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Algorithmic Principles of Remote-PPG
Wenjin Wang, Bert den Brinker, Sander Stuijk, and Gerard de Haan

Abstract—This paper introduces a mathematical model that
incorporates the pertinent optical and physiological properties of
skin reflections with the objective to increase our understanding
of the algorithmic principles behind remote photoplethysmogra-
phy (rPPG). The model is used to explain the different choices
that were made in existing rPPG methods for pulse extraction.
The understanding that comes from the model can be used to
design robust or application-specific rPPG solutions. We illustrate
this by designing an alternative rPPG method where a projection
plane orthogonal to the skin-tone is used for pulse extraction. A
large benchmark on the various discussed rPPG methods shows
that their relative merits can indeed be understood from the
proposed model.

Index Terms—Biomedical monitoring, photoplethysmography,
remote sensing, colors.

I. INTRODUCTION

REMOTE photoplethysmography (rPPG) enables contact-

less monitoring of human cardiac activities by detect-

ing the pulse-induced subtle color variations on human skin

surface using a multi-wavelength RGB camera [1]. In re-

cent years, several core rPPG methods have been proposed

for extracting the pulse-signal from a video. These include:

(i) Blind Source Separation (e.g., PCA-based [2] and ICA-

based [3]), which use different criteria to separate temporal

RGB traces into uncorrelated or independent signal sources to

retrieve the pulse; (ii) CHROM [4], which linearly combines

the chrominance-signals by assuming a standardized skin-

color to white-balance the images; (iii) PBV [5], which uses

the signature of blood volume changes in different wavelengths

to explicitly distinguish the pulse-induced color changes from

motion noise in RGB measurements; and (iv) 2SR [6], which

measures the temporal rotation of the spatial subspace of skin-

pixels for pulse extraction. The essential difference between

these rPPG methods is in the way of combining RGB-signals

into a pulse-signal. A better understanding of the core rPPG

methods could benefit many systems/applications for video

health monitoring, such as the monitoring of heart-rate [7]–

[11], respiration [8], SpO2 [8], [12], blood pressure [13],

neonates [14], [15], and the detection of atrial fibrillation [16]

and mental stress [17].

In this paper, we investigate the algorithmic principles of

rPPG in a mathematical context with optical and physiological

reasoning. Our exploration based on the skin reflection model
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shows that different characteristic properties of rPPG can be

used to design algorithmic solutions for pulse extraction. As

such, this study not only gives an integral view on and insight

into the core rPPG methods [2]–[6], but also leads to a new

alternative that demonstrates tractable algorithm development

based on understanding. The new method defines a plane

orthogonal to the skin-tone in the temporally normalized RGB

space for pulse extraction, and is therefore referred to as the

“Plane-Orthogonal-to-Skin” (POS). The main contribution of

this paper is its in-depth analysis to the working principles of

rPPG (in a mathematical context), which benefits the devel-

opment of novel rPPG methods in the future, as demonstrated

by the POS algorithm introduced in this paper.

The remainder of this paper is structured as follows. In

Section II, we present a skin reflection model. In Section III

and IV, we analyze the existing rPPG methods in the model

and describe a new method to demonstrate our understanding.

In Section V and VI, we use a benchmark to verify our

analysis. Finally in Section VII, we draw the conclusions.

II. SKIN REFLECTION MODEL

Unless stated otherwise, we use the following mathematical

conventions throughout the paper. Vectors and matrices are

denoted as boldface characters, where the column vectors are

denoted as v, except for the ones with unit-length which are

denoted as u. The variable t denotes the time; ⊤ denotes the

transposition; E{·} denotes the expectation operator; and the

vector 1 denotes (1, 1, 1)⊤.

To thoroughly understand the principles for pulse extraction

in rPPG methods, we start from the basics by defining an rPPG

model that considers the pertinent optical and physiological

properties of skin reflections. This model allows us to analyze

the problems in detail and point out how these problems are

addressed in various rPPG methods.

Consider a light source illuminating a piece of human skin-

tissue containing pulsatile blood and a remote color camera

recording this image, as illustrated in Fig. 1. We further assume

that the light source has a constant spectral composition but

varying intensity, and the intensity observed at the camera

depends on the distance from the light source to the skin tissue

and to the camera sensor. The skin measured by the camera

has a certain color1 that varies over time, due to the motion-

induced intensity/specular variations and pulse-induced subtle

color changes. These temporal changes are proportional to the

luminance intensity level.

1The skin color measured by the camera is a combination of the light source
(e.g., intensity and spectrum), intrinsic skin color, and sensitivities of color
channels of the camera.
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Based on the dichromatic model, the reflection of each skin-

pixel in a recorded image sequence can be defined as a time-

varying function in RGB channels:

Ck(t) = I(t) ·
(

vs(t) + vd(t)
)

+ vn(t), (1)

where Ck(t) denotes the RGB channels (i.e., ordered in

column) of the k-th skin-pixel; I(t) denotes the luminance

intensity level, which absorbs the intensity changes due to the

light source as well as to the distance changes between the

light source, skin tissue and camera; I(t) is modulated by

two components in the dichromatic model: specular reflection

vs(t) and diffuse reflection vd(t). The time dependency is due

to the body motion and pulsatile blood; the last component

vn(t) denotes the quantization noise of the camera sensor.

The specular reflection is a mirror-like light reflection

from the skin surface, which does not contain any pulsatile

information. As such, its spectral composition is equivalent to

that of the light source. It is time-dependent in the sense that

body-motion will influence the geometric structure between

the light source, skin surface and camera. We write vs(t) as:

vs(t) = us ·
(

s0 + s(t)
)

, (2)

where us denotes the unit color vector of the light spectrum;

s0 and s(t) denote the stationary and varying parts of specular

reflections, more specifically, s(t) is induced by motion.

The diffuse reflection is associated with the absorption and

scattering of the light in skin-tissues. The hemoglobin and

melanin contents in skin-tissues lead to a specific chromaticity

for vd. Meanwhile, vd is varied by blood volume changes and

is thus time-dependent. We write vd(t) as:

vd(t) = ud · d0 + up · p(t), (3)

where ud denotes the unit color vector of the skin-tissue;

d0 denotes the stationary reflection strength; up denotes the

relative pulsatile strengths in RGB channels; p(t) denotes the

pulse-signal. Substituting (2) and (3) into (1), we arrive at:

Ck(t) = I(t)·
(

us·
(

s0+s(t)
)

+ud·d0+up·p(t)
)

+vn(t). (4)

The stationary parts in specular and diffuse reflections can be

combined into a single component representing the stationary

skin reflection:

uc · c0 = us · s0 + ud · d0, (5)

where uc denotes the unit color vector of the skin reflection

and c0 denotes the reflection strength. Thus (4) is rewritten as:

Ck(t) = I0 ·
(

1+ i(t)
)

·
(

uc ·c0+us ·s(t)+up ·p(t)
)

+vn(t),
(6)

where I(t) is also expressed as the combination of a stationary

part I0 and a time-varying part I0 · i(t), i.e., the (motion-

induced) intensity variation strength observed by the camera

is proportional to the intensity level; i(t), s(t) and p(t) are

zero-mean signals. Note that the specular reflection can be

the largest component by far, overshadowing all other com-

ponents. We assume there are means (e.g., a skin classifier)

to reject areas where the specular reflection is dominant.

Therefore, we only consider the pixels k where ud is to a

Epidermis

Dermis

Hypodermis
Blood vessels

Capillaries

Light source Camera sensor

Fig. 1. The skin reflection model that contains specular and diffuse reflections,
where only the diffuse reflection contains pulsatile information.

non-negligible degree determined by the diffuse reflection. In

terms of the model (6), the task of an rPPG method is clear:

extracting p(t) from Ck(t).

III. EXISTING RPPG METHODS

In this section, we review the existing rPPG methods using

the model defined in Section II and analyze their strengths and

weaknesses as a function of pulse extraction.

Existing rPPG methods [2]–[5] (except 2SR [6]) use the

spatially averaged RGB values of skin-pixels to generate

temporal RGB-signals for pulse extraction. The spatial pixel

averaging step can reduce the camera quantization error. Based

on (6), we assume that a sufficient amount of pixels (i.e.,

sensor arrays) are focused on comparable skin-tissues, and

average Ck over the observed skin-pixels as:

C(t) ≈ I0 ·
(

1 + i(t)
)

·
(

uc · c0 + us · s(t) + up · p(t)
)

, (7)

which provides a C(t) where the quantization noise vn(t) is

negligible when the number of skin-pixels is sufficiently large.

However, we note that when this step is performed on a small

skin patch/area with a limited number of pixels, the camera

quantization noise remains large and is thus non-negligible.

We also note that this step assumes that various color vectors

are not dependent on the skin-pixel positions in an image. The

obtained C(t) is essentially the spatial RGB mean at time t.

(7) can be further expanded and simplified to:

C(t) =uc · I0 · c0 + us · I0 · s(t) + up · I0 · p(t)+

uc · I0 · c0 · i(t) + us · I0 · s(t) · i(t)+

up · I0 · p(t) · i(t)

≈uc · I0 · c0 + uc · I0 · c0 · i(t) + us · I0 · s(t)+

up · I0 · p(t)

(8)

where the approximation holds because all AC-modulation

terms are much smaller (i.e., orders of magnitude) than the DC

term and thus the product modulation terms (e.g., p(t) · i(t))
can be neglected. The approximation (8) shows that the

observation C(t) is a linear mixture of three source-signals

i(t), s(t) and p(t). This implies that by using the linear

projection, we are able to separate these source-signals. Thus

the task of extracting the pulse-signal from the observed RGB-

signals can be translated into defining a projection-system to

decompose C(t).
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A. BSS-based methods (PCA/ICA)

The approximation in (8) suggests that Blind Source Separa-

tion (BSS) techniques might be ideal candidates for de-mixing

C(t) into different sources for pulse retrieval. The general

procedure of BSS-based rPPG methods can be expressed as:

Y(t) = W ·C(t), (9)

where Y(t) denotes the factorized source-signals consisting of

the pulse and noise; W denotes the de-mixing matrix that can

either be estimated by PCA [2] or ICA [3], i.e., the sorting

problem in ICA was further solved by a constrained-ICA based

approach introduced by [18]. The essential difference between

PCA and ICA is their assumptions w.r.t. the relationship

between i(t), s(t) and p(t), i.e., the source-signals are either

uncorrelated or independent. The BSS operation is followed

by selecting the most periodic signal from Y(t) as the pulse.

As a consequence, these methods cannot deal with the cases

in which the motion is also periodic, as typically occurs when

the subject is exercising in a fitness setting.

Moreover, PCA and ICA have different limitations when

estimating W: (i) PCA uses the covariance of RGB-signals to

estimate W (i.e., eigenvectors), which requires the variation

in the amplitude of pulse and noise to be sufficiently different

to determine the eigenvector directions; (ii) ICA assumes that

the components in Y(t) are statistically independent and non-

Gaussian for deriving W, which requires C(t) to be a long

signal to enable a statistical measurement. It may make the

separation even harder, since different frequency components

(e.g., respiration and Mayer-wave) may be included as well.

Furthermore, the procedure of BSS in estimating an exact W

is completely blind (i.e., a black box), which is not tractable

for algorithm development.

Most importantly, BSS techniques are statistical and com-

putational solutions for general signal-processing problems,

which do not exploit the unique and characteristic skin re-

flection properties that can be used to solve the rPPG-specific

problem. Especially illustrative in this respect is the ICA-

based approach which normalizes the standard deviation (i.e.,

AC-components) of RGB-signals upfront thus ignoring the

fact that the PPG-signal induces different yet known relative

amplitudes in the individual RGB channels.

B. Model-based methods (PBV/CHROM)

In contrast to the BSS-based methods that impose no

assumption on the colors associated with the source-signals,

the model-based methods [4], [5] use knowledge of the color

vectors of the different components to control the de-mixing.

Therefore, these methods have one step in common: eliminat-

ing the dependency of C(t) on the average skin reflection color

(i.e., DC-level), including the light source color and intrinsic

skin color. This can be done by the temporal normalization2:

dividing RGB-signals by their temporal mean, which does

not harm the AC components. In (8), the temporal mean is

considered as the large steady component over a time interval:

C(t) ≈ uc · I0 · c0, (10)

2An alternative to the temporal normalization is to take the logarithm, which
for small variations as the PPG-signal has practically the same effect.

which is used to uniquely define a (diagonal) normalization

matrix N:

N ·C(t) = N · uc · I0 · c0 = 1, (11)

where N is used to temporally normalize C(t) as:

Cn(t) =N ·C(t)

=N · uc · I0 · c0 +N · uc · I0 · c0 · i(t)+

N · us · I0 · s(t) +N · up · I0 · p(t)

=

Intensity
︷ ︸︸ ︷

1 ·

(
1 + i(t)

)
+

Specular
︷ ︸︸ ︷

N · us · I0 · s(t)+

Pulse
︷ ︸︸ ︷

N · up · I0 · p(t) .

(12)

There are a number of qualitative observations w.r.t. (12):

• Intensity: 1 · (1 + i(t)) denotes the light intensity vari-

ations along the direction of 1, which is the temporally

normalized skin-tone direction. This is usually the largest

component in Cn(t), i.e., the largest distortion (e.g.,

motion-induced intensity variations) is typically simul-

taneously and equally present in all three channels.

• Specular: N ·us ·I0 ·s(t) denotes the temporal variations

along the direction of the scaled specular reflection. Un-

der the white light condition, we have N·us·I0 = N·1·I0,

i.e., it is scaled with the inverse of the skin-tone. Under

the non-white light condition, us depends on both the

light source spectrum and camera sensitivity, while N

depends on the same variables but also on the skin

properties (e.g., optical absorption of skin melanin).

• Pulse: N · up · I0 · p(t) denotes the pulse-induced tem-

poral color variations, i.e., the component of interest.

N · up · I0 is the pulse-induced color variation direction

in the temporally normalized RGB space. It depends on

the luminance spectrum and camera sensor but is largely

skin-tone independent [5]. Over a wide range of lighting

spectra and commonly used camera sensitivities, the G-

channel has the largest pulsatile amplitude, followed by

the B-channel and R-channel, respectively.

Based on (12), we perform a detailed analysis on CHROM

and PBV separately to see how they use the physiologi-

cal/optical properties of skin reflections to address the problem

of signal de-mixing. Both methods use the DC-removed sig-

nals of Cn(t) for pulse extraction, which is defined as:

C̃n(t) =Cn(t)− 1

=1 · i(t) +N · us · I0 · s(t) +N · up · I0 · p(t),
(13)

where C̃n(t) denotes the (zero-mean) color variation signals.

1) PBV: It chooses to directly retrieve the pulse from the

pulsatile component by restricting all color variations to the

pulsatile direction. It does so by projecting C̃n(t) onto a single

direction z to create an estimate p̂(t) that is proportional to

p(t):

p̂(t) = C̃
⊤

n (t) · z = k · p(t), (14)

where z denotes the 3×1 projection vector containing the com-

bining weights; k denotes the proportionality factor (k 6= 0).

Next, it assumes that p(t) (and therefore p̂(t)) is uncorrelated

with the other signal sources:

E{p(t) · i(t)} = E{p(t) · s(t)} ≈ 0. (15)
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Now considering the expected value E{C̃n(t)· p̂(t)}, we have:

E{C̃n(t) · p̂(t)} = E{C̃n(t) · C̃
⊤

n (t)} · z

= k · E{C̃n(t) · p(t)}

≈ k ·N · up · I0 · E{p(t) · p(t)}.

(16)

At this point, PBV assumes a prior-known blood volume pulse

vector upbv (3× 1 column vector) that satisfies:

upbv = N · up · I0. (17)

Thus (16) can be rewritten as:

E{C̃n(t) · C̃
⊤

n (t)} · z = upbv · k · E{p
2(t)}, (18)

and the projection vector z can be derived by:

z = E{C̃n(t) · C̃
⊤

n (t)}
−1 · upbv · k · E{p

2(t)}. (19)

Instead of the ensemble averages, PBV uses a 3× 3 temporal

covariance matrix:

Σ̃ = {C̃n(t) · C̃⊤
n (t)}, (20)

where {·} denotes the temporal averaging operator for deriving

the covariance in the time domain, and takes a k such that z has

unit length. Finally, combining (19) and (20), the projection

vector z is estimated by:

z ∝ Σ̃
−1 · upbv, (21)

which is used to derive the pulse-signal in (14). Since Σ̃ is

estimated from the video content, the key-point of PBV is in

defining the blood volume pulse vector upbv
3.

PBV has a clear advantage: when the assumption of (17)

holds, the estimated projection-axis is optimal for pulse re-

trieval. However, it has two limitations. Firstly, the solution

in (21) does not exist when rank(Σ̃) < 3, i.e., Σ̃ cannot be

inverted. In a singular or near-singular case, the obtained z is

noise driven and, for rank(Σ̃) = 1, any z is a valid solution.

This is the typical case in the model when i(t) = s(t) = 0, i.e.,

the skin is measured in perfect conditions that are distortion-

free. Secondly, it requires accurate knowledge of the blood

volume pulse vector for correct noise suppression, i.e., the

projection brings quality drops when upbv 6= N · I0 ·up. The

outcome of the algorithm is sensitive to a particular parameter

setting of PBV, and PBV in turn is defined by (and thus

restricted to) a particular recording setup, depending on the

light spectrum and camera sensor.

2) CHROM: Different from the straightforward one-step

solution of PBV, CHROM chooses to introduce flexibility

when estimating the projection direction and reduce the sen-

sitivity to the prior knowledge used for pulse extraction. It

first reduces the dimensionality of the de-mixing task by

eliminating the specular component. This is achieved by only

considering the chrominance-signals, which we shall describe

as a projection of C̃n(t) onto the plane orthogonal to the spec-

ular variation direction. In order to allow correct functioning

regardless the color of the illumination, the method assumes a

3As specified in [5], upbv used by PBV is measured as [0.33, 0.77, 0.53]⊤

for RGB channels, based on the condition of a halogen lamp and the optical
RGB-filters of an UI-2220SE-C camera.

standardized skin-tone vector, which enables automatic white-

balancing of the images. Accordingly, we define the standard-

ized skin-tone vector and the associated mapping matrix as:

M
−1 · uskin = 1. (22)

where uskin denotes the 3× 1 average skin-tone vector under

white light (obtained from a large scale experiment in [4]); M

denotes the diagonal mapping matrix, which is used to map

C̃n(t) as:

M · C̃n(t) =M · 1 · i(t) +M ·N · us · I0 · s(t)

+M ·N · up · I0 · p(t),
(23)

where the temporally normalized skin color is mapped to

the assumed standardized skin-tone under white light. The

specular reflection vector N ·us · I0 is approximately mapped

to the direction of white light:

M ·N · us · I0 ≈ κ · 1. (24)

where κ is a proportionality factor. The next step of CHROM

is projecting M · C̃n(t) onto a plane orthogonal to 1 to

be independent of the specular variations (after the skin-tone

correction):

S(t) = Pc ·M · C̃n(t)

≈ Pc ·M · 1 · i(t) +Pc ·M ·N · up · I0 · p(t),
(25)

subject to

Pc ·M ·N · us · I0 ≈ κ ·Pc · 1 = 0, (26)

where Pc is the 2×3 initial projection matrix used by CHROM

that consists of projection-axes in rows, which defines a plane

in the temporally normalized RGB space. Note that Pc ·M
is the resulting projection matrix used by CHROM4. Such a

projection matrix has an attractive property: it creates two

projected-signals in S(t), where the motion-induced/pulse-

induced variations appear in in-phase/anti-phase. The reason

for this phenomenon has not been explained in [4], but we

will show it later.

The in-phase/anti-phase property in S(t) allows a simple

way to create an estimate p̂(t) to approximate p(t), namely

“alpha-tuning” [4]:

p̂(t) = S1(t)− α · S2(t) with α =
σ(S1)

σ(S2)
, (27)

where σ(·) denotes the standard deviation operator; Si de-

notes the i-th projected-signal. When the pulsatile components

dominate, S1 and S2 are anti-phase and thus add up in

a constructive way, i.e., p̂(t) ≈ 2 · S1(t) ∝ p(t). When

motion-induced disturbances dominate, (27) cancels the in-

phase motion components to approximate p(t). Only when the

strengths of motion-induced and pulse-induced components

balance, p̂(t) is a sub-optimal estimate of p(t).

4As specified in [4], the initial projection matrix used by CHROM is

Pc =
(

1 −1 0

0.5 0.5 −1

)

. Pc is mapped to the assumed standardized skin-tone

vector uskin = [0.77, 0.51, 0.38]⊤ obtained from a large scale experiment,

resulting in a new projection matrix Pc · M ≈

(

3 −2 0

1.5 1 −1.5

)

that is

eventually used by CHROM.
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The strength of CHROM is that it has a certain robustness to

non-white illuminations. However, it requires (24) to hold, i.e.,

the specular component N ·us ·I0 measured in real video con-

tent must be compensated by the assumed standardized skin-

tone vector uskin. Otherwise, it will exhibit specular residuals

in the projected-signals, typically when M ·N ·us · I0 6= κ ·1.

C. Data-driven method (2SR)

The recently developed 2SR method [6] creates a subject-

dependent skin-color space and tracks the hue-change over

time to measure the pulse, where the instantaneous hue is

determined based on the statistical distribution of the skin-

pixels in the image domain. The notion of using the hue as

a fundamental parameter for pulse extraction is supported by

the analysis of using different color-spaces to measure pulse

in [19]. Since the hue drives the measurement, the method

is inherently suppressing all intensity variations at an early

stage. In this sense, 2SR is akin to the approach introduced in

the next section which defines a projection plane orthogonal

to 1 in the temporally normalized RGB space for pulse

extraction. However, the subspace-axes constructed by 2SR are

completely data-driven without physiological considerations.

In practice, this implies performance issues when the spatial

measurements are unreliable as may occur, i.e., if the skin-

mask is noisy or poorly chosen.

IV. POS ALGORITHM

So far, we have shown how different rPPG methods relate

to the model. Based on the understanding, we are also able to

design new algorithms targeting certain applications or effects.

We illustrate this by considering how to introduce the main

feature of 2SR into an algorithm based on model (12).

A. Analysis

Since the main feature of 2SR is to consider the hue-change

(i.e., to disregard the intensity), its counterpart in (12) is to

first eliminate the intensity variations in the direction of 1.

Therefore, we project Cn(t) onto the plane orthogonal to 1,

which is expressed as:

S(t) = Pp ·Cn(t)

≈ Pp ·N · us · I0 · s(t) +Pp ·N · up · I0 · p(t),
(28)

subject to
{

Pp · 1 = (0 0)⊤,

Pp,1 ·Pp,2
⊤ = 0,

(29)

where Pp denotes a 2 × 3 projection matrix; Pp,i denotes

the i-th row/projection-axis of Pp, which in our definition is

assumed to be orthogonal to each other, as the non-orthogonal

axes always results in a separate component on the other

direction and thus exhibits redundancy. In this case, Pp defines

a plane orthogonal to 1 in the temporally normalized RGB

space, which is in fact a plane orthogonal to the temporally

normalized skin-tone, i.e., it is different from the projection

plane defined by CHROM5.

5The projection plane in CHROM (i.e., Pc · M in (25)) is orthogonal to
the specular variation direction by assuming a standardized skin-tone vector.
In our case, Pp in (28) is orthogonal to the intensity variation direction.
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Fig. 2. The distribution of pulsatile strength on the plane orthogonal to 1,
where the pulsatile strength is the absolute pulsatility value. The projection
plane consists of 360 (discrete) projection-axis z sampled with 1◦ difference,
where the red/blue color denotes the regions with stronger/weaker pulsatile
strength. We exemplify three projection-axes on the plane: z1 = [−2, 1, 1]⊤,
z2 = [1,−2, 1]⊤ and z3 = [1, 1,−2]⊤, which have the pulsatilities −0.64,
0.68 and −0.04 according to (31). We project a temporally normalized RGB
signal Cn(t) = [Rn(t), Gn(t), Bn(t)]⊤, measured from the skin in a video,
onto z1, z2, z3 and obtain S1(t), S2(t), S3(t).

Conceptually, there are two advantages for Pp: (i) the

(motion-induced) intensity variations are usually larger distor-

tions that influence all three channels simultaneously; and (ii)

it does not require exact knowledge of N·us ·I0 and N·up ·I0
to define the main distortion direction at the moment. Although

the normal vector of the projection plane has been determined

(as 1), the actual projection-axes in Pp are not defined yet.

One might consider to define a Pp that can further project

Cn(t) onto the direction orthogonal to the specular distortion

on the plane. However, this is not a feasible option, since

N ·us ·I0 and N ·up ·I0 may not be orthogonal to each other,

typically N ·us ·I0 is not well-defined due to different motion-

types. In contrast, N ·up ·I0 is relatively stable when the light

source and camera filter are fixed during the measurement [5].

Thus we prefer to use N ·up · I0 to define Pp, exploiting the

physiological property of PPG-absorption.

According to [5], the blood pulsation has different relative

PPG-contributions in RGB channels, which can be expressed

as a blood volume pulse vector upbv:

upbv(c) =

∫ 700

400
Hc(λ) ·

I(λ)
Ih(λ)

· PPG(λ) dλ
∫ 700

400
Hc(λ) ·

I(λ)
Ih(λ)

· ρs(λ) dλ
, (30)

where upbv(c) denotes the pulsatile strength (i.e., scalar) of the

c-th color channel of the camera sampled at the wavelength

λ ∈ [400, 700] nm; Hc(λ) denotes the response of c-th color

channel of the camera; I(λ) and Ih(λ) denote the spectral

compositions of the given light source and the halogen lamp

used for measuring the absolute PPG-amplitude PPG(λ);
ρs(λ) denotes the skin-reflection spectra.

To fully understand how the projection-axes in Pp affects

the quality of the projected-signals S(t), we investigate the

pulsatility of the projection direction on the plane using upbv.

Assuming one projection-axis in Pp as z, the pulsatility on

the direction of z is:

p = upbv
⊤ · z, (31)

where z denotes the 3×1 projection vector; upbv denotes the

3× 1 blood volume pulse vector given by (30); p denotes the
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pulsatility on the direction of z, i.e., a scalar that can either

be positive or negative. The pulsatile strength is the absolute

value of p, which reflects the amplitude of pulsatile variations

(AC-level) on the direction of z.

Fig. 2 shows the distribution of the pulsatile strength on the

plane orthogonal to 1 as a function of z. From this figure,

we can see that the projection direction is highly related to

the pulsatility (and thus the pulsatile strength) that determines

the signal quality, i.e., different z may give very different

projected-signals. For example, z1 and z2 show negative and

positive pulsatilities giving the anti-phase signals S1(t) and

S2(t); z3 shows a much lower pulsatile strength giving the

noisy signal S3(t). This implies that the projection-axis on

the plane cannot be arbitrarily selected, but should depend on

physiological reasoning.

Although upbv remains stable when the recording setup is

fixed during the measurement, the light source and camera

filter are usually unknown in a video and can vary in different

setups, which renders it difficult to use a fixed off-line upbv

for accurate on-line measurement. Inspired by CHROM [4],

we use the knowledge of the blood volume pulse to define

a rough projection region on the plane orthogonal to the

temporally normalized skin-tone direction, and refine an exact

projection direction on the plane by real-time tuning.

Therefore, the key-point is in defining two projection-axes

on the plane that can bound a most likely pulsatile region

(e.g., the red regions on the plane of Fig. 2), where larger

pulsatilities can be found within the boundaries by tuning, i.e.,

by S1(t) + S2(t). Based on our requirement, the projected-

signals in (28) can be expressed in such a general form:

S(t) =

(

S1(t)
S2(t)

)

with

{

S1(t) = d1(t)− d2(t),

S2(t) = d1(t) + d2(t)− 2d3(t),
(32)

where D(t) = [d1(t), d2(t), d3(t)]
⊤ is a vector having the

same entries as Cn(t) but differently ordered. The entries in

D(t) are ordered according to the decreasing pulsatile strength

of RGB channels in Cn(t), i.e., the descending channel-

ranking based on upbv. The projection-axes defined in (32) are

orthogonal to each other and also to 1. Most importantly, both

projection-axes exhibit positive pulsatilities and thus generate

in-phase pulse-signals.

Taking a single light source (e.g., the fluorescent lamp) as

the example, the skin pulsatility is usually the largest in the

G-channel, followed by the B-channel and R-channel. Based

on such a channel-ranking and our requirements in (32), the

projection-axes in (28) can be defined as:

Pp =

(

0 1 −1
−2 1 1

)

, (33)

which in fact combines temporally normalized RGB-signals

as: S1(t) = Gn(t) − Bn(t) and S2(t) = Gn(t) + Bn(t) −
2Rn(t).

The last step is to tune an exact projection direction within

the bounded region of (32), where the specular and pulsatile

components in (12) can further be separated. Before tuning, it

needs to be shown that the specular distortion and pulse are

physically separable on the projection plane. To this end, we
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Fig. 3. The distribution of pulsatile and specular strengths on the plane orthog-
onal to 1, where the red/blue color denotes the regions with stronger/weaker
signal strength. Here we apply (i) uskin = [0.77, 0.51, 0.38]⊤ of CHROM
to approximately define the specular vector as [0.37, 0.56, 0.75]⊤, based
on (22) and (24); and (ii) upbv of PBV to define the pulsatile vector as

[0.33, 0.77, 0.53]⊤. These two (color variation) vectors are used to estimate
the strengths of both components on the projection plane, which is similar
to the procedure in Fig. 2. Considering the degree of the projection-axis as a
variable, the distribution of pulsatile and specular strengths on the plane can
be compared by strength curves.

compare the distribution of the signal strength (i.e., “strength”

means the amplitude of the signal variation) between these two

components on the plane orthogonal to 1 (see Fig. 3). Based

on the assumed uskin and upbv, it shows that the specular

and pulse components have almost opposite distributions on

the plane, i.e., their strength curves have a clear phase shift.

When the distributions of N ·us · I0 and N ·up · I0 on the

projection plane are sufficiently different, the specular and pul-

satile components are algorithmically separable. In this sense,

our tuning depends on the hypothesis that specular and pulse

have different relative strengths in the temporally normalized

RGB channels. Such hypothesis seems to be true under normal

conditions: the hemoglobin and melanin contents in human

skin tissues lead to specific chromophore concentrations. The

skin color (including dark skin) under white light looks more

reddish and less bluish, i.e., nobody has an inborn blue face.

Thus the specular vector (e.g., the inverse of the skin-tone after

temporal normalization) is unlikely to coincide with the blood

volume pulse vector. However, it remains questionable whether

such hypothesis also holds for extreme luminance conditions,

since the lighting spectrum affects the relative contributions of

both the specular and pulsatile components to RGB channels.

We will verify this hypothesis in the experimental section by

using the benchmark videos recorded in various illumination

conditions with different lighting spectra.

Assuming for the moment that such hypothesis is true,

the region bounded by the two projection-axes in (32) has

large pulsatile strength and low specular strength, and thus

the projected-signals have (i) in-phase pulsatile components,

and (ii) anti-phase specular components. Similar to CHROM,

we leave the task of finding an exact projection direction to
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the alpha-tuning [4], which can be expressed as:

h(t) = S1(t) + α · S2(t) with α =
σ(S1)

σ(S2)
, (34)

where σ(·) denotes the standard deviation operator. Note that

the sign in (34) is different from the sign in (27) of CHROM

(i.e., + instead of −), as it depends on the pulsatility of

two projected-signals6. The alpha-tuning used by [4] has an

attractive property: (i) when the pulsatile variation dominates

S(t), S1(t) and S2(t) appear in in-phase. Adding two in-

phase signals together will boost the resulting-signal strength,

i.e., the value of α is non-critical at this point; (ii) when the

specular variation dominates S(t), S1(t) and S2(t) appear

in anti-phase. The α can pull/push the specular variation

strength of one signal to the same level as the other one,

i.e., σ(S1) = σ(α · S2). Adding two anti-phase signals with

the same amplitude will cancel out the specular distortion.

However, its performance becomes sub-optimal when the

pulsatile strength and specular strength are very close to each

other, i.e., α is driven by a mixture of both and is thus not

well-defined. This drawback will be discussed together with

CHROM in Section IV.C.

Assuming that h(t) is estimated from short video intervals

in a sliding window (with length l), we can derive a long-term

pulse-signal H(τ) by overlap-adding the partial segments h(t)
(after making them zero-mean) as in [4]. Consequently, H(τ)
is the final output pulse-signal that can be used for further

analysis, such as the pulse-rate estimation. To be more specific,

the setting of l depends on the camera frame-rate, which

should include at least one cardiac cycle for processing. On top

of that, a short l is preferred, as it can quickly adapt the alpha-

tuning to suppress instantaneous distortions in a short interval

and also avoid the influence of low frequency components like

respiration. The overlap-adding length must be smaller than l.

In our case, the window slides 1 frame for the overlap-adding

(i.e., overlap-adding length is thus l−1), which includes more

measurements.

B. Algorithm

In order to arrive at a fully specified algorithm, we as-

sume that in most use-cases the channel-ranking in terms of

pulsatility is relatively stable, i.e., the actual values in upbv

may change, but their order cannot be easily altered. This is

shown in Fig. 4 where the effects of luminance and skin-

tone are qualitatively illustrated. Fig. 4 (a) exemplifies two

strikingly different luminance spectra that are commonly used:

incandescent lamp and fluorescent lamp. Since the spectrum

of the incandescent light can be considered a low-pass filtered

version of that of the fluorescent light, it is expected that

the channel-ranking of upbv will not be very different in

these two lighting conditions. Fig. 4 (b) shows the reflection

spectra of different skin-tones. Since their shapes are rather

6Considering the blood volume pulse vector upbv = [0.33, 0.77, 0.53]⊤,

the pulsatilities of two projection-axes in CHROM
(

3 −2 0

1.5 1 −1.5

)

are −0.55

and 0.47 respectively, which indicates that the two projected-signals are anti-
phase. So CHROM uses S1(t)−α·S2(t) for alpha-tuning in (27). In contrast,
POS directly finds two projection-axes giving in-phase signals, and thus its
alpha-tuning is formulated as S1(t) + α · S2(t) in (34).
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Fig. 4. The dashed red/green/blue curve denotes the response of R/G/B
channel of the camera; black curve denotes the absolute PPG amplitude;
yellow curve denotes the skin-reflection spectra; cyan/magenta curve denotes
the spectrum of incandescent/fluorescent lamp. Since the PPG-amplitude is
fixed and the order of RGB channel responses of a camera sensor will not
be altered, we only investigate the luminance factor and skin-tone factor: (a)
compares incandescent (cyan curve) and fluorescent (magenta curve) lighting
conditions, and (b) compares different skin-tones (yellow curves).

constant, the channel-ranking of upbv is expected to be skin-

tone independent [5]. For simplicity, we therefore take the

incandescent lamp or fluorescent lamp as the typical light

source to fix the projection-axes for benchmark, which is in

fact the Pp =
(

0 1 −1
−2 1 1

)

from (33).

The novelty of the newly proposed method is using the

plane orthogonal to the skin-tone in the temporally normalized

RGB space for pulse extraction. So we name it “Plane-

Orthogonal-to-Skin” (POS), which is also the unique character

distinguishing it from prior art. In order to highlight the

fundamental/independent performance of POS, we keep its

algorithm as clean and simple as possible, i.e., even the

commonly used band-pass filtering is not used. The bare core

algorithm of POS is shown in Algorithm 1, which can be

implemented in a few lines of Matlab code.

C. Difference with model-based prior art

Since PBV, CHROM and POS are all approaches to de-mix

(12) based on optical/physiological considerations, they share

many properties. We will highlight their differences to forecast

the difference in performance as discussed in Section VI.

Algorithm 1 Plane-Orthogonal-to-Skin (POS)

Input: A video sequence containing N frames

1: Initialize: H = zeros(1, N), l = 32 (20 fps camera)

2: for n = 1, 2, ..., N do

3: C(n) = [R(n), G(n), B(n)]⊤ ← spatial averaging

4: if m = n− l + 1 > 0 then

5: C
i
n =

C
i
m→n

µ(Ci
m→n)

← temporal normalization

6: S =

(

0 1 −1
−2 1 1

)

·Cn ← projection

7: h = S1 +
σ(S1)

σ(S2)
· S2 ← tuning

8: Hm→n = Hm→n + (h− µ(h))← overlap-adding

9: end if

10: end for

Output: The pulse-signal H
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Fig. 5. (a) The projection planes of POS (red) and CHROM (blue) in the temporally normalized RGB space. Both projection planes intersect at the direction
of 2Gn(t) − Rn(t) − Bn(t) (dashed black line), i.e., the direction for pulse extraction in CHROM when α = 1. (b) The projection planes of POS and
CHROM have different chromaticity distributions. Besides, they have different distributions of intensity, specular and pulsatile variations. Note that the solid
black line denotes the principal normal vector and projection-axes in both methods.

1) PBV versus CHROM and POS: PBV is a one-step pro-

cedure to determine a single and optimum projection assuming

that disturbances are present. It requires accurate knowledge of

the blood volume pulse signature, which results in restrictions

for the recording setup. Moreover, if the assumption, that large

enough distortions are present, is invalid, the solution will

become non-unique. Although CHROM and POS may have

the problem in distinguishing between the pulsatile component

and noise component when their amplitude-level are close to

each other on respective planes, these two methods are less

restrictive than PBV in terms of the amount of distortions,

i.e., CHROM and POS perform well for both the stationary

and motion situations when the alpha-tuning is either driven

by pulse or large distortions, whereas PBV is particularly

designed for the motion situation.

Therefore in comparison, CHROM and POS require less

accurate knowledge of the blood volume pulse signature and

are more tolerant to the amount of distortions, which can be

considered as resorting to a sub-optimal and greedy algorithm.

2) CHROM versus POS: The essential difference between

CHROM and POS is the order in which the distortions (in-

tensity and specular) are eliminated and thus which distortion

is used in the alpha-tuning. CHROM starts with the specular

and uses the intensity for alpha-tuning, POS does it the

other way round (see Fig. 5 (a)). The ordering difference

in CHROM and POS implies symmetric performance issues

in alpha-tuning, i.e., it may become sub-optimal when the

amplitude of the intensity/specular variation is very close to

that of the pulsatile variation on respective planes. Fig. 5 (b)

further illustrates the difference between CHROM and POS

by showing the strength distribution of intensity (1), specular

([0.37, 0.56, 0.75]⊤), and pulsatility ([0.33, 0.77, 0.53]⊤) on

their planes. The intensity/specular distortion is eliminated in

the first step of POS/CHROM respectively, resulting in blue

planes in Fig. 5 (b). The remaining components peak in almost

orthogonal directions on each projection plane. This implies

that both methods are essentially operable with the alpha-

tuning. However, we argue that the cleanness (blueness) of

their projections are different in practice: CHROM is expected

to be more vulnerable due to a (over time) consistent difference

between the assumed and actual directions of the specular

distortion for each individual subject, while POS is expected

to be more vulnerable to inhomogeneous illumination spectra.

We draw a brief conclusion on the comparison of three

model-based methods: PBV requires accurate knowledge of

the blood volume pulse direction. CHROM and POS use soft

priors in blood volume pulsation (i.e., channel-ranking) to

define a projection plane for alpha-tuning. Moreover, POS

further softens the knowledge required by CHROM (i.e., stan-

dardized skin-tone) for defining the projection plane by using

the data-driven approach, i.e., defining a plane orthogonal to

the temporally normalized skin-tone direction. The differences

in performance of the various methods (see Section VI) reflect

this trade-off between exactness of upfront knowledge and

greediness of the rPPG algorithm.

V. EXPERIMENTAL SETUP

This section presents the experimental setup for the bench-

marking. First, a large video dataset is introduced. Next, a

evaluation metric is presented. Finally, a total of eight rPPG

methods are adopted for comparison.

A. Benchmark dataset

A benchmark dataset containing 60 video sequences (with

147100 frames) has been built to evaluate the proposed rPPG

method. The videos are recorded with a regular RGB camera7

in an uncompressed bitmap format8, 768 × 576 pixels, 8 bit

depth, and 20 FPS. The ground-truth is either the contact-

based PPG-signal sampled by a finger-based transmissive

pulse oximetry9 or the ECG-signal sampled by a polar chest

belt10 (in the fitness experiment). Both are synchronized with

7Global shutter RGB CCD camera USB UI-2230SE-C from IDS.
8The MAHNOB-HCI dataset created by [20] for affect recognition is

unsuitable for the rPPG task, as the recorded videos are compressed in MPEG-
4 format, i.e., subtle pulsatile information may be lost after compression or
be polluted by compression artifacts.

9Model CMS50E from ContecMedical.
10Polar H3 heart-rate sensor.
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Fig. 6. Snapshots of some recordings in the benchmark dataset. The frames in
each row are exemplified from the corresponding category in the same order.

the video frames. Unless mentioned otherwise, the subject is

illuminated by a frontal fluorescent lamp, and sits in front of

the camera with the face visible.

To be as close as possible to practical use-cases, we perform

recordings in four scenarios to include different challenges.

This allows us to investigate these challenges independently,

as described below (the bold number in brackets indicates the

number of frames recorded for each challenge category):

• Skin-tone (22500) 15 subjects with various skin-tones are

recorded and categorized into three skin-types based on the

Fitzpatrick scale: 5 Western European subjects (skin-type I-

II), 5 Eastern Asian subjects (skin-type III), and 5 Sub-Sahara

Africa/Southern Asian subjects (skin-type IV-V).

• Luminance (31500) Luminance becomes a challenging

factor when motion distortions appear [6]. Thus we define

3 basic motion-types, i.e., stationary, rotation (rigid motion)

and talking (non-rigid motion), for a subject (skin-type III)

to perform under 7 different luminance conditions including

single/mixture of colored light sources, i.e., fluorescent lamp,

red LED lamp, green LED lamp, blue LED lamp, red-green

LED lamps, red-blue LED lamps, and green-blue LED lamps.

Note that the colored LED lamps act as point sources.

• Recovery after exercise (54000) To evaluate the rPPG

robustness to pulse-rate changes, a series of videos is recorded

to analyze the pulse-rate recovery from a running exercise. In

this category, 6 subjects (3 males and 3 females) in skin-types

I-III participated in the recordings. Each subject performed 3

different levels of running (with different intensities) by ad-

justing speed and gradient of the treadmill: low (gradient=12◦,

speed=4-5 km/h), medium (gradient=14◦, speed=5-6 km/h),

and high (gradient=15◦, speed=7-8 km/h). The duration of

each running exercise is 3 minutes. After the exercise, the

subject immediately sits in front of the camera for a recording.

• Fitness exercise (39100) The last experiment is to record

subjects in fitness exercise for testing the rPPG robustness to

vigorous body-motions. The body-motion due to the sporting

exercise is much more significant and periodic [21] than the

simulated head motions in the luminance category. In this

category, 5 male subjects in skin-types I-V, illuminated by

the ceiling fluorescent light, exercised on biking or stepping

devices. The duration of recordings are between 2.5 min-

utes and 8.5 minutes. Since the finger-based PPG-sensor is

vulnerable to body-motions due to exercise, the ECG-signals

were recorded as the reference and post-processed to remove

outliers.

Fig. 6 shows snapshots of some recordings in our bench-

mark dataset. All videos are pre-processed by a fast on-line

learning based object tracker and OC-SVM classifier that have

been used in [9] for localizing the face and selecting the

skin-pixels. This study has been approved by the Internal

Committee Biomedical Experiments of Philips Research, and

informed consent has been obtained from each subject.

B. Evaluation metrics

The Signal-to-Noise-Ratio (SNR) metric used by [4] is

adopted to assess the quality of the extracted pulse-signal.

Similar to [4], the SNR of the pulse frequency is derived by

the ratio between the energy around the first two harmonics

and remaining parts in the frequency spectrum, where the

location of the first two harmonics is determined by either the

PPG-signal or ECG-signal. The SNR values, shown by each

benchmarked method, are averaged over all videos under each

challenge per category for statistical comparison.

C. Compared rPPG methods

The POS method proposed in this paper is intended as an

algorithmic component in an rPPG monitoring-system. Thus

we compare it as clean as possible with direct algorithmic

alternatives. For a thorough evaluation, we benchmark it with

seven commonly-used or state-of-the-art rPPG methods:

• G (2007) [1], the single wavelength method that is still

popular as evidenced by recent researches [7], [10].

• G-R (2008) [22], a simple alternative to the single channel

method by combining two channels.

• PCA (2011) [2], a Blind Source Separation (BSS) based

method.

• ICA (2011) [3], the most famous BSS-based method that

has been widely used.

• CHROM (2013) [4], the motion robust method based on

the standardized skin-tone assumption.

• PBV (2014) [5], the motion robustness improved method

using the blood volume pulse signature.

• 2SR (2016) [6], a recent method exploiting the skin-pixel

distribution in the image domain.

All these methods have been implemented in MATLAB

and run on a laptop with an Intel Core i7 processor (2.70

GHz) and 8 GB RAM. The implementation of POS strictly

follows Algorithm 1 presented in this paper. Following the

discussion at the end of Section IV.A, the sliding window

length of POS is defined as l = 32 given a 20 fps camera,

which measures cardiac activities in 1.6 s, i.e., it can capture

at least one cardiac cycle of the measured signal in a broad

pulse-rate range [40, 240] beat per minute. The parameters in

the benchmarked methods are set according to the original

papers. For fair comparison, all parameters remained identical

when processing different videos.
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TABLE I
SNR PERFORMANCE INDICATORS PER RPPG METHOD AND CHALLENGE. THE RED AND BLUE COLORED NUMBERS IDENTIFY THE BEST AND

SECOND-BEST RPPG METHODS IN EACH CHALLENGE.

Category Challenge G(2007) G-R(2008) PCA(2011) ICA(2011) CHROM(2013) PBV(2014) 2SR(2016) POS

Skin-tone

Type I-II 2.67 7.55 5.85 6.51 6.47 5.57 7.44 7.69

Type III 2.07 7.89 5.38 6.61 6.21 6.26 7.90 8.04

Type IV-V -0.49 6.40 2.25 4.56 5.43 4.04 6.60 7.21

Luminance

Stationary 8.10 10.14 8.70 11.61 9.42 6.57 10.53 10.51

Rotation 0.81 3.34 1.46 4.04 3.63 6.36 6.16 6.28

Talking -0.62 3.75 0.46 3.11 3.99 4.01 5.33 5.05

Recovery

Low -3.07 4.67 -0.60 1.78 2.66 1.95 4.93 4.82

Medium -3.19 4.97 -0.79 1.64 3.62 3.15 5.26 5.21

High -8.19 4.11 -6.51 -0.82 3.52 3.52 4.84 4.74

Fitness
Biking -6.39 -3.38 -4.21 -5.40 0.68 0.57 -0.28 0.78

Stepping -12.59 -9.06 -11.41 -12.51 -3.13 -2.85 -4.50 -3.58

Overall Average -1.90 3.67 0.05 1.92 3.86 3.56 4.93 5.16

VI. RESULTS AND DISCUSSION

This section discusses the benchmark result. Table I sum-

marizes the SNR values of the benchmarked rPPG methods

obtained in each challenge per category, where the red/blue

bold entry denotes the best/second-best result obtained by the

corresponding method in each challenge. The overall category

gives the performance averaged over all individual challenges

for each method. Fig. 7 shows the qualitative comparison of

spectrograms obtained in fitness challenges.

1) G: The single channel method G obtains on average the

worst performance, which stems from the fact that no effort

has been made to eliminate distortions by combining signals

from different color sensors. This suggests that when multiple

wavelength sensors are available in a regular RGB camera,

it is better to profit from the statistics provided by all color

channels, especially when the pulsatility in different channels

is non-uniform. Even when one channel does not contain any

pulsatile information, it can still be used as a noise-sensor

to design a method that can be independent of such noise,

i.e., signal de-noising. The poor performance of G is further

confirmed in Fig. 7.

2) G-R: Surprisingly, G-R, a simple alternative to G by

combining two channels, shows decent performance, i.e., it

even outperforms the BSS-based methods that combine three

color channels. In fact, G-R projects the temporally normalized

RGB-signals onto the direction of [−1, 1, 0]⊤, which is also a

projection-axis on the POS-plane that is orthogonal to 1 (i.e.,

independent of intensity variations). The essential difference

with POS is that G-R does not exploit the B-channel, thus

cannot further differentiate pulse from specular distortions.

In non-fitness videos without significant body-motions, it can

still profit from the physiological phenomenon that the G

and R channels contain the maximal and minimal pulsatile

amplitudes, i.e., such a combination maximizes the result-

ing pulsatility. However, it shows limitations in suppressing

motion-induced specular distortions in fitness applications (see

Fig. 7).

3) PCA/ICA: Comparing the BSS-based methods, ICA

performs better than PCA in non-fitness challenges, i.e., espe-

cially in the stationary case of the luminance category, where

ICA is the best. Both methods have clear quality drops when

distortions appear, i.e., head motions in different luminance

conditions or heavy breathing during the exercise recovery.

In fitness challenges, PCA and ICA almost break down when

significant and periodic body-motions appear, which is largely

due to the de-mixing matrix estimation and target component

selection. We also notice that ICA is more sensitive to large

motion distortions than PCA in our fitness setup, which is in

line with the findings in [4].
4) CHROM/PBV: Comparing the two existing model-based

methods, CHROM performs slightly better than PBV in

overall, especially in non-fitness challenges without strong

distortions. The reason has been explained in Section III that

the use of blood volume pulse signature in PBV brings a

modest loss in signal quality when the subject is (nearly)

stationary. In fitness challenges, the model-based methods

(CHROM, PBV and POS) demonstrate significantly improved

robustness as compared to the non-model based methods (G,

G-R, PCA, ICA and 2SR). Among them, PBV reports on

average the best performance in fitness, which is followed

by CHROM and POS, although their differences are non-

significant.
5) 2SR: The recently developed method 2SR gains the best

position in the non-fitness comparison. Basically, 2SR replaces

the spatial pixel averaging of skin-pixels by the Least-Mean-

Square estimate of the skin-color space using spatial PCA.

This may reduce the influence of outliers when skin-pixels

dominate the measurement, but suffers performance degrada-

tions if the skin-mask is poorly defined, which typically occurs

in fitness, i.e., some pixels may always contain a combination

of skin and non-skin when the skin-region is moving at high-

speed (due to motion blur) [6]. Fig. 7 shows that 2SR works

properly in subject 3-4 where the skin-mask is relative clean,

but fails with subject 6 (with dark skin-tone) where the skin-

mask is seriously polluted. We have to note that the overall

second best position gained by 2SR in the complete dataset is

based on the preliminary condition that the skin-mask is well

defined in the majority of videos.
6) POS: Table I shows that POS obtains the overall best

performance. The comparison between three model-based

methods in non-fitness challenges shows that the assumption
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Fig. 7. The ECG reference signals and the spectrograms obtained by benchmarked rPPG methods on videos recorded in fitness exercise (i.e., subject 2
performs stepping exercise), where the x-axis and y-axis denote the frame number and frequency respectively.

made by POS, i.e., be independent of the intensity variations,

is advantageous in simple use-cases without strong distortions.

We also notice a quite similar performance of POS and 2SR

in non-fitness challenges. This is likely explained by their

shared feature of reducing the dimensionality of the de-mixing

problem to the plane orthogonal to the (normalized) skin-

tone direction. The main difference between POS and 2SR

is in defining the orthonormal plane: the subspace-axes (e.g.,

the second and third principal components) of 2SR is purely

determined by the image-based skin-pixel distributions, while

the projection-axes of POS is built on physiological reasoning.

Such a property is especially advantageous for POS in fitness

challenges where the skin-mask is noisy (see subject 6 in

Fig. 7).

As a final remark, we stress that this paper aims at in-

creasing and improving the understanding to the algorithmic

principles of rPPG, and providing more insights that may ben-

efit the algorithm development in the future. Neither detailed

algorithmic optimization nor dedicated signal processing were

considered for attaining the highest accuracy in any of the

discussed methods. Though the validity of the presented model

might appear limited due to the assumption of a single light

source, the benchmark shows that, in practice, such a limitation

in the model-based methods is not as severe as might appear

upfront. The validation also suggests that when developing

a general purpose rPPG engine for a broad range of use-

cases, one should consider to use the characteristic properties

of rPPG to design a robust solution.

VII. CONCLUSION

A mathematical model for rPPG measurement is proposed,

which is based on the optical and physiological considerations

and assumption of a single light source with a constant

spectrum. We use this model to understand the commonalities

and differences between existing rPPG methods in pulse

extraction. Our analysis shows that combining the model with

different assumptions allows constructing various algorithms

to extract the pulse-signal from a video, and further suggests an

alternative method POS that resembles CHROM but alters the

order in which the main expected color distortions are reduced

using different priors. A large benchmark, involving various

challenges, is executed on existing and newly-proposed rPPG

methods to confirm our understanding.
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