by ωn ,m) gives the energy consumption
that belongs to the scheduling decisions for tasks Tn , . . . , Tm−1. Hence, the edge(vn , vn+1) has weight ωn ,n+1 ≙ Esl(T − en) while the edge (vn , vn+2) has weight
ωn ,n+2 ≙ Esl(2T − en − en+1). ¿e edges of energy graph G for n ∈ {1, . . . ,N}
are thus given by (vn , vn+1) and for n ∈ {1, . . . ,N−1} there are edges given by(vn , vn+2).
Since we may assume without loss of generality (see Corollary 7.3) that the �rst task
starts at time b1 ≙ a1 (represented by v1), we only need to consider paths through
the graph that start at vertex v1. A path from vertex v1 to vertex vN+1 corresponds
to a schedule. ¿e sum of the weights on this path gives the energy costs associated
with this schedule. Now, the shortest path (i.e. the path with the lowest summed
weights) from v1 to vN+1 gives a schedule with the minimal energy consumption.
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¿e shortest path can be easily determined using Dijkstra’s shortest path algorithm
[33], which has a polynomial time complexity. Since our energy graph has a special
structure (e.g., no cycles, a low degree, etc), Dijkstra’s algorithm can be reduced to
Algorithm7.4 and executed in linear time. In this algorithm, the costs of the shortest
path up to vertex vn is given by costsn and the predecessor in the shortest path is
given by predn , such that the shortest path (i.e. the minimum energy schedule) can
be easily reconstructed.

Algorithm 7.4 Shortest path for energy graph.

for i ≙ {1, . . . ,N} do
if i ≙ 1 or costsi−1 + ω i−1, i < costsi−2 + ω i−2, i then
costsi ≙ costsi−1 + ω i−1, i

predi ≙ i − 1
else
costsi ≙ costsi−2 + ω i−2, i

predi ≙ i − 2
end if

end for

¿is procedure is illustrated using the following example:

Example 7.5. We again consider the situation from Example 7.4, given by T ≙ 100,
e1 ≙ 75, e2 ≙ 25, e3 ≙ 25 and e4 ≙ 75. ¿e idle-time-energy function is chosen to be
Esl(τ) ≙min{τ, 100 + 0.2τ} and has as break-even time of 125. ¿e energy graph G
has 5 vertices: v1 , . . . , v5. ¿e edges representing the energy consumption are given
as follows. ¿e case that task T1 starts at b1 ≙ a1, and task T2 at b2 ≙ a2 leads to an
idle period of length 25 and the energy consumption of the respective idle period is
Esl(T−e1) ≙ 25. ¿is ismodelled using the edge (v1 , v2)withweight 25. When taskT2

starts at b2 ≙ 2T − e2 the idle time between tasks T1 and T2 together is 2T − e1 − e2
and the energy consumption for the idle time of both tasks is Esl(2T − e1 − e2) ≙ 100,
this is modelled using the edge (v1 , v3) with weight 100. ¿e complete energy graph is
depicted in Figure 7.7. ¿e shortest path from v1 to v5 in this graph can be determined
using Algorithm 7.4 and is given by (v1 , v2 , v4 , v5). Each task Tn of which the node is
in the path is scheduled as bn ≙ an , hence b1 ≙ 0, b2 ≙ 100, b4 ≙ 300. When the node
for task Tn is not in the path, bn ≙ dn − en , hence it follows that b3 ≙ 75. ¿e energy
consumption is the weighted length of the path, hence 180 energy is consumed.

Minimising the shortest path is not the same asmaximising the length of the largest
idle period, as is illustrated by the following example.

Example 7.6. Let T ≙ 100, e1 ≙ 35, e2 ≙ 25, e3 ≙ 25 and e4 ≙ 35, and let the idle-
time-energy function given be Esl(τ) ≙min{τ, 100 + 0.2τ}, i.e. the break-even time
is 125. Figure 7.8 shows the corresponding energy graph. ¿e biggest idle period that
is possible in a schedule (of length 130) can be created by using the edge (v2 , v4), the
only path from v1 to v5 containing this edge is (v1 , v2 , v4 , v5)which has costs 260. ¿e



111

7
.4
ś
S
p
e
e
d
sc
a
l
in
g

v1 v2 v3 v4 v5
25

100

75

130

75

100

25

Figure 7.7 ś Energy graph for Example 7.5.

v1 v2 v3 v4 v5
65

128

75

130

75

128

65

Figure 7.8 ś Energy graph for Example 7.6.

shortest path from v1 to v5 (of length 256) is given by (v1 , v3 , v5). Hence, maximising
the length of the longest idle period does not necessarily lead to a minimised energy
consumption.

7.4 Speed scaling

Since the results on the optimal schedules hold—as will be shown—independently
of the speed function, we initially assume that the speed for each task Tn is given
by a function sn ∶ R

+ → S without requiring this function to be known. ¿e
combination of sleepmodes and speed scalingmight seem counter-intuitive at �rst:
neithermaximising the idle period length norminimising the speedwill necessarily
result in a minimisation of the energy. Instead, a simultaneous optimisation that
considers both sleep modes and speed scaling is required.

7.4.1 non-variable work

When all tasks have the same amount of work, it becomes easier to determine
an optimal schedule. ¿is is used by the following lemma which helps to �nd an
optimal schedule of the tasks.

Lemma 7.4. Assume that the work for all tasks Ti is given by w i ≙W . Furthermore,
assume that a schedule is given with bn ≙ an and bn+1 ≙ an+1 for some n. When
using the begin time bn+1 ≙ dn+1 − en+1 instead of using bn+1 ≙ an+1, speed functions
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sA sB sC

n n+1 n+2

⇓

sA sB sC

n n+1 n+2

(a) bn = an , bn+1 = an+1 , bn+2 = an+2

sA sB sC

n n+1 n+2

⇓

sB sC sA

n n+1 n+2

(b) bn = ak , bn+1 = an+1 , bn+2 = dn+2 − en+2

Figure 7.9 ś Alternative scheduling for Lemma 7.4.

exist by which the energy costs do not increase. When we change the schedule such
that task Tn+1 �nishes at dn+1, there exists a speed function which ensures that the
deadline is still met and the energy costs do not increase by these changes.

Proof. Assume the speed functions for tasks Tn , Tn+1 and Tn+2 are given by sA,
sB and sC respectively. A er changing bn+1 according to the lemma, we have to
�nd a new speed function for tasks Tn , Tn+1 and Tn+2. Two situations have to be
considered (by Corollary 7.2); in both situations the energy consumption does not
increase:

(i) n + 2 > N or bn+2 ≙ an+2: In this situation, only the begin time of task Tn+1

changes, while we keep the speed function for each task the same. ¿en the
idle period that follows task Tn+1—which is not followed by an idle period
of a next task—now occurs before task Tn+1 as depicted (for bn+2 ≙ an+2)
in Figure 7.9a. Since no idle period becomes smaller and all speed functions
remain the same, the energy consumption does not increase. Actually, an op-
portunity for further energy reductionmight be created since the idle periods
of tasks Tn and Tn+1 are adjacent.

(ii) n+2 ≤ N and bn+2 ≙ dn+2− en+2: In this situation, the begin time of task Tn+1

changes, and also the speed functions of some tasks are interchanged as de-
scribed below. In the old situation, there was an idle period of length In a er
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the execution of task Tn and there is an idle period of length In+1 + In+2 be-
tween tasks Tn+1 and Tn+2. By using bn+1 ≙ dn+1 − en+1 and interchanging the
speed functions such that in the new situations for tasks Tn , Tn+1 and Tn+2 re-
spectively the speed functions sB,sC and sA are used, the situation as depicted
in Figure 7.9b is created. Here the length of the idle period between task Tn

and task Tn+1 has now the length In+1 + In+2 and the idle period between
task Tn+1 and task Tn+2 has length In , meaning that the energy consumption
remains the same.

¿e problem of �nding a schedule and speeds that together minimise the energy
consumption is a di�cult problem, since this generally requires simultaneous op-
timisation for both sleep modes and speed scaling. For frame-based systems with
non-variable work we will show that �rst optimising for sleep modes and then for
speed scaling will lead to a global minimum. ¿is is stated in the following theorem.

¿eorem 7.2. Assume a frame-based system where each task has the same workload,
i.e. w i ≙ W for all tasks Ti . Let the begin times be given by b1 , . . . , bN and speed
functions be given by s1 , . . . , sN . ¿en there are alternative speed functions s̃1 , . . . , s̃N
such that together with the schedule implied by

b̃n ≙

⎧⎪⎪⎨⎪⎪⎩
an , if n is odd;

dn − en , if n is even,

the energy consumption is not higher than the energy consumption of the schedule
given by b1 , . . . , bN and s1 , . . . , sN .

Proof. For task T1, using b̃1 ≙ a1 does not increase the energy consumption by
Corollary 7.3. Now assume the theorem does not hold and consider a schedule for

which b̂1 ≙ b̃1 , b̂2 ≙ b̃2 , . . . , b̂k ≙ b̃k and b̂k+1 ≠ b̃k+1 with k as large as possible.
Note, that k ≤ N − 1 due to the assumption that the theorem does not hold. ¿ere
are two possibilities:

» k is odd: Hence b̃k ≙ b̂k ≙ ak and by Lemma 7.4, there is a schedule such that

b̂k+1 ≙ dk+1 − ek+1 and the begin times for tasks T1 , . . . , Tk remain the same,
which does not lead to an increase of the energy costs. ¿is contradicts that
k was chosen as high as possible.

» k is even: Hence b̃k ≙ b̂k ≙ dk−ek and by Lemma 7.3, there is a schedule such

that b̂k+1 ≙ ak+1 and the begin times for tasks T1 , . . . , Tk remain the same,
which does not lead to an increase of the energy costs. ¿is contradicts that
k was chosen as high as possible.

Since in both cases, the assumption that the theorem does not hold leads to a
contradiction, the theorem is proven.
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¿eorem 7.2 shows that for the optimal combination of sleep modes and speed
scaling, we can take the optimal sleep mode schedule from¿eorem 7.2 and then
determine the optimal speed functions in a second step. Since the speeds are either
chosen from the set ∥smin , smax∥ or from the �nite set {s̄1 , . . . , s̄K} ⊂ ∥smin , smax∥,
both cases are treated separately in the following two sections.

7.4.2 optimal continuous speed scaling

In the state of the art work by Devadas and Aydin [32], the power function given by
p(s) ≙ γ1s3 + γ2 is used. In the following, we use the same power and task model,
and use results from [32] to �nd an analytic solution to the problem considered in
this section. As mentioned in Section 2.6.1, we may assume that sn(t) is a constant
function, hence we now may assume that sn is a value chosen from the interval∥smin , smax∥.
¿e speed in�uences the execution time en and the active energy that devices con-
sume for time en , therefore we can no longer treat the active energy of all devices as
a constant. ¿e energy consumption during the execution of task Tn by device m
is determined as Pm ,0(T − wn

sn
). For ease of notation, we assume in the remainder

of this chapter that the active time energy consumption is part of Esl.

Given the schedule from ¿eorem 7.2, there are two possible situations for each
task Tn :

» bn ≙ an and bn+1 ≙ dn+1 − en+1.

In this situation, the idle period of tasks Tn and Tn+1 together have length
2T − en − en+1. For �nding the optimal speed, we solve the following opti-
misation problem:

Optimisation Problem 7.1.

min
sn ,sn+1∈∥smin ,smax∥

p(sn)wn

sn
+ p(sn+1)wn+1

sn+1

+ Esl (2T − wn

sn
−
wn+1

sn+1
) ,

s.t.
wn

sn
≤ T ,

wn+1

sn+1
≤ T .

¿e cost function consists of the energy when active and the energy con-
sumed during the idle period (given by Esl(I)). We determine the speeds
thatminimise these costs, while making sure that both task Tn and task Tn+1

can individually be executed within a frame of size T , as expressed by the
two constraints. Either the minimum is attained inside the interior of the
feasible region (the speeds that are allowed by the constraints), or the min-
imum is attained on the boundaries of the feasible region. In the �rst case
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the minimum can be determined by solving the unconstrained problem
(i.e. only minimising the cost function). ¿is problem has a minimum
for which holds that sn ≙ sn+1 (see Section 2.6.1), by which the problem
reduces to a one dimensional problem (sn ≙ sn+1, only one degree of free-
dom). ¿is speci�c problem is solved by Devadas and Aydin [32]. In the
second case, where the solution is on the boundary, we consider the cases
for sn ≙ max{smin , wn

T
}, sn ≙ smax, sn+1 ≙ max{smin , wn+1

T
} and sn+1 ≙ s

max

which are minimal speeds, maximal speeds and the lowest speeds by which
the deadline is met. When looking for a solution on the boundary, one
dimension of the problem is removed, reducing it to the problem that was
solved in [32]. Since there are �ve candidate solutions that can be analyti-
cally found inO(D) time (D is the number of linear pieces) using the results
from [32], we can determine the costs for each of the �ve candidate solutions
and use the one that minimises the costs.

» Other situations.

In the other situations, the n-th frame has an idle time of length In and is
not adjacent to an idle period of another task (i.e. task Tn−1 or task Tn+1).
In that case the following optimisation problem has to be solved:

Optimisation Problem 7.2.

min
sn∈∥smin ,smax∥

p(sn)wn

sn
+ Esl (T − wn

sn
) ,

s.t.
wn

sn
≤ T .

Again we can use [32] to �nd a solution to this problem.

As the solution in [32] can be found in O(D) time (i.e. it depends linearly on
the number of low power states for all devices), and the schedule is determined in
O(1) time, the time complexity for �nding a schedule that optimally combines sleep
modes and speed scaling isO(D). As �nding the solution to the above optimisation
problems is already discussed in [32], we do not repeated the method for �nding a
solution here. Instead we give a brief example to illustrate this approach.

Example 7.7. Let a frame-based real-time system be given with period T ≙ 10, work
wn ≙ 5 for all n and break-even time B1,1 ≙ 0.4. Furthermore, consider an active
power and idle power of 1, and a power consumption in the sleep mode of 0.01. We
restrict the speeds to S ≙ ∥0.1, 1∥ and choose p(s) ≙ s3.
We can solve Optimisation Problem 7.2 to �nd the optimal speeds, because we have
an idle period of length I ≙ 10 − 5

sn
that is not merged with another idle period. ¿e

speed should be at least W
T
≙

1
2
, otherwise the deadline will be missed. ¿e energy

consumption for speed scaling as a function of the speed is given by

Ess(sn) ≙ wns
2
n .
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Figure 7.10 ś Total energy consumption (sleep modes + discrete speed scaling) as function

of the e�ective speed.

To ease the optimisation, the energy consumption for sleepmodes will also be expressed
in terms of the speed. Since Esl is a function of the idle time, the idle time has to be
determined in terms of the speed, which is:

I(sn) ≙ T − wn

sn
.

¿e total energy as a function of the speed becomes

Esl(I(sn)) + Ess(sn),
and is shown in Figure 7.10. If the speed is at least wn

T−B1,1
≈ 0.52 (which is the peak

in the �gure), the idle time is long enough to switch to the sleep mode. For speeds
below this speed, no sleep mode but only speed scaling is used. For speeds above this
speed, the device can be put to sleep mode during the idle period. Devadas and Aydin
[32] show that these two di�erent cases have to be considered to �nd a minimum
and give an analytic solution to this problem. Since the minimal speed should be at
least 1

2
, the speed that is feasible and minimises the energy consumption is close to

0.8 as can be seen from inspection of Figure 7.10. ¿is shows that there is an interplay
between sleep modes and speed scaling: instead of choosing the lowest speed that is
allowed (speed 1

2
) or instead of using a speed that maximises the idle period (speed

1), a speed is used that maximises energy savings using both sleep modes and speed
scaling. For a thorough discussion and exact calculation of the optimal speeds, we
refer the interested reader to the work of Devadas and Aydin [32].
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7.4.3 optimal discrete speed scaling

In case only a �nite number of speeds are allowed, i.e. the speeds from the set
S ≙ {s̄1 , . . . , s̄K}, a di�erent procedure is deployed to determine the optimal speeds.
To specify a solution for task Tn , let wn ,1 ≥ 0 work be executed at speed s̄1, wn ,2 ≥

0 work be executed at speed s̄2, etc (see Section 2.6.4). In total we must have

∑K
i=1 wn , i ≙ wn , meaning that the workload of task Tn is distributed over the avail-

able speeds. As for the situation with continuous speeds, two cases are considered:

» bn ≙ an and bn+1 ≙ dn+1−en+1.
In this case, the idle period for frames n and n + 1 together have length

In + In+1, where Iℓ ≙ T − [∑K
i=1

rℓ , i
s̄ i
] , ℓ ∈ {n, n+1}. ¿e function Esl is

piecewise linear, where piece j is characterised by two values Q j and R j ,
meaning that the energy consumption for the idle period is determined as
R jI j + Q j .

Hence, for some linear piece j, the optimal speeds are determined by solving
the following optimisation problem.

Optimisation Problem 7.3.

min
wn ,1 , . . . ,wn ,K

wn+1,1 , . . . ,wn+1,K

[ K

∑
i=1

p(s̄ i)wn , i +wn+1, i

s̄ i
]

+ R j [2T − K

∑
i=1

wn , i +wn+1, i

s̄ i
] + Q j + R0

K

∑
i=1

wn , i +wn+1, i

s̄ i
,

s.t.
K

∑
i=1

wn , i

s̄ i
≤ T ,

K

∑
i=1

wn+1, i

s̄ i
≤ T ,

K

∑
i=1

wn , i ≙ wn ,

K

∑
i=1

wn+1, i ≙ wn+1 ,

wn , i ≥ 0 , for all i ∈ {1, . . . ,K},
wn+1, i ≥ 0 , for all i ∈ {1, . . . ,K}.

Here the �rst term of the cost function is the energy consumption of the
processor during the active period, the term with the constant R0 is the
active power of the devices during the active period and the energy during
the idle period is given by the linear terms with coe�cients Q j and R j (see
Section 7.2.2). ¿is problem is a linear program, which can be solved in
polynomial time. ¿e above optimisation problem is solvedD times, namely
once for each j ∈ {1, . . . ,D} and we choose the j that gives the best solution.
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Figure 7.11 ś Total energy consumption (sleep modes + discrete speed scaling) as function

of the e�ective speed.

» Other situations.

For the other cases, no idle periods can be merged and the optimisation
problem is given by the following optimisation problem.

Optimisation Problem 7.4.

min
wn ,1 , . . . ,wn ,K

[ K

∑
i=1

p(s̄ i)wn , i

s̄ i
] + R j [T − K

∑
i=1

wn , i

s̄ i
] + Q j + R0

K

∑
i=1

wn , i

s̄ i
,

s.t.
K

∑
i=1

wn , i

s̄ i
≤ T ,

K

∑
i=1

wn , i ≙ wn ,

wn , i ≥ 0 , for all i ∈ {1, . . . ,K}.
¿is is again a linear problem, which can be solved in polynomial time.
¿e costs for each candidate solution should be calculated and the feasible
candidate with the lowest costs minimises the energy.

In Example 7.7, we calculated the optimal sleepmodes and speed scaling settings for
continuous speed scaling. ¿e next example repeats this for a �nite set of speeds.

Example 7.8. Weagain consider the frame-based real-time systemwith period T ≙ 10,
workwn ≙ 5 and break-even time B1,1 ≙ 0.4. A single device is used with active power
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and idle power of 1 and when put to sleep the power consumption is 0.10. ¿e speeds
S ≙ {0.1, 0.25, 0.5, 0.75, 0.9, 1} are available and we again use the power function
p(s) ≙ s3 for the processor.
As in Example 7.7, the energy consumption for optimal sleep modes can be determined
if the speed is �xed. Since not all speeds in the interval ∥0.1, 1∥ are available, the un-
available speeds are simulated (see Section 2.6.5). ¿e average speed that is obtained
this way is referred to as the e�ective speed. Figure 7.11 shows the energy consumption
as function of the e�ective speed. ¿e optimal speed is now 0.75.

7.4.4 variable work

Note, that Lemma 7.3 still holds when speed scaling is used. ¿erefore, the structure
of the energy graph for frame-based systems with speed scaling is the same as the
structure for frame-based systems without speed scaling. ¿e only thing which
changes are the costs corresponding to the edges in the graph. ¿ese values can
be determined by using the procedures that were discussed in Section 7.4.2 and
Section 7.4.3.

For wn work and when only considering sleep modes, E
sl(T − wn

smax ) is used as
the weight for an edge that encodes the costs of task Tn . When continuous speed

scaling is used, p(sn)wn

sn
+ Esl (T − wn

sn
) is used as costs for this edge, however sn is

not yet known. When constructing the graph, sn can be determined (locally) and
the energy for task Tn can be used as weight in the graph. A er constructing this
graph, a shortest path algorithm can be applied to �nd the schedule and speeds that
minimise the energy consumption. ¿is last step works exactly as in Section 7.3.3.

7.5 Evaluation

To get more insights in optimal scheduling for sleep modes, we use the measure-
ments of the devices given in Table 2.1 and compare our method to the approach of
Devadas and Aydin [32]. In our evaluation, we consider two settings to show what
can be gained when the results from Section 7.3 are applied. In the �rst setting, we
assume all tasks start as soon as they arrive, as is assumed by, e.g., Devadas and
Aydin [32] and Kong et al. [52]. ¿is setting is illustrated by the graphs “Beginning
of frame” in Figure 7.12. For the other setting we assume the tasks are scheduled
according to the results from Section 7.3, denoted by “Optimal schedule” in Fig-
ure 7.12. Here, we assumemany tasks are scheduled and thus every two idle periods
can be merged into a bigger idle period, which enables signi�cant energy savings.
We use the average energy per frame, to make it possible to compare the energy
savings to the �rst setting.

Figure 7.12a shows the energy consumption of the sensor node from [78], where
each piece of the graph corresponds to a low power sleep mode. ¿e break-even
time for the �rst low powermode is 5ms, which is shown for the situation where the
tasks start at the beginning of the frame. When the tasks are scheduled optimally,
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Figure 7.12 ś Energy consumption.
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the idle period of two frames can be combined and the idle period of 2.5ms in two
consecutive frames are combined to a bigger idle period of 5ms shared by both
frames (again, see Figure 7.1), this makes it possible to switch earlier to a low power
state. Furthermore, by joining two idle periods, the costs for switching to a low
power state and back have to be taken into account only once. ¿is explains why
the costs for an idle period of length 60ms per frame is halved when the results
from Section 7.3 are used: the state transition only takes place in 50% of the frames,
hence only 50% of the transition energy is required.

7.6 Conclusions

In this chapter, we discussed several general properties of optimal sleep modes.
One important property—given the assumptions in this chapter—is that it is best
to either start each task as soon as possible or as late as possible. For frame-based
systems, these properties are used to �nd a globally optimal schedule thatminimises
the energy consumption using sleep modes. ¿is is done for nonvariable work and
for variable work.

In addition to optimal scheduling for sleep modes, we have shown how to combine
sleepmodes and speed scaling optimally. We have proven that for frame-based real-
time systems, �rst optimising for sleep modes and then for speed scaling, leads to a
global minimum of the energy consumption. Simultaneous optimisation for speed
(speed scaling) and idle period length (sleep modes) is required, since neither max-
imising the idle period length nor minimising the speed will necessarily minimise
the energy consumption.

Compared to the state-of-the-art research, the algorithms from this chapter create
more opportunities to use sleep modes and will therefore use less energy. We have
shown that in case the energy consumption in the low power state is zero (total
shutdown of the device), the idle-time energy consumption is reduced by up to
50% with respect to the state of the art.





Chapter8

Conclusions and

Recommendations

¿is chapter summarises the results presented in this thesis (Section 8.1), gives
answers to the research questions from Chapter 1 (Section 8.2) and proposes direc-
tions for future research (Section 8.3).

8.1 Summary

¿e topic of this thesis is energy minimisation under deadline constraints by us-
ing algorithmic power management techniques. Algorithmic power management
makes it possible for so ware developers to signi�cantly reduce the energy con-
sumption of computing devices. So ware can be used to decrease the speed of
devices in order to lower their energy consumption (speed scaling), or it can put
them in a low power sleep mode (sleep modes).

In Chapter 4 we studied uniprocessor speed scaling, both for o�ine and for online
optimisation. For energy e�cient operation in both the o�ine and online situation,
algorithms must avoid unnecessary speed changes. When two consecutive tasks
use di�erent speeds, and when the average speed (work for both tasks divided by
execution time of both tasks) is feasible for both tasks, the energy consumption can
be decreased by using this average speed. ¿is fact is used by many speed scaling
algorithms to minimise the energy consumption. For the case that static power
is accounted for until the last deadline, the o�ine problem was solved using the
RecursiveSmoothing algorithm by Huang and Wang [43]. For the other case where
static power is accounted for until the last completion, RecursiveSmoothing is no
longer optimal and we proposed a di�erent approach. It may happen that by using
a higher speed for the �nal tasks, the length of the schedule can be decreased, and
with it the static energy consumption. More precisely, if increasing speeds to the
critical speed (scrit) decreases the schedule length, the total energy consumption
may be reduced (see Section 4.3.2).
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For online optimisation, current approaches rarely use the fact that unnecessary
speed changes should be avoided. Instead, greedy approaches are commonly used
in the literature. ¿ese predict theworkload for the task at hand and (locally) choose
the lowest speed that is allowed. We presented two algorithms that, in contrast to
the related work, avoid unnecessary speed changes, namely the RA-SS algorithm
that uses predictions of future work, and the PRA-SS algorithm that only requires
knowledge of the average workload. We have shown that these algorithms reduce
the energy consumption (by up to 55%) with respect to greedy approaches, and are
very robust against inaccurate predictions and many modelling inaccuracies.

In Chapter 5, global speed scaling for multicore systems (i.e. all cores run at the
same speed) was discussed. For such systems where the execution of tasks may be
restricted by precedence constraints and all tasks have a common arrival time and a
common deadline, the speed selection and scheduling problem was treated. When
such applications are executed on a global speed scaling system, it is best to increase
the speed when only a few cores are active, such that the speed can be decreased
when many cores are active. By this, the energy consumption increases for only
a few cores, while it decreases for many cores. However, this increase/decrease
should be limited, as otherwise the increased energy consumption of the few cores
is no longer (over)compensated by the decreased energy consumption for many
cores. ¿is suggests a balance of the speeds for the times when m cores are active
and when n cores are active. More precisely, the optimal speed that is used whenm
cores are active should be multiplied by a factor α

√
m
n
to obtain the optimal speed

when n cores are active.

To minimise the energy consumption on a global speed scaling system, speed scal-
ing and scheduling must be considered simultaneously. Since this is an NP-hard
problem, scheduling heuristics must be used. To characterise the energy min-
imising schedule, we derived a scheduling criterion (referred to as the weighted
makespan) that implicitly takes the optimal speeds into account (Section 5.4). ¿is
weighted makespan is given by

S̄ ≙
M

∑
m=1

ωm
α
√
m,

where ωm is the total duration in work (e.g., in clock cycles) for which exactly m
cores are active, and α is a system dependent constant. Minimising our scheduling
criterion and then choosing the optimal speeds globally minimises the energy con-
sumption. For the speci�c situation of two cores, we have shown that minimising
the makespan also minimises the weighted makespan (Section 5.4.3), while this
generally does not hold for more than two cores (Section 5.4.3).

As there are alreadymany existing scheduling algorithms, we did not introduce new
algorithms but we determined how well some of these algorithms are at minimis-
ing the energy consumption. Many of the algorithms were designed to minimise
the makespan. ¿erefore, we determined the relation between minimising the
makespan and minimising our weighted makespan. ¿eorem 5.2 gives an approxi-
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mation ratio for the weighted makespan in terms of an approximation ratio for the
makespan. ¿is can be used to determine how good existing scheduling algorithms
are at minimising the energy consumption. Independently of the scheduling algo-
rithm, we characterised the best case schedule (Section 5.5.1) to show how much
energy can be gained in theory with respect to the state of the art (up to 44% for 16
cores). For the speci�c situation where the LPT scheduling algorithm is used, simu-
lations show that energy savings of more than 30% can be achieved (Section 5.5.2).

In Chapter 6 we extended the above global speed scaling problem to instances
with individual arrival times and deadlines for all tasks. Here, we subdivided the
time line into so-called pieces (Section 6.2), where the subdivision depends on the
arrival times and deadlines of tasks. Due to the de�nition of a piece, the number of
active cores does not change during a piece. Based on this property we introduced
a transformation (Section 6.3) that reduces this global speed scaling multicore
problem to a well-known uniprocessor problem with agreeable deadlines. ¿is
uniprocessor problem (and with it, the multicore problem) can be solved using
the algorithms presented in Chapter 4. For the online situation, we suggested in
Section 6.4 how to choose e�cient speeds.

We studied sleep modes in Chapter 7 for so-called frame-based real-time systems.
In such real-time systems, each task (or group of tasks) is executed within a frame.
Since idle times of adjacent frames can bemerged to longer idle intervals, the length
of idle intervals and with it the e�ectiveness of sleep modes can be in�uenced by
appropriate scheduling decisions. We have shown that it is not su�cient to optimise
for the longest idle time; instead, a schedule that globally minimises the energy
consumption is desired. We derived algorithms that �nd this energy minimising
schedule.

If sleep modes and speed scaling are combined, we considered a trade-o�. Speed
scaling can be used to reduce the energy consumption, but then it also reduces
the length of an idle interval. Since the length of the idle interval determines the
e�ectiveness of sleep modes, this leads to an interplay between speed scaling and
sleepmodes. For frame-based real-time systemswhere all tasks have equal work, we
have shown that we can �rst determine the optimal schedule and then determine
the optimal speeds (¿eorem 7.2). When not all tasks have the same workload,
dynamic programming can be used to solve the problem of scheduling for sleep
modes combined with speed scaling in linear time (Chapter 7).

8.2 Conclusions

In the introduction (Chapter 1) several research questions were presented. ¿e
research in the subsequent chapters provided answers for these questions. In the
following, the answers to these questions are summarised.

For uniprocessor systems:

» What are the optimal speeds when static power is present?



126

C
h
a
p
t
e
r
8
ś
C
o
n
c
l
u
sio

n
s
a
n
d
R
e
c
o
m
m
e
n
d
a
t
io
n
s

To minimise the energy consumption of a real-time system with agreeable
deadlines, the speeds should be set as low as possible, and unnecessary
speed changes must be avoided, which is done by the RecursiveSmoothing
algorithm (described in Section 4.3.1). An additional step is required for the
case where the static power is only accounted for until the completion time
of the last task. When the schedule length can be decreased by increasing
the speed of a task to the critical speed (scrit), the total energy consumption
may be decreased. In Chapter 4, we studied an algorithm that uses these
ideas to minimise the energy consumption.

» How to choose the optimal speeds online when only (possibly inaccurate) pre-
dictions of the amount of work are given?

As mentioned above, it is better to use the average speed (if the real-time
constraints allow for it), because this lowers the energy consumption (see
also Section 2.6.1). In Section 4.4 the RA-SS and PRA-SS algorithms are
introduced that use this result. ¿ese algorithms are based on predictions
of the work, or of the average work, to determine the speed of future tasks.
With only a prediction of the average work and applying PRA-SS, we show
that an energy reduction of up to 55% with respect to a greedy approach
(that does know the future) is possible.

» How can speed scaling be combined with sleep modes?

When speed scaling is used to reduce the energy consumption, it simultane-
ously reduces the length of an idle interval. Since the e�ectiveness of sleep
modes is a�ected by the length of the idle interval, both problems must
be considered simultaneously. For a frame-based real-time system where
all tasks have an equal workload, we have shown that it is optimal to �rst
schedule for optimal sleep modes, and then determine the optimal trade-o�
between sleep modes and speed scaling locally (for frames). For frame-
based real-time systems where the workload varies among tasks, dynamic
programming is used to �nd the optimal solution.

For multicore global speed scaling systems:

» What are the optimal speeds for global speed scaling?

In Chapter 5 we studied the situation where all tasks on a global speed
scaling system have a common deadline. ¿e optimal speeds depend on the
amount of cores that are active at a given time. ¿e optimal speeds for the
time periods wherein n cores are active and the time periods wherein m
cores are active are related by sm ≙ sn α

√
n
m
.

¿is relation was also used for the variant of the problem where all tasks
have individual arrival times and deadlines. For this, we used a substitu-
tion of variables (in Chapter 6) that was inspired by the above mentioned
relation between optimal speeds. With this substitution of variables, the
multicore problem can be transformed to a uniprocessor problem, solved
using uniprocessor algorithms and then transformed back to obtain the
solution to the multicore problem.
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» What characterises the energy minimising schedule?

¿e energy consumption is in�uenced by both the schedule and the chosen
speeds. In order to minimise the energy consumption, both problems have
to be solved simultaneously (this problem is NP-hard).

To characterise the energy minimising schedule, the weighted makespan is
used as scheduling criterion. ¿is criterion takes the optimal speeds into ac-
count, and by minimising it we also minimise the energy consumption. For
two cores,minimising themakespan alsominimises theweightedmakespan,
while this generally does not hold for more than two cores.

» Howwell do existing scheduling algorithmsminimise the energy consumption?

¿eapproximation ratio given by¿eorem 5.2 can be used to determine how
e�ective many scheduling algorithms from the literature are at minimising
the energy consumption. For the LPT scheduling algorithm speci�cally, our
simulations showed that energy savings of more than 30% with respect to
the state-of-the-art work can be achieved (Section 5.5.2).

8.3 Recommendations for future research

8.3.1 online global speed scaling

Section 6.4 suggests how online scaling can be used for global speed scaling systems.
Herein, we assumed that a schedule is given. ¿e situation in which a schedulemust
be determined is not considered and is le for future research. ¿is is a di�cult
problem, since feasibility must be ensured. ¿e research from Chapter 5 suggests
that a scheduling algorithm inspired by LPTmay work well, but we did not evaluate
this.

However, both the evaluation from Chapter 4, on online speed scaling, and the
evaluation from Chapter 5, on global speed scaling, suggest that a combination
of our online speed scaling and global speed scaling techniques may be a fruitful
direction for future research.

8.3.2 local speed scaling for tasks with precedence constraints

Local speed scaling for tasks with precedence constraints is an unsolved and impor-
tant theoretical problem. Even the case where the tasks have been scheduled and
only speeds need to be determined (PM ∣ an≙a; dn≙d; prec; sched ∣E) is currently
unsolved. ¿e power equality (discussed in Section 2.6.6) can be used as a �rst step
toward solving the problem.

¿e following example illustrates why this problem may be di�cult.

Example 8.1. Consider the power function p(s) ≙ s3 for a three processor system
with local speed scaling. ¿e tasks have precedence constraints as given in Figure 8.1a.
All tasks share the common deadline d ≙ 1.
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T1
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T3

T4
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T6
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b

a

(a) Tasks with precedence constraints

Proc.1 T1 T2 T4

Proc.2 T3 T5 T6

Proc.3 T7

time

(b) Schedule

Figure 8.1 ś Precedence constraints and schedule for Example 8.1.

We keep the work a variable in this example, to demonstrate the in�uence of the
work on the solution. ¿e schedule (with some arbitrarily chosen workload) is given
in Figure 8.1b. Note, that the position of the gaps in the schedule will change when
the workload changes. ¿e optimisation problem is: for a given schedule (processor
assignment and ordering), what is the optimal speed assignment that minimises the
energy consumption, respects precedence constraints and meets the deadline?

Due to convexity of the power function, in the optimal solution it must hold that
s1 ≙ s6. To ease the discussion, we consider two situations:

(a) Task T2 �nishes before task T3, or at the same time.
In the discussion below, we may assume that the edge “a” between task T2 and T4

does not exist, as (with the given assumption) it does not in�uence the optimal
solution. In the optimal solution, we have e2 + e7 ≙ e3 + e4 ≙ e3 + e5 (same
execution time for tasks, avoiding gaps in the schedule), otherwise the energy
consumption can be decreased by decreasing the speed of a task that is next to a
gap in the schedule. ¿ese relations can be used to determine the speeds of these
tasks. Using the power equality, the relation between the speeds s3, s4 and s5 can
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be determined. It can also be used to relate speeds s1, s2 and s3. Now enough
information is available to �nd the optimal speeds.

(b) Task T2 �nishes a er task T3.
In the discussion below, wemay assume that the edge “b” between tasks T3 and T4

does not exist, as (with the given assumption) it does not in�uence the optimal
solution. ¿en it holds for the optimal solution that e2 + e7 ≙ e2 + e4 ≙ e3 + e5.
Again, using the convexity of the power function and using the power equality,
the optimal speeds can be determined.

A straightforward method for �nding the optimal speeds is by calculating the energy
consumption for both situations and selecting the one with the lowest costs.

¿is example suggests that the local speed scaling problem with a given schedule
of tasks with precedence constraints may be di�cult. ¿e continuous problem
requires discrete decisions, namely whether some task �nishes before or a er some
other task. It is unclear how many of these decision points may occur, and if there
is an e�cient (polynomial time) algorithm to make these decisions.

8.3.3 measurements on real systems

¿e common approach in many papers on algorithmic power management (see,
e.g., the surveys [3, 45] and Chapter 3 of this thesis), is to use simulations to quan-
tify the energy reduction that results from using algorithmic power management
algorithms. It would be bene�cial to verify power management algorithms on real
hardware, to see how well they perform. Especially nonuniform power due to dif-
ferent types of tasks (with di�erent switching characteristics) is rarely researched.
Although some of our algorithms are robust against modelling errors (see Chap-
ter 4), the algorithms may be improved by using the knowledge that is obtained
from measurements on real systems.

8.3.4 influence of shared resources

In this thesis, the in�uence of caches, arbitration on buses, etc., was ignored. With-
out this assumption, it is not possible to draw deterministic conclusions. In future
research, themeasured in�uence of this assumption and stochastic methods should
be considered.





AppendixA

Mathematical Background

¿is thesis uses convex optimisation, heuristic algorithms and scheduling theory.
¿is appendix provides a short introduction to convex optimisation (Section A.1),
heuristic algorithms (Section A.2) and list scheduling (Section A.3).

A.1 Convex optimisation

¿is section contains a short introduction to convex optimisation, for details see
Boyd and Vandenberghe [21].

a.1.1 convex sets

An important concept in this thesis is a convex set.

De�nition A.1 (Convex set). A set C is convex if and only if:

∀x , y ∈ C , λ ∈ ∥0, 1∥ ∶ λx + (1 − λ)y ∈ C .
Intuitively, this means that whenever two values are in a set, all values on a straight
line between these two values are also within this set. In this thesis, convex sets are
mainly used for decision variables and inequality constraints (to be discussed).

a.1.2 convex functions

De�nition A.2 (Convex function). A (vector) function f ∶ C → R on a convex set
C is convex if and only if:

∀x , y ∈ C , λ ∈ ∥0, 1∥ ∶ f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y).
It is intuitively easy to explain a convex function using a scalar function. When a
line is drawn between any two function values (e.g., f (x) and f (y)), the function
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Figure A.1 ś Convex function.

lies beneath this line. ¿is intuition is depicted in Figure A.1. Examples of scalar
convex functions are f (x) ≙ ax + b, f (x) ≙ x2 and f (x) ≙ ex .
¿e above intuition is generalised by Jensen’s inequality, which shows that for any
set of function arguments x1 , . . . , xn , the function value at the average of these
arguments is below the average of function values of the individual arguments. ¿e
discrete version of Jensen’s inequality is as follows:

De�nition A.3 (Jensen’s inequality (discrete)). Let f ∶ C → R be a convex function
on a convex set C. Furthermore, let x1 , . . . , xN ∈ C and λ1 , . . . , λN ∈ R

+

0 . ¿en

f (∑N
n=1 λnxn

∑N
n=1 λn

) ≤ ∑N
n=1 λn f (xn)
∑N

n=1 λn
.

¿e continuous variant of Jensen’s inequality does not consider individual function
arguments x1 , . . . , xN , but a function g ∶ X → C that gives the function arguments
that are considered.

De�nition A.4 (Jensen’s inequality (continuous)). Let f ∶ C → R be a convex
function on a convex set C, and let g ∶ X → C be a function such that ∫X g(x)dx ≙ 1
(i.e. X has measure 1). ¿en

f ( ∫
X

g(x)dx) ≤ ∫
X

f (g(x))dx .
Besides that convex functions o en occur in practice, they have properties that
are favourable for optimisation. One of these properties is given by the following
lemma.
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Lemma A.1. Any local minimiser of a convex function over a convex set is also a
global minimiser of this function.

Proof. See Boyd and Vandenberghe [21].

Related to convex functions are concave functions, which are de�ned as:

De�nition A.5 (Concave function). A (vector) function f is concave, if and only if
− f is convex.

Examples of concave functions are f (x) ≙ ax + b, f (x) ≙ α
√
x (for α ≥ 1, x ≥ 0)

and f (x) ≙ −x2.
a.1.3 convex optimisation

In general, a convex optimisation problem is given in the following form.

Optimisation Problem A.1 (Convex optimisation problem). Let C be a convex set
and let f ∶ C → R, g1 ∶ C → R, . . . , gN ∶ C → R be convex functions. ¿en the
following optimisation problem is a convex optimisation problem.

min
x∈C

f (x),
s.t. gn(x) ≤ 0, for n ∈ {1, . . . ,N}.

¿e constraint functions g1 , . . . , gN restrict variables in the convex set C to a subset
of allowed solutions. ¿is set F ≙ {x ∈ C ∣ gn(x) ≤ 0, n ∈ {1, . . . ,N}} is called the
feasible set, or also called the set of feasible solutions. To solve the minimisation
problem, we must �nd the feasible solution that minimises the convex function
f (x) (called the cost function).
¿e feasible set has an important property, stated by the following lemma.

Lemma A.2 (Convexity of a feasible set). ¿e feasible set of a convex optimisation
problem is convex.

Proof. See Boyd and Vandenberghe [21].

¿is lemma shows (together with Lemma A.1) that a local minimiser of a convex
optimisation problem is also a global minimiser. ¿is guarantees that, when an
iterative technique that gradually descends towards theminimiser is used (a descent
technique), the end result is globally optimal.

Besides iterative techniques, there are also direct techniques for �nding the global
minimiser. An example of such an approach is solving the Karush Kuhn Tucker
(KKT) conditions. ¿e KKT conditions are a set of equations that, when solved,
give the global minimiser to a convex optimisation problem. Because the KKT
conditions are not used this thesis, they are not presented here and the interested
reader is referred to the textbook by Boyd and Vandenberghe [21] for details.
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A.2 Heuristic algorithms

Many problems that are studied in this thesis are NP-hard. For this reason heuristic
algorithms are used, which are algorithms that aim at �nding a solution to the
problem that lies close to the optimal solution. To quantify how good such an
algorithm is, the notion of ρ−approximation is used to quantify how close the
solution approaches the optimal solution. ¿is is de�ned as follows.

De�nition A.6 (ρ-approximation algorithm). A heuristic algorithm is referred to
as a ρ-approximation algorithm (with approximation ratio ρ), when it is guaranteed
that for each problem instance we have

x ≤ ρOPT,

where ρ ≥ 1, OPT are the optimal costs, and x are the costs found by the algorithm.

¿e approximation ratio is used to bound the inaccuracy of a heuristic. In the case
that ρ ≙ 1, the algorithm is guaranteed to �nd the optimal solution. For some
problems (for example the Travelling Salesman Problem) it can be proven that no
ρ-approximation exists, in such cases the problem is said to be inapproximable.

For some classes of problems, ρ-approximation heuristics exist for every ρ ≙ 1 + є
(where є > 0). For this family of heuristics, an algorithm with a better approxima-
tion ratio is obtained by decreasing є toward zero. ¿is family of heuristics is called
a Polynomial Time Approximation Scheme (PTAS), and is de�ned by.

De�nitionA.7 (Polynomial TimeApproximation Scheme). APTAS is an algorithm
with parameter є that is polynomial in the input size and, for every є > 0, it yields a(1 + є)-approximation.
Note, that a PTAS has a polynomial time complexity for a �xed є, but the complexity
of the algorithm may grow exponentially with 1/є.
It is desirable to have a PTAS with a time complexity that is also polynomially
bounded in 1/є, otherwise the algorithm may not be feasible for small є. Such
approximation scheme is called a Fully Polynomial Time Approximation Scheme
(FPTAS).

A.3 List scheduling

¿is section contains a short introduction to scheduling, for details see Pinedo [70].

In Chapter 5 of this thesis, we consider tasks with precedence constraints. Herein
we consider N tasks where task Tn has execution time en . ¿ese tasks can have
precedence constraints Tn ≺ Tm , which means task Tn must �nish before task Tm

may start.
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A popular objective for scheduling problems is makespan (schedule length) min-
imisation, where the N tasks with precedence constraints are scheduled on M
processors. Since this scheduling problem is NP-hard, this problem is not solved
exactly, but heuristics are used. A popular scheduling algorithm is list scheduling, a
scheduling algorithm that receives as input a list of tasks in order of their priority.
¿is algorithm takes the highest priority task from the list for which all preceding
tasks have been scheduled, and assigns this task to the processor with the earliest
end time. ¿is procedure is repeated until all tasks are scheduled.

¿e e�ectiveness of list scheduling depends on the priorities, i.e. the order in which
the tasks in the list are sorted. In this thesis, the Longest Processing Time (LPT)
priority (or rule) for list scheduling is used (referred to as the LPT algorithm),
which means that tasks are sorted in (decreasing) order of execution time. ¿is
is a (4/3 − 1/(3M))-approximation algorithm [34]. For the case that there are no
precedence constraints, there exists a PTAS for this problem [39].





AppendixB

ProblemNotation

¿e notation for algorithmic power management from Section 2.5 is repeated in
Table B.1.

Table B.1 ś Notation for algorithmic power management problems.

Field Entry Meaning

a

1 Single processor

PM M parallel processors

ss Speed scaling is supported

nonunif A nonuniform power function is used (ss implied)

disc Discrete speed scaling is used (ss implied)

global Global speed scaling is used (ss implied)

sl Sleep modes supported

b

an Arrival time

an=a Same arrival time a for all tasks

dn Deadline constraint

dn=d Same deadline constraint d for all tasks

wn=w All tasks have workload w

agree Agreeable deadlines (an ≤ am ⇔ dn ≤ dm)

lami
Laminar instances

(∥a i , d i∥ ⊂ ∥a j , d j∥ ∨ ∥a j , d j∥ ⊂ ∥a i , d i∥ ∨ ∥a i , d i∥ ∩ ∥a j , d j∥ = ∅)

prec Tasks have precedence constraints

pmtn Preemptions are allowed

prio Tasks have a �xed priority

migr Task migration is allowed

sched A schedule is given

c E Minimise the energy consumption

137





Acronyms

A ACPI Advanced Con�guration and Power Interface

C CMP Chip Multi Processor

D DAG Directed Acyclic Graph
DPM Dynamic Power Management
DSP Digital Signal Processing
DVFS Dynamic Voltage and Frequency Scaling

E EDF Earliest Deadline First

G GOP Group Of Pictures

I ICT Information and Communications Technology
ILP Integer Linear Program

K KKT Karush Kuhn Tucker

L LPT Longest Processing Time

P PRA-SS Periodic Robust and Adaptive Speed Scaling
PTAS Polynomial Time Approximation Scheme

R RA-SS Robust and Adaptive Speed Scaling
RM Rate Monotonic

S STG Standard Task Graph

W WCW Worst Case Work
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Nomenclature

General notation

α Exponent for dynamic power, page 15

γ1 Constant for dynamic power, page 14

γ2 Constant for static power, page 15

γ3 Constant for static power, page 15

S Set of available speeds, page 16

W Some constant work, page 83

an Arrival time of task Tn , page 12

bn Begin time of task Tn , page 12

cn Completion time of task Tn , page 12

dn Deadline of task Tn , page 12

en Execution time of task Tn , page 12

K Number of discrete speeds, page 16

M Number of processors/cores, page 12

N Number of tasks, page 12

p(s) Power function, page 16
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p̄(s) Energy-per-work function, page 21

s(t) Speed function, page 16

scrit Critical speed, page 21

smax Upper bound for sn / s(t), page 41
smin Lower bound for sn / s(t), page 41
sn Speed of task Tn , page 16

s̄k k-th discrete speed, page 22

tB Start time of application, page 21

tC End time of application, page 21

wmax Upper bound for work (Worst Case Work), page 41

wn Work of task Tn , page 12

wn ,k Work for task Tn at discrete speed s̄k , page 22

Chapter 4

ρ Prediction window size, page 53

a0 Phase of arrival times, page 52

d0 Phase of deadlines, page 52

d̂k(ŵk) Robust deadline of task Tk depending on ŵk , page 50

T Period length, page 52

wAVG Average work, page 53

ŵk Prediction of work of task Tk , page 41
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Chapter 5

β Approximation ratio for makespan, page 80

ωm Work for m active cores, page 68

β̄ Approximation ratio for weighted makespan, page 80

d Deadline of application, page 66

In Length of i-th interval, page 69

pm(s) Power function for m active cores, page 67

p̄m(s) Energy-per-work function for m active cores, page 67

S Makespan, page 66

sm Speed for m active cores, page 68

S̄ Weighted makespan, page 74

W Total work, page 68

Chapter 6

Πk Piece, page 89

an Arrival time piece Πn , page 90

bn Begin time piece Πn , page 90

cn Completion time piece Πn , page 90

dn Deadline piece Πn , page 90

mn Number of active cores piece Πn , page 90

N Number of pieces, page 89

sn Speed piece Πn , page 90

s̊n Speed task Tn (equivalent uniprocessor problem), page 91

wn Work piece Πn , page 90

ẘn Work task Tn (equivalent uniprocessor problem), page 91
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Chapter 7

(v i , v j) Edge, page 109

ω i , j Weight for edge (v i , v j), page 109
Bm ,ℓ Break-even time of device m to and from sleep mode ℓ, page 100

D Number of linear pieces, page 101

Esl Idle-time energy function, page 100

Em ,ℓ Transition energy of device m to and from sleep mode ℓ, page 100

In Length of idle period in n-th frame, page 99

Pm ,ℓ Power of device m in sleep mode ℓ, page 100

Q i Constant for linear piece i, page 101

R i Constant for linear piece i, page 101

sn(t) Speed function for nth frame, page 102

T Period length, page 99

Tm ,ℓ Transition latency of device m to and from sleep mode ℓ, page 100

vn Vertex, page 109
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