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ABsTRACT. Potential-based flows are an extension of classical network flows
in which the flow on an arc is determined by the difference of the potentials
of its incident nodes. Such flows are unique and arise, for example, in energy
networks. Two important algorithmic problems are to determine whether there
exists a feasible flow and to maximize the flow between two designated nodes.
We show that these problems can be solved for the single source and sink case
by reducing the network to a single arc. However, if we additionally consider
switches that allow to force the flow to 0 and decouple the potentials, these
problems are NP-hard. Nevertheless, for particular series-parallel networks, one
can use algorithms for the subset sum problem. Moreover, applying network
presolving based on generalized series-parallel structures allows to significantly
reduce the size of realistic energy networks.

1. INTRODUCTION

This paper deals with algorithmic questions related to potential-based flows, which
form an extension of classical network flows. Given a directed graph, these flows
depend on the differences of potentials at the incident nodes. Such potential-based
flows often appear in energy networks like in gas, power, or water transportation.
In contrast to the classical case, the flow in such networks follows physical laws that
make it unique. On the one side, this seems to make the analysis easier, but on
the other side, the dependency between the flows and potentials is often nonlinear,
which leads to a harder class of optimization problems.

Motivated by their physical applications, such potential-based networks have
been studied repeatedly in the literature. One of the earliest references seems to be
Birkhoft and Diaz [3]. Additionally, there is an abundance of further articles dealing
with the networks of particular applications. Research of potential-based networks
has mainly focused on two topics: uniqueness of the solutions and algorithms.
Uniqueness was studied, for instance, in [3], Collins et al. [13], and Maugis [31]; see
Section 3 below for a review. However, the cited articles also discuss algorithms to
compute the solution; see Rockafellar [35] for a general treatment.

In this paper, we extend these investigations by studying algorithmic questions
related to potential-based networks. In particular, we are interested in the following
two algorithmic problems: Compute a feasible flow, if it exists, and find a maximal
flow between two designated nodes. These two problems can be seen as a direct
analogue of the corresponding classical flow problems. In addition, we study networks
that may contain types of arcs that act as switches, i.e., it is possible to force the
flow to 0 and decouple the potentials on the corresponding nodes. Such active
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potential-based flow problems have been much less studied, although complexity
results for particular applications naturally carry over.

We begin our study by introducing the model and its assumptions in Section 2.
In this section, we also explain the relation to gas, water, and power transmission
networks and review existing hardness results. We then treat passive networks, i.e.,
networks that do not contain switches, in Section 3. We show that networks that
contain a single source and sink can be reduced to an equivalent network with only
one arc. This allows to solve the above mentioned algorithmic problems efficiently.
Next, we introduce generalized series-parallel graphs in Section 4 and investigate
whether the two problems can be efficiently solved on this class of graphs. For
passive single sink/source networks, the series-parallel structure allows to explicitly
reduce the graph to a single arc. For active networks, the problem is NP-hard, but
we provide an pseudo-polynomial algorithm for particular series-parallel graphs. We
then turn to networks that may contain switches, which turn out to be harder to
handle. In Section 5, we discuss monotonicity properties of active networks and their
relation to Braess-paradoxes. We then exploit the favorable algorithmic properties
of generalized series-parallel graphs and investigate the structure of realistic energy
networks by applying series-parallel reductions. The computations in Section 6 show
that using such presolving steps can considerably reduce the size of realistic networks,
highlighting the special role of series-parallel network structures. In fact, we can
reduce the size of large real-world gas networks by up to 76 % and computational
experiments show that this reduction can be effective.

In total, this paper extends the investigation of algorithmic questions related
to potential-based flow networks at several places. Passive single-source and sink
networks can be treated efficiently via a representation by a single arc. Active
networks are hard to handle in general, but they are monotone in the single source
and sink case, which can be used in the context of Braess-paradoxes. For series-
parallel graphs graph reduction techniques can be useful, which we show in the
computational results.

2. BAasic MODEL

In this section, we present the general framework of potential-based flows and
illustrate it by explaining how the already mentioned examples of gas, power, and
water flows fit into this framework.

2.1. Potential Networks. We define a potential network G as follows. It consists
of a directed graph G = (V, A) with node set V = V(G) and arc set A = A(G). To
each node v € V' a potential m, is assigned with lower and upper bounds 7, 7, € R,
7, < Ty, and to every arc a € A a flow x, is assigned with lower and upper bounds
Z,, Ta € R, 2, < T,. Note that the flow z, on an arc a = (u,v) can be negative
with the interpretation of flow against the direction of the arc, whereas flow from w
to v is modeled by positive flows. The arc set A is partitioned into arcs A;, = Ap(G)
representing so-called lines and arcs Ag = Ag(G) representing switches. We call a
potential network passive if Ag = () holds. Otherwise, we call it active.

For a line-arc a = (u,v) € A, the flow x, depends on the potential difference at
its incident nodes v and v:

Tu — Ty = Pa '(/)(xa)' (1)
Here, 8, > 0 is an arc specific constant. Moreover, ¥ : R — R is a potential function
that is the same for all arcs a € Ay, and has the following properties:
(1) % is continuous,

(2) 1 is strictly increasing, and
(3) 4 is an odd function, i.e., ¥(—z) = —(x).
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For every switch-arc a = (u,v) € Ag, we have a control variable y, € {0,1}
specifying the state of the switch. If y, = 1, then m, = 7, has to hold and the
flow z, is not restricted by the incident potentials. Otherwise, if y, = 0, the flow on
the arc has to be 0, i.e., z, = 0, and the potentials are decoupled from (1). In these
cases, the switch is said to be “on” and “off”, respectively.

The potential function ¢ in (1) depends on the application; we will later see
typical choices for 1 in natural gas, water, and power networks, where potential
functions have the properties (1)—(3). Note that different line arcs in a potential
network are only distinguished by their values of 3,. The assumptions that 1 is
continuous and strictly increasing are natural in the mentioned physical contexts. In
particular, 1! exists under these assumptions. Moreover, the assumption that 1) is
odd makes the situation symmetric with respect to the direction of the flow.

If 4 is positively homogeneous of order r > 0, i.e.,

P(Az) =A"Y(x), A>0,

we call the potential network homogeneous. Homogeneity is motivated by physical
laws, and its order r depends on the different applications. Moreover, it implies
that v is of the form

Y(x) = asgn(z) ||, (2)
for some constant & = 4(1) > 0 and order r > 0.

We also assume that both v and 1! are efficiently computable. Note that we
use the classical Turing machine as our computational model, e.g., in the literature
review in Section 2.4. For the applications with more involved potential functions 1
(e.g., in water networks), another model such as the BSS-machine [4, 5] or a real
RAM [43] need to be considered. We refrain from these extensions, however, since
for our positive results we do not need to compute y~!. This would require to
compute roots, which need to be approximated in all of these models. This can be
done in polynomial time if we allow for a fixed ¢ > 0 for the approximation error as
discussed in [1].

Overall, given the potentials at the incident nodes, we can compute the flow on
an arc by

Lg = ¢71((ﬂu - 71'U)/ﬁa)~

Finally, note that the name “potential” is motivated by the physical applications.
The term is also used with a different meaning for the dual variables of the classical
flow problem.

2.2. Potential-Based Flows. A potential-based flow (x,m,y) in a potential net-
work G = (V, A) consists of a flow 2 € R4, potentials 7 € RV, and control variables
y € {0,1}*. We are mainly interested in the setting with one source s € V and
one sink ¢t € V, where s # t. For a potential-based s-t-flow (x,m,y) we require flow
conservation at the inner nodes,

Z Tg — Z 2 =0, veV\{st},
a€dout (v) a€din(v)

where §°U(v) := {(v,w) € A}, 6™ (v) := {(u,v) € A}. The flow value is defined as
the net amount of flow sent from the source:
val(z, 7, y) = Z Xg — Z Zg-
a€sout(s) aesin(s)
Notice that this amount might be negative, meaning that —val(z,r,y) flow is
actually being sent from ¢ to s. If the network is passive, we sometimes omit y, i.e.,
we write val(z, 7).
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We call (z,m,y) a feasible potential-based s-t-flow if it satisfies the following
constraints:

Z Tq — Z xq =0, ve VA {s,t}, (3a)

a€dout(v) a€din(v)
Tu — Ty = Ba P(2a), a=(u,v) €A, (3b)
—Fyo < xq < Fya, a € Ag, (3¢)
(= To) (L= Ya) S0 — 7 < (T — 1) (L= ¥a),  a=(u,v) € As, (3d)
Ta € [Z,,Tal, a€ A, (3e)
Ty € [Ty, T, v eV, (3f)
ya € {0,1}, a € Ag. (3g)

In (3c), F' is an upper bound on the flow on any arc. Note that the system implies
that if y, = 1 for a switch arc a € Ag, then 7, = 7, and the flow is not restricted
by (3c). Similarly, if y, = 0, then z, = 0 and the potentials are not restricted
by (3d).

Some words are in order to explain the role of the bounds in model (3). Flow
bounds are given by z,, Z, and potential bounds by «,, 7,. Upper bounds often
arise from safety or legal considerations in order to guarantee the safe operation
of the network, lower bounds might be needed to satisfy user requirements or the
correct operation of devices that increase the potential (e.g., a certain minimum
pressure or current). The bound F has only a technical meaning in the model.
Clearly, these bounds may be used to further strengthen other bounds, i.e., it would
be sufficient to only specify potential bounds and derive flow bounds and F' (given
some balance vector b). However, as stated above, the flow is unique given some
of the potentials and therefore the flow might violate some bounds, since these do
not have a “physical” representation. Nevertheless, there is usually some freedom
in choosing the potentials to make sure that the flow and potentials stay with the
given bounds.

Note that (sub)networks that only consist of open switches allow to represent
classical flows. This also implies that the flow is not necessarily unique in these
cases; see Section 3 below for a discussion of uniqueness in passive networks. But
such (sub)networks are not realistic, and it makes sense to exclude them. The
methods developed below, however, do not need this exclusion.

In the remainder of this section, we discuss different specific examples of the
setting described so far. These examples are given by gas, water, and power networks,
which illustrate the broad applicability of our model and results. In all of these
cases, the models are an approximation of a description of the relevant physics,
typically given by partial differential equations; see, e.g., Hante et al. [19].

Example 2.1 (Gas Transport Networks). In stationary models of gas transport
networks, lines correspond to gas pipes and switches model valves. In this context,
potentials at nodes correspond to squares of gas pressures and flows are gas mass flows.
The relation between mass flows and gas pressure squares at gas pipes a = (u,v) € Ay,
is typically approximated by pressure loss functions of the type

T — T = PBaW(Ta), W(xa) = |Ta| Za. (4)
The arc-specific constant (3, is positive and depends on technical parameters of the
pipe like its diameter, its length, or the roughness of its inner wall, etc. For more de-
tails on modeling stationary gas flow in pipeline networks see the chapter Fiigenschuh
et al. [16] of the book Koch et al. [24] and the references therein.
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Note that (4) assumes a constant elevation of the network. However, we can also
treat the corresponding model that also takes different nodal heights in to account;
see again the chapter [16] in [24] for a derivation.

Observation 2.2. Let h,, be the height of node v € V. The algebraic gas flow model
eSe — 1\ _
Ty = (Wu—Aamahca)e Sa, (5)

where A, are arc-dependent constants and S, = 6 (hy, — hy), 6 > 0, is a scaled
version of the potential-flow model (4).

Indeed, multiplying (5) with v, we obtain

1—e %
Shog, = St g oSt
Sa
This is just a scaled version of (4): Define 3, = Ay(1 —e~52) e /S, 7/ = eShvr,,

and 7!, = e’ Mem,. Then (5) is equivalent to 7!, — 7!, = B/ |z 4|4

“Ty — Mo |Za] Za

Example 2.3 (Water Transport Networks). In water networks, potentials corre-
spond to hydraulic heads. The head-loss model is also based on (1) with

Y(za) = sgn(za) |24l 1852
and arc-specific constants 3, > 0. For a more detailed description we refer to Larock
et al. [28].

Example 2.4 (Lossless DC Power Flow Networks). In lossless DC power flow
networks, the flow model is linear, but also satisfies all properties discussed above.
In this context, 8, = 1/B, is the reciprocal of the susceptance B, of the line a € Ay,
and the linear potential function is given by ¥(z,) = z,. An important problem in
this context is the optimal power flow (OPF) problem, which has been studied in the
DC and the AC case. In particular, optimal transmission switching (OTS) considers
the effect of switches. There is a huge amount of literature on these problems and
we can only give some pointers to the literature, e.g., Kirschen and Strbac [23],
Bienstock [2], Fisher et al. [15] and Hedman et al. [20]. We finally note that AC
power flows cannot be modeled in our framework.

2.3. Algorithmic Problems for Potential-Based Flows. We now introduce
two natural algorithmic problems for potential-based s-t-flows that we consider in
the following. The first problem deals with the question whether a feasible flow
exists.

s-t-FlowFeasibility
Input: A potential network G.
Problem: Is there a feasible potential-based s-t-flow (z, 7, y) for G?

Recall that a feasible potential-based flow consists of (z,7,y) such that the
conditions in (3) are satisfied. Moreover, we consider the problem to maximize the
flow value as well.

s-t-MaxFlow

Input: A potential network G.

Problem: Find a feasible potential-based s-t-flow (z,7,y) for G of
maximal value val(z, 7, y).

These two problems are natural analogues of algorithmic problems for classical
flows. One could also consider the analogue of the min-cost flow problem, but this
seems to be less natural, since the flow is unique on passive potential-based networks
(see below).
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2.4. Hardness. In this subsection, we discuss the computational complexity of
the s-t-FlowFeasibility and s-t-MaxFlow problems. To the best of our knowledge,
the complexity of these problems has not been studied in the settings of potential
flows that we use. However, there are results known for analogous feasibility and
maximization problems for gas and DC power networks with valves/switches. These
complexity results carry over to the potential flow setting with switches—at least in
the cases that we will mention now.

Lehmann et al. [30] showed that the DC power analogue of s-t-FlowFeasibility
is strongly NP-hard for planar graphs of maximum degree 3. They also show
that a generalization of s-t-MaxFlow with at least two sources and sinks cannot
be approximated in polynomial time better than 2(°8 ™' for an e > 0 unless
the problems in NP can be solved in quasi-polynomial deterministic time. For
an arbitrary number of sources and sinks, they show that their analogue of the
s-t-FlowFeasibility problem is weakly NP-hard even on cactus graphs of maximum
degree 3. For AC networks, the same authors show in a different paper [29] that an
analogue of the s-t-FlowFeasibility problem is hard even on trees.

For gas networks, Szab¢ [44] showed that for a feasibility problem that he calls the
active gas nomination validation problem, which is analogous to s-t-FlowFeasibility, is
weakly NP-hard even for series-parallel networks. For arbitrary networks, Humpola
[22] showed that a similar problem to s-t-FlowFeasibility, which he calls the topology
optimization problem is strongly NP-hard.

3. PASSIVE NETWORKS

In this section, we discuss passive potential networks. A known property of these
networks is that, in the absence of potential and flow bounds, every balanced set
of supplies and demands can be transported and once a single potential in every
connected component is fixed, the solution is uniquely determined. This statement
holds for the case of node balances, i.e., the net outflow of a node v € V' is required
to be equal to a given balance b,. Given node balances b € RV with > wev o =0,
a potential-based b-flow (x, ) satisfies (1) and flow conservation constraints

Z Tq — Z To=0b,, veEV. (6)

a€dout(v) a€din(v)
In classical network flow theory, scaling a given b-flow x by some parameter A € R
yields a Ab-flow Az. The following observation is a straightforward generalization to
potential-based flows in homogeneous passive networks.

Observation 3.1. Consider a homogeneous passive network of order r > 0 with
node balances b € RV and a potential-based b-flow (z,7). Then, for any X € R,
(Ax,sgn(A) |A|" ) is a potential-based Ab-flow.

Proof. The observation follows directly from Equations (1) and (2). O

A potential-based b-flow is said to be feasible if, in addition to (6), it obeys the
flow bounds (3e) and potential bounds (3f).

Theorem 3.2 (Collins et al. [13] and Rios-Mercado et al. [34]). Let G be a passive
connected potential network and let b € RY be a vector of node balances with
> wev bo = 0. Furthermore, assume that no potential and flow bounds are given and
that for a given node s € V' the potential ws is fized. Then, there exists a unique
feasible potential-based b-flow (z, ).

One can prove this theorem in different ways: The approach of [34] shows that
the corresponding solution operators are monotone, which implies that a reduced
system of equations has a unique solution.
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Here we recall the historically earlier approach of [13] and [31], based on a classical
convex min-cost flow problem. This convex min-cost flow problem and its dual turn
out to be useful for various purposes. Let ¥ : R — R with

() = /O " (o) de,

which is strictly convex as 1) is strictly increasing. The convex optimization problem
is given as

min Y B ¥(za) (7a)
* acA
s.t. Z Toq — Z Ty =0b,, vEYV, (7h)
aedout(v) a€din(v)

with strictly convex objective function (7a). For Lagrangean multipliers m,, v € V|
the corresponding Lagrange function reads

L(l‘,ﬂ') = Z ﬂa\l/(xa) + Z xa(ﬂv - 7Tu) + Z b,y

acA a=(u,v)€A vev
- Z (Ba¥(24a) + To(my — mu)) + Z by Ty
a=(u,v)€EA vev

The KKT conditions thus yield (1) as well as the flow conservation constraints (7b).
Fixing one potential makes the solution unique, which gives Theorem 3.2.

Testing feasibility can be handled using the following observation, which follows
directly from Constraint (3b), and was originally stated for gas networks.

Lemma 3.3 (Szabo [44]). Let G be a passive potential network with node balances
beRY. If (z,n) is a potential-based b-flow, then (z,7 + c1) is a potential-based
b-flow for every constant ¢ € R.

So, to check feasibility in a passive potential network, one can first ignore
potential bounds and compute a potential-based b-flow. If the flow bounds are
violated, there exists no feasible potential-based b-flow. Otherwise, one checks
whether the potentials can be shifted such that the flow becomes feasible for the
potential bounds.

For future reference, we state the following.

Lemma 3.4 ([31]). Consider a potential network and let the potential function be
positively homogeneous, i.e., ¥(x) = a sgn(x) |z|” for some a > 0 and r > 0. Then,
the Lagrange dual max, min, L(x, ) of (7) is given by

r+1
r

ro|my — Ty
max Z by, — Z T (Boa)t . (8)

veV a=(u,v)€EA

Proof. Notice that for fixed 7, taking the partial derivatives of L(x, ) w.r.t. the flow
variables x,, the inner minimum over these variables is attained by z* satisfying,
for each arc a = (u,v) € A4,

Batp(x}) + 7y — Ty =0 or, equivalently, o=yt (W) .

Thus, the Lagrange dual can be rewritten as

max Y (ﬁa@(w(“f;“)) T (T ) m)) + 3 b

a=(u,v)EA veV
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For positively homogeneous 1, we have

@
r+1
Thus, the first sum of the Lagrange dual’s objective is

ﬁa ‘ u 'u‘ Ltl | u v| %
T (2 () v ).

a=(u,v)EA
Simplification yields (8). O

U(z) =

«

| "t and w‘l(y)=8gn(y)(|y|>i-

For later use, we note that, using the notation of the proof of Lemma 3.4, the
Lagrange dual can also be written as

max Z bymy — 1 Z Ba ¥ (). 9)
veV a€A
This duality is discussed in Rockafellar [35] in more detail and more generality.
Moreover, he discusses algorithms to solve the passive case without bounds.

Returning to the s-t-flow case, we can show that in this case passive potential
networks with a positively homogeneous potential function can equivalently be
represented by a single line. To make the statement of this result simpler, we use the
following shorthand notation. We say that a triple (zs, s, Tt) can be extended to a
potential-based flow if there exists a potential-based s-t-flow (z,7) with flow value
val(z,m) = x4 such that 7y = 75 and 71, = ;. We note that, due to Theorem 3.2,
these extensions are unique.

Lemma 3.5. Let G be a homogeneous passive potential network of order v > 0
with two distinguished nodes s,t € V. Assume (s, 7s,Tt) with xs # 0 can
be extended to a potential-based s-t-flow. Then, for any A\ € R, the triple
(Azgr, sgn(A) |A[" 75, sgn(X) A" 1) can be extended to a potential-based s-t-flow.

Proof. The stated result is an immediate consequence of Observation 3.1. O

The nice characterization of the space of solutions of the preceding lemma breaks
down as soon as one introduces new element types (even non-homogeneous passive
elements) or allows multiple sources or sinks. We can, however, prove that a
homogeneous passive network with a single source and a single sink has the same
behavior as a single line, which has been already observed in different settings, e.g.,
for water networks in Burgschweiger et al. [10].

Theorem 3.6. Let G be a homogeneous passive potential network of order r > 0
with two distinguished nodes s,t € V. Then, there exists a constant Bs such that a
triple (xg¢, s, ) can be extended to a potential-based s-t-flow if and only if

Tst = w_l((ﬂ-s - ﬂ35)/5515)- (10)

Proof. Consider a potential-based s-t-flow (2, 7") of value 1, that is, an optimal
solution z’ to (7) together with a corresponding optimal dual solution 7’ to (8),
for node balances b € RV with by = —b; = 1 and b, = 0 for all v € V' \ {s,t}. By
Lemma 3.3, i.e., shifting the node potentials by —m}, we may assume that 7, = 0.
Thus, the triple (1,7, 0) can be extended to the potential-based s-t-flow (&', 7).

We define 85 := 7, /1(1) and show that a triple (x4, 7s,7:) can be extended
to a potential-based s-t-flow if and only if Equation (10) holds. Making use of
Lemma 3.3 once more, we may assume 7m; = 0. Now let

7?3 = w(xst) Bst = Sgn(-rst) |xst‘ " ¢(1) Bst = Sgn(xst) |xst| " 71—;-
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By Lemma 3.5 the triple (x4, 7s,0) can be extended to a potential-based s-t-flow.
Moreover, due to Theorem 3.2, 75 is the unique potential on s that allows this
extension. Hence, (x4, 7s,0) can be extended if and only if 74 = 5. The latter
condition is equivalent to (10). O

We next show that for a homogeneous passive potential network, the s-t-MaxFlow
problem can be solved efficiently.

Theorem 3.7. Let G be a homogeneous passive potential network with upper and
lower bounds on the node potentials and flows. Then, there is an interval I C R
such that a feasible potential-based s-t-flow of value x4 exists if and only if xg € I.
Moreover, I can be efficiently computed.

This theorem implies that the value of an s-t-MaxFlow and a corresponding
feasible potential-based s-t-flow can be efficiently computed.

Proof. Let x be a (not necessarily feasible) potential-based s-t-flow of value 1.
It follows from Observation 3.1 and Theorem 3.2 that in any potential-based
s-t-flow of value A, the flow on line a € A is equal to Ax,. In particular, a
potential-based s-t-flow of value A obeys the flow bounds [z,,%,] on a if and only
it A € [z,/Ta,Ta/Ta] =: I,. Therefore, there exists a potential-based s-t-flow of
value A obeying all flow bounds if and only if A € N I, =: I4. Notice that the
interval 4 can be computed in linear time.

We next deal with the bounds on node potentials. For this purpose, let 7 with
ms = 0 be the potential corresponding to the potential-based s-t-flow x of value 1.
By Observation 3.1 and Theorem 3.2, a potential-based s-t-flow of value A\ obeys
the bounds [x,,7T,] on v’s node potential, for some node v € V, if and only if the
potential of the source node s is in [mr, — sgn(A) |A|" my, Tp — sgn(A) A" 7] =2 Jy.
In particular, there is a potential-based s-t-flow of value A obeying all bounds on
node potentials if and only if Jy, is non-empty, that is, if and only if

a€A

veV
_ r < ; _ T .
I;’lea&( (m, —sgn(A) [N " m,) < {}Iél‘r/l (T —sgn(A) |A| " myp) (11)

Notice that inequality (11) is fulfilled for some value A € R if and only if X is

contained in an interval Iy, whose borders can be determined in time O(|V]?).
Summarizing, there is a feasible potential-based flow of value A if and only

if A € I4 N Iy and the interval 14 N Iy can be efficiently computed. O

4. SERIES-PARALLEL GRAPHS

Series-parallel graphs often appear in applications, either directly or as sub-
structures; see Section 6. In this section, we exploit their favorable properties for
positive results on passive and active potential-based networks. We begin by giving
a constructive definition of series-parallel graphs:

Definition 4.1. An s-t-series-parallel graph (SPG) G is a directed graph with two

distinguished nodes s and ¢, called the source and sink of G, respectively. The

graph can be created from two SPGs using the following two operations:

e Parallel composition: Let X be an s1-t1-SPG and Y be an so-t5-SPG. The parallel
composition of X and Y is an s-t-SPG P defined by merging the sources and
sinks of X and Y, respectively:

V(P):= (V(X)UV(Y)U{s,t})\ {51, 82, 1,12},
A(P) := (AX)UA(Y)UA)\ U

vE{s1,52,t1,t2}
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. A= {(5,0) | (51,0) € AXX) or (s2.0) € A(V)}
U{(v,8) | (v,81) € A(X) or (v,s2) € A(Y)}
U{(t,v) | (t1,v) € A(X) or (t2,v) € A(Y)}
U{(v,t) | (v,t1) € A(X) or (v,t) € AY)}.
e Series composition: Let X be an s1-t1-SPG and Y be an so-t5-SPG. The series

composition of X and Y is an s1-t5-SPG S defined by merging the sink of X with
the source of Y into a node w:

V(S8) =V (X)uV(Y)U{u}) \{t1, 52},
A(S) = (AX)UAV)UA)\ | b

vE{t1,s2}
with
A= {(u,v) | (t1,v) € A(X) or (s2,v) € A(Y)}
U{(v,u) | (v,t1) € A(X) or (v,s2) € A(Y)}.
Finally, the graph consisting of two nodes v, w and a single arc (v, w) is a v-w- and
w-v-SPG.

Given an SPG, it is possible to reverse-engineer a sequence of parallel and series
compositions that was used for its construction (this sequence it not necessarily
unique). This is referred to as series-parallel decomposition and results in a tree
with series- and parallel compositions as inner nodes and single arcs as the leaves.
This decomposition can be found in linear time (see Takamizawa et al. [45]) and
allows for faster algorithms for many problems like maximum independent set or
maximum matching, which can be solved in linear time on SPGs, see [45].

Generalized series-parallel graphs (see Korneyenko [26]) are an extension of series-
parallel graphs that retains the decomposability of series-parallel graphs. In addition
to the series- and parallel compositions, a tree composition is allowed:

e Tree composition. Let X be an $1-t1-SPG and Y be an s5-t5-SPG. The tree
composition of X and Y is an s-t5-SPG T defined by merging the sources of X
and Y into a source s:

V(T) = (V(X)UV(Y)U{s})\ {s1,52},
AT) = (AX)uAY)uA)\ | )
vE{s1,82}
with
A= {(s,v) | (s1,v) € A(X) or (s2,v) € A(Y)}
U{(v,s) | (v,s1) € A(X) or (v,s2) € A(Y)}.
In particular, all trees are generalized series-parallel graphs.

An SPG decomposition can be used to presolve a given potential-based network,
as the following result shows.

Lemma 4.2. Let G be a homogeneous passive potential network of order r > 0.

(1) Consider two serial lines a; = (u,v) and as = (v, w) with b, = 0 and |§"(v)| =
[5°%(v)| = 1. Then, this serial combination can be equivalently replaced by the
line a = (u,w) with By = Ba; + Ba,-

(2) Consider two parallel lines a1 and as between nodes w and v with By, , Ba, > 0.
Then, this parallel combination can be equivalently replaced by the line a = (u,v)

with
Bar Bar .
(3/Bar + /Bar)

/Ba:

Proof.
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(1) The given situation leads to the model
Tu — Ty = Ba,P(Ta,) and Ty — Ty = Bayth(%a, )
Since b, = 0 and |6 (v)| = [6°*¢(v)| = 1, we know that z,, = 7., =: 2, and
adding the above two equalities yields
Ty = Ty = Ty — Ty + Ty — T = (Bay + Baz)¥(2a),

which proves the first result.
(2) For the two parallel arcs, we know that

Ty — Ty = 5a1¢($a1) = ﬁlww(xaz) (12)
holds. Thus, we have to find a 3, that satisfies
Ty — Ty = 5a1/)(%1 + xa2)~ (13)

To this end, define z := x4, + x4, and let A € [0, 1] be such that z,, = (1—\) z,
Za, = Az. Using this re-parameterization, (12), and the homogeneity of ¥ yields
the equation

B _ Vlaw) w02 X

Baz  P(way)  W((L=N)2) (1=A)"
Solving this equation for A yields

\ = _VPay/Day V@ll/ﬁai’ (14)
1+ 3/ Bay/Bas

Equations (12) and (13) lead to

Bar (1= A)"¢(2) + Bay A"9p(2) = 2 Ba ¥(2)
and solving for §,, we obtain

Ba = % (ﬂal(l - A)T + ﬂQ)‘T) .

Finally, using (14) and a simple calculation proves the statement. O

For instance, 3, for the surrogate line a for two parallel lines a1, as in gas networks
satisfies

ﬁa — ﬂaq Baz 5.
(\/ 5(11 + 5(12)

For lossless DC power flow, we get

B — ﬂal 5(12

ﬁal + /Bag ’

which is equivalent to the well-known parallel resistance formula

11 n 1

Ba /Bal ﬁaz '

This application of SPGs for DC power flow was already presented by Duffin [14].
The specific formula for water flow has also been studied in the literature; see [10].

The series-parallel decomposition of SPGs together with Lemma 4.2 reveals that
passive s-t-SPGs can be replaced equivalently by a graph with a single surrogate line
connecting s and t. The existence of such a single surrogate line is already known
from Theorem 3.6. However, for SPGs we obtain an explicit way of computing the
surrogate line without the need to solve a potential-based flow problem.

Theorem 4.3. For a passive s-t-SPG G, we can reduce G to a single arc by
O(|A(G)|) applications of Lemma 4.2.
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Proof. The binary decomposition tree of G can be computed in O(|A(G)|) and
has size O(|A(G)|); see, e.g., [45]. We now traverse this binary decomposition tree
from the leaves to the root. If we encounter an inner node during this traversal
that corresponds to a serial composition we apply Part (1) of Lemma 4.2 and if
we encounter an inner node during this traversal that corresponds to a parallel
composition we apply Part (2). O

We can also extend our results to generalized series-parallel networks with multiple
sources and sinks, as long as the sources and sinks are conveniently placed with
regard to the structure of the network.

Theorem 4.4. Let G be a passive potential network with balances b such that G
can be decomposed into s-t-SPGs G1,...,Gy in which every node with b, # 0 is the

source and/or the sink of an SPG G;, i =1,...,L. Then, we can reduce Gy, ...,Gy
to single arcs ay,...,ay.

Proof. Let G;, i = 1,...,{, be the decomposition of G into SPGs such that all
nodes v of G; that are neither source nor sink of G; have b, = 0. Then, we can
apply Theorem 4.3 to reduce G; into a single arc, and performing this reduction for
all G; completes the proof. O

In some cases, the series-parallel structure can be exploited for active networks,
too, as the next theorem shows. However, this works only in very specific cases, so
that this theorem is mostly of theoretical interest.

Theorem 4.5. Let G be an s-t-SPG that consists of internally node-disjoint s-t-
paths that contain switches and lines. Then, we can transform the question whether
we can send X units of flow from s to t for fized rational 7s, T into a SUBSETSUM
problem (if =, Ba, a € A, and X are rational). The SUBSETSUM problem is:

SUBSETSUM
Input: Numbers ki,ko,... . k,, X € Z.

Problem: Is there a set I C {1,...,n} such that >, k;=X?

il
Proof. First, we notice that there are only two meaningful cases for each s-t-path:
either all switches are on, in which case we can contract the switch arcs and use
Theorem 4.3 to obtain a single arc for the path, or at least one switch is off, in
which case the whole path transports no flow at all. Thus, each path P can be
replaced by a switch followed by a line whose parameter Sp can be computed using
Theorem 4.3.

Let there be n s-t-paths with x; being the flow on path i € {1,...,n}, 5; the
constant of path i, and y; € {0,1} denotes whether all switches on this path are
open (y; = 1) or not (y; = 0). Then, we have that the flow sent from s to t is

by Zx R <”B”> |

1=1,...,nty;=1
Our objective is to determine whether there is a variable assignment such that
X = b, for a given X, which can be reformulated as a SUBSETSUM problem: Is
there a subset I C {1,...,n} such that

S (”Sﬁ 7”) = X? (15)
i€l ¢

Since the SUBSETSUM problem is defined for integer inputs, we have to scale X and
1 ((ms — m,.)/B;) values so that they are become integer, which is always possible
due to the assumption of ¢~ and X being rational. O
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The advantage of this reduction is that SUBSETSUM problem is well studied.
Possible solutions are an O(2"/2) algorithm due to Horowitz and Sahni [21], an
O(nmax;es {k;}) algorithm by Pisinger [33], and an O(y/n X) algorithm due to
Koiliaris and Xu [25]. Recall that s-t-FlowFeasibility is weakly NP-hard for SPGs.

5. ACTIVE NETWORKS: MONOTONICITY AND MULTIPLE SOURCES AND SINKS

In this section, we consider active networks and relate the previous results to the
problem of minimizing the power-loss

vaﬂ'vz Z (g — ) Za

veV a=(u,v)€EA

for some potential-based flow (z,7) with respect to the balance vector b € RV with
> vev o = 0. In the s-t-case, the power-loss simply reads b, (ms — 7).

Theorem 5.1. Consider a potential-based network G with homogeneous potential
function without potential/flow bounds. Then, for a given balance vector b € RV,
> wev o = 0, the power-loss of a feasible potential-based flow is minimized if all
switches are on.

Proof. Let ¥(x) = « sgn(x) |x|" for some r > 0 and first fix the decisions y for the
switches to be off. Consider the primal problem (7) and the dual problem (8) and
observe that strong duality holds. Let z* be the optimal value of these two problems.
Then, by (9), we obtain the following for the optimal solution (z*,7*):

= bymy -1y BaU(}).
veV a€A
By the primal problem, the last sum is equal to r 2*, which yields } , b,7; =
(r+ 1)z*. If we turn on switches, then clearly z* does not increase, since this
increases the degree of freedom (some flows are allowed to take nonzero values
afterward); note that the primal does not include constraints on the potentials. This
shows that the power-loss is not increasing when turning on switches. (]

Remark 5.2.

(1) We note that Calvert and Keady [11, Theorem 1| showed that the power-loss
is monotone with respect to the change of one 5,, a € A. By observing that
Bo = 0 corresponds to an open switch, this can be used to show Theorem 5.1,
but the above proof is simpler.

(2) For the s-t-case, Theorem 5.1 implies that the problem to minimize power-loss
given a fixed flow value and without flow and potential bounds is easy (obtained
by turning all switches on). However, as discussed in Section 2.4, the problem
becomes NP-hard, if potential bounds are present.

Using similar arguments as in Theorem 5.1, we see the following for the s-t-case:

Corollary 5.3. Let all assumptions of Theorem 3.6 hold except for that we now
also consider networks with switches. Then, the value Bs of Theorem 3.6 does
not increase when turning on switches. Moreover, if mg — m > 0 is fixed, then the
mazximal flow value is non-decreasing with respect to turning on switches.

Remark 5.4. Corollary 5.3 implies that no equivalent to the so-called Braess-paradox
exists; see Braess [6]. In the original context of transportation networks, this paradox
appears when adding a new connection (road) that intuitively increases the capacity
of the network, but leads to an increased congestion due to a higher demand on
this new connection and a decreased overall performance. A similar behavior has
been observed for other networks; see, e.g., Cohen and Horowitz [12] for electrical
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networks. There are several characterizations of cases in which this paradox cannot
appear for transportation networks; see, e.g., Roughgarden and Tardos [37].

In our situation, a Braess-paradox would mean that we can increase the flow
value by turning off switches. In fact, the main purpose of the paper [11] is to show a
converse to the monotonicity property mentioned above: Calvert and Keady showed
that if the power-loss is monotone with respect to the change of one ,, then the
network has to be homogeneous and all ¢)(z) have the same order. Indeed, note that
it is crucial for the proof of Theorem 5.1 that all ¢)(x) are the same. If this condition
is violated, for instance, by modeling capacities, Braess paradoxes may appear. In
this case, the network has to contain a diamond graph (called Wheatstone bridge in
the electrical network community) as an induced subgraph. This implies that the
graph is not series-parallel.

6. NETWORK REDUCTION TECHNIQUES

The results of Section 3 and 4, especially Lemma 4.2, suggest graph reduction
methods for potential-based networks. These methods are described in this section
and we present and discuss numerical results for water, power, and gas networks.
We start by describing the general ideas. Specific adaptions for the concrete network
types are discussed in the corresponding sections.

For our reductions, we assume that we are given demands and supplies b =
(by)vev € RV and, possibly, lower and upper bounds on the potentials on all nodes
of the network G = (V, A). We assume that for supply nodes v € V' we have b, >0
and that b, < 0 holds for demand nodes v € V. The remaining set of nodes v with
b, = 0 are called inner nodes in the following.

Our overall graph reduction consists of two ingredients: (1) the reduction of
leaves and (2) the reduction of serial and parallel arcs. We note that our reductions
are independent of the actual flow rates. Therefore, they do not depend on a specific
balance vector b, but only on the specification whether a node is a demand or a
supply node.

We describe both techniques in the following for passive networks. Although we
are aware of the fact that general water and electricity networks also contain active
elements, the only networks considered here that contain active elements are gas
networks. The required adaptions are thus described in Section 6.3, where we also
discuss the numerical results for gas transport networks. The application of these
adaptions in the case of active water and electricity networks is straightforward.

Leaf Reduction. For every leaf v € V', we know the flow value z, = +b, of its
unique incident arc a € §(v) since a is a bridge. Without loss of generality, let
a = (u,v). In this situation, we update b, <+ b, + b, and delete the arc a = (u,v)
and the node v.

If we are additionally given potential bounds x,,, 7y, 7, Ty, We update the poten-
tial bounds 7,,, 7, as follows:

T, < max {Eua T, + Baﬂp(ma)} , Ty < min {ﬁua Ty + ﬂal/J(%)} .

Let G' = (V \ {v}, A\ {a}) be the reduced network. It is immediately clear that
there exists a feasible flow for the network G if and only if there is a feasible solution
for the reduced network G’. Obviously, the leaf reduction can be iteratively applied
until no more leaf nodes are present in G'.

Reduction of Serial and Parallel Arcs. By Lemma 4.2 we know that we can
replace parallel arcs a; and as from w to v by a single new arc a = (u,v) as well as
serial arcs a; = (u,v), ag = (v, w) that are connected by an inner degree-2 node v
of balance 0 with a new arc a = (u,w). In both situations, we can apply Lemma 4.2
to compute an equivalent arc parameter 3.
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TABLE 1. Results of the network reduction techniques on water
network instances

Instance V| |vel 4] V'] |4 L P S t p
shamir 7 7 8 6 7 1 0 0 0.0007 13%
NewYork 20 20 21 16 17 4 0 0 0.0004 19%
hanoi 32 32 34 25 27 7 0 0 0.0014 21%
blacksburg 31 31 35 23 27 8 0 0 0.0035 23%
fossiron 37 37 58 36 57 1 0 0 0.0008 2%
pescara 71 64 99 64 91 7 1 0 0.0009 8%
modena 272 245 317 268 313 4 0 0 0.0013 1%

As before, these reductions can be applied iteratively. If this iteration terminates,
the reduced graph has no more degree-2 nodes with balance 0 and no more parallel
arcs. In particular, if we apply both the leaf reduction and the reduction of serial
and parallel arcs to a passive generalized s-t-SPG, we end up with an equivalent
network G’ = ({s},0) with a single node. Note also that the reduction technique for
serial and parallel arcs cannot eliminate supply or demand nodes—which is possible
for the leaf reduction method.

Finding all leaves of the graph can be done in linear time. The same applies to
finding parallel or serial arcs. Thus, we can determine in linear time whether one of
the above mentioned operations can be performed. Since every reduction reduces
the number of edges by at least 1, we have a quadratic worst case time complexity.

We now turn to the discussion of the results. All graph reduction techniques have
been implemented in Java 1.8.0 102 and all computations have been performed on
an Intel Core i7-4510U with two 2 GHz cores and 8 GB RAM. Our focus here lies on
the strength of the reduction techniques in terms of the reduction of the graph size.
The used measure is thus the number of arcs before and after the reduction. If not
stated otherwise, the computation times correspond to plain graph reduction times,
i.e.,, they do not include the computation of new arc parameters § and updating
potential or demand and supply bounds.

6.1. Water Networks. We start by presenting network reduction results for seven
water transport networks used in the publications Bragalli et al. [7] and Bragalli
et al. [8, 9] on mixed-integer nonlinear models (MINLPs) for the optimal design
of water distribution networks. All considered water networks are passive, i.e., all
arcs are pipes. The networks shamir, NewYork, hanoi, and blacksburg were taken
from the literature, whereas fossiron, pescara, and modena are reduced versions of
medium-sized Italian cities.

The statistics for the network instances as well as for the applied reductions
are given in Table 1. The number of nodes and arcs of the network is denoted
by |V| and |A|, respectively, and |V4| denotes the number of entries and exits in
the network. The number of nodes and arcs of the reduced network is given in
the columns |V'| and |A’|, respectively. Leaf reductions as well as the reduction
of parallel and serial arcs are captioned with “L”, “P”, and “S”. Finally, ¢ denotes
runtimes (in seconds), and p is the percentage reduction of arcs.

The reduction results for the tested water network instances vary from 1% to
23 % reduced arcs of the original network. We will later see that the same reduction
techniques yield much better results for power and, especially, gas transport networks.
For five out of seven water network instances, all nodes are either supply or demand
nodes. This leads to the fact that the serial reduction, which requires serial arcs
connected by an inner degree-2 node of balance 0, is never applied. Our experience
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F1GURE 1. Schematic plot of the water network fossiron

with power and gas networks additionally shows that parallel arcs often arise from a
sequence of serial reductions. Thus, there are almost no parallel reductions as well.
Only the pescara instance has two parallel arcs that are merged. The leaf reduction
thus is more or less the only reduction technique that is applied for water networks.

As an exemplary instance, Figure 1 depicts the fossiron network, which shows
(i) that there are no serial arcs that can be merged since all nodes are supply or
demand nodes, (ii) that there are no parallel arcs to be merged, and (iii) that there
is only one leaf.

Fortunately, it turns out that our reduction techniques can be implemented quite
efficiently: The total runtime for all water networks is significantly below 1s.

6.2. Power Networks. We now present the results of our reduction techniques
applied to 30 power network instances taken from the MATPOWER library of
Zimmerman et al. [47]. These networks vary strongly in their size, from very small
4-arc instances to huge networks with more than 20000 arcs. The results are given
in Table 2 in the same way as in Table 1 for water networks. The reduction of arcs
varies in the range of 0% to 49 %. Since the instances from [47] are frequently used
for solving non-convex optimal power flow problems, this reduction in the number
of arcs would roughly correspond to a reduction of the size (in terms of variables
and constraints) of a non-convex problem up to almost 50 %, which would typically
lead to significantly faster runtimes.

The most successful technique is leaf reduction, which can be applied for all but
three instances (casedgs, caseb, casebww). In addition, for all instances with more
than 245 arcs, our method also finds parallel arcs that can be reduced. This was
not the case for the water instances and thus indicates an important topological
difference between the considered water and power networks. Clearly, this difference
is also the reason why the overall reduction is stronger on the power than on the
water networks. However, we also observe some instances with a small (< 10%
or even 0%) number of reductions. These cases are mainly very small networks
like casedgs and caseb in Figure 2. In these cases, all nodes are either supply or
demand nodes and the network does not have any leaves, which explains the missing
reductions. For the larger networks, the amount of supply or demand nodes reduces
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TABLE 2. Results of the network reduction techniques on power
network instances

17

Instance V| |Vl Al |V |A’| L P S t P
casedgs 4 4 4 4 4 0 0 0 0.0002 0%
caseb 5 5 6 5 6 0 0 0 0.0002 0%
case9 9 6 9 6 6 3 0 0 0.0004 33%
case9Q 9 6 9 6 6 3 0 0 0.0006 33%
caseOtarget 9 6 9 6 6 3 0 0 0.0005 33%
casebww 6 6 11 6 11 0 0 0 0.0002 0%
casel4 14 13 20 13 19 1 0 0 0.0003 5%
case33bw 33 33 37 32 36 1 0 0 0.0006 3%
case24ieeerts 24 20 38 23 33 1 4 0 0.0002 13%
case30 30 24 41 27 38 3 0 0 0.0006 7%
case30pwl 30 24 41 27 38 3 0 0 0.0003 7%
case30Q 30 24 41 27 38 3 0 0 0.0008 7%
caseieee30 30 24 41 27 38 3 0 0 0.0008 7%
case39 39 29 46 28 35 11 0 0 0.0004 24%
caseb7 57 42 80 56 77 1 2 0 0.0002 4%
casell8 118 108 186 109 170 9 7 0 0.0110 9%
case89pegase 89 41 210 72 189 17 4 0 0.0006 10%
caseillinois200 200 157 245 128 173 72 0 0 0.0008 29%
case300 300 225 411 213 322 87 2 0 0.0019 22%
casel4b 145 61 453 132 409 13 31 0 0.0017 10%
casel354pegase 1354 881 1991 730 1086 624 281 0 0.0400 45%
casel888rte 1888 1149 2531 886 1306 1002 223 0 0.0088 48%
casel951rte 1951 1232 2596 895 1319 1056 221 0O 0.0086 49%
case2383wp 2383 1827 2896 1733 2236 650 10 0 0.0073 23%
case2736sp 2736 2057 3504 2395 3154 341 9 0 0.0129 10%
case2737sop 2737 2058 3506 2396 3156 341 9 0 0.0082 10%
case2746wop 2746 2016 3514 2392 3151 354 9 0 0.0082 10%
case2746wp 2746 2029 3514 2393 3152 353 9 0 0.0069 10%
case3012wp 3012 2277 3572 2301 2855 711 6 0 0.0101 20%
case3120sp 3120 2311 3693 2385 2949 735 9 0 0.0073 20%
case2848rte 2848 1694 3776 1382 1976 1466 334 0 0.0080 48%
case2868rte 2868 1748 3808 1389 1992 1479 337 0 0.0105 48%
case3375wp 3374 2476 4161 2511 3205 863 93 0 0.0100 23%
case2869pegase 2869 1815 4582 1989 3088 880 614 0 0.0160 33%
case6468rte 6468 3791 9000 3796 5393 2672 935 0 0.0218 40%
case6470rte 6470 3856 9005 3783 5379 2687 939 0 0.0264 40%
case6495rte 6495 3871 9019 3771 5360 2724 935 0 0.0220 41%
case6515rte 6515 3906 9037 3773 5362 2742 933 0 0.0236 41%
case9241pegase 9241 5873 16049 7374 12340 1867 1842 0 0.0587 23%
casel3659pegase 13659 9135 20467 7374 12340 6285 1842 0 0.1623 40%

FIGURE 2. Schematic plots of the power networks casedgs (left)

and caseb (right)
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TABLE 3. Results of the network reduction techniques on gas
network instances

Instance V| [vel A [V A L P S t P

GasLib-40 40 32 45 29 34 9 0 2 0.0010 24%
GasLib-135 135 105 170 92 114 43 13 0 0.0074 33%
GasLib-582 582 160 609 122 144 294 5 163 0.0027 76%
H-Gas 2735 474 3074 1255 1588 886 10 587 0.0213 48%
L-Gas 4198 976 4460 1208 1436 1705 40 1269 0.0247 68%

and thus our techniques can be applied more often. Since the MATPOWER test
problems are designed for researchers and educators, they do not correspond to
historically grown real-world networks, but academic ones. This might be the reason
for these networks to not contain any serial arcs that are connected with inner
degree-2 nodes. Thus, the serial reduction is never applied on this test set. Finally,
regarding runtimes we see that our algorithm requires less than 1s for all instances.

6.3. Gas Networks. Finally, we discuss the results of our network reduction
techniques applied to three small- to medium-scale academic, but realistic gas
networks and two large-scale real-world gas networks. The academic networks are
freely available online (see Schmidt et al. [40]) and the real-world instances are the
low- and high-calorific gas networks of the German gas transport company Open
Grid Europe GmbH.*

In contrast to the water and power network instances considered so far, the gas
networks that we consider here contain active elements like valves (switches) to
block gas flow, control valves to reduce gas pressure, and compressor stations that
are used to increase gas pressure. Thus, the general reduction techniques described
at the beginning of this section have to be adapted slightly: All techniques are
only applied if the involved arcs are neither control valves nor compressor stations.
These arc types stay completely untouched. This also implies that our reduction
techniques are independent of the specific modeling of these two types of active
elements. Valves also stay untouched for the reduction of serial and parallel arcs,
but can be considered in the leaf reduction method. Here, a leaf v with incident
valve (u,v) is processed as follows: If b, # 0, we open the valve, whereas the valve
status is indifferent for leaf nodes with b, = 0. In our implementation, we close the
valve in this situation. Potential bounds can be also updated accordingly.

Moreover, the status of valves (open or closed) can also be decided if they are
bridges, i.e., if their deletion from the network’s arc set decomposes the network
into two disjoint components V;, Vo C V with V3 UV, = V. If now

> by=> b,=0

veVy veEVs
holds, the valve can be closed, whereas it has to be open otherwise. The former
case decouples the two components to which the reduction techniques can then be
applied independently.

Before we discuss the results, we finally remark that gas transport networks
typically contain different passive arc types besides pipes, for instance, short cuts
or resistors, see, e.g., [16]. For the ease of implementation and presentation we
subsume all passive gas arc types as pipes.

The results are given in Table 3. For all instances but the GasLib-582 network,
we computed a single reduction for a combination of the network with a single

1https://www.open-grid-europe.com
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demand and supply scenario. For the GasLib-582 network, we considered 8454 of
such scenarios. Whether a node is a supply or demand node depends on the specific
scenario and thus, the exact number of reduced arcs and also the running times
slightly differ across the scenarios. To be comparable to the other rows, the numbers
given in the GaslLib-582 row correspond to the plain network without any further
scenario information. The runtimes are always significantly less than 1s and the arc
set is reduced by 24 % to 76 %. Thus, the reduction is strongest on the considered
gas network instances. The main reason is that, as real-world or quite realistic
networks, these networks also contain historically grown serial branches. Due to
this aspect, the serial reduction is applied, which is not the case for the other two
network types.

We now also briefly discuss (i) the sensitivity of the results w.r.t. the chosen
scenario by analyzing the 8454 scenarios for the GasLib-582 network mentioned above
and (ii) the computational cost of also reducing scenario and arc parameter data.
The reduction of arcs varies between 72 % to 75 % with a mean value of 73.21 % and
a median of 73%. The runtimes vary between 7 ms to 3971 ms with a mean value
of 86 ms and a median of 12ms. All these numbers also include the computation of
reduced scenario data and the computation of the aggregated [-values, whereas the
GasLib-582 data in Table 3 are with respect to the plain network without any further
scenario-specific demand and supply information. Thus, the runtime of 27 ms in the
table is slightly below the mean runtime of 86 ms that we obtain if we reduce all the
data that would be required afterward if one would solve the corresponding reduced
optimization problem. However, the change in runtimes due to the computation of
reduced arc and scenario parameters is not significant. All results reported for the
other networks would be qualitatively the same if parameter reduction would be
applied as well. Especially compared to the runtime needed to solve the resulting
MINLPs, the parameter reduction is not significant.

Figure 3 displays the GasLib-582 network in its original and reduced version. It is
clearly visible that the main structure of the network is preserved, while all detailed
structures at the boundaries of the network are removed. The latter structures
correspond to regional distribution networks that often have tree-like structure,
which can be reduced almost completely by our methods.

Finally, we also carried out some preliminary numerical tests for solving the
reduced variants of the corresponding gas transport MINLPs. We modeled these
MINLPs in GAMS [32] using the C++ framework Lamatto++ for modeling and
solving mixed-integer nonlinear programming problems on networks [27]. More
information about the gas transport MINLP can be found in [24]. The solver used
is BARON 16.5.16 [38, 46]. All computations presented below have been carried
out on a computer with a 6 core AMD Opteron Processor 2435 processor running
at 2.6 GHz and with 64 GB of main memory. All solvers have been applied by
using 1 core. We included 10 randomly chosen GasLib-582 scenarios in our test set.
On average, these nonconvex MINLPs have 2187 variables and 3733 constraints.
We used the standard models provided by the GasLib [40], which all are feasibility
problems. BARON is able to solve 2 out of the 10 unreduced instances. One of
them is decided quite fast during the presolve stage whereas the other instance
requires 818 s to be solved to feasibility. All other 8 instances are not solved within
the time limit of 3h. This indicates that these MINLPs are very hard to solve for
state-of-the-art solvers. The reduced network leads to MINLPs with 1111 variables
and 2035 constraints on average. We can solve 3 out of 10 to feasibility within the
time limit—all of them require less than 2 min to be solved. In total, we can solve
one more instance and for the single instance that can be solved for the reduced
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and the unreduced network, the reduced network can be solved more than 7 times
faster.

6.4. Summary. In summary, we see that our reduction techniques can be very
powerful. Due to their short runtimes they lend themselves as presolve techniques,
especially when it comes to solving complex optimization problems like, e.g., MINLPs
(see, e.g., Geikler et al. [17, 18] and Rose et al. [36]), or other hard problems like
nonconvex NLPs or MPECs (see, e.g., Schmidt [39] and Schmidt et al. [41, 42]) on
these graphs. In these models, the number of variables and constraints is typically
linear in the number of nodes and arcs of the underlying graph. Thus, reductions up
to 76 % are supposed to have a positive effect on the runtimes required for solving
the corresponding MINLPs as our preliminary numerical results show.

7. CONCLUSIONS

In this paper, we have analyzed the algorithmic properties of potential-based
flows. It turns out that the studied flow problems on passive networks with a single
source and sink can be solved efficiently, because the network can be represented
equivalently by using a single arc. However, the problems are NP-hard for active
networks. Nevertheless, we employ SPG-substructures to reduce the size of practical
water, power, and gas transport network instances significantly.

There are several open questions: In extension of the approximating construction
in Section 5, can the sum of the transported flow be efficiently optimized for passive
networks with multiple sources and sinks? Does there exist a pseudo-polynomial
algorithm for the s-t-MaxFlow problem in SPGs? Similarly, it is open whether any
positive results can be shown for active general networks. Moreover, it remains
an open research topic to consider a framework that models transient behavior, as
motivated by the physical applications.
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