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The rising cost of health care is one of the world’s most important problems. Accordingly, predicting such costs with
accuracy is a significant first step in addressing this problem. Since the 1980s, there has been research on the predictive
modeling of medical costs based on (health insurance) claims data using heuristic rules and regression methods. These
methods, however, have not been appropriately validated using populations that the methods have not seen. We utilize
modern data-mining methods, specifically classification trees and clustering algorithms, along with claims data from over
800,000 insured individuals over three years, to provide rigorously validated predictions of health-care costs in the third
year, based on medical and cost data from the first two years. We quantify the accuracy of our predictions using unseen
(out-of-sample) data from over 200,000 members. The key findings are: (a) our data-mining methods provide accurate
predictions of medical costs and represent a powerful tool for prediction of health-care costs, (b) the pattern of past cost
data is a strong predictor of future costs, and (c) medical information only contributes to accurate prediction of medical
costs of high-cost members.
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1. Introduction
The value of (health insurance) claims data in medical
research has often been questioned (Jolins et al. 1993, Dans
1993) because these databases are designed for financial
reasons and not for clinical purposes. Nevertheless, claims
data has been shown to be useful in many settings and is
increasingly used for medical research. Examples include
researching differences in the outcomes of adherence to
medication (Pladevall 2004), identification of in-hospital
complications (Lawthers et al. 2000), length of episodes
(Mehta et al. 1999), and medical outcomes (Wennberg
et al. 1987). Statistical methods generally used when work-
ing with medical data are nicely summarized in Jones
(2000), and other publications addressing issues working
with health-care cost data include Zhou et al. (1997) and
Manning and Mullahy (2001).
The predictive power of claims data became a topic

of research in the 1980s (Zhao et al. 2005) and numer-

ous studies have since established the predictive power of
administrative data on health-care costs (Ash et al. 2000,
Zhao et al. 2001, Farley et al. 2006, Zhao et al. 2005).
Van de Ven and Ellis (2000) provides an insightful overview
of the developments in risk-based predictive modeling prior
to 2000. Cumming et al. (2002) presents a comparison
of different predictive models developed in the insurance
industry for both risk assessment and population health-care
cost prediction. The models compared used both diagno-
sis and prescription data, and the study further validated
the predictive power of claims data. Earlier researchers
concentrated on using classical regression models (Zhao
et al. 2005, Ash et al. 2000, Zhao et al. 2001, Powers et al.
2005) when predicting total health-care costs, or logistic
regression models (LaVange et al. 1986, Roblin et al. 1999)
to identify high-risk members. Often these regression mod-
els are combined with heuristic classification rules. There
has also been significant work in creating comorbidity1
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scores from administrative data as a method to account for
comorbidity differences of comparative populations in med-
ical research (Klabunde et al. 2002), to design fair reim-
bursement plans (Van de Ven and Ellis 2000, Dunn et al.
2002), and as a basis for predictive modeling of health-
care costs (Ash et al. 2000, Farley et al. 2006, Chang and
Lai 2005). Numerous studies that predict health-care costs,
based on data other than claims data, are available; exam-
ples include Fleishman et al. (2006) and Pietz et al. (2004).
In our view, the best way to express the predictability of

a method is to perform out-of-sample experiments (that is,
use data that the method has not seen) using different per-
formance measures. To the best of our knowledge, the
majority of earlier regression studies do not report on the
predictability of the method in an out-of-sample experi-
ment, with a few exceptions (Powers et al. 2005, Dove
et al. 2003). Traditionally (Cumming et al. 2002), R2 or
adjusted R2 have been the measures used to evaluate pre-
dictive models, but there are some serious drawbacks to
their use, which in our opinion makes it unsuitable for a
study like the one presented in this paper. The R2 measure
is a relative, not an absolute, measure of fit. It measures
the ratio of the improvement of predictability (as measured
with the sum of squares of the residuals) of a regression
line compared with a constant prediction (see, for exam-
ple, Bertsimas and Freund 2005). In particular, comparisons
based on R2 can be made when different regression models
on the same data set are being compared, but it is not very
meaningful to base comparisons with other methods such
as the methods we utilize in this paper. Depending on the
purpose of the cost prediction (medical intervention, con-
tract pricing, etc.), different error measures may be more
appropriate and better suited than R2. We therefore define
new error measures that better describe the prediction accu-
racy in a variety of ways.
Our objectives in this paper are to utilize modern

data-mining methods, specifically, classification trees and
clustering algorithms, and claims data from more than
800,000 members over three years to provide predictions of
health-care costs in the third year by applying data-mining
methods to medical and cost data from the first two years.
We quantify the accuracy of our predictions by applying
the models to a test sample of more than 200,000 members.
The key insights obtained are: (a) our data-mining methods
provide accurate predictions of health-care costs and repre-
sent a powerful tool for prediction, (b) the patterns of past
cost data are strong predictors of future costs, and (c) med-
ical information adds to prediction accuracy when used in
the clustering algorithm, whereas with classification trees,
cost information alone results in similar error measures.
The rest of this paper is structured as follows: In §2,

we describe the data and define the performance mea-
sures we consider, and in §3 we present the two principal
methods we use: classification trees and clustering algo-
rithms. In §4, we report on the performance of classification
trees and clustering, respectively, in forecasting health-care

costs; and in §5, we briefly discuss our conclusions and
future research directions.

2. The Data and Error Measures
This study uses health-care data generated when hospi-
tals and other health-care providers send claims to third-
party payers to receive reimbursement for their services.
The study period is from 8/1/2004–7/31/2007, split up into
a 24-month observation period from 8/1/2004–7/31/2006
and a 12-month result period from 8/1/2006–7/31/2007. We
build our models using information from the observation
period to predict outcomes in the result period.
Our data set includes the medical claims data for

838,242 individuals from a commercially insured popula-
tion, from 2,866 employers and employer groups across
the country. The data set includes both medical and phar-
maceutical claims, as well as information on the period
an individual (and his or her family) was covered by the
insurance policy. The data also contain basic demographic
information such as age and gender. All members have eli-
gibility starting no later than 8/1/2005 and ending no sooner
than 8/1/2006, and all employers had continuous coverage
starting no later than 8/1/2005 and ending no sooner than
8/1/2007. This ensures that every employee (and his fam-
ily) has at least 12 months of data in the observation period
and that big populations do not drop out during the result
period as a result of change in an employer’s insurance
carrier. Out of the 838,242 members, 730,918 have eligi-
bility stretching beyond the result period. The difference,
just over 108,000 members or 13.8% of the population,
drop out during the result period. This is most often due to
employee turnover, which is expected to be around 15% per
year. A smaller portion, around 3,000 members (based on
gender and age distribution of the population), do not have
full coverage due to death. Our analysis has shown that
including the population with partial coverage in the result
period improves the error measures, and therefore in the
interest of simplicity we build our models using the pop-
ulation with full coverage in the result period and report
these results.
We split the data set, by random assignment, into equally

sized parts: a learning sample, a validation sample, and a
testing sample. The learning sample is used to build our
prediction models, whereas the validation sample is used to
evaluate the performance of the various models. The test
sample was set aside while building and calibrating the
models, and only used at the very end of the experiment to
report results of the finalized models. We believe that this
methodology appropriately validates our conclusions.

2.1. Aggregation of the Claims Data

The claims include diagnosis, procedure, and drug infor-
mation. The diagnosis data is coded using the ICD-9-CM
(International Classification of Diseases, Ninth Revision,
Clinical Modification) codes, (Centers for Medicare &
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Medicaid Services 2004) the universal codes for medical
diagnoses and procedures. The procedures are coded under
various coding schemes: ICD9, DRG, Rev Coding, CPT4,
and HCPCS—over 22,000 codes altogether. Furthermore,
the data include pharmacy claims, that is, it contains infor-
mation about which, if any, prescription (and some limited
over-the-counter) drugs a health plan member is taking,
coded in terms of 45,972 drug codes (National Drug Code
Directory 2004).
Claims data relies on health-care professionals to encode

their diagnoses and procedures in terms of the ICD-9-CM
codes. Although coding for medical claims starts with a
clinician, it is most often completed and submitted by a sep-
arate dedicated billing operator. Because of the inevitable
variations in interpretations introduced by these practices,
and to reduce the data to a more manageable size, we
chose to use coding groups rather than individual codes. We
reduced over 13,000 individual diagnoses to 218 diagnosis
groups. Medical procedures and drug categories were like-
wise grouped. Over 22,000 individual procedures are clas-
sified into 180 procedure groups, and over 45,000 individ-
ual prescription drugs were classified into 336 therapeutic
groups. Also included in the analysis are over 700 med-
ically developed quality and risk measures that designate
hazardous clinical situations (for example, patients with a
pattern of ER care without office visits, diabetics with foot
ulcers, etc). We also count the number of diagnoses, pro-
cedures, drugs, and risk factors that each member has and
include them as additional variables. In summary, the pre-
dictive medical variables include: the diagnosis groups, the
procedure groups, the drug groups, the risk factors we devel-
oped, and their count, for a total of close to 1,500 possible
medical variables. We refer the reader to online Appendices
A and D for more details. An electronic companion to this
paper is available as part of the online version that can be
found at http://or.journal.informs.org/.

2.2. Cost and Demographic Data

In addition to the medical variables, we utilize 22 cost
variables because we believe that cost information gives a
global picture of the health of a member. We include age
and gender as well. To capture the trajectory of the medical
costs (as a proxy of the overall medical condition), we use
the monthly costs for the last 12 months in the observation
period, the total drug cost and the total medical cost over
the entire observation period, as well as the overall cost in
the last six months and the last three months of the observa-
tion period. Furthermore, to capture the pattern of costs, we
developed a new indicator variable that captures whether
or not a member’s cost pattern exhibits a “spike” pattern,
i.e., a sudden increase followed by a sudden decrease in
cost. To demonstrate this idea, let us consider Figure 1,
which depicts the monthly cost of two members in the last
12 months of the observation period. Although both mem-
bers have around $98,000 of paid claims, Member A has
constant relatively high medical costs (a typical pattern for

Figure 1. 12 months of health-care costs of two mem-
bers, with overall cost of $97,500 and $98,100,
respectively.
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Notes. A cubic spline curve is fit to the data for easier viewing. The cost
profile for Member A has the characteristics of a chronic illness, whereas
the characteristics of Member B’s profile is acute. The diagnoses behind
the most expensive claims of Member A are lymphema and respiratory
failure. The reasons behind the highest claims of Member B reflect com-
plications of labor.

a member with a chronic condition), whereas Member B’s
cost profile has a spike (a typical pattern for a member with
an acute condition). The key idea here is that whereas con-
stant high medical costs have a strong tendency to repeat in
the future, a cost pattern that exhibits a spike might have a
low risk of high future health-care costs: Examples include
pregnancy complications, accidents, or acute medical con-
ditions like pneumonia or appendicitis.
Moreover, we used the following additional four vari-

ables: the maximum monthly cost, the number of months
with above-average cost, positive trend and negative trend
in the last months of the observation period.
Finally, we used gender and age as additional variables.

Table 1 summarizes all the variables used in the study, and
more details are provided in online Appendix A.

Table 1. Summary of the data elements used.

Variable number Description

1–218 Diagnosis groups, count of claims with
diagnosis codes from each group

219–398 Procedure groups
399–734 Drug groups
735–1,485 Medically defined risk factors
1,486–1,489 Count of members’ diagnosis, procedures,

drugs, and risk factors
1,490–1,521 Cost variables, including overall medical

and pharmacy costs, acute indicator, and
monthly costs

1,522–1,523 Gender and age
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Figure 2. Cumulative health-care costs of the result
period for members in the learning sample.
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Notes. On the X-axis is the cumulative percentage of the population and
on the Y-axis is the cumulative percentage of the overall health-care costs.
For example, we note that 8% of the population (the most expensive
members) account for 70% of the overall health-care costs.

2.3. Cost Bucketing

The range of paid amounts for members in the learning
sample during the result period is from $0 up to $710,000.
The population’s cumulative cost exhibits known character-
istics: 80% of the overall cost of the population originates
from only 20% of the most expensive members. Figure 2
shows the cost characteristics of our population. We note
that, for our sample, around 8% of the population con-
tributes 70% of the total health-care costs.
To reduce noise in the data and at the same time reduce

the effects of extremely expensive members (who can be
considered outliers), we partitioned the members’ costs into
five different bands or cost buckets. We partition in such a
way that the sum of all members’ costs is approximately
the same in each bucket, i.e., the total dollar amount in
each bucket is the same (approximately $117 million per
cost bucket). We chose five buckets because it ensures a
large enough number of members in the most expensive
bucket (we have 1,175 members in the learning sample in
bucket five). Table 2 shows the range of each bucket, the

Table 2. Cost bucket information.

Percentage of the Number of
Bucket Range learning sample (%) members

1 <$3,200 83�9 204�420
2 $3,200–$8,000 9�7 23�606
3 $8,000–$18,000 4�2 10�261
4 $18,000–$50,000 1�7 4�179
5 >$50,000 0�5 1�175

Notes. Cost bucket ranges and fraction of the learning sample in
each bucket (calculated for the last 12 months of the observation
period costs). The sum of members’ costs that fall in any one of the
buckets is between $116 and $119 million.

percentage, and the number of members of the learning
sample that are in each bucket.
The knowledge of the predicted bucket of a member

is valuable to health care management professionals.
Buckets 1 through 5 can be interpreted as representing
low, emerging, moderate, high, and very high risk of med-
ical complications. Members predicted to be in buckets 2
and 3 are candidates for wellness programs, members pre-
dicted to be in bucket 4 are candidates for disease manage-
ment programs, whereas those members forecasted to be
in the most expensive bucket are candidates for case man-
agement programs, the most intense type of patient care
program.

2.4. Performance Measures

We measure the performance of our models with three main
error measures: the hit ratio, the penalty error, and the abso-
lute prediction error (APE). To be able to compare our
results to published studies, we also include R2 and trun-
cated R2, and introduce a new similar measure �R�. We pro-
vide some additional insights into R2 in §2.4.2 and define
the new error measures in §2.4.1.

2.4.1. Definition of Error Measures
The Hit Ratio. We define the hit ratio to be the percent-

age of the members for whom we forecast the correct cost
bucket.
The Penalty Error. The penalty error is motivated by op-

portunities for medical intervention and is therefore asym-
metric. There is a greater penalty for underestimating
higher costs, consistent with the greater medical and finan-
cial risk in missing these individuals. The penalty of mis-
identifying an individual as high risk, whose actual costs
are low, is smaller than the opposite case, because little
harm or cost ensues in this instance. Therefore, the penal-
ties for underestimating a cost bucket are set as twice those
for overestimating it. This is motivated by the estimated
opportunity loss by doctors. Table 3 shows the penalty table
for the five-cost-bucket scheme. We define the penalty error
measure to be the average forecast penalty per member of
a given sample.
The Absolute Prediction Error. The absolute prediction

error is derived from actual health-care costs. We define
the absolute prediction error to be the average absolute

Table 3. The penalty table defines the penalty error
measure for the five cost buckets.

Outcome

Forecast 1 2 3 4 5

1 0 2 4 6 8
2 1 0 2 4 6
3 2 1 0 2 4
4 3 2 1 0 2
5 4 3 2 1 0

Note. A perfect forecast results in an error of zero.
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Table 4. Analysis of the sums in the denominator of R2 and �R�.
Percentage of overall Percentage of overall

Percentage of the Percentage of overall
∑

��ti − a�2� Percentage of overall
∑

��ti − m��
Bucket the learning sample

∑
��ti − a�2� when truncated

∑
��ti − m�� when truncated

1 83�9 30�8 36�1 47�0 48�3
2 9�7 12�4 15�9 20�0 20�7
3 4�2 14�0 14�3 14�0 14�2
4 1�7 14�9 16�9 10�9 10�6
5 0�5 27�9 16�8 8�2 6�2

Notes. Contribution to denominator sums of the R2 and �R� error measures as a function of the cost bucket in the last 12 months of the
observation period. (Numbers are based on the testing sample.)

difference between the forecasted (yearly) dollar amount
and the realized (yearly) dollar amount. As an example,
if we forecast a member’s health-care cost to be $500 in
the result period, but in reality the member has an overall
health-care cost of $2,000, then the absolute predicted error
for the member is �$500 − $2�000� = $1�500. We define
the absolute prediction error (APE) to be the average error
over a given sample. APE has been used in recent stud-
ies (Cumming et al. 2002, Powers et al. 2005, Dunn et al.
2002) together with the traditional R2. An advantage of
APE is that it does not square the prediction errors, which
makes it less sensitive to outliers (members with extreme
health-care cost). This is of special concern due to the
nature of health-care cost data because there are a few indi-
vidual members with very unpredictable high costs.

2.4.2. The R2 Measure
R2 is defined as

R2 = 1−
∑

i�ti − fi�
2

∑
i�ti − a�2

�

where fi is the forecasted cost of member i, ti is the true
cost of member i, and a is the average health-care cost in
the result period. If we look at the contribution of members
in the observation period’s cost buckets to the sum in the
denominator, it varies greatly, as shown in Table 4. The
second column has the fraction of the learning sample in
each bucket, and the third column has the contribution to
the sum in the denominator. We note that 27.9% of the
sum is contributed by the 0.5% of members in bucket 5 in
the observation period. R2 is therefore disproportionately
influenced by the members in the most expensive bucket.

R2 squares each prediction error, which makes it very
sensitive to prediction error for members with high health-
care costs. A model that does very well for the majority
of the population might therefore have low R2 due to a
few extreme unpredictable outliers (for example, members
with a sudden onset of a serious condition). In the litera-
ture, researchers have dealt with this fact by truncating the
health-care cost. We denote the resulting R2 when claim
costs are truncated to $100,000 by R2

100, and the fourth col-
umn of Table 4 shows the contribution to the denominator
sum in that case. By truncating these members, the contri-
bution in the denominator sum of bucket 5 reduces to 16%,
close to that of buckets 2 through 4.

A natural measure of health-care cost prediction is the
absolute value of the prediction error. We therefore define
a new R-like measure that has some of the same properties
as R2,

�R� = 1−
∑ �ti − fi�
∑ �ti − m� �

where m is the sample median. We note that �R� = 0 if
we predict the median of the sample for all members, and
�R� = 1 if ti = fi for all members i. In the same way that
R2 measures the reduction in the residuals squared, �R�
measures the reduction in the sum of absolute values of the
residuals. In the last two columns of Table 4, we summarize
the contributions to the �R� denominator sum for the popu-
lations. We note that the contribution is strictly decreasing
in the observation period bucket, and is less affected by
truncation (noted by �R100�). We conclude that �R� is less
sensitive to outliers than R2, and therefore possibly better
suited for health-care cost predictions.

3. Methods

3.1. The Baseline Method

To make meaningful comparisons, we define a baseline
method against which we compare the results of the pre-
diction models. As our baseline method, we use the health-
care cost of the last 12 months of the observation period
as the forecast of the overall health-care cost in the result
period. Because current health-care cost is a strong indi-
cator of a person’s health, this baseline is much stronger
than, for example, random assignment. Table 5 shows how

Table 5. The cost bucket distribution of members in the
testing sample.

Result period cost bucket (%)
Last 12-month observation
period cost bucket 1 2 3 4 5

1 75�63 5�54 1�88 0�66 0�20
2 5�03 2�98 1�19 0�39 0�11
3 1�81 1�01 0�91 0�39 0�08
4 0�51 0�38 0�34 0�38 0�11
5 0�10 0�08 0�08 0�10 0�13
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Table 6. Baseline performance.

Bucket Hit ratio (%) Penalty error APE ($)

All 80�0 0�431 2�677
1 90�1 0�287 1�279
2 52�3 0�992 4�850
3 41�7 1�358 9�549
4 30�5 1�669 21�759
5 19�3 1�825 75�808

Notes. Performance measures of the baseline method overall and
by cost bucket. The cost buckets refer to the cost in the last
12 months of the observation period.

the population falls into the defined cost buckets in the
last 12 months of the observation period and the results
period. As an example, close to 70% of the population are
in bucket 1 in both periods. We further note that for mem-
bers that fall into cost buckets 1 through 4 in the observa-
tion period, the most common bucket in the result period
is bucket 1. On the other hand, for members who fall into
cost bucket 5 in the observation period, the most common
result period bucket is bucket 5. This can be interpreted
as follows: Most members who are experiencing moderate
cost are, most commonly, getting better, whereas those in
the most expensive bucket have a greater tendency to incur
high medical costs.
Table 6 summarizes the baseline forecast for all error

measures. The baseline prediction model correctly pre-
dicts 80.0% of the members, the average penalty error is
0.431, and the absolute prediction error is $2,677. To get
a deeper understanding of the baseline method, we exam-
ine the effectiveness of the baseline method with respect
to the buckets in the observation period. From Table 6 we
observe, for example, that for bucket 1 members the hit
ratio is 90.1%, the penalty error is 0.287, and the absolute
prediction error is $1,279. The fact that most of the mem-
bers are in bucket 1, have low health-care costs, and con-
tinue to have low health-care costs in the result results in a
high hit ratio, and low penalty error and average prediction
error for the overall population. Note that the performance
measures worsen with each increasing cost bucket.

3.2. Data-Mining Methods: Classification Trees

Classification trees (Breiman et al. 1984) have been applied
in many fields such as finance, speech recognition, and
medicine. As an example, in medicine they have been
applied to develop classification criteria for medical con-
ditions such as osteoarthritis of the hip (Altman et al.
1991), the Churg-Strauss syndrome (Masi et al. 1990), and
head and neck cancer (Wadsworth et al. 2004). Classifica-
tion trees recursively partition the member population into
smaller groups that are more and more uniform in terms of
their known result period cost. This partition can be repre-
sented as a tree. This graphical representation makes classi-
fication trees easily interpretable, and therefore models that
build on them can be medically verified.

Table 7. Classification tree example.

• If a member does not have CAD, predict bucket 1.
• If a member has CAD but does not have diabetes, predict

bucket 3.
• If a member has CAD and diabetes, predict bucket 5.

Notes. An example of a classification tree, built on data that has
only information about three diagnoses—CAD, diabetes, and acute
pharyngitis—from the observation period and the cost bucket of the
result period. We note that acute pharyngitis does not appear in the
tree, which makes intuitive sense because we do not expect acute
pharyngitis to affect the following year’s health-care costs.

As an example, consider the simplified case of a data set
having information on only three diagnoses in the observa-
tion period—coronary artery disease (CAD), diabetes, and
acute pharyngitis—as well as the cost bucket of the result
period. The classification tree built on this data might result
in the classifier depicted in Table 7. The classifier can be
used to predict the result period’s health-care cost for any
unseen member. Assuming we have a new member for
whom we want to predict a cost bucket, we first look at
whether or not he/she has been diagnosed with CAD. If not,
we predict the member to be in cost bucket 1 next period.
If the member has been diagnosed with CAD, we examine
whether he/she has been diagnosed with diabetes. If he/she
has, we predict the member to be in cost bucket 5, and in
cost bucket 3 otherwise. We refer the interested reader to
online Appendix B for details.
Running the classification tree algorithm on the full data

set results in more complicated classifiers than the one
depicted in Table 7. Tables 8 and 9 describe characteristics
of subgroups predicted to be in buckets 5 and 4 by these
more complicated trees. These scenarios demonstrate how
the trees use both cost and medical information, along with
age, to identify the risky members of the population.

3.3. Data-Mining Methods: Clustering

Clustering algorithms organize objects so that similar ob-
jects are together in a cluster and dissimilar objects belong
to different clusters. Our prediction clustering method cen-
ters around the algorithm behind EigenCluster, a search-
and-cluster engine developed in Kannan et al. (2004). The
clustering algorithm, when applied to data, automatically
detects patterns in the data and clusters together members
who are similar. We adapted the original clustering algo-
rithm for the purpose of health-care cost prediction. We
first cluster members together using only their monthly
cost data, giving the later months of the observation period
more weight than the first months (see online Appendix C).
The resulting clustering places members within a particu-
lar cluster who all have similar cost characteristics. Then,
for each cost-similar cluster, we run the algorithm on their
medical data to create clusters whose members have both
similar cost characteristics as well as medical conditions.
We then assign a forecast for a particular cluster based on
the known result period’s costs of the learning sample. To
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Table 8. Predicted cost bucket 5 members.

Examples of members predicted to be in cost bucket 5 in the result period

• Members with overall costs between $12,300 and $16,000 in the last 12 months of the observation period and who have acute cost
profiles. The members take no more than 14 different therapeutic drug classes during that period, and have not had a heart
blockage followed by dose(s) of amiodarone hcl. They have more than 15 individual diagnoses and at least one of the following
conditions: (a) have been in the ICU because of congestive heart failure, (b) have chronic obstructive pulmonary disease with
more than one prescription for Macrolides or floxins, (c) have renal failure with more than one hospitalization in the observation
period, or (d) have both coronary artery disease and depression.

• Members with more than $24,500 in costs in the observation period, an acute cost profile, and a diagnosis of secondary malignancy
(cancer).

• Members in cost bucket 2, with nonacute cost profile, and costs between $2,700 and $6,100 in the last 6 months of the observation
period, and with either (a) coronary artery disease and hypertension receiving antihypertensive drugs or (b) has peripheral
vascular disease and is not on medication for it.

• Members in cost bucket 2, taking between 15 and 34 different therapeutic drug classes during the observation period, with
nonacute cost profile, and costs between $1,200 and $4,000 in the last 6 months of the observation period, and who have a
Hepatitis C related hospitalization during the observation period.

• Members in cost buckets 2 and 3 with nonacute cost profiles, less than $2,400 in pharmacy costs and on fewer than 13 therapeutic
drug classes, but who have received Zyban (prescription medication designed to help smokers quit) after a seizure.

Note. Examples of members that the classification tree algorithm predicts to be in bucket 5.

illustrate, let us give an example (details on the algorithm
can be found in online Appendix C). We start with a clus-
ter found by the algorithm using cost characteristics only.
The cost profiles of the members are shown in Figure 3.
We note that all members have relatively low cost until the
last six months of the observation period, but a greater cost
in the last months of the period.
The key observation is that when using cost information

only we are not able to distinguish between the members
in the cluster. The algorithm uses medical information to
identify subgroups within the cost cluster and partitions the
members into two subclusters. Table 10 shows some of
the medical characteristics with the greatest difference in
prevalence between the two groups.
The first cluster consists of members that have pathol-

ogy, cytopathology, infusions, and other indicators of can-
cer indicating a potentially serious health problem that is
likely to lead to higher health-care costs in the future. The
second cluster, on the other hand, consists predominantly
of members who are in physical therapy and have had
orthopedic surgery and have other musculoskeletal charac-
teristics. We can expect that these members will be getting

Table 9. Predicted cost bucket 4 members.

Examples of members predicted to be in cost bucket 4 in the result period

• Members in cost buckets 2 through 5 that have taken more than 34 therapeutic drug classes during the observation period.
• Members in cost bucket 1 that have inpatient days (have been in a hospital) in the last three months with around $1,300 in
health-care costs in the last three months.

• Women in cost bucket 1 that have between $1,300 and $1,500 in cost in the last six months of the observation period, that do not
have renal failure, but have taken Arava (disease-modifying antirheumatic drug) within 180 days prior to delivery and who do not
have prescribed prenatal vitamins during pregnancy.

• Members in cost bucket 1, who have more than $1,700 in health-care costs in the last six months of the observation period, that
have nonacute cost profiles, and who have hypertension but no lab test in the observation period.

• Members with more than $24,500 in health-care costs in the observation period but less than $3,200 in pharmacy costs and on
fewer than 14 different therapeutic drug classes during the observation period, with nonchronic cost profile, do not have a
diagnosis of secondary malignancy, but have more than nine office visits in the last three months of the observation period.

Note. Examples of members that the classification tree algorithm predicts to be in bucket 4.

better, and thus will have lower health-care costs in the
following year.

4. Results

4.1. Performance of the Data-Mining Methods

We ran the classification tree algorithm using the learning
sample, and calibrated the algorithm using the validation
sample. We built three distinct classification trees, one for
each of the three performance measures. Once we found
the right tree for each error measure, we used it to classify
the testing sample. We report those results. We ran the clus-
tering algorithm in a similar manner. The resulting clusters
contain groups of members with similar cost characteristics
and often similar medical characteristics. For each cluster,
we assign a prediction based on the learning and validation
samples and apply it to the testing sample. We report on
the performance of the algorithms on the aggregate level
first, and then by bucket.
Table 11 shows the performance measures. The trees

predict the right bucket for over 84% of the population,
the average penalty is 0.385, and the absolute prediction
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Figure 3. The monthly costs of the last 12 months of
the observation period for all members of a
cost-similar cluster.
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error is $2,243. There is a considerable improvement in all
the performance measures over the baseline methodology.
Most notably, the improvement in absolute prediction error
is over 16%. The reduction in the penalty error is 10.5%
and there is close to 5% improvement in the hit ratio.
For the clustering algorithm, there is again considerable
improvement in all the performance measures compared to
the baseline method. The results are comparable with the
classification tree algorithm, with the clustering algorithm
having an edge in the absolute prediction error.
We now take a more detailed view on the accuracy of

the algorithms and break down the performance by the
observation period’s cost bucket. For both algorithms, the

Table 10. Distinguishing features of medical clusters.

Frequency Frequency
in cluster in cluster
one (%) two (%) Description

18 72 Physical therapy
29 83 Durable medical equipment
14 66 Orthopedic surgery, exclude

endoscopic
4 48 Osteoarthritis

39 3 Risk factor: amount paid for
injectables greater than $4,000

71 38 Pathology
32 0 Hematology or oncology infusions
7 38 Rehab

21 52 Musculoskeletal disorders
25 3 Emetics
25 3 Blood products or transfusions
18 0 Cancer therapies

Notes. Some of the features that differentiate between cost-similar
members and separated into two medical subclusters. The first two
columns show the percentage of members of each cluster who have
a certain diagnosis, have had a procedure, or are taking a drug.

improvements are most significant for the top buckets. For
the classification tree algorithm, we note that the hit ratio
almost doubles, the decrease in the penalty error is 23%,
and the decrease in the absolute prediction error is over
50% for the most expensive bucket. The clustering algo-
rithm, similarly, more than doubles the hit ratio, decreases
the penalty error by more than 35%, and decreases the
average absolute prediction error by over 58% for the most
expensive bucket. We note that the classification tree algo-
rithm does a bit better on the lowest-cost buckets for the hit
ratio and penalty error, but the clustering algorithm works
better on the higher-cost buckets.

4.2. Prediction Using Cost Information Only

We next investigate the predictability of health-care costs
using cost information alone, and compare the prediction to
the results when the algorithms use both cost and medical
information. We note in Table 12 that for the lower buckets
the results are just as good, and in some cases slightly
better. The classification trees have better error measures
for the lower-cost buckets, but the clustering algorithm does
better for the two most expensive buckets. In general, the
classification trees do not benefit from adding the medical
variables.
Given that an important objective of cost prediction is

medical intervention through patient contact, the models
with interpretable medical details are preferred. In other
cases, the simpler models that achieve good results using
only 22 cost variables, as opposed to almost 1,500 medical
variables, may be preferred.

4.3. Comparison with Other Studies

We start by noting that comparisons across studies that
use different data sets are not fully valid because the aver-
age prediction error is highly dependent on the data set.
Therefore, as an indication only, we compare our average
absolute prediction error to the error reported by two other
studies. Cumming et al. (2002) reports an average absolute
prediction error of 93% of the actual mean, and Powers
et al. (2005) reports an error of 98% of the actual mean.
The error for the clustering algorithm is 78.8% of the mean
of our testing sample and the classification trees 89.4%,
lower than in the other two studies.
Traditionally, prediction software has aimed to mini-

mize R2. Cumming et al. (2002) reports R2
100 from 0.140

to 0.198 (with claims truncated at $100,000) and R2 from
0.099 to 0.154 (without truncation). The trees have R2 =
0�162 and R2

100 = 0�204, and the clustering algorithm has
R2 = 0�180 and R2

100 = 0�219, as can be seen in the top row
of Table 13. In the top row of Table 14, we provide �R�
and �R100� for both our measures as well as the baseline
method.
Finally we note that summarizing the goodness of cost

prediction to one number, whether it is R2 or �R� can be
misleading, and important information is lost. To illustrate
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Table 11. The resulting performance measures.

Hit ratio (%) Penalty error APE ($)

Bucket Trees Cluster Baseline Trees Cluster Baseline Trees Cluster Baseline

All 84�6 84�3 80�0 0�386 0�374 0�431 2�243 1�977 2�677

1 90�2 89�9 90�1 0�275 0�259 0�287 1�398 1�152 1�279
2 60�2 58�7 52�3 0�864 0�884 0�992 4�158 4�051 4�850
3 51�9 52�7 41�7 1�038 1�071 1�358 6�598 6�585 9�549
4 43�3 44�4 30�5 1�241 1�177 1�669 12�665 11�116 21�759
5 36�9 42�7 19�3 1�405 1�170 1�825 36�541 31�613 75�808

Notes. The top line shows the measures for the whole population, followed by the measures broken down by the observation’s last 12 months
cost buckets, for the classification tree algorithm, the clustering algorithm, and the baseline methodology.

this point we have included in Tables 13 and 14 the relative
reduction in the error sum for each of the cost buckets. As
an example, if

∑
i�ti − a�2 = 100 for the members in cost

bucket 1, and
∑

i�ti − fi�
2 = 95 for the same members, the

relative reduction is �95−100�/100= 0�05, or 5%. We note
that for buckets 1–4, the baseline improves over predict-
ing the sample average, but for the most expensive bucket,
bucket 5, the baseline does worse. For the most expensive
members, repeating the current cost is not a strong predic-
tion rule, and due to the weight that those members carry
in the R2 measure (due to very large residuals), this results
in negative R2.

Our algorithms reduce the relative error for all cost buck-
ets, and the reduction increases with higher-cost buckets,
ranging from 5% to 49% for the R2 and R2

100 measures and
from 10% to 32% for the �R� and �R100� measures. This
shows that our prediction models improve predictions for
members in all buckets, and most significantly for the most
expensive members.

4.4. Summary of Results

In summary, we observe that both algorithms improve pre-
dictions over the baseline method for all performance mea-
sures and the improvement is more significant for more
costly members (higher buckets). In terms of overall perfor-
mance measures (overall hit ratio and absolute prediction
error), the methods are comparable. The clustering method
results in better predictions for current high-cost bucket
members and consistently better absolute prediction error,

Table 12. The resulting performance measures using cost information only.

Hit ratio (%) Penalty error APE ($)

Bucket Trees Cluster Baseline Trees Cluster Baseline Trees Cluster Baseline

All 84�6 84�2 80�0 0�389 0�399 0�431 2�214 2�116 2�677

1 90�1 90�1 90�1 0�279 0�282 0�287 1�395 1�269 1�279
2 60�3 57�5 52�3 0�873 0�920 0�992 4�033 4�146 4�850
3 52�3 49�9 41�7 1�025 1�093 1�358 6�462 6�580 9�549
4 42�7 41�7 30�5 1�256 1�272 1�669 12�310 12�412 21�759
5 35�2 40�5 19�3 1�367 1�220 1�825 35�875 33�907 75�808

Notes. The top line shows the measures for the whole population, followed by the measures broken down by the observation’s last 12 months
cost buckets, for the classification tree algorithm, clustering algorithm, and the baseline methodology.

whereas the classification tree algorithm has an edge on
lower-cost members when we look at the hit ratio and the
penalty error. We believe that the reason that the cluster-
ing algorithm is stronger in predicting high-cost members is
the hierarchical way cost and medical information are used.
Recall that the clustering algorithm first uses cost informa-
tion and then uses medical information in situations where
medical information can further discriminate between mem-
bers belonging in different cost buckets. Referring back to
our clustering sample, we note that all members of a cost-
similar cluster have similar cost trajectories of rising costs
in the last months of the observation period. Using medical
information, the clustering algorithm is able to distinguish
between two main groups of patients: higher-risk cancer
patients with predicted cost bucket 4, and patients with mus-
culoskeletal and orthopedic characteristics with predicted
cost bucket 1. When medical information is not dense—that
is for members in the lower buckets—using cost information
only results in similar error measures. Furthermore, from
our comparison with previous studies we find evidence that
our algorithms do well in comparison to current prediction
methods, and an analysis of the R2 and �R� measures showed
improved predictions for all cost buckets.

5. Conclusions and Future Research
The algorithms we developed based on modern data-mining
methods provide quantifiable predictions of medical costs
and represent a powerful tool for the prediction of health-
care costs. We also argue that R2, which has tradition-
ally been used to report prediction accuracy, has some
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Table 13. R2 results—The R2 and R2
100 for the two al-

gorithms and the baseline.

Baseline Trees Clustering

Bucket R2 R2
100 R2 R2

100 R2 R2
100

All −0�102 −0�050 0�162 0�204 0�180 0�220
1 (%) −3�3 −5�3 −5�3 −8�3 −5�0 −7�9
2 (%) −5�6 −8�9 −6�3 −10�9 −5�7 −8�6
3 (%) −8�7 −13�6 −12�8 −23�3 −12�7 −22�5
4 (%) −5�7 1�3 −22�6 −34�1 −24�4 −36�5
5 (%) 50�0 60�1 −31�0 −39�4 −37�0 −49�8

Note. Rows 1 through 5 show the relative reduction in the denomi-
nator sum for each cost bucket.

Table 14. �R� results—The �R� and �R100� for the two
algorithms and the baseline.

Baseline Trees Clustering

Bucket �R� �R100� �R� �R100� �R� �R100�
All −0�037 −0�013 0�171 0�182 0.182 0.194
1 −11�5% −11�9% −10�4% −10�8% −12�7 −13�1
2 −8�5% −8�8% −23�9% −24�9% −21�7 −22�4
3 10�1% 10�6% −25�0% −26�2% −24�1 −25�3
4 32�5% 35�4% −23�4% −25�4% −24�2 −26�3
5 71�0% 58�2% −16�6% −23�4% −23�7 −33�0

Note. Rows 1 through 5 show the relative reduction in the
denominator sum for each cost bucket.

limitations, and the use of more descriptive error measures,
specially designed for the application at hand, might give
better insight into the prediction accuracy. Despite the rela-
tive abundance of clinical information included in our data
sets, we found that for all but the highest-cost patients, pri-
mary cost information was the most accurate predictor of
true costs. It is clear that cost is an efficient surrogate for
medical information, except in cases where the very dense
medical data are available. The algorithms can be used for
cost predictions for individuals and groups and as a basis
for patient intervention in health-care management. Future
research that builds on these algorithms could be used for
financial reimbursement or insurance-pricing purposes, but
such an effort requires greater integration with health-care
economics and system design.

6. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.

Endnote
1. Comorbidity is defined as coexisting medical conditions.
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