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Preface 

I remember vividly how, thirteen or foorteen years ago, my father had to make 
a schedule for the annual sports day in our village. Two hondred children had 
made a selection of a number of events that they could join in. My father's job 
was to find a way to let all children participate in the selected events and to take 
care that not too many children would be assigned to the same events at the same 
time. It took him weeks to find a schedule that he was satisfied with. At the end 
of this period, all four walls of his room were covered with sheets of paper on 
which he had written all kinds of information in the form of tables, lists, and 
figures. He had clearly enjoyed himself. Still, I had a feeling that the job could 
have been done in a more efficient way. 

At that time I did not know that my father's task had been to make a plan, an 
assignment of processes to resources and time intervals, and that an automated 
planning board would have been a helpful tool. Even less did I know that ten 
years later I myself would spend foor years in Eindhoven, conducting research 
in the area of automated planning boards. 

This thesis reflects my experiences of the last four years. The goal of my re­
search has been to design a planning board generator, a system that generates 
planning boards automatically on the basis of only limited information. The first 
two chapters, dealing with the planning board generator and planning problems 
in genera!, represent the first two years of my research. In the course of these 
two years I rea1ized that the development of a planning board generator was a 
very ambitious project, certainly if it had to be carried out by one person. There­
fore I decided to focus on the aspect of planning boards that I found the most 
interesting: the algorithmic support of manipulations. 

After several discussions with my advisors, I decided to start looking for com­
mon properties of scheduling probieros that can be used in the design of algo­
rithms. I decided to u se the disjunctive graph representation of job shop schedul­
ing probieros as a starting point, because I thought that it would be possible to 
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use simHar roodels for more general problems. Occasionally I obtained a nice 
result, but progress was slow. 

Then, one day my roommate Arjen Vestjens stepped into the room with a bath­
tob. The bath-tub represents a kind of cost function that is used to describe sev­
eral situations occurring in practical problem situations. It tumed out that these 
bath-tubs as well as more general cost functions could be incorporated in the ba­
sic model in an elegant way. I was so content with this generalization that I de­
cided, with a proper sense of proportion, to call the new problem class the gen­
eral scheduling problem. The second part of this thesis is devoted to this general 
scheduling problem. 

Two conflicting objectives arise in the design of a planning board generator: 
generality and efficiency. In rny research, I have also struggled with these two 
objectives. I thank rny supervisor, Jan Karel Lenstra, and my advisors, Martin 
Savelsbergh and Stan van Hoesel, for their efforts in helping me to find the right 
balance. 

I would also Jike to thank Roberto Lioce and Carlo Martini for performing the 
computational experirnents. 

I am grateful to several other people fortheir support inthelast four years, but 
there are better ways of thanking thern than by writing down their names. I want 
to make an exception, however, for the memhers of INGRE (Interdisciplinary 
Network of Groningen Econometricians). Planning our half-yearly weekends 
made great dernands on my talents in solving difficult scheduling problems. 

Marc Wennink Eindhoven, July 1995 



Contents 

1 Introduetion 

1.1 Planning boards . . . . . . 
1.2 A planning board generator 
1.3 Algorithms . . . . . . 
1.4 Overview of the thesis 

2 ProbJem specifi.cation 

2.1 Introduetion . . . 
2.2 Problem instanees . . . . . . . . . . . . . . . . 

2.2.1 An overview ofthe specifieation metbod. 
2.2.2 Time ............. . 
2.2.3 Resources and processes . . . . 
2.2.4 Specifying feasible assignments 
2.2.5 Other relations between objects 
2.2.6 Extensions .......... . 
2.2.7 Views of the instanee graph .. 
2.2.8 Examples of problem instanees 

2.3 Problem types ............ . 
2.3.1 Restrietions on the instanee graph 
2.3.2 Specifying problem types 
2.3.3 Examples of problem types 

3 The general scheduling probJem 

3.1 Introduetion . . . . . . . . 
3.2 The job shop scheduJing problem 
3.3 The general scheduling problem 

3.3.1 Maximum cost flow . . 

iîi 

1 

1 
3 
7 
9 

11 

11 
13 
13 
15 
16 
20 
28 
30 
31 
32 
36 
37 
38 
43 

53 

53 
54 
58 
58 



iv Contents 

3.3.2 Constraints . . . . . . . . . . . . . . . . . . 59 
3.3.3 Objective functions . . . . . . . . . . . . . 62 
3.3.4 Definition of the general scheduling problem 66 

3.4 Solutions . . . . . . . . . . . 68 
3.4.1 The solution network . . . . . . . . . . . . 68 
3.4.2 Feasibility . . . . . . . . . . . . . . . . . . 69 
3.4.3 Obtaining selection-optimal schedules from flows . 71 
3.4.4 The reduced solution network . . 73 

3.5 Other objective functions and constraints 74 
3.5. 1 Regular cost functions . . . 74 
3.5.2 Non-regular cost functîons . 75 
3.5.3 Multiple time windows 77 

4 Solution methods 79 
79 
80 
80 
81 
84 
84 
88 
95 

4.1 Introduetion . . . . . . . . . . . . . . . . . . . 
4.2 Complexity . . . . . . . . . . . . . . . . . . . . 

4.2.1 Complexity of finding optimal selections 
4.2.2 Complexity of finding feasible selections 

4.3 Construction methods 
4.3.1 Dispatching . . . . . . . . . . 
4.3.2 lnsertion . . . . . . . . . . . . 
4.3.3 An efficient insertion algorithm 

4.4 Local search methods ... 
4.4.1 Local search . . . . 
4.4.2 Two neighborhoods 

4.5 Relaxation . . . . . . . . . 
4.5.1 Lagrangian relaxation 
4.5.2 Penalty methods . . . 
4.5.3 Comparison of the two re1axation methods 

106 
106 
107 
120 
121 
124 
125 

5 Discussion 127 
5.1 Towards a planning board generator . . . . . . . . . . . . . . 127 

5.1.1 Providing the PBG with the required information . . . 128 
5.1.2 Procedures for supporting representations and manipu-

lations . . . . . . . . . . . . . 130 
5.2 Machine scheduling . . . . . . . . . . 132 

5.2.1 The general scheduling problem 132 
5.2.2 So1ution methods . . . . . . . 134 
5.2.3 Suggestions for forther research 135 



Contents 

Appendix: The test set 

References 

Samenvatting 

V 

137 

141 

145 



1 

Introduetion 

1.1 Planning boards 

A picture tells more than a thousand words. Henry Laurence Gantt (1861-1919) 
may have had this in mind when he developed the representation mechanism that 
is currently known as the Gantt chart. An example of a Gantt chart is given in 
Figure 1.1. 

16:00 18:00 20:00 22:00 24:00 02:00 

Stage A REM 

Stage B I Khaled Van Morrison 

Stage C Prince 

Stage D 

Figure 1.1: A Gantt chart. 

This Gantt chart represents the program of a music festival. Sixteen artists and 
bands have been contracted by the organization, each of which will be perfonn­
ing on one of the four stages during a given time interval. For example, Tom 
Waits will perform on stage B from seven thirty until nine o'clock. 

In general, the horizontal axis in a Gantt chart represents some time period. On 
the vertical axis, resources are set out, and the reetangles on the chart represent 
processes. In Figure 1.1, the resources are the stages, and the processes are the 
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performances of the artists. In other applications, the resources may be lecture 
rooms, machines, or vehicles, and processes may be courses that must be given, 
operations that must be performed, or goods that must be transported. The Gantt 
chart as a whole represents a plan, i.e., an assignment of processes to resources 
and time intervals. 

Gantt developed his charts during the First World War at the Ordnance Bu­
reau of the United States Army. Today, we use a Gantt chart mainly to represent 
a plan, but Gantt's original purpose was to provide methods for measuring the 
progress made in realizing a plan. He foresaw great possibilities for such meth­
ods (Gantt [1919]): 

... , our record charts invariably indicate the capable men, and not only 
give us an indication of how to choose our leaders, but a continual mea­
sure of the effectiveness of their leadership after they are chosen. 

In this thesis, I deal with planning problems. In these problems, we are given 
a set of processes, a set of resources, and a set of constraints. The processes must 
be assigned to the resources and time intervals in such a way that all constraints 
are satisfied. Planning problems arise in course scheduling, timetabling, produc­
tion planning, vehicle dispatching, and many other application areas. In all these 
areas, planning boards are used to support the planner. A planning board is a tooi 
that uses a Gantt chart to represent plans and provides the means to modify plans 
by manipulating the Gantt chart. 

Planning boards can play a vital role in complex planning situations by inte­
grating human insight and format models (Anthonisse, Lenstra, and Savelsbergh 
[1988]). For example, when the quality of a plan has to be assessed, mathemat­
ical models can be used to test if al1 constraints are satisfied or to evaluate some 
criterion function, and the planner will use his own experience and knowledge 
of the problem situation to decide whether the plan as a whole is feasible. 

Good representations of both the problem and the plan are crucial in order to 
get the highest benefit from this interaction. Although the Gantt chart is the pri­
mary representation in a planning board, other representations, such as data ta­
bles and inventory graphs, can also be incorporated. Using various representa­
tions of problem data and plans may lead to a better understanding of the problem 
being solved. Jones [1994] discusses the importance ofrepresentation and visu­
alization in the context of optimization. In two wonderful hooks, Tufte ([1983, 
1990]) treats the more general subject of envisioning information. 

A planning board should also provide the means to manipulate the presented 
representations, so as to enable the planner to create and modify plans. The no­
tion of manipulation should be interpreled broadly. In the terminology intro­
duced by Anthonisse, Lenstra, and Savelsbergh [1988] with respect to interactive 
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planning systems, manipulations cover the entire spectrum from assistant tune­
tions to advisor functions. A planning board must provide the means to store 
and retrieve plans, to evaluate the quality of a plan, and to modify a given plan 
manually. On the other hand, the planning board must also be able to construct 
a plan by itself and to give suggestions for improving a given plan. 

A planning board is generally used for more than one particular problem sit­
uation. Each such situation will be called a problem instance. A set of problem 
instances with well-specified common characteristics will be called a problem 
type. A planning board should be equipped to deal with all possible instances 
of some problem type. Consider, for example, the problem of assigning nurses 
to night shifts and day shifts in a hospital. Such a timetabling problem must be 
solved, say, every month. However, the number of available nurses and their de­
sires with respect to vacation and days off are subject to change. Thus, every 
month a different instanee of the nurse scheduling problem type must be solved, 
and a planning board must be capable to deal with each possible instance. 

The combination of representations and manipulations results in a powerfut 
tooi for many different types of planning situations. Each problem type, how­
ever, requires its own sets of representations and manipulations. A single Gantt 
chart wilt suffice for certain inachine scheduling problems, but in more complex 
production planning problems also inventory graphs are required. Similarly, the 
quality of a course schedule and the quality of a production plan are evaluated 
in completely different ways. One can say that each problem type requires its 
own planning board. Unfortunately, the development of an automated planning 
board is a highly time consumipg process. The aim of my research bas been to 
find out in what way the design of planning boards can be facilitated, and I have 
focused on the role of operations research. 

1.2 A planning board generator 

This thesis must bé read in the light of the ultimate goal of my research: the de­
velopment of a planning board generator (PBG). Given a specification of the 
problem type for which a planning board bas to be developed and a specifica­
tion of the desired representations and manipulations, a PBG should automati­
ca11y create an initia] version of the planning board. The context in which a PBG 
would be used is depicted in Figure 1.2. 

A planner bas to make plans for a number of instances of the same problem 
type and he thinks that a planning board may be a helpful tooi. He therefore asks 
a planning board designer to build a planning board for that specific problem 
type. The designer asks for the characteristics of the problem type, the desired 
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PBG problem • 
type 

problem 
instanee 

1. Introduetion 

Pi gure 1.2: Context of a planning board generator. 

representations, and the required manipulations. The designer activales the plan­
ning board generator to process this information and to produce an initial version 
of the planning board. 

The idea that it should be possible to design a planning board generator has 
been inspired by the observation that planning boards that are used for entirely 
different purposes exhibit so many common elements. The same kinds of repre­
sentations are provided and the same kinds of manipulations are performed. lt 
seems a waste of time and energy to imptement these common elements for each 
individual planning board from scratch. It must be possible to deal with them on 
a more general level and still obtain powerfut planning boards. 

Two conflicting objectives arise when the functionality of a planning board 
generator is discussed. On the one hand, a PBG should be as general as possible, 
supporting a braod variety of planning problem types; on the other hand, for a 
given problem type it should be able to generate a powerfut planning board that 
is equipped to deal with the specific characteristics of that problem type in an 
efficient way. Por a PBG to be of any use it is essential that the right balance 
between generality and efficiency is found. 

There are two possible approaches in trying to obtain such a balance. In a 
'top-down' approach, generally applicable methods are developed, which may 
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be adjusted to specific situations. In a 'bottom-up' approach, one develops ef­
ficient, problem-specific methods and tries to adjust these in order to deal with 
more general problem situations. The first approach leads to a guaranteed level 
of generality, possibly at the cost of efficiency. The main objective in the second 
approach is efficiency; if the desired level of efficiency cannot be maintained, 
then no further generalization is pursued. 

We think that generality can be achieved for many aspects of a PBO without 
toss of efficiency, and the top-down approach seems most natoral for these as­
pects. A general problem class wiJl be identified, and methods will be devel­
oped that can handle all problems in this class. Foraspects of a PBG in which it 
is not obvious how we can obtain genera1ity while maintaining the desired level 
of efficiency, we must rely on a bottorn-up approach. Ideally, this approach will 
result in sufficient generality, but we must take into consideration the possibil­
ity that methods will be developed that are only suited for specific subclasses of 
the general problem class. For each such subclass, a library of methods can be 
created. These methods must be reasonably efficient for all problem types in the 
considered class. 

In this thesis, I discuss two topics that are important in the design of a PBO. 
First, I introduce a metbod for providing the PBG with information about the 
problem type for which a planning board is to be developed. A top-down ap­
proach is used in developing this method, since generality is essential. If we 
cannot give the desired information in a uniform way for all types of planning 
problems, then we must give up the hope of developing a system that automati­
cally creates planning boards fqr all possible planning problems. 

The second topic is the algorithmic support of manipulations. Powerfut con­
struction and improvement a1gorithms are very important for the advisor func­
tion of a planning board. Efficiency is essential in these algorithms. The option 
to let the planning board generate an initia) plan wiH not be used too often if exe­
cution of the corresponding algorithm takes too much time. Generally applicable 
algorithms are bound to be too time-consuming or to give bad results for most 
individual problem instances. Therefore, we have decided to apply a bottorn-up 
approach, and to study first the structure of a particular problem type, the job 
shop scheduling problem. The algorithms that have been applied successfully to 
this problem can be modified in such a way that they can deal with a more general 
class of problems. I believe that further generalization is still possible and that 
the discussed methods can be applied to more general machine scheduling prob­
lems as well. For other classes of problems, such as timetabling and resource 
constrained project scheduling problems, however, different methods will prob­
ably have to be developed. 
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Planning boards are decision support systems. They are designed to support 
decision making in practical planning situations. Much work bas already been 
done in order to facilitate the development of decision support systems and, more 
specifically, interactive planning systems. For a survey of computer grapbics 
standards, user interfaces, and user interface management systems, see Jones 
[1992]. 

In the literature, a few systems that are able to deal with more than one plan­
ning situation and that offer some possibilities for problem specification have 
been presented. Examples are the systems developed by Jacksonet al. [1989], 
Jones and Maxwell [1986], and Woerlee [1991]. These systems differ from a 
PBG in that they are developed for a particular application area: material lo­
gistics, manufacturing scheduling, and production scheduling, respectively. The 
use of a PBG is not restricted to a particular application area. A very general 
problem class is considered: processes must be assigned to resources over time. 
This general structure allows the use ofthe same representation mechanism (e.g., 
Gantt charts) and similar manipulations for problems in completely different ap­
plication areas. I think that the common aspects of the problems in this general 
problem class can be exploited effectively to facilitate the development and im­
plementation of planning boards for all these application areas. 

Although it is not concerned with planning tools that use the Gantt chart as the 
main representation mechanism, the graph-based modeling system (GBMS) of 
Jones [1990] is conceptually very simHar to our PBG. Both the GBMS and the 
PBG aim at facilitating the development of user interfaces for interactive sys­
tems. In a GBMS, attributed graphs are used as representation mechanism. The 
created interface is called an instanee editor. An instanee editor enables a rnad­
eler to add and delete nodes and edges in order to construct a graph of the appro­
priate type. In a GBMS, the designer specifies a graph type and the manipula­
tions that can be performed on graphs of that type. This specification is suftleient 
to automatically generate an instanee editor for graphs ofthat type. Using a sirn­
ilar terminology, one can say that a planning board enables a planner to perform 
manipulations on (representations ot) plans in order to construct a solution to a 
problem of the appropriate type. In our setting, the designer specifies a problem 
type and the desired representations and manipulations. From this specification, 
the PBG automatically constrocts a planning board for instances of this type. 

An important difference between a GBMS and a PBG is the representation 
mechanism that is used, attributed graphs versus Gantt charts. Another important 
difference relates to the way in which a graph type or problem type and the corre­
sponding sets of manipulations are specified. Jones's GBMS allows the designer 
to create bis own types of nodes and edges, each with its own set of attributes. 
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Also the manipulations can be developed by the designer. Although this bottorn­
up approach gives the designer a lot of freedom, it also requires knowledge of 
the relatively unfamiliar theory of graph-grammars. Por our PBG, in contrast, 
we apply a top-down approach. There exists a general problem class, of which 
all problem types that the PBG can handle are special cases. The designer of a 
planning board can specify his particular problem type by defining the appro­
priate subclass of the general problem class. Similarly, a set of possible manip­
ulations is given, from which a planning board designer chooses a subset. The 
designer in a GBMS, on the other hand, must specify the desired node types and 
edge types, as well as the desired manipulations, from scratch. The advantage 
of this top-down approach is that the implementation of the PBG can be specifi­
cally equipped to deal with the allowed problem types only, thus yielding a more 
effective and efficient system. Furthermore, it has enabled us to develop a speci­
fication metbod that exploits and highlights the common structural properties of 
the problem types, in contrast to the u se of graph-grammars, which are more gen­
erally applicable. A disadvantage is that we cannot obtain full generality. Our 
PBG will only be able to deal with problems in the general problem class. How­
ever, we have tried to keep this class as general as possible indeed, only teaving 
problem types for which planning boards are not useful out of consideration. 

1.3 Algorithms 

The most obvious area in which operations research can contribute to the devel­
opment of a planning board generator is the algorithmic support of manipula­
tions. Many manipulations can be performed more efficiently if an appropriate 
mathematica) model is used. Examples are the evaluation ofthe quality of a plan, 
suggestions for improvement of a given plan, and the construction of an initial 
plan. It must be possible to use the vast amount of knowledge, insight, and ex­
perience that has been obtained in optimization in order to develop appropriate 
models and algorithms. As discussed before, these models should demonstrate a 
balance between generality and efficiency. In my opinion, a PBG should support 
a limited number of fairly large problem types for which reasonably efficient al­
gorithms can be developed. Together, these problem types should cover the area 
of planning problems as much as possible. 

A class of planning problems that has received much attention is determinis­
tic machine scheduling (Lawler et al. [1993]). In this class, each resource, or 
machine, can performat most one process, or operation, at a time, and all in­
formation that defines a problem instanee is known with certainty in advance. 
Research in machine scheduling is characterized by a huge number of problem 
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types, many of which are of only limited practical importance. Sometimes, the 
introduetion of new models seems to be justified by the fact that they have not 
been studied before. As a consequence, the differences between problem types 
receive more attention than their common aspects. 

In this thesis, I try to identify common structural properties that can be ex­
ploited in the design of efficient algorithms for larger problem classes. This leads 
to the introduetion of the general scheduling problem. The general scheduling 
problem can be seen as a generalization of the well known job shop schedul­
ing problem. In the job shop problem, there is a number of jobs, consisting of 
operations that must be performed in a prespecified order on prespecified ma­
chines. The problem is to determine a processing order of the operations in such 
a way that the makespan, i.e., the completion time of the last operation, is mini­
mal. The job shop scheduling problem has earned a reputation for being one of 
the hardest problems in combinatorial optimization. Even smalt instances of this 
problem are very difficult to solve. In recent years, some progress has been made 
in developing efficient algorithms for the job shop scheduling problems by us­
ing so-called local search techniques. These algorithms exploit the fact that the 
quality of a solution can be evaluated efficiently by computing the longest path 
in some network. 

The general scheduling problem generalizes the job shop scheduling problem 
in the area ofboth constraints and objective functions. It allows for release times, 
deadlines, minimum and maximum delay constraints, as well as non-regular per­
formance measures and multi-criteria objectives. I will show that the quality of 
solutions ofthe general scheduling problem can be evaluated by solving a max­
imum cost flow problem, which can be seen as a generalization of the longest 
path problem. This result enables us to modify solution methods that have been 
applied successfully to the job shop scheduling problem in such a way that they 
can be applied to the more general problem as well. 

In a sense, the research presented in this thesis is related to the work of Nui­
jten [1994]. He generalizes (other) results obtained for the job shop schedul­
ing problem and incorporates these results in a constraint satisfaction framework 
for a broad class of scheduling problems. Both constraint satisfaction and local 
search are not always considered as worthy memhers of the optimization tech­
niques establishment. This is not the right attitude. Local search and constraint 
satisfaction can give good results only ij information about the structure of the 
problem at hand is exploited. In this sense, they are not much different from, for 
example, branch-and-bound. 
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1.4 Overview of the thesis 

The remaioder of this thesis is organized as follows. 
In Chapter 2, the basic objects that occur in planning problems, processes and 

resources, are discussed in more detail. I show how attributed graphs can be used 
to represent properties of objects and relations between objects and introduce a 
specification method, based on attributed graphs, for problem instances. This 
metbod serves as a basis for the problem type specification method. A number 
of examples of problem instances and types demonstrate the power of the in­
troduced methods. This chapter is based on a paper by Martin Savelsbergh and 
myself [1994]. 

In Chapter 3, I discuss the job shop scheduling problem and in particular the 
role that is played by longest paths in solution methods for this problem. Then, 
the maximum cost flow problem, which can be seen as a generalization of the 
longest path problem, is discussed, and it is shown that the maximum cost flow 
problem is useful in the context of generalizations of the job shop scheduling 
problem. More general constraints and objective functions are presented, cul­
minating in the introduetion of the general scheduling problem. Solutions of 
general scheduling problems can be represented by solution networks, which are 
shown to be useful for feasibility testing and quality evaluation. 

Solution methods for the general scheduling problem are presented in Chap­
ter 4. First, construction methods, using dispatching (list scheduling) and in­
sertion techniques, are discussed. An efficient implementation of the insertion 
algorithm is not easy to obtain, but I show that it is possible to develop such 
an algorithm when the objective is similar to makespan minimization. Compu­
tational experiments show that the insertion algorithm outperforms dispatching 
algorithms. Next, local search methods are treated. Properties of two neighbor­
hoods are studied, and computational experiments are performed for problems 
with makespan minimization as objective. I show that local search can be readily 
applied to a large number of instances of the general scheduling problem. Fur­
thermore, relaxation techniques that make it possible to deal with the other in­
stances as well are discussed. More research is required, however, in order to 
obtain efficient local search algorithms for the entire class of general schedul­
ing problems. The discussion of the insertion algorithm is based on a paper by 
Rob Vaessens and myself [1995]; the computational experiments have been con­
ducted in cooperation with Roberto Lioce and Carlo Martini [1995]. 

Finally, in Chapter 5, I discuss to what extent the presented results contribute 
to the development of a planning board generator and to the theory of machine 
scheduling. Moreover, I give some suggestions for further research. 
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Problem specification 

2.1 Introduetion 

A PBG must be capable of generating planning boards for a braad variety of 
problem types, including timetabling, course scheduling, and production sched­
uling problems. At first sight, these problem types have only little in common, 
but on closer examination we find several common aspects, both in the structure 
of the problems and in the way that planning boards can be used in solving these 
problems. These common aspects make it possible to generate automatically at 
least some elements of a planning board on the basis of relatively little informa­
tion about the problem type and expressed desires with respect to the represen­
tations and manipulations. 

Any planning board contains a number of procedures to support various rep­
resentations and manipulations. Although the functionality of these procedures 
is almast the same for all planning boards, the actual implementation must be 
tailored to the specific problem situation for which a planning board is to be de­
signed. 

Consider, for example, the procedure for drawing Gantt charts. In a Gantt 
chart, resources are represented on the vertical axis, the horizontal axis repre­
seuts some time interval, and reetangles represent processes that are assigned to 
resources and time intervals. These properties hold for aH planning problems. 
Consider now a partienlar problem type in which two kinds of resources, ma­
chines and employees, appear, time is measured in hours, with ten hours in a 
day and 5 days in a week, and processes are divided into groups. In a planning 
board for this problem type, the two kinds of resources, machines and employ­
ees, appear separatedly on the verticaJ axis of the Gantt chart, the appropriate 
time system is set out on the horizontal axis, and processes that belang to the 
same group are represented by reetangles of identical co lor. 

11 
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Another example is the 'move' manipulation, which enables a planner to de­
termine a new assignment for some process. In all situations, and for all plan­
ning problems, the planner must specify which process is to be moved and where 
it is to be positioned, and it must be checked if the new assignment is feasible. 
Consider a specific problem type, in which each process must be assigned to a 
combination of a machine and an employee, and eertaio preeedenee constraints 
must be satisfied. A planning board for this particular problem type will offer the 
possibility to specify the process that is to be moved, then ask to which machine­
employee-combination it is to be assigned and at what time the process must be 
started. It checks whether the proposed assignment is feasible, the capacity lim­
itations of the resources are not violated, and the preeedenee constraints are sat­
isfied 

For each of the various representations and manipulations that may be used 
in planning boards, a PBG will contain a basic implementation. On the basis of 
the specification of the problem type and the desired representations and manip­
ulations, the PBG will tailor these basic implementations to provide customized 
implementations that are appropriate for the considered problem type and that 
match the expressed desires as closely as possible. This tailoring may be as sim­
ple as setting eertaio parameter values and incorporating predefined subroutines 
in the basic implementations, but it may also involve generating pieces of new 
code .. 

The examples above demonstrate that a precise specification of the problem 
type for which a planning board is to be generated is essential. It is especially 
important that the designer of a planning board can specify those characteristics 
of a problem type that affect the implementation of the representations and ma­
nipulations. In this chapter, I discuss how problem instances can be specified, 
and how the proposed metbod can serve as a basis for a specification metbod for 
problem types. 

In the specification of problem in stances we can use the general problem stroc­
ture as a starting point: processes must be assigned to resources and time inter­
vals in such a way that certain constraints are satisfied. A problem instanee can 
thus be described by specifying the processes and resources and their properties, 
the time system, and the constraints that must be satisfied. In the proposed spec­
ification method, we make use of attributed graphs. Processes and resources are 
represented by nodes and their properties by attributes. Examples of attributes 
are the size of a process, and the capacity of a resource. Various edges, arcs, and 
auxiliary nodes are introduced to describe relations between objects. In this way, 
we are able to formulate to which resources we can assign a process and which 
constraints must be satisfied. 
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The class of instances tbat can be specified witb the proposed metbod will be 
called the general problem class. Problem types are then defined by imposing re­
strictions on the general problem class. A problem type consists of all instances 
in tbe general problem class that satisfy eertaio restrictions. The general problem 
class as well as individual instances are considered as special kinds of problem 
types. 

InSection 2.2, we describe tbe instanee specification metbod in detail, demon­
strating how the most important aspects of problem instances can be formulated 
in terros of attributed graphs. The main goal is, however, not to discuss how in­
dividual properties can be specified, but to illustrate a generally applicable ap­
proach: problem instances are described in terros of objects and different kinds 
of relations between objects. Objects are represented by nodes, properties of ob­
jects are described in terros of attributes, and each kind of re]ation is described 
by using a specific graph construct. This approach makes it possible to modify, if 
necessary, the proposed specification metbod in a natura] way. If it turns out that 
a particular property of an object or some relation cannot be described properly, 
one may consider introducing a new attribute or an appropriate graph construct. 

InSection 2.3, we show how problem typescan be specified by formulating 
restrictions on tbe general problem class. 

We have included several examples of problem instances and types in order 
to demonstrate tbe power and wide applicability of tbe introduced methods. 

2.2 Problem instances 

2.2.1 An overview of the specification metbod 

The instanee specification metbod has been developed with tbe following objec­
tives in mind: 

1. It should be possible to specify instances of all probieros for which we feel 
that a planning board provides a useful tooi. In fact, tbe metbod will implic­
itly define a general problem class. Note that this class should be fairly large 
for a PBG to be of any interest. 

2. The instanee specification metbod must forro the basis of a type specifica­
tion method. It should tberefore be possible to specify subclasses of tbe gen­
eral problem class by identifying the typica] properties of problem instances 
witbin such subclasses. 

3. It should be possible to use the specification of an instanee to efficiently per­
forro some of the tasks of a planning board, such as verifying feasibility of 
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assignments and providing information on various aspects of the problem in 
hand. 

We have tried to achieve these objectives by using a widely applicable and 
well-studied paradigm, namely attributed graphs, and by stressing the common 
structural properties of the problems. 

Attributed graphs are widely used as a mechanism for descrihing many kinds 
of models in different fields of research, from sociology to chemistry. lt is there­
fore not only a mechanism that many people are familiar with, but also one that 
bas proven to be very flexible. Furthermore, there exists a massive theory on 
problems related to graphs, which we can use. 

All problems for which a planning board is useful deal with assignments of 
processes to resources and time intervals. Therefore it must be possible to spec­
ify the characteristics of the processes and the resources that occur in the instanee 
as well as the time system. Furthermore, it must be possible to specify relations 
between processes, between resources, and between processes and resources. 
The most important relation that bas to be specified is which assignments of pro­
cesses to resources are feasible and which are not. 

The attributed graph associated with an instanee will be called an instanee 
graph. The instanee graph must be able to represent a variety of situations, e.g., 
a process that can be performed on any resource out of a set of resources, a pro­
cess that requires a specific combination of resources, and a process that can be 
performed on any combination of resources out of a set of possible combinations 
of resources. 

The core structure of the instanee graph specifies the feasible assignments of 
processes to resources. Each process and each resource are represented by a 
node. For each possible choice of resources and each possible combination of re­
sources an auxiliary node is introduced that is connected to the objects involved 
and thus forms a K1,n where nis the number of objects involved. 

We can specify several other relations between objects by using graph con­
strocts as wel I. Binary relations, i.e., relations involving exactly two objects, can 
be modeled by an edge or an are. An example of a binary relation is the preee­
denee re lation indicating that one process must be performed before an other one. 
n-Ary relations, i.e., relations involving a set of n objects (n > 2), can be mod­
eled by a K1,n· 

Notall aspectsof problem instances can be represented in termsof nodes, arcs, 
and edges. These aspects can be divided into two categories: properties of in­
dividual objects, and properties of assignments. Examples of the first category 
are the si zes of the processes, the capacities of the resources, and the length of 
the planning period. These properties will be specified as attributes of the corre-
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sponding nodes, or as attributes of the time system. An example of the second 
category is the processing time of a process when it is assigned to a partjeular 
combination of resources. In order to specify these kinds of properties, attributes 
of appropriate auxiliary nodes are introduced. 

Before we discuss the various elements of the instanee graph, we will spend 
some time on the key elements of plans: time, processes, and resources. 

2.2.2 Time 

Time plays an important role in planning boards. The way in which time occurs 
is different for different problems. Por a timetabling problem for schools, the 
planning period may cover five days consisting of eight hours, with an hour being 
the smallest time unit, whereas for a machine scheduling problem, the planning 
period may be one working day of 12 hours, with a minute being the smallest 
time unit. Por flexibility purposes we allow the introduetion of a time system 
for each problem in stance. This time system consists of time units on different 
levels. The smallest time unit is specified in the first level, the second smallest 
time unit in the second level, etc. Por the j tb time unit also the conversion factor 
with respect to the (j - l)st time unit is given. Por example, a planning period 
covering one day, with one second being the smallest time unit, is specified in 
the following way. 

number of levels: 4 

Leveli 

unit name: second 

level2 

unit name: minute 

conversion factor: 60 

level3 

unit name: hour 

conversion factor: 60 

level4 

unit name: day 

conversion factor: 24 

planning period: 1 day 
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2.2.3 Resources and processes 

Resources and their attributes 
Depending on the application, a resource can be a1most anything. In a produc­
tion planning application, persónnel, money, raw materials, and machines may 
all be resources. In a time-tabling application fora school, the resources may be 
classrooms and teachers. 

An important concept related to resources is that of a capability. A resource 
may possess several capabilities, i.e., it may be able to perform various tasks. A 
mechanic may be qualified to change oil and to repair brakes. A teacher may be 
qualified to teach rnathematics as well as physics. 

Although a resource may be able to perform different tasks, some set-up or 
change-over may be necessary before a partienlar task can be performed. Such 
a set-up brings the resource in the required mode. The corresponding set-up time 
can be either sequence dependent or sequence independent. In the first case, the 
set-up time is completely determined by the required mode. In the second case, 
the set-up time depends on the current mode of the resource and the mode that 
is required. The concept of mode is different from the concept of capability. A 
sawing machine may possess only one capability, the capability sawing, but sev­
eral modes, one for each possible size of an object that can be sawn. 

Most resources are not free commodities. Their utilization by some process 
will affect the possibilities for utilization by other processes. Quantities related 
to the utilization of a resource are usage and consumption. 

The usage of resource R by process P at time t is a quantity that indicates to 
what extent R is occupied by P. The total usage of R at time t, i.e. the sum of 
the usage of all processes assigned to R at time t, is limited by the capacity of R 
at timet. 

The consumption of resource R by process P during a time interval [t1, t2] is 
a quantity that indicates to what extent R is consumed by P during that interval. 
The total consumption of R up to time t*, i.e. the sum of the consumption of R 
up to t* over all processes assigned to R, is limited by the supply of R up to t*. 

Based on the different kinds of utilization the following distinction between 
resourcescan be made (see also Btaiewicz et al. [1986]): 

• Renewable resources: Resources for which only their total usage at every 
moment is constrained. An example of such a resource is a painting machine, 
which can paint all day but no more than one object at the same time. 

• Non-renewable resources: Resources for which only their total consumption 
up to any given moment is constrained. An example of such a resource is 
finances. 
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• Doubly constrained resources: Resources for which both total usage and to­
tal consumption are constrained. An example is personnet An employee 
can perform only a limited number of tasks at the same time and can per­
form these tasks only during a limited number of man hours. 

U sage and consumption can both occur in either continuons or discrete quan­
tities. A painting machine may be able to paint up toten objects at the same time. 
lts capacity then is ten units, and the assignment of a painting job to this machine 
implies a usage of one unit. lt is impossible to paint half objects, and there­
fore usage, in this case, is a discrete quantity. The storage capacity of a truck, 
in contrast, can be used in continuons quantities. With respect to consumption, 
fuel will be consumed in continuons quantities, but in assembling a car steering 
wheels will be consumed in discrete quantities. 

Mostly, usage and consumption will be modeled as one-dimensional quanti· 
ties. Multi-dimensionality, however, is possible. For an employee there may ex­
ist a limit on the number ofhours per day he may work {e.g., 10 hours) as wellas a 
limit on the number of hours per week (e.g., 40 hours). This cannot be modeled 
by supplies that replenish the 'hours-inventory' to 10 at the beginning of each 
day, because the week-limit may then be exceeded. By rnadeling consumption 
and supply as two-dimensional quantities we can solve this problem. Another 
example of two-dimensional usage is found in transportation problems, where 
the usage of a truck is limited with respect to volume as well as weight. 

The capacity and supply of a resource may change during the planning period 
as a result of instance-dependeqt and plan-dependent factors. For example, dur­
ing a eertaio period the capacity of some machine may be smaller than normal 
because of maintenance, or the supply of some half-product will increase at the 
moment that a process that represents the production of that half-product is com­
pleted. lnstance-dependent changes in capacity and supply will be modeled in 
terms of attributes of the resources. Plan-dependent changes in the supply of a 
resource wiJl be modeled as {possibly negative) consumption of that resource. 
Similarly, the available capacity of a resource is reduced when it is used by a 
process, and it is increased again as soon as that process is completed. 

A resource that possesses several capabilities may have different performance 
levels with respect to these different capabilities. The aforementioned mechanic 
may be very fast in changing oil, but he may be very slow when it comes to repair­
ing brakes. In order to handJe such differences, resource characteristics related 
to speed, usage, and consumption have to be specified for each of its capabilities. 
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A resource node bas the following attributes: 

name: A name that uniquely identifies the resource. 

availability periods: A set of time intervals specifying the time periods during 
which the resource is availahle. 

category: An indicator that specifies the type of resource, i.e., renewahle, non­
renewahle, or douhly constrained. 

number of modes: A natural number. Por each mode the foUowing must be 
specified: 

name: A name that uniquely identifies the mode. 

set-up time: A function of the status of the resource, i.e., the active mode, 
that computes the set-up time that is needed to hring the resource into this 
mode. 

usage: This attribute consists of three sub-attrihutes. 

divisibility: An indicator that specifies whether usage of the considered re­
source is modeled as a continuous or as a discrete quantity. In case usage 
is continuous the value is 0 and in case usage is discrete the value is the 
discretization unit. 

dimension: A natural number representing the dimeosion of usage of the 
considered resource. 

capacity: A function of time, descrihing the plan-independent capacity. 

consumption: This attrihute consists of three suh-attrihutes. 

divisibility: An indicator that specifies whether consumption of the consid­
ered resource is modeled as a continuous or as a discrete quantity. If con­
sumption is continuous the value is 0 and if consumption is discrete the 
value is the discretization unit. 

dimension: A natura] number representing the dimeosion of consumption. 

supply: A function of time, descrihing the plan-independent supply. 

number of capabilities: A natura] number. Por each capahility the following 
four suh-attrihutes must be specified: 

name: A name that uniquely identifies the capahility. If different resources 
possess the same capahility, the same name must be used when referring 
to this capahility. 

speed: A real number that is used to determine the duration of a process 
when that process is assigned to this resource. It is not necessarily equal 
to the actual speed of the resource, as wil1 be i11ustrated in Section 2.2.4. 
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usage factor: A real number that is used to determine the usage of the re­
source when a process is assigned to this resource. If this resource is used 
in combination with other resources, then this attribute is also used to de­
termine the usage of those resources. In Section 2.2.4 we will discuss the 
use of the usage factor extensively. 

consumption factor: A real number that is used to determine the consump­
tion of the resource when a process is assigned to this resource. If this 
resource is used in combination with other resources, then this attribute is 
also used to determine the consumption of those resources. We will dis­
cuss the u se of the consumption factor extensively in Section 2.2.4. 

The usage attribute is specified only for renewable and doubly constrained re­
sources, the consumption attribute for non-renewable and doubly constrained re­
sources. These attributes represent plan-independent properties of a resource. 
U sage and consumption occur only during the time intervals in which processes 
are assigned to that resource, and the used and consumed amounts will be dif­
ferent for different processes. lt is therefore not possible to model usage and 
consumption in terms of resource attributes. Furthermore, actual usage and con­
suroption may occur only during part of the total processing time. Por example, 

· a production run may require a machine for the entire period, whereas it may 
require an employee to start the machine only for the first five minutes of the pe­
riod. Similarly, the entire required amount of raw matenals may be consumed at 
the beginning of the process, whereas fuel may be consumed at a constant rate 
during the processing period. The specification of these usage and consumption 
patterns wiJl be discussed in Section 2.2.4. 

Processes and their attributes 
A process can be anything that must be assigned to a set of resources and a time 
interval in order to obtain a feasible plan. In a timetabling problem for a school, 
the processes may be the lessoos that must be assigned to teachers, class-rooms, 
and time intervals. In a machine scheduling problem, the processes are the tasks 
that must be assigned to machines and time intervals. 

There are two kinds of processes: non-repetitive and repetitive processes. A 
non-repetitive process is performed only once. A repetitive process can be per­
formed an arbitrary number of times; the number of repetitions is determined by 
the planner by specification of the processing interval. 
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A process node has the following attributes: 

name: A name that uniquely identifies the process. 

2. Problem specificadon 

type: An indicator that specifies whether the process is non-repetitive or repet­
itive. 

mode: An indicator that specifies the mode in which the resource(s) to which 
the process is assigned have to be. 

size: A real number that is used todetermine the duration of the process in case 
of a non-repetitive process, or to determine the length of one repetition in 
case of a repetitive process. 

usage intensity: A vector that is used todetermine the usage ofthe resource(s) 
that the process is assigned to. 

consumption intensity: A vector that is used to delermine the consumption of 
the resource(s) that the processis assigned to. 

release time: A point in time before which the process cannot be performed. 

deadline: A point in time after which the process cannot be performed. 

due date: A point in time by which the process preferably should be completed. 

split: An indicator that specifies whether the process may be preempted or not. 
It has value 0 if the process, once started, cannot be interrupted, 1 if the pro­
cess may be temporarily stopped and later resumed using the same resources, 
and 2 if the process can also be resumed using other resources. 

2.2.4 Specifying feasible assignments 

In this section, we discuss requirement relations. Requirement relations are rela­
tions between processes and resources indicating which resources can be used to 
perform a process. We use an incremental approach with respect to requirement 
relations. We start with simple requirements, i.e., processes requiring a single 
capability, and continue with more complicated requirements, i.e., processes re­
quiring combinations of capabilities and processes requiring one of several com­
binations of capabi1ities. At the end of this section we will discuss how aspects 
related to feasible assignments such as duratîon, set-up times, usage, and con­
sumption are modeled. 

Processes requiring a single capability 
A process that requires a specific capability can be assigned to any resource that 
possesses that capability. In fact, a choice has to be made between all resources 
that possess the required capability. Such a choice is modeled by a K 1 ,n, in which 
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the auxiliary node, the capability node, is connected to all nodes representing 
resources that possess the considered capability. For each capability that is re­
quired by some process, a capability node is introduced, and the associated K l,n 

is formed. The requirement relation is modeled by an edge connecting the pro­
cess node and the capability node that represents the required capability. 

A capability node has only one attribute: 

name: The name uniquely identifies the capability. It must be the same as the 
name, given as a resource attribute, of the capability it represents. 

An example is given in Figure 2.1. Processes P1 and P2 require capability C~t 
which is possessed by resources R1 and R2. Process P3 requires capability C2, 
which is possessed by resources R2 and R3. 

Process Capabillty Resource 

Figure 2.1: Processes requiring a single capability. 

Processes requiring a combination of capabilities 
In many problems, performing a process requires the use of a combination of 
resources, or, better, a combination of capabilities. Both paint and a painter are 
needed to paint an object. Lessoos cannot be taught unless a teacher and a ciass­
room are available. Such a combination of capabilities is again modeled by a 
K l,n. The auxiliary node, the capability set node, is connected to all capability 
nodes repcesenting the required capabilities. If a process requires a particular 
combination of capabilities, this is modeled by introducing an edge connecting 
the process node and the corresponding capabiJity set node. The process can be 
performed by any combination of resources that possesses all capabilities in the 
capability set. 
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Note that, although any combination of capabilities may be considered as a ca­
pability set, only those combinations that are actually required by the processes 
are of interest. 

A capability set node has several attributes. However, most of them will be 
introduced when we discuss duration, consumption, and usage in more detail. 
Here, we only introduce one attribute: 

name: A name that uniquely identifies the capability set. 

An example of requirement relations dealing with capability sets is given in 
Figure 2.2. 

Process 
Capability 

Set Capablllty Resouree 

Figure 2.2: Processes requiring a combination of capabilities. 

Processes P 1 and P2 both require a resource possessing the capability C1 and 
a resource possessing capability C3. The resource combination {Rt. R...} would 
satisfy these requirements. Process P3 requires a resource with the capability C2 
and a resource with the capability C3. The combination {R3, R...} is feasible. The 
combination {R2, R...} is feasible for all three processes. 

Processes requiring one of several combinatloos of capabilities 
Sometimes, a process does not require a specific combination of capabilities, but 
one of several alternative capability sets. In such a case, we say that the process 
requires a partienlar function. This is modeled by a Kl.n• in which the auxiliary 
node, the function node, is conneeled to all capability set nodes between which 
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a choice can be made. If a process requires a function, a choice between the 
associated capability sets is to be made. The process then can be perfonned by 
any set of resources that possesses all capabilities in the chosen capability set. 

Functions may be useful for production problems in which different produc­
tion modes occur, which imply the possible use of totally different resources, 
e.g., production by hand or by machine. 

A function node bas only one attribute: 

name: A name that uniquely identifies the function. 

An example of requirement relations with functions is given in Figure 2.3. 
Processes P1 and P2 both require function F1, implying that they must be per­
fonned by resources possessing the capabilities in capability set CS1 or by re­
sources possessing the capabilities in cs2. 

Function 
Capabillty 

Set Capability Resource 

Figure 2.3: Processes requiring one of several combinations of capabilities. 

In summary, three different types of K1, 11 's may occur in the subgraph repre­
senting the requirement relations. The auxiliary nodes are the capability nodes, 
the capability set nodes, and the function nodes, respectively. The first Kt,n rep­
resents a choice relation between resources possessing the same capability. The 
second states that a particular combination of capabilities is required. The third 
again represents a possibility for choice, now between severa1 càpability sets. 
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Each process node is connected, via a requirement edge, to either a capability 
node, or a capability set node, or a function node. 

Duration, set-up times, usage, consumption 

The subgraph repcesenting the requirement relations enables us to identify for 
each process the resources to which it can be assigned. Given such an assign­
ment, we want todetermine the following (assuming that the considered process 
is non-repetitive): 

• The set-up times required to bring the resources in the correct modes. 

• The duration of the process: the time to complete the process. Together with 
the starting time of the process, the duration delermines the processing inter­
val. 

• The usage pattern of each resource that is used: the time interval within the 
processing interval during which the process occupies the resource and the 
amount of the resource that is occupied by the process during this time in­
terval. 

• The consumption pattern of each resource that is consumed: the time inter­
val within the processing interval during which the process consumes the re­
source and the amount of the resource that is consumed by the process during 
this time interval. We will assume that consumption takes place at a constant 
rate. Instantaneous consumption can be modeled by specifying an infinites­
imal time interval. 

In case of repetitive processes, a set-up is only performed at the beginning of 
the first repetition, and the duration corresponds to the length of one repetition. 
We will assume that the usage and consumption pattems will be the same for ev­
ery repetition. If, for example, at the beginning of a repetition a eertaio amount of 
raw materials is consumed, the same amount will be consumed at the beginning 
of all other repetitions. 

The set-ups are much easier to deal with than duration, usage and consump­
tion, because the set-up time of a particular resource does notdepend on the other 
resources that are used. Given an assignment of a process to a combination of 
resources, for each of those resources the set -up time can be computed using the 
mode attribute of the process and the set-up attribute of the considered resource. 
The duration of the process, as well as the usage and the consumption of a spe­
eitic resource, may depend on all the resources that occur in the assignment. For 
example, when a process requires a machine and fuel, the consumption of fuel 
wi11 not only depend on the process but a1so on the machine that is actually used. 
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When a process requires a single capability, duration, consumption, and usage 
can easily be determined. The duration ofthe processis computed as the quotient 
of the size attribute of that process and the speed attribute of the resource it is 
assigned to. The interval during which any consumption or usage occurs is equal 
to the processing interval. The consumed amount is computed as the product 
of the consumption intensity attribute of the process and the consumption factor 
attribute of the resource, and the used amount is computed as the product of the 
usage intensity and the usage factor attributes. 

The situation is more complicated when a process requires a combination of 
capabilities. In order to deal with these complications, we introduce several at­
tributes for the capability set nodes. The first deals with the duration of the pro­
cess. 

duration: A function of the size attribute of the process and the speed attributes 
of the resources that computes the duration, i.e., 

d(so, SJ, ... , Sn), 

where so is the value of the size attribute of the process, n is the number of 
capabilities in the capabiJity set, and s; (i = 1, ... , n) is the value of the 
speed attribute of the resource possessing capability i. 

Suppose the capability set consists of the capabilities machine, employee, and 
material. Let so be the size attribute of the process, and let s1, s2, and SJ be the 
speed attributes of the machine, ·the employee, and the raw material, respectively. 
If the speed is completely determined by the speed of the machine, the following 
duration function is used: 

d(so, SJ, s2, SJ)= sof st. 

If the ability of the employee to work with that machine plays a role, the duration 
function may be sómething like 

where V = { v;j} is some predefined matrix, V;j being the speed at which a pro­
cess is performed when the value of the speed attribute of the used machine is i 
and the value of the speed attribute of the used employee is j. Note that in this 
case the speed attributes do not reflect the actual speed of the resources, but are 
merely indices used to extract the correct values from a matrix. 

For each capability in the capability set, the following two attributes are spec­
ified in order to describe the usage pattern. 
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usage interval: A function of the starting time and the duration of the process 
that computes the time interval during which usage of the resource possess­
ing the considered capability takes place, i.e., 

[tt. tz] = tu(start, duration). 

usage volume: A function of the usage factor attribute of the process and the 
usage intensity attributes of the resources that computes the volume used, 
i.e., 

where ;u is the value of the usage intensity attribute of the process, n is the 
number of capabilities in the capability set, and ft (i = 1, ... , n) is the 
value of the usage factor attribute of the resource possessing capability i. 

Let us again consider the example with the capability set consisting of the 
capabilities machine, employee, and material. Some machines require an em­
ployee during the first five minutes for starting it up, whereas others do not. This 
can be modeled by assigning a value of 1 to the usage factor attributes of the ma­
chines that do require an employee ur = 1 ), and a value of 0 to those that do not 
(ff = 0), and by applying the following usage pattem: 

tu(start, duration) =[start, start+ 5], 

(·u Ju çu f") _Ju 
Vu l • 1 • J2 • 3 - l · 

For each capability in the capability set, the following two attributes are spec­
ified in order to describe the consumption pattem. 

consumption interval: A function of the starting time and the duration of the 
process that compotes the time interval during which consumption of the re­
source possessing the considered capability takes place, i.e., 

[t1, tz] = tc(start, duration), 

where start is the starting time of the process, and duration is the value com­
puted by the function given in the duration attribute described above. 

consumption volume: A function of the consumption factor attribute of the pro­
cess and the consumption intensity attributes of the resources that computes 
the volume consumed, i.e., 
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where ;c is the value of the consumption intensity attribute of the process, 
nis the number of capabilities in the capability set, and !{ (i = 1, ... , n) 
is the value of the consumption factor attribute of the resource possessing 
capability i. 

Consicter again the capability set again consisting of the capabilities machine, 
employee, and material, and let the material capability be the only one that is 
possessed by non-renewable resources. If a process consumes a fixed amount of 
the material at a constant rate during the entire interval. the consumption pattem 
for the material capability is as foJiows: 

tc(start, duration) =[start, start+ duration], 

( ·c Je çc çc) •c 
Vc l • I • J2 • J3 = l • 

where the value of the consumption intensity attribute (r) equals the fixed con­
sumed amount. 

The attributes of the capability sets allow us to specify complex consumption 
and usage pattems for a large variety of problems. Obviously, assigning the cor­
rect values to the different process and resource attributes is important. Some­
times it may be necessary to assign to, for example, the speed attribute of a re­
source, a value that has little to do with the actual speed of that resource. 

Example 2.1 We consider the problem of mak:ing coffee, more specifically the 
capability set MakeCaifee consisting of the capabilities CoffeeMachine, Filter, 
GroundBeans, Water, and Coffee. 

There are two resources that possess the capability CoffeeMachine. Machine 
A can make one liter of coffee in 15 minutes, machine B does it in 10 minutes. 
Making one liter of coffee requires 0.10 units of GroundBeans, consumed at the 
beginning of the processing interval, and 1 liter of water, consumed gradually 
during the entire processing interval. Independently of the amount of coffee to 
be made, one filter is required, consumed at the start. 

If we want to perform the process 0.8Coffee, making 0.8 liter of coffee, we 
model this by assigning the value 0.8 to the consumption intensity attribute as 
well as to the size attribute of the process. Furthermore, we assign the values 
4/60 and 6/60 tothespeed attributes of resource A and B respectively, and use 
one minute as time unit 
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The attributes of the capability set MakeCo.ffee then are: 

duration: size I Co.ffeeMachine.speed 

( Co.ffeeMachine) 

usage interval: [start, start + duration] 

usage volume: 1 

(Filter) 

consumption interval: [start, start] 

consumption volume: 1 

(GroundBeans) 

consumption interval: [start, start] 

consumption volume: consumption intensity *O.I 0 

(Water) 

consumption interval: [start, start+ duration] 

consumption volume: consumption intensity 

(Co.ffee) 

consumption interval: [start, start+ duration] 

consumption volume: - consumption intensity 

2.2.5 Other relations between objects 

0 

Specifying the requirement structure, i.e., specifying for each process the com­
binations of resources it can be assigned to, is only part of the specificatien of 
a problem instance. Usually various other relations exist between processes and 
resources. Many of these ean easily be specified in the instanee graph. 

Preeedenee relations 
A preeedenee re lation indieates that the set of allowed start and completion times 
of some process depends on the start or completion time of some other process. 
Preeedenee relations are binary relations that can be represented by arcs between 
process nodes in the instanee graph. We distinguish four types: 
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• A finish-to-start relation indicates that process A must be completed before 
some process B is started. 

• A start-to-start relation indicates that process A must be started before pro­
cess B is started. 

• A starHo-finish relation indicates that process A must be started before pro­
cess B is completed. 

• Ajinish-to-jinish relation indicates that process A must be completed before 
process B is completed. 

A time-lag may be associated with each of the four types of preeedenee relations. 
For example, a finish-to-start re lation can be stated as 'process A must be com­
pieled at least 10 minutes before process B starts.' 

The attributes of preeedenee arcs are: 

type: Either finish-to-start, or start-to-start, or start-to-finish, or finish-to-finish. 

time lag: The minimum and maximum aJiowed time lag. 

Common resource relations 
A set of processes may be reJated hecause they have to he processed on the same 
set of resources. Such an n-ary re lation is specified as a K t,n; the auxiliary node 
is the common resource set node. 

The only attribute of a common resource set node is: 

name: A name that uniquely identifies the common resource set. 

In case of a common resource relation between several processes, there is no 
need for individual requirement edges. Instead the requirement edge will con­
neet the common resource set node to a capabi1ity node, a capability set node, 
or a function node. In this light, the common resource relation can be seen as an 
obligation relation, in contrast to the choices represented by functions and capa­
bilities. As soon as one of the processes in a common resource set is assigned 
to a particular resource combination, all other processes in that set have to he 
assigned to the same resource combination. 

Process group relations 
A set of processes may he related for some other reason than common resources. 
Such an n-ary reJation is represented by a Kt,n; the auxiliary node is the process 
group node. For instance, the notion of a job in machine scheduling problems 
can he modeled as a process group. 



30 2. Problem specificadon 

The attributes of the process group node are: 

name: A name that uniquely identifies the process group. 

release time: No process in the process group can he performed before its re-
lease time. 

deadline: No process in the process group may he completed after its deadline. 

due date: All processes should preferably he completed by their due date. 

exclusion: If this attribute has the value true, then no two processes in the pro-
cess group may he performed at the same time. 

Note that release time, deadline, and due date can he specified for all processes 
in a process group separately, but even when the exclusion attribute has the value 
false, the introduetion of a process group can he useful for emphasizing charac­
teristic structures in problem instances. 

Resource group relations 
Similarly to process groups, resource groups can he used to emphasize eertaio 
relations between resources. The introduetion of resource groups imposes no 
additional restrictions on the set of feasible plans. 

The attribute of the resource group node is: 

name: A name that uniquely identifies the resource group. 

2.2.6 Extensions 

In the previous sections, we have shown that it is possible to specify many differ­
ent aspects of the problem instances that we are interested in by using attributed 
graphs. The combined use of graph elements and attributes bas enabled us to deal 
with such diverse problem characteristics as preeedenee constraints, resources 
possessing the same capabilities, and complex consumption pattems. Our gen­
eral problem class, i.e., the class of problem types of which instances can he spec­
ified with our method, includes a large variety of problems that are of theoretical 
or practical interest. However, there still exist many problem instances that cur­
rently cannot he specified. This is not a consequence of the lack of expressive 
power of attributed graphs, but it is a consequence of the selection criteria that 
we have applied with respect to the problem characteristics that we wanted to he 
able to specify. These selection criteria have been chosen somewhat arbitrarily. 
The main goal of this chapter is to show that it is possible to develop a metbod 
that a1lows us to specify a fairly large cJass of interesting problem types. Both the 
notions 'fairly large' and 'interesting' are subjective, butwethink that they do 
apply to the general problem class that is induced by our specification method. 
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2.2.7 Views of the instanee graph 

In the sections above, we have discussed the various components that can be used 
to specify a problern instanee in tenns of an instanee graph. The specification of 
the nodes, arcs, edges, and K 1,11 's with their associated attributes results in an 
instanee graph that represents all infonnation about the problern instanee under 
consideration. During the planning process, a planner rnay want to view parts 
of this infonnation. lf he wants to make an assignrnent for a particular process, 
he may be interested in the set of resources to which the considered process can 
be assigned, or he rnay want to know which other processes have a preeedenee 
relation with the considered process. This kind of infonnation can easily be ob­
tained because it corresponds to relatively smaU subgraphs of the instanee graph. 
Such a subgraph will be called a view of the instanee graph. Many views can be 
defined. A few exarnples folJow below. 

Figure 2.4: A preeedenee view. 

Assignment view: This view presents fora set of processes the resources to 
which it can be assigned, i.e., all the paths originating frorn~one of the pro­
cesses and ending at a resource. Examples of this view have already been 
given in Figures 2.1 to 2.3. 

Process view: This view presents fora set of processes the process groups and 
cornrnon resource sets to which they belang. 

Resource view: This view presents for a set of resources the resource groups 
and capabi1ities to which they belang. 
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Preeedenee view: This view presents for a set of processes the preeedenee re­
lations between them. An example is given in Pi gure 2.4. The are from node 
B to node C implies that process B must be started at least 5 time units and 
at most 20 time units before process C is started. 

A view is a convenient mechanism to present parts of the information embed­
ded in the instanee graph. Note that it is possible that a view contains some re­
dundancy. Por example, when a particular capability is possessed by only one 
resource, the corresponding capability node can be considered as redundant. By 
connecting the process, common resource set, function, and capability set nodes 
that are connected to that capabi1ity node, directly to the corresponding resource 
node, a view can be reduced to a smaller, possibly more insightful one. 

2.2.8 Examples of problem instauces 

In this section we describe the instanee graphs, or parts of it, of three problem 
instances. The first example shows what kinds of connections between the differ­
ent types of nodes are possible. In the second example, we consider a timetabling 
problem fora school. The third example deals with a factory scheduling problem 
with a non-trivial consumption pattem. 

Example 2.2 Consider the foiJowing production planning problem. Four proo­
ucts of two different types are to be made. Products 1 and 2 are products of the 
first type, products 3 and 4 are of the second type. Processes P 1, P2, P 3, and 
P4 represent the production of products 1, 2, 3, and 4. There is a fifth process, 
M, which represents some maintenance activities. Performing P 1 can be done in 
two modes, the normal mode or the special mode, P2 requires the special mode. 
In both modes an employee and a machine of the type MT1 are used, but some 
machines of that type can only be used in the special mode and others only in the 
normal mode. The processes P 3 and P4 require a machine of the type MT2 and 
an employee. The combination that is used for P3 must also be used for P4. The 
maintenance process is to be performed by one of the employees. The instanee 
graph for this problem is given in Figure 2.5. 

This example iJlustrates that aH different kinds of resource requirements dis­
cussed in Section 2.2.4 can occur in the same problem instance. Process P 1 re­
quires a function, process P2 requires a capability set, and process M requires 
a capability. Furthermore, since processes P3 and P4 must be performed on the 
same combination of resources, there is an associated requirement edge connect­
ing the corresponding common resource set node with, in this case, a capability 
set node. 0 
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Process 
Group Process 

C·R· 
Set Fundion 

Capablllty 
Set Capablllty 

Figure 2.5: A production planning problem instance. 

33 

Resouree 

Example 2.3 We consider the following timetabling problem. Each week, each 
group of pupiJs bas to get lessons in different subjects during a specified num­
ber of hours. Some lessons require teachers with full qualification, others re­
quire teachers with partial qualification. Most lessons can be given in normal 
classrooms, butforsome subjects the lessons require special rooms. Chemistry 
lessons, for example, must be given in rooms in which experiments with chem­
ieals can be performed. 

We can describe this situation in the following way. The processes are the 
lessons given to the different groups. They are non-repetitive. An example is 
the chemistry lesson for group 3. There are two kinds of resources: teachers and 
classrooms. A teacher can have several capabilities, representing the subjects he 
is qualified to teach and the levels of qualification. Since a teacher may be fully 
qualified for one subject and partial1y qualified for the other, it is necessary to 
introduce capability nodes for each possible combination of subject and qualifi­
cation. A classroom also may have several capabilities. A particular classroom 
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may be suited for chemistry lessons, as well as normal (for example, English) 
lessons. 

Each lesson requires a particular kind of classroom and a particular kind of 
teacher. These requirements are represented by requirement edges connecting 
the processes and capability sets. Each capàbility set consists of two capabili­
ties, one representing the required kind of classroom, the other representing the 
required kind of teacher. For example, the lesson English for group 4 requires 
the capability set E-F, representing a normal classroom and a teacher with full 
qualification for the subject English. 

A part of an instanee is depicted in Figure 2.6. Only the lessoos English and 
c~emistry for groups 3 and 4 and not all teachers and classrooms are considered. 

Proeess 
Capabllity 

Set Capabllity 
Resource 

Resource Group 

Figure 2.6: Part of a timetabling instance. 

The planning period will consist of 5 days of say 8 hours. The resources are re­
newable resources with capacity 1. A process uses both kinds of resources fully 
during the entire processing interval, which is always one hour. 0 

Example 2.4 Jones and Maxwell [1986] give an example of a factory schedul­
ing problem. There are three processes, 1 MSUB, 2MSUB, and ASSEM. Process 
JMSUB uses a machine ofthe type A-MTLL and materials MATJ and MA12 to 
create half-products SUBJ. Process 2MSUB uses the machine MTLL and the half­
product SUB3 to create another half-product, SUB2. The process ASSEM is per-
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fonned by a worker, whoassembles half~products SUBJ and SUB2 to create the 
end-product WIDGET. The reduced assignment view of this instanee is given in 
Figure 2.7. 

Capabillty Resource 

Figure 2. 7: A reduced assignment view of a factory scheduling instance. 

All processes are repetitive. The machines are renewable resources; thema­
terials, half-products, and end-products are non-renewable resources. The ma­
chines have capacity 1 and are always used up to capacity. The matenals are 
consumed at a constant mte during the processing period, and the half products 
and end products are consumed (produced) at the beginning (end) of each repe­
tition. 

We consider the capability set CSJ. The dumtion solely depends on the MILL 
that is used, and the consumed volumes are completely detennined by the con­
suroption intensity (ie) of the process and the consumption factor of the consid­
ered resource (Je (.) ). The attributes of capability set CS I then are the following: 
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name: CSJ 

duration: = size I A-MILL.speed 

(MA Tl) 

consumption interval: [start, start+ duration] 

consumption volume: consumption intensity I MATJ.consumptionfactor 

(MAT2) 

consumption interval: [start, start+ duration] 

consumption volume: consumption intensity I MAT2.consumptionfactor 

(A-MILL) 

usage interval: [start, start+ duration] 

usage volume: 1 

(SUB/) 

consumption interval: [start+ duration, start+ duration] 

consumption volume: - consumption intensity I SUBJ.consumptionfactor 

2.3 Problem types 

D 

In genera), planning boards are not deveJoped as a tooi for solving one partie­
nlar problem instance, but as a tooi for solving a set of problem instances with 
similar characteristics. We u se the term problem type to refer to a set of problem 
instances satisfying certain conditions. The general problem class, i.e., the set 
of all problem instances that can be specified with the aid of the instanee speci­
fication method, is a problem type itself. 

A PBO requires in formation about the characteristics of the problem type for 
which a planning board has to be generated and about the desired representations 
and manipulations. Information about the desired manipulations could be some­
thing of the fol1owing sort: the planning board must support the reassignment of 
a process. If at a given moment process A is assigned to resource R1 with start 
time t1, the user should be able to reassign process A to resource Rz with start 
time t2. It should be obvious that the implementation ofsuch a manipulation will 
depend on the problem type. Fora problem type in which all resources are avail­
able during the whole planning period, checking the feasibility of a reassignment 
is much easier than for a problem type in which the resources are only available 
during certain time intervals. 
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In fact, the main purpose of the specification of a problem type is to provide 
the necessary information to implement the desired manipulations and represen­
tations as efficiently and effectively as possible. Consequently, the specification 
of a problem type should provide information on those common characteristics 
of the various problem instances that are important for the development of ma­
nipulations and representations. Therefore, care should be taken to ensure that 
the specification of the problem type is accurate. lt should contain all problem 
instances for which the planning board is to be used, but as few others as possi­
bie because they may lead to a planning board that is Jess efficient and effective 
than possible. 

Problem types wiJl be specified by formulating restrictions on the instanee 
graph. A problem type is then the set of all instances that satisfy the given re­
strictions. 

2.3.1 Restrictions on the instanee graph 

The characteristics of a problem instanee are defined by the structure of the as­
sociated instanee graph and the values of the attributes of the various graph ele­
ments. We can therefore distinguish two types of restrictions: on the graph stroc­
ture and on the attribute values. 

Restrictions on the graph structure 
Characteristics of a problem type that can be described in terms of restrictions on 
the graph structure re late to the presence or absence of the various graph elements 
and to the way these graph elements are interconnected. 

Consider the welJ-known job shop scheduling problem. The restrictions that 
have to be imposed on the graph structure are the following: 

• The only node types that appear are process, resource, capability, and process 
group. 

• Each capability node is connected to exactly one resource node. 

• Each requirement edge connects a process to a capability. 

• Preeedenee relations occur in ebains and only involve processes in the same 
process group. 

If the problem type becomes more complex, it is not always possible to specify 
restrictions that are valid for all graph elements of the same type. For example, 
consider the extension of the job shop scheduling problem in which each task 
requires both a machine and some raw material. In an instanee graph, this exten­
sion would be modeled with a capability set node that specifies that a machine 
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aod some raw material are required for a task. However, in a type specification 
it is insufficient to specify that capability set nodes exist aod that each capability 
set node is connected to exactly two capability nodes, because also instances in 
which a task is assigned to two machines would satisfy this restriction. 

In order to deal with such problems, we need to be able to distinguish nodes 
of the same type. The notion of a node group is introduced precisely for that 
reason. A node group is a group of nodes of the same type that are subject to the 
same restrictions. In the above extension of the job shop scheduling problem, we 
would introduce two capability node groups, Machine aod lnventory, aod impose 
the following restrictions: 

• The only node types that appear are process, resource, capability, capability 
set, aod process group. 

• Each capability node is connected to exactly one resource node. 

• Each capability set node is connected to exactly one capability node in the 
node group Machine and to exactly one capability node in the node group 
lnventory. 

• Each requirement edge connects a process to a capability set. 

• Preeedenee relations occur in ebains and only involve processes in the same 
process group. 

Besides restrictions on the presence or absence of the various graph elements 
aod on the the way they are interconnected, it is often necessary to also impose 
restrictions on the number of them. For example, if the raw material in our exten­
sion of the job shop scheduling problem is the same for all tasks, one should be 
able to specify that the number of nodes in the node group lnventory is precisely 
one. 

Restrietloos on the attributes 
Characteristics of a problem type that cao be specified in terms of restrictions 
on the attributes of the graph elements relate to their domains. The domaio of 
ao attribute is its set of admissible values. In a problem type specification it is 
possible to reduce a domaio by specifying restrictions on the set of admissible 
values. Attribute restrictions are specified for node groups. 

2.3.2 Specifying problem types 

In this subsection, we present a syntax which cao be used to specify the resttic­
tions discussed in Section 2.3. 1 more formal1y. The syntax cao be modified or 
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extended in order to deal withother kinds of restrictions. InSection 2.3.3 several 
problem types are specified using this syntax. 

Node groups 
The first part of the specification of the problem type concerns the node groups 
that appear in an instance. For each node type the associated node groups and a 
specification of the number of nodes in these node groups have to be given. For 
example, 

process: Taskl {l, ... ,oo} 
Task2 {l, ... ,oo} 

resource: Machine {1, ... ,4} 
capability: Type {1} 

indicates that there are three node types and four node groups. The node groups 
Taskl and Task2 may have an arbitrary number of nodes, the node group Ma­
chine may have one up to four nodes, and the node group JYpe bas precisely one 
node. 

Instances with five or more resources or more than one capability do not be­
long to this problem type. Also instances with common resource set nodes, func­
tion nodes, capability set nodes, process group nodes, or resource group nodes 
do not belong to this problem type. 

In the example above, the number of nodes in a node group is restricted to be 
in a specified set, e.g., { 1}. { 1 , ... "4}, and { 1 , ... , oo}. In addition to specifying 
a set, it is also possible to re late the cardinality of a node group to the number of 
nodes in another node group. For example, 

resource: 
capability: 

Machine 
JYpe 

{2, ... "100} 
#(Machine) 

would indicate that the number of nodes in the node group Type is equal to the 
number of nodes in the group Machine. 

Graph structure 
The second part of the specification of a problem type concerns the structure of 
the instanee graphs. It deals with n-ary relations, requirement edges, and preee­
denee arcs. 

For each of the Kt.n 's assoeiated with the node groups, the node groups to 
which they can be eonnected and a specifieation of the eardinality of these node 
groups have to be given. For example, 
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capability: 
capability set: 

TYpe Machine 
Transfarm TYpe 

Inputlnv 
Outputlnv 

2. Problem specification 

#(Machine) 
{1} 
{1} 
{1} 

indicates that each node in the node group TYpe is connected to all nodes in the 
node group Machine, and that each node in the node group Transfarm is con­
neeled to one node in the node group TYpe, one in the node group Inputlnv, and 
one node in the node group Outputlnv. 

Requirement edges conneet process nodes and common resource set nodes to 
function nodes, capability set nodes, and capability nodes. Restrictions on the 
possible positions of requirement edges are specified for all relevant node groups. 
Por example, 

requirement edges: Task 
CRSetl 

Type 
Model 

CRSet2 Mode2 

indieates that (process) nodes in the node group Task are conneeted by a require­
ment edge to (capability) nodesin the node group Type, and that (eommon re­
source set) nodes inthenode groups CRSetl and CRSet2 are connected by a 
requirement edge to (function) nodesin the groups Model and Mode2, respec­
tively. 

Preeedenee arcs usually occur between processes in the samenode group or 
in the same process group. Purthermore, the graphs descrihing preeedenee rela­
tions often have a special strueture, sueh as ehains or trees. The strueture of the 
preeedenee graph is specified for all relevant node groups. Por example, soppose 
Groupl, ... ,Group4 areprocessnode groups, and Job is a node group ofprocess 
groups. Then, 

preeedenee arcs: Groupl 
Group2 
Group3 U Group4 
Job 

intree 
outtree 
general 
ehain 

indieates, that the subgraph indueed by preeedenee aresof (process) nodesin the 
node group Group 1 is an intree, that the subgraph indoeed by preeedenee ares of 
(proeess) nodesin the node group Group2 is an outtree, and that the subgraph 
indueed by preeedenee aresof (process) nodesin the node groups Group3 and 
Group4 does not have a special strueture. Purthermore, for eaeh process group 
in the node group Job the folJowing must hoJd: the subgraphs indoeed by preee­
denee ares of nodes representing processes in that process group are chains, 
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Attributes 

The third part of the specification of a problern type concerns the attributes of 
the different objects. Por each node group as well as for the preeedenee arcs, a 
domain is specified for each attribute. Por example, 

process: Task type non-repetitive 
{1,2} 

resource: 
preeede nee: 

Machine 
Groupl 

size 
category 
type 
time lag 

non-renewable 
{ finish-to-start,start-to-start} 
[0, 50] 

indicates that processes in the node group Task are non-repetitive and have size 
1 or 2, that resources in the node group Machine are non-renewable, and that the 
preeedenee relations between nodesin the node group Groupl are either finish­
to-start or start-to-start with a minimum time lag of 0 and a maximum time lag 
of 50 time units. 

lt is also possible to enforce two attributes to take on the same values. Por 
example, 

process: Task size { 1 , ... , oo} 
consumption intensity size 

indicates that the size attribute of processes in the node group Task can take on 
any positive integer value, and that the value of the consumption intensity at­
tribute is equal to the value of the si ze attribute. 

The attributes of capability sets are functions of attributes of other objects. In 
the problem type specification, either these functions are completely specified, or 
restrictions on their shape are imposed. In referring to attributes of other objects 
we apply a two-field notation: object.attribute, where object is a node group. 
When misinterpretation is impossible, it suffices to only state attribute. Por ex­
ample, 

capability set 
ResourceSet duration 

(MacCap) 
usage interval 
usage volume 
(lnvCap) 
consumption interval 
consumption volume 

size/MacCap.speed 

[start, start+ duration] 
1 

[start, start] 
a* consumptionintensity 
a E (0, oo) 

indicates that for a capabi1ity set in the node group ResourceSet the duration 
function is defined as the quotient of the si ze of the process and the speed of the 
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resource possessing a capability in the node group MacCap. Furthermore, that 
resource is used during the entire processing interval, the resource possessing a 
capability in the node group InvCap is consurned at the beginning of the process­
ing interval, and the function that is used for cornputing the consurned volurne 
is a linear function of the consurnption intensity attribute of the process. 

When eertaio attributes of objects are irrelevant for the problern type we want 
to specify, for exarnple the due date attribute in case no due dates occur, this cao 
be indicated by 'does oot apply'. If no domaio is specified for an attribute of 
an object, we assurne that the default domaio specifications apply. The default 
domaio specifications for the different attributes are the following: 

ATIRffiUTES 
process: type 

mode 
si ze 
usage intensity 
consurnption intensity 
release time 
deadline 
due date 
split 

resource: availability periods 
category 
nurnber of modes 
u sage 

divisibility 
dimeosion 
capacity 

consurnption 
divisibility 
dimeosion 
supply 

nurnber of capabilities 
speed 
usage factor 
consurnption factor 

non-repetitive 
does oot apply 
(O,oo) 
1 
does oot apply 
does oot apply 
does oot apply 
does oot apply 
0 
does oot apply 
renewable 
0 

1 
1 
c(t) = 1 

1 
s(t) e {1, ... , oo}, t = 0 
s(t) = 0, t =I= 0 
no default 
1 
1 
does oot apply 
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eapability set: 

process group: 

precedenees: 

duration 
usage interval 
usage volume 
eonsumption interval 
eonsumption volume 
release time 
deadline 
due date 
type 
time lag 

nodefault 
nodefault 
nodefault 
no default 
no default 
does not apply 
does not apply 
does not apply 
finish-to-start 
[O,oo] 
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Time occurs in the problem type specifieation in a similar way as attributes. 
In the default time system, there is only one level and there is no restrietion on 
the length of the planning period: 

TIME 
number of levels 
planning period 

1 
{l, ... ,oo} 

2.3.3 Examples of problem types 

Example 2.5 The simple job shop scheduling problein type discussed in Sec­
tion 2.3.1, in which each task requires one specific machine, can be specified as 
fo1lows: 

NODEGROUPS 
process: 
resource: 
capability: 
process group: 

Task 
Machine 
MacCap 
Job 

GRAPHSTRUCTURE 

{1, ... , oo} 
{1, ... , oo} 
#(Machine) 
{1, ... , oo} 

capability: MacCap Machine 
process group: Job 
requirement edge: Task 
preeedenee arcs: Job 

ATTRffiUTES 
process: 
resource: 

Task type 
Machine category 

Task 
MacCap 
chain 

{1} 
{1} 

number of capabilities 
(MacCap, 1) 

non-repetitive 
renewable 
1 

Note that a1though non-repetitive and renewable are the default values for the 
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type and category attributes, we have explicitly mentioned them in the problem 
type specification for clarity. D 

Example 2.6 In Section 2.2.8, an example of a timetabling problem bas been 
discussed. Lessoos must be assigned to teachers and classrooms, and the fea­
sibility of an assignment depends on the qualification of the teacher (what sub­
ject, full or partial qualification) and the properties of the classroom (chemistry 
lessoos require specific facilities for performing experiments). The example can 
beseen as an instanee of the problem type in which each lesson (process) requires 
a combination (capability set) of a type of classroom and a specific qualification 
(both capabilities). 

In the terminology of our specification method, these restrictions can be for­
mulated in the foJiowing way. We only give the node groups and the graph stroc­
ture restrictions that are related to the processes, resources, capabilities, and ca­
pability sets. 

NODEGROUPS 
process: Lesson 
resource: Teacher 

Classroom 
capability: Qualification 

ClassroomType 
capability set: Room&Qual 

GRAPHSTRUCTURE 
capability: Qualift cation 

{1, ... ' 00} 
{l, ... ,oo} 
{l, ... ,oo} 
{l, ... ,oo} 
{l, ... ,oo} 
{1, ... , oo} 

Teacher 
ClassroomType Classroom 

capability set: Room&Qual ClassroomType 
Qualift cation 

requirement edges: Lesson Room&Qual 

{l, ... ,oo} 
{l, ... ,oo} 
{1} 
{1} 

D 

Example 2.7 Anthonisse, Van Hee, and Lenstra [1988] describe the resource­
constrained project scheduling (RCPS) problem as follows. 

A set of tasks is to be processed by a set of resources. For each task, there 
is a release time and a deadline, which define a time interval in which 
the task must be processed. Once a task is started it must be completed 
without interruption. 

For any two tasks, there are a lower bound and an upper bound on the 
length of the time period between the completion of one task and the start 
of the other. ( ... ) 
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A function may be performed by various combinations of resources, each 
with its own speed. In general, each function bas a class of feasible re­
source sets, and the processing time of a task depends on the feasible re­
source set that is chosen to perform the function it requires. The process­
ing time is the amount of work (i.e., the number of units of the function) 
required by the task divided by the speed of the feasible resource set 

No resource can be alJocated to two tasks at the same time. If a set of 
resources is aHocated to a task, then each of its constituent resources is 
occupied by that task from its starting time until its completion time. For 
each resource there is a set of time intervals during which the resource is 
available. 

We will now specify this problem type with our specification method. 
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The time system is the default system. There is only one time unit, and the 
planning period can be as small or as large as one wants. 

Four kinds of objects are distinguished in the description above: tasks, re­
sources, resource sets, and functions. In our terminology, they are processes, 
resources. capability sets, and functions, respectively. In fact, a fifth kind of ob­
ject, the project, is considered, which is equal to the process group. Beside these 
five objects, our metbod require8 capability nodes. Each resource has a unique 
capabi1ity. Therefore, the number of capability nodes is ·equal to the number of 
resource nodes. There are no restrictions on the number of nodes of any of the 
other types. 

NODEGROUPS 
process: Task {l, ... ,oo} 
resource: Resource {l, ... ,oo} 
capability: ResCap #(Resource) 
capabi1ity set: ResourceSet {1, ... , oo} 
function: Function {l, ... ,oo} 
process group: Project {l, ... ,oo} 

Each resource possesses a unique capability. Therefore, each capability node 
(belonging tothenode group ResCap) is connected to one resource node. The 
capability K1.n 's are in fact Kt, 1 's. The ResourceSets may consist of any number 
of resources, or better, of any number of capabilities. Each function node may 
be connected to any number of ResourceSet nodes (possibly one), and each pro­
cess requires a function. For each Project, the number of tasks in it is completely 
instance-dependent. Preeedenee re1ations are only possible between tasks in the 
same Project. 
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GRAPHSTRUCTURE 
capability: ResCap Resource {1} 
capability set: ResourceSet ResCap {l, ... ,oo} 
function: Function ResourceSet {l, ... ,oo} 
process group: Project Task {1, ... , oo} 
requirement edges: Task Function 
preeedenee arcs: Project general 

All processes are non-repetitive. The usage intensity attribute does not apply, 
because it is not required in order to specify the attributes of a capability set re­
lated to the usage. The consumption. intensity attribute does not apply because 
all resources are renewable. The si ze attribute of processes, and the release time, 
deadline, and due date attributes of Projects and processes may take on any value. 
The tasks cannot be preempted. 

Only renewable resources occur. A resource cannot be used for different tasks 
at the same time. Hence, the capacity is constantly 1, and the usage discretization 
unit is also 1. The speed is not determined by individual resources, but only by 
the resource set as a whole. Therefore, the speed attribute does not apply. Also, 
the usage factor and the consumption factor do not apply. 

Since no consumption occurs, the consumption attributes do not apply. The 
duration is determined as the quotient of the size attribute of the process and 
a number representing the speed of a resource combination that is different for 
each capability set. Each resource that a process is assigned to is used during the 
entire processing intervaL The used volume is equal to one for each resource. 

The preeedenee relations are always of the finish-to-start type. There are no 
restrictions on the corresponding time lags. 

ATTRIBUTES 
process: 

resource: 

Task type 
usage intensity 
consumption intensity 
release time 
deadline 
due date 

Resource category 
number of capabilities 
(ResCap, 1) 

speed 
usage factor 
consumption factor 

non-repetitive 
does not apply 
does not apply 
[O,oo) 

[O,oo) 
[O,oo) 
renewable 
1 

does not apply 
does not apply 
does not apply 
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capability set: ResourceSet duration a* si ze 
a e (0, oo) 

(ResCap) 

usage interval [start, start+ duration] 
usage volume 1 

process group: Project release time [O,oo) 
deadline [O,oo) 
due date [O,oo) 

precedences: Project time lag [[O,oo),[O,oo)] 

Anthonisse, Van Hee, and Lenstra [1988] give an example of an RCPS in­
stance. In Figure 2.8, the corresponding instanee graph is given. 

Process 
Group Process Function 

Capability 
Set 

Figure 2.8: The RCPS instance. 

Capability Resource 

D 

Example 2.8 Jones and Maxwell [1986] discuss factory scheduling problems. 
In these problems three kinds of objects occur: processes, inventories, and ma­
chines. Processes are performed on one machine and consume and produce the 
contents of inventories. 

In their article, Jones and Maxwell introduce a specification metbod that is 
based on networks. We can specify this problem type with our metbod as well. 
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We introduce three resource node groups. One node group consists of nodes 
that represent machines, the other two represent continuous inventories and dis­
crete inventories, respectively. The reason for introducing two inventory node 
groups is that different restrictions on the attribute values can be specified for 
continuous and discrete inventories. 

Since different consumption patterns apply when an inventory serves as input 
or occurs as output of a process, for each of both types of inventory two capabil­
ity node groups are introduced. There are no functions, common resource sets, 
process groups, and resource groups. 

NODEGROUPS 
process: Process {1, ... ,oo} 
resource: Machine {l, ... ,oo} 

Contlnventory {1, ... ,oo} 
Disclnventory {1, ... ,oo} 

capability: MachineType {l, ... ,oo} 
Contlnlnv {1, ... ,oo} 
ContOutlnv {1, ... ,oo} 
Disclnlnv {l, ... ,oo} 
Discüutlnv {1, ... ,oo} 

capability set: ResourceSet #(Process) 

There may be several machines of a particular type. For each process, the ac­
tually required inventories are completely specified. Hence, the corresponding 
K 1,n 's that conneet capabilities and resources are simple edges. Each Resource­
Set consists of one machine type and an arbitrary number of inventories, which 
can be discrete or continuous, and can serve as input or occur as output. There 
are no preeedenee relations. 

GRAPHSTRUCTURE 
capability: 

capability set: 

MachineType 
Contlnlnv 
ContOutlnv 
Disclnlnv 
DiscOutlnv 
ResourceSet 

requirement edges: Process 

Machine 
Contlnventory 
Contlnventory 
Disclnventory 
Disclnventory 
MachineType 
Contlnlnv 
ContOutlnv 
Disclnlnv 
DiscOutlnv 
ResourceSet 

{1, ... ,oo} 
{1} 
{1} 
{1} 
{1} 
{1} 
{O, ... ,oo} 
{0, ... , oo} 
{0, ... , oo} 
{0, ... , oo} 
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The time system is again simple. There is only one time unit, and the planning 
period can be as small or as large as one wants. 

All processes are repetitive. The size attribute can take on any value. Jones 
and Maxwell introduce a process attribute (Time/Lot) that deals with both the 
duration of one repetition and the consumption. In our approach, we enforce the 
size attribute and the consumption intensity to take on the same value. The usage 
intensity does not app1y. We assume that a process may not be interrupted during 
a repetition, hence the split attributes have value 0. There are no release times, 
deadlines, or due dates. 

Machines are renewable resources, with capacity equal to 1. They may have 
several capabilities, all repcesenting a particular MachineType. Since the dura­
tion of a process is uniquely determined by the size of that process, the speed 
attribute for machines does not apply. Similarly, usage factor and consumption 
factor do not apply. 

The inventories are non-renewable resources. The resources of the Contio­
ventory type have continuous divisibility, the resources ofthe Disclnventory type 
have discrete divisibility. Again, the speed, usage factor, and consumption fac­
tor attributes do oot apply. The supply attribute can take on any value. 

Consumption pattems for the different inventories depend on whether they 
are discrete or continuous and on whether they are used as input or as output. 
The consumed volumes are determined by dividing a number that is different 
for each ResourceSet by the consumption intensity of the process. This number 
is positive if the inventory is used as input, and negative if the inventory is used 
as output. Consumption of the .continuous inventories occurs during the entire 
processing period; consumption of discrete inventories occurs at the beginning 
(when used as input) or at the end (when used as output) of each repetition. 

process: 
Process 

type 
usage intensity 
consumption intensity 

resource: 
Machine 

repetitive 
does not apply 
si ze 

category renewable 
number of capabiJities { 1 , ... , oo} 
(Machine Type, {I, ... , oo}) 
speed does not apply 
usage factor does not apply 
consumption factor does not apply 
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Contioventory 
category 
consumption 

divisibility 
supply 

number of capabilities 
( Contlnlnv, 1) 
speed 
usage factor 
consumption factor 
( ContOutlnv, 1) 
speed 
usage factor 
consumption factor 

Disclnventory 
category 
consumption 

supply 
number of capabilities 
(Disc/nlnv, 1) 
speed 
usage factor 
consumption factor 
(DiscOutlnv, 1) 
speed 
usage factor 
consumption factor 

capability set: 
ResourceSet 

duration 
(Machine) 
usage interval 
usage volume 
(Contlnlnv) 
consumption interval 
consumption volume 

non-renewable 

0 
s(t) e [0, oo) 
2 

does not apply 
does not apply 
does not apply 

does not apply 
does not apply 
does not apply 

non-renewable 

2. Problem specification 

s(t) e {0, ... , oo} 
2 

does not apply 
does not apply 
does not apply 

does not apply 
does not apply 
does not apply 

si ze 

[start, start+ duration] 
1 

[start, start+ duration] 
a I consumption intensity 
a e (0, oo) 
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( ContOutlnv) 
consumption interval 
consumption volume 

( Disclnlnv) 
consumption interval 
consumption volume 

(ContOutlnv) 
consumption interval 
consumption volume 

[start, start+ duration] 
af consumption intensity 
a e (-oo,O) 

[start, start] 
a/ consumption intensity 
a e (0, oo) 

[start+ duration, start+ duration] 
a I consumption intensity 
a e (-oo, 0) 
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In Section 2.2.8 we have already discussed an instanee of this problem type. 
The graph given in Figure 2.7 doesnotfit in the specification of the problem 
type above since it represents a reduced view. In the complete graph the con­
neelions between capability sets and resources are always established via capa­
bi1ities. The resource SUB2 would be conneered to two capability nodes, one 
representing the use of SUB2 as input and one representing the use of SUB2 as 
output. MAT2 on the other hand, although also occurring in two capability sets, 
would be connected to only one capabiHty node, since it is only used as input. 

D 
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The general scheduling problem 

3.1 Introduetion 

Practical relevanee and theoretica} importance are the criteria that are used for the 
justilkation of research in machine scheduling or any other research area. The­
oretica} importance in machine scheduling is often closely related to practical 
relevance: methods and techniques developed for a purely theoretica! problem 
as well as the obtained insight may be useful in developing solution methods for 
more practical problems. 

In recent years, much research in machine scheduling has failed to meet these 
criteria. Many very specific problem types are studied, most of which are of only 
limited practical relevance, and the methods that are developed forthese theoret­
ica! problems use only occasionally interesting new ideas or concepts. Further­
more, theoretica} exercises that have been performed for one type of problem are 
repeated again and again for slightly different problem types. 

A general treatment of manipulations for a large class of problems, as is re­
quired in a planning board generator, does not benefit from research in which 
attention is focused on the distinguishing characteristics of problem types rather 
than on their common aspects. Methods are required that can be applied to a 
broad range of problem types but still use problem-specific information in such 
a way that efficient application to individual problem types is possible. 

To support the advisor function of a planning board, we need two kinds of 
methods, construction methods and impravement or local search methods. Con­
struction methods are required for the creation of an initial plan, for the comple­
tion of partial plans, and for the efficient insertion of newly arriving processes. 
Local search methods help to create plans of sufficient quality, can be used to 
give suggestions for impravement to the planner, and are essential for efficiently 
adjusting a plan when infeasibility arises due to machine break-downs or other 

53 
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unexpected eircumstances. 
Both solution methods require an appropriate mathematica} representation of 

solutions. A good representation enables efficient evaluation of the quality of 
solutions and highlights their structural properties. An example of such a repre­
sentation is the directed graph that is used for the job shop scheduling problem. 
This directed graph, which is closely related to the disjunctive graph of Roy and 
Sussmann [1964], has proved its usefulness in several solution methods. The 
quality of a solution is equivalent to the length of the longest path in the graph. 

In this chapter, I discuss first the job shop scheduling problem and the associ­
ated graph representation of solutions. Then I show that we can u se a similar rep­
resentation for solutions of scheduling problems with more general constraints, 
such as deadlines and delay constraints, and more general objective functions, 
including a large class of non-regular objective functions. These generalizations 
result in the introduetion of the general scheduling problem and the associated 
solution network. The quality of a solution of the general scheduling problem 
is obtained by solving a maximum cost flow problem in this solution network. 
Finally, I discuss some properties of solution networks, that will be used in Chap­
ter 4 in order to develop efficient construction and local search methods. 

3.2 The job shop scheduling problem 

The job shop scheduling problem can be described as follows. We are given a 
set M of machines and a set 0 of operations. Associated with each operation 
v e 0 is a processing time Pv E N and a machine M v E M. Operation v must be 
performed on machine. M v during Pv consecutive time units. Preemption is not 
allowed: the processing of an operation may not be interrupted and resumed at 
a later time. There is a preeedenee re lation ll On 0, where (V, W) E ll indicates 
that operation w cannot be started before operation v is completed. In the job 
shop problem, the preeedenee re lation is closely related to the concept of job. A 
job consists of a set of operations that must be performed in a prespecified order. 
If v and w are two consecutive operations of the same job, then ( v, w) e n. 

A schedule is characterized by the starting times Sv for all operations v. A 
schedule is feasible if at any given moment no two operations are performed on 
the same machine and the preeedenee constraints are satisfied. The objective is 
to find a feasible schedule with minimal makespan. The makespan, Cmax. of a 
schedule is equal to the maximum completion time over all operations. 

Let f). be the collection of pairs of operations that require the same machine, 
i.e., f). = {{v, w} I Mv = Mw}. The job shop problem canthen be formulated 
as a disjunctive programming problem in the following way. 
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min 
s.t. 

(J P) 

Cmax 

Cmax 2: Sv + Pv• 

Sw 2: Sv + Pv• 
Sw 2: Sv + Pv V Sv 2: Sw + Pw. 
Sv 2: 0, 

Vv E 0 
V(v, w) En 

V{v, w} e !:l. 
Vv E 0 

(3.1) 
(3.2) 
(3.3) 
(3.4) 
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The important scheduling decision is todetermine for each pair of operations 
that require the same machine, whether one is performed before the other, or the 
other way around. This decision is often referred to as a selection: for each of 
the disjunctive constraints (3.3), either Sw 2: Sv + Pv or Sv 2: Sw + Pw is se­
lected. A selection, denoted by u, transforms (J P) into a linear programming 
problem (J P"). Let !:l." be the collection of ordered pairs of operations (v, w) 
that require the same machine, and for which it bas been decided that v must be 
performed before w. The linear program is then as follows. 

min Cmax 

s.t. Cmax 2: Sv + Pv• Vv E 0 (3.1) 
(J P") Sw 2: Sv + Pv• V(v, w) En (3.2) 

Sw 2: Sv + Pv• V(v, w) e !:l." (3.3') 
Sv 2: 0, Vv E 0 (3.4) 

This linear program bas a very special structure, which is highlighted when 
the dual problem is considered .. With each constraint of the form Sw 2: Sv + Pv 

(by rewriting Cmax as Sz, also the constraints (3.1) are of this form) we associate 
a dual variabie Xvw. Let Ä be the set of constraints of the aforementioned form, 
i.e., Ä is thesetof constraints (3.1 ), (3.2), and (3.3'). For the sake of convenience, 
each such constraint will be denoted by a pair ( v, w). The dual problem can then 
be formulated as follows. 

max L: PvXvw 
(v, w)eÄ 

s.t. L: Xvz = 1 (3.5) 
(v.z)eÄ 

(J D") L · Xuv- L: Xvw ~ 0, Vv E 0 (3.6) 
(u,v)eÄ (v, w)eÄ 

Xvw 2: 0' V(v, w) e Ä (3.7) 

(J D") is a maximum cost flow problem. By introducing slack variables Xsv 

for all v e 0, the constraints (3.6) are transformed into equalities. Constraints 
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(3.5) and (3.6) tben repcesent flow baJance constraints for anetwork N = (V, A), 
with V= 0 U {s, z}, and A= Ä U {(s, w) I we V\ {s, z} }. 

Thatis, foreacb constraint ofthe form Sw ::: Sv+Pv tbere isanarc (v, w) e A, 
and for eacb constraint of the form S11 ::: 0 there is an are (s, v) e A. This 
corresponds to rewriting the nonnegativity constraints as Sv- Ss ::: 0, wbere Ss 
bas a fixed value of 0. The cost of an are ( v, w) in the network is equal to p 11 , with 
Ps = 0, and eacb are bas infinite capacity. The demand of node z is 1, all other 
demands are 0. Node s bas indefinite supply (there is no flow balance constraint 
for node s), but we can transform tbe problem into a balanced problem by taking 
the supply of s equal to 1, i.e., L(s,w)eÄ Xsw = 1. (J Der) thus represents the 
problem of finding a maximum cost flow of size 1 from node s to node z in the 
network N, or equivalently, tbe problem of finding tbe longest path from node s 
to node z. The longest patb from s to z is often referred to as tbe critica[ path. 

From duality theory we know tbat, if one of (J per) and (J Der) is feasible 
and bas a finite optimal value, the other is also feasible and bas identical opti­
mal value. Thus, for a given selection of the disjunctive constraints in a job shop 
problem, the makespan can be computed by solving a longest patb problem. In 
fact, also the starting times of a11 operations can be found in that way. By tak­
ing as tbe starting time of operation v tbe lengtb of tbe longest path from node 
s tonode vin N, an optima] solution of (J per) is obtained. This solution cor­
responds to the so-called left-justijied schedule. In a left-justified schedule, no 
operation can be started earlier without changing for at least one machine the 
order in wbicb the operations are performed on that machine. Often, there are 
several other optima] solutions of (J per). The right-justijied schedule, for ex­
ample, is the one in whicb all operations are started as late as possible without 
increasing the makespan. By studying the relation between the problems (J per) 
and (J Der), we can describe thesetof all optima} solutions. I will comeback to 
this in Section 3.4.3. 

Exarnple 3.1 Consider the following instanee of the job shop problem. There 
are three machines, A, B, and C, and three jobs. The first job consists of opera­
tions 1, 2, and 3, which have to be performed in that order, the second job consists 
of operations 4, 5, and 6, and the third job of operations 7, 8, and 9. 

The required machines and processing times of the operations are given in the 
fo11owing table. 

V 2 3 4 
A C B B 
3 4 2 3 

5 6 7 
A C A 
3 2 3 

8 
B 
2 

9 
c 
3 
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Let (1, 7, 5) be the order in which the operations are performed on machine 
A, (4, 8, 3) on machine B, and (2, 6, 9) on machine C. The network and the left~ 
justified schedule corresponding to this selection are given in Figure 3.1. Note 
that, for reasans of clarity, notall the arcs (s, u) and (u, z) are given. 

0 5 10 15 

B I s I 3 I 

c I 6 I 9 

Figure 3.1: A job shop example; network and left-justified schedule. 

The critica! path is the path (1,7,5,6,9), and the makespan is 14. 0 

The fact that the makespan of a salution to the job shop scheduling problem 
can be computed by solving a longest path problem is well known. Roy and Suss­
mann [1964] have introduced the disjunctive graph representation for schedul­
ing problems. In a disjunctive graph, nodes represent operations, (directed) arcs 
represent preeedenee constrainfs, and (undirected) èdges represent disjunctive 
constraints. The scheduling decision results in orienting the edges one way or 
the other. The graph that then arises is identical to the network N, except for the 
nodes s and z, and the arcs incidenttothese nodes. 

Many salution procedures for the job shop scheduling problems make use of 
the disjunctive programming formulation and the disjunctive graph representa­
tion. In Chapter 4;1 wiH show that similar salution procedures may also be ap­
plied to other scheduling problems, with more general constraints and more gen­
eral objective functions. An important step in this direction is made in the next 
section. There I will discuss the main theorem, which states that a1so for more 
general scheduling problems optimal starting times fora given processing order 
of the operations can be found by solving a maximum cost flow problem. 
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3.3 The general scheduling problem 

3.3.1 Maximum cost flow 

Consider the general maximum cost flow problem on a network N =(V, A). 

max L CvwXvw 
(v,w)eA 

(V) s.t. L Xuv - L Xvw = bv ' 
(u, v)eA (v,w)eA 

0 ::=:: Xvw ::=:: hvw, 

Vv E V 

V(v, w) E A 

(3.8) 

(3.9) 

Associated with each are (v, w) E A are a cost Cvw and a capacity hvw· Asso­
ciated with each node v e V is a demand bv. Negative demands are sometimes 
referred to as supplies. Note that in most literature about network flow problems, 
the flow balance constraints are of the form outflow - inflow = supply, whereas 
the constraints in (V) are of the form inflow - outflow = demand. Accordingly, 
the signs of the bv in the formulation that I use are different from those in other 
formulations. 

The dual of (V) is 

min L bvSv + L hvwlXvw 
VEV (V,W)EA 

('P) s.t. Sw - Sv + lXvw :::: Cvw ' 
Sv unrestricted , 
lXvw 2:: 0, 

V(v, w) E A 
Vv E V 
V(v, w) E A 

(3.10) 
(3.11) 
(3.12) 

I will now discuss the main results in maximum cost flow duality. For a more 
extensive treatment of this subject, see, e.g., Ahuja et al. [1993]. Note first that 
constraints (3.1 0) can he rewritten as 

Since avw occurs with a nonnegative coefficient hvw in the objective function, 
we have 

fXvw = max{O, Cvw + Sv- Sw}. 

Hence, for given Sv and Sw. avw is completely determined. Therefore, a solution 
of the probJem (P) is characterized by the values of Sv for all v e V. 
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Lemma 3.1 (Weak duality) 
Let zp(S) denote the objective function value of somefeasible solution S of(1') 
and let ZP (x) denote the objective function value of some feasible solution x of 
(V). Then zp(S) ~ zp(x). 

From Lemma 3.1 it follows that any feasible solution of (V) gives a lower 
bound on the optima) value of (1'), and any feasible solution of (1') gives an 

upper bound on the optima) value of (V). 

Lemma 3.2 (Strong duality) 
Ij any of the problems (1') and (V) has a finite optima[ solution, then there exist 
solutions S* of(1') and x* of(V) such that zp(S*) = zp(x*). 

Problem (1') is a generalization of (J r 7
), formulated inSection 3.2. Justas 

it is possible to solve (J pa) by considering its dual, problem (V) can be used 
to solve (1'). Obviously, the complexity of solving a general maximum cost 
flow problem is higher than the complexity of solving a longest path problem 
(see Section 3.4.3), but, as a compensation, the formulation of problem (1') of­
fers many modeling options that can be exploited in order to handle more gen­
eral scheduling problems. I will now discuss the possibilities for modeling con­
straints and objective functions. 

3.3.2 Constraints 

The constraints Sw- Sv + avw ~ Cvw as they occur in the formulation of (1') 
can be used to model different kinds of scheduling constraints. 

Start-start constraints 

Similarly as in the job shop scheduling problem, we introduce a dummy oper­
ation s with processing time Ps = 0 and fixed starting time Ss = 0. Although 
Ss = 0 does not fit in the formulation of (1'), this is no real problem. Adding 
the constraint Ss = 0 to (1') corresponds to replacing the constraint (3.8) for s 
in (V) by 

L Xus - L Xsw + 8s = bs, 
u:(u,s)EA w:(s,w)EA 

where 85 is an unrestricted variable. The variabie 8s does not occur in any other 
constraint, and therefore this constraint is never binding or, equivalently, there 
is no flow balance constraint for node s. However, since total demand must be 
equal tototal supply, and all other demands and supplies are known, the supply of 
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node s must be equal to the total excess demand of all other nodes in the network 
N = (V, A). That is, 

L Xus - L Xsw = - . L hv. 
u:(u,s)EA w:(s,w)EA vEV\{s) 

Since Ss = 0, the value of hs has no effect on the value of the objective tunetion 
of (P). 

We cao now handle several kinds of constraints that occur in scheduling prob­
lems. The nonnegativity constraints Sv - Ss :=: 0 and the preeedenee constraints 
Sw - Sv :=: Pv have already been discussed for the job shop scheduling problem. 
We can rewrite such constraints as Sw - Sv + ctvw :=: Cvw• which is of the form 
of constraints (3.1 0), and force avw to take on the value 0 by using the coeffi­
cient hvw = +oo. For the corresponding (dual) maximum cost flow problem, 
this would imply that the are (v, w) has infinite capacity. 

Other constraints that occur frequently in scheduling problems are release 
time constraints (Sv :=: r 11 ) and deadline constraints (Sv + Pv ::; d 11 ). Forthese 
constraints, we make use of the dummy operation s again, and formulate them 
as Sv -Ss :=: rv and Ss- Sv :=: -d11 + p 11 , respectively. The associated a's are 
again pena1ized with an infinite h-coefficient. 

Minimum and maximum delay constraints are generalizations of the preee­
denee constraints. A minimum delay constraint (Sw - S 11 :=: Pv + ~~n) indi­
cates that an operation w cannot be started earlier than ö:Jl~n time units after the 
completion of operation v. Similarly, a maximum delay constraint (S11 - Sw :=: 
- Pv - ~:Jlu~x) indicates that operation w must be started before ~= time units 
after the completion of operation v. 

All these constraints are of the form Sw - Sv :=: Cvw• relating the starting time 
of one operation to that of another operation. I will refer to them as start-start 
constraints. They comprise aH four types of preeedenee relations ( finish-to-start, 
start-to-start, start-to-finish, and finish-to-finish) discussed in Chapter 2 (see also 
Bartusch et al. [1988]). Associated with each start-start constraint Sw-Sv :=: Cvw 
there is an are (v, w) with cost Cvw and infinite capacity in the network N. 

The start-start constraints cao also be applied to represent other kinds of re­
lations and constraints. As shown before, the correct value of the makespan is 
obtained by introducing start-start constraints Cmax - Sv ::: Pv for all v e V. 
It may also be useful to drop the interpretation of the S11 's as starting times alto­
gether. For example, Jet i v be the amount of some resource required by operation 
v, and let lv be the size of the inventory of that resource after operation v is per­
formed. Soppose that operation wis performed immediately after operation v. 
Then, the 'start-start' constraint Iw -lv :=: iw must hold. In this thesis, however, 
I will not deal with this kind of constraint. 
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Disjunctive constraints 
In the job shop problem, the disjunctive constraints indicate that for each pair 
of operations that require the same machine (vehicle, workman, or any renew­
able resource of unit capacity) it must be determined whether one is performed 
before or after the other. When these decisions have been made, the disjunctive 
constraints are transformed into ordinary start-start constraints. It is possible to 
formulate more general disjunctive constraints which still have the property that, 
for any selection, they reduce to start-start constraints. 

One generalization involves the introduetion of machine sets. Let Mv Ç M 
be the machine set associated with operation v. Then v must be performed on all 
machines in Mv simultaneously during Pv consecutive time units. Machine sets 
are also useful for modeling other constraints than those reflecting limited ma­
chine capacity. Consider, for example, a situation in which two operations, v and 
w, do not require a common machine but are still not allowed to be performed 
at the same time. This situation occurs for example in open shop problems and 
is modeled by introducing a dummy machine which then is included in both Mv 

and Mw. 

Sequence-dependent set-up times arise frequently in machine scheduling prob­
lems. lf operation w is performed immediately after operation v on some ma­
chine, then a set-up is required to bring that machine in the required mode. The 
corresponding nonnegative set-up time is denoted by Övw· The set-up times are 
assumed to satisfy the triangle inequality: Ouv+8vw :::: Duw· The set-up times will 
often be incorporated in sequence-dependent processing times Pvw = Pv + 8vw· 

The general disjunctive constraints can then be formulated as 

Sw 2:: Sv + Pvw V Sv 2:: Sw + Pwv 'l{v, w}: Mv n Mw =f:. 0. 

Much care must be taken in modeling a problem when sequence-dependent 
processing times occur. For example, if set-ups must be performed for several 
machines in a machine set M 11 , then the largest set-up timedetermines the starting 
time of operation v. 

Adjusted start-start constraints 
From now on, I wiJl refer to the constraints Sw - Sv + avw :::: Cvw as adjusted 
start-start constraints. The terms a 11w that occur in the adjusted start-start con­
straints aH appear in only one constraint, and can therefore not be related toother 
variables than the S11 and Sw in that constraint. A natural interpretation of the 
adjusted start-start constraints is to regard them as 'soft' start-start constraints. 
Consider the constraint Sw - Sv + avw 2:: Cvw· If Sw - Sv 2:: Cvw• then avw• if it 
bas a positive coefficient h vw in the objective function, will take on the value 0. 
If Sw - Sv < Cvu~> then <lvw will be equal to Cvw + Sv - Sw. Thus, avw can be 
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seen as the amount of violation of a constraint Sw - Sv :::: Cvw. and hvw can be 
considered as the penalty that is to be paid for each unit by which that constraint 
is violated. 

In fact, the adjusted start-start constraints are no real constraints. Their main 
use is in modeling varloos optimization criteria, as will be seen shortly. 

3.3.3 Objective functions 

In Section 3.2, we have seen how we can model an objective like makespan min­
imization by introducing start-start constraints Cmax- Sv :::: Pv for all operations 
v, and including Cmax in the objective function. In a similar way, we can model 
the maximum lateness, which is defined as maxveO Sv + Pv -dv. with d 11 the doe 
date of operation v. We introduce start-start constraints Lmax- Sv :::: Pv - dv 
and include Lmax in the objective function. 

More generally, let 

Sz; = max{Sv + 1Jv}, 
max veO; 

with 0; some subset of the set of operations, and 1} 11 , Vv e 0;, given constants. 
Let the objective be to minimize Sz; . This situation can be modeled by intro-

ma• 
ducing start-start constraints Sz~n.,. - Sv :::: 1Jv, for all V E oj, and include Sz:n .. 
in the objective function with coefficient bz; = 1. Analogously, let 

max 

If we want to maximize S i , we introduce constraints Sv - S i :::: -s11 , and 
Zmin Zmin 

include S 1 with coefficient b i = -1 in the objective function. 
Zmin Zmin 

Note that we are not able to handle the maximization of Sz; or the minimiza-
max 

tion of S i . The variables Sz; and S 1 would take on infinite values rather 
Zmin max Zmin 

than the actually desired values, because the start-start constraints would not be 
restrictive. 

The most straightforward use of the first term of the objective function of (P), 
L b 11 S 11 , is in minimizing the weighted sum of starting times or, equivalently 
since preeroption is not a11owed, the weighted sum of completion times. In that 
case, bv is set to be equal to the weight associated with operation v. 

Often, however, the aim is not to complete the operations as early as possible, 
but as close as possible to their due dates. The objective then is, for example, to 
minimize the total sum of earlinesses and tardinesses: 

min LEv+ LTv. 
veO veO 
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The earliness Ev of operation v is defined as max{dv - (Sv + Pv). 0}, and the 
tardiness Tv as max{(Sv+ Pv) -dv, 0}. The start-start constraints do notapply if 
we want to model the earliness of an operation, but bere the adjusted start-start 
constraints come to the rescue: 

Ev is the adjustment term asv in the adjusted start-start constraint Sv- Ss +asv ::: 
dv - Pv. In the objective function, the coefficient h sv bas value 1. Similarly, Tv is 
equivalent to the adjustment term avs and appears in the objective function with 
coefficient hvs = 1. 

Note that it is also possible to model the tardiness by introducing a start-start 
constraint sT. - Sv :::: Pv - dv and sT. :::: 0, and taldng bT. = 1. Both ap­
proaches have their advantages and disadvantages. An advantage of using an ad­
justed start-start constraint is that only one constraint is introduced, correspond­
ing to one are (v, s) with capacity 1 in the dual network. When start-start con­
straints are applied, one node Tv and two arcsof infinite capacity, (s, Tv) and 
(v, Tv). are introduced. Using adjusted start-start constraints results in a smaller 
network than using start-start constraints. 

As the following lemma shows, it is possible to model any cost function that 
is bounded from below and convex piecewise linear in the starting time of an 
operation, or in the difference between two starting times, Sw- Sv. 

Lemma 3.3 (Convex piecewise linear functions) 
Let f : IR -+ IR be a convex piecewise linear function, with m breakpoints 
SJ, ••• , Sm, and let I E {1, ... , m} be such that f(y) ::: /(st). 'Vy E JR. That 
is, fis minimal in St. Then,for each possible value ofy, f(y) is the outcome of 
a linear program of the following form: 

m 
f(y) = min fJ + L nak 

k:::::l 

s.t. y + ak ::: sk, 
-y + ak ::: -sk, 
ak ::: 0, 

with Yk 2::: O,forall k E {1, ... , m}. 

'Vk E { 1, ... I/} 
Vk E {l + 1, ... , m} 
Vke{l, ... ,m}, 
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Proof. Any convex piecewise linear function I with breakpoints s1 , ••• , Sm and 
a minimum in s1 can be written as 

I m 

l(y) = f3 + L Yk(Sk - y)+ + L Yk(y -Sk-I)+, 
k=l k=l+l -

with Yk ::: 0, for all k. Here, z+ = max{O, z}. 

Figure 3.2: A convex piecewise linear function. 

Consider, for example, the function I depicted in Figure 3.2. lts slope is 01 

in the interval ( -oo, st). 02 in (SJ, s2), and 03 in (s2, +oo), and I is minimal for 
y =SJ (/(sJ) = {3). We write I as 

l(y) = f3 + Yt(St- y)+ + Y2(Y- St)++ Y3(Y- sl)+, 

with Yt = -Ot. Y2 = {J.z, and Y3 = fh- {J.z. 
Furthermore, we have, 

(sk - y)+ = min{ak I y + ak ;:: Sk. ak ;:: 0}, 

and 

(y- sk)+ = min{ak I -y + ak ;:: -sk, ak ;:: 0}. 

Thus, since Yk ;:: 0, for all k, the value of the optimal solution of the linear pro­
gram formulated in the lemma is equal to l(y). 0 

By taking y = Sw - S 11 (and -y = Sv - Sw). the constraints in the linear 
program in Lemma 3.3 assume the form of the adjusted start-start constraints. 



3.3. The general scheduling problem 65 

Also the objective function fits in the formulation of ('P). This shows that it is 
possible to model cost functions that are convex piecewise linear in Sw - Sv. for 
any pair (v, w). Since Sv = S 11 -Ss, alsocostfunctions that areconvex piecewise 
linear in Sv, for any v, can be handled. 

Now suppose that we want to model a cost function f that is strictly decreas­
ing in S11 , i.e., there is no breakpoint s1 for which f takes on its minimal value. 
If it is possible to give an upper bound Sm+ I on the value of Sv, the function f 
can be transformed into an equivalent function 

j'(Sv) = { /(Sv) , Sv::::; Sm+l 
f(sm+J) , Sv > Sm+l 

which is convex piecewise linear and has a minimum in the breakpoint Sm+ 1· We 
then apply Lemma 3.3 to the new function f'.-

Similarly, if f is strictly increasing in Sv and so is a lower bound on the value 
of S11 , we can use 

j'(Sv) = { /(Sv) , Sv =::: so . 
j(so) , Sv < so 

Summarizing, we can model all cost functions that are convex piecewise linear 
in Sv and in Sv- Sw by using adjusted start-start constraints, provided that they 
have a minimum. This minimum may occur either in one of the breakpoints or 
in some extreme point of the domain. 

An example of a cost function that is formulated in terms of the difference 
of two starting times is the job handling time. Consider a job consisting of sev­
eral operations that have to be performed in a prespecified order. The handling 
time of a job is defined as the time between the start ofthe first operation and the 
completion of the last operation of a job. Let v be the first operation of job j and 
let w be its last operation. Suppose that we want to minimize the handling time 
fj = Sw + Pw- Sv of job j. This can be done by adding the adjusted start-start 
constraint 

and including lj in the objective function with coefficient h,i = 1. 
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3.3.4 Definition of the general scheduling problem 

An instanee of the general scheduling problem is described in the following way. 
Let 0 be thesetof operations, and let M be thesetof machines. Associ­

ated with each operation v e 0 is a machine set M 11 ~ M, a processing time 
p11 > 0, a release time r11 , and a deadline d 11 • Operation v must be performed on 
all machines in Mv simultaneously during p 11 consecutive time units. Process­
ing operation v cannot be started before its release time and must be completed 
before its deadline. 

Each machine can process at most one operation at a time. If operation w is 
performed immediately after operation v, then a set-up is required which takes 
tS 11w time units. The set-up times satisfy the triangle inequality, i.e., tSuv + tSvw 2: 
Ouw• for all operations u, v, and w such that Mu n Mv =F 0 and Mv n Mw =F 0. 

Let nmin be thesetof minimum delay constraints, and let nmax be thesetof 
maximum delay constraints. A minimum delay (v, w) in nmin indicates that op­
eration w cannot be started earlier than 8~~" time units after the completion of op­
eration v. Similarly, a maximum delay constraint (v, w) in nmax indicates that 
operation w must be started before tS::X time units after the completion of oper­
ation v. 

The objective is to find a schedule, characterized by the starting times S11 ofthe 
operations v, that satisfies all the constraints and that minimizes the cost function 

/1 12 

C(S) = I:>·iSzina.- LJLiSz~in + L fv(Sv) + L fvw(Sw- Sv)• 
i=l 1=1 veO v,weO 

In this formulation, l~ol2 E N, À; > 0, and JLi > 0. Sz; = maxveou{Sv + 
max 

17vd. i= 1, ... , lt. for given subsets Ou ~ 0. Sz;. = minve02;{S11 + ê 11;}, i= 
1, ... , /2, for given subsets 02; ~ 0. Here, 17vi ande 11; are given constants. The 
functions / 11 and fvw are convex piecewise linear and bounded from below. 

A cost function of this form is referred to as a traetabie cost function. Ex­
amples of traetabie cost functions are the makespan, the maximum lateness, the 
weighted sum of completion times, the weighted sum of earlinesses and tardi­
nesses, and the weighted sum of job handling times. There are, however, many 
more traetabie cost functions, including weighted soms of the cost functions just 
mentioned. 

As we have seen in the previous sections, an instanee ( G P) of the general 
scheduling problem can be formulated as a disjunctive programming problem. 
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min f3 + L hvSv + L hvwavw 
veV (v,w)eA2 

s.t. Sw - Sv ::: Cvw t 

(GP) Sw- Sv +avw:?: Cvw, 

Sw :?: Sv + Pvw V Sv :?: Sw + Pwv , 

Ss= 0, 

avw 2: 0' 

V(v, w) E At. 
V(v, w) E A2, 
V{v, w} E A3, 

V(v, w) e A2. 
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Here, V = 0 U {s, z!nax• ... , Z~ax• z~in• ••• , Z~n}. At is thesetof start-start 
constraints, comprising the release time and deadline constraints as well as the 
minimum and maximum delay constraints. A3 is the set of pairs { v, w} of opera­
tions that require processing by at least one common machine, i.e., M vnM w ::j:. 0. 
The set-up times are incorporated in the processing times: Pvw = Pv + t5vw· 

Now the main theorem can be formulated. 

Theorem 3.4 (Finding a selection-optimal schedule) 
Consider an instanee ( G P) of the general scheduling problem. For any selection 
of the disjunctive constraints, optima/ feasible values of Sv, if they exist, can he 
obtained by solving a maximum cost flow problem. 

Proof. A selection u transforms ( G P) into the linear program 

min fJ + L hvSv + L hvwavw 
veV (v,w)eA2 

s.t. Sw - Sv :::: Cvw ' 

( G pu) Sw - Sv + avw '=::: Cvw ' 

Sw :?: Sv + Pvw ' 
Ss =0, 

V(v, w) E At. 
V(v, w) E A2, 
V(v,w)eAj, 

V(v, w) e Az. 

The dual of ( G pu), leaving the constant term fJ out of consideration, is 

max L CvwXvw 
(v,w)eA" 

(GD(T) s.t. L Xuv- L Xvw = hv' 
(u,v)EA" (v.w)eA" 

0 ·::S Xvw ::S hvw , 

Vv E V, 

V(v, w) E Au, 

where Au =At U Az U Aj and huw= +oo for all (v, w) E At U Aj, and b9 = 
- LveV\{s) hv. It is a maximum cost flow problem on a network Nu = (V, Au). 

lf we use a maximum cost flow algorithm that explicitly uses the dual problem 
(there are several algorithms that do so, see Abuja et al. [1993]) in order to solve 
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(GDu), then an optima} flow as wellas optimal values of Sv and avw. if they 
exist, are obtained. 

As will be discussed in Section 3.4.3, it is also possible to obtain optimal val­
ues of Sv and avw from the optimal flow irrespective ofhow this flow is obtained 
(Lemma 3.12). 0 

The problem of minimizing the weighted sum of earlinesses and tardinesses 
of operations on a single machine, where the order in which the operations are 
performed is fixed, can be considered as a special case of the problem that is 
discussed bere. The polynomial solvability of this problem is one of the major 
results in scheduling with non-regular objective functions (see, e.g., Baker and 
Scudder [1990]). 

The carefut reader will have noticed that A u represents both the set of con­
straints in ( G pa) and the set of arcs in the · network Nu. Since the relation be­
tween the two sets is so strong, I ex peet that this notation will not cause any con­
fusion. 

3.4 Solutions 

3.4.1 The solution network 

Consider an instanee ( G P) of the general scheduling problem. For each feasi­
ble schedule there is a unique selection of the disjunctive constraints, since for 
any pair of starting times Sv and Sw only one of the constraints Sw - Sv 2::: Pvw 
and Su - Sw 2::: Pwv can hold (for Pvw and Pwv > 0). For each selection, how­
ever, there are in general many feasible schedules. In fact, there may be several 
schedules that are optima] fora given selection. Theorem 3.4 states that it is pos­
sibie to obtain one such selection-optimal schedule in polynomial time by solv­
ing a maximum cost flow problem. Finding an optimal schedule for the general 
scheduling problem therefore reduces to finding an optima) selection, i.e., a se­
lection for which the corresponding selection-optimal schedule bas lowest cost. 

Let I: be the set of possible selections, and let A) be the set of selected dis­
junctive constraints characterizing the selection u e I:. Then (G P) can bere­
formulated as 

ming(u), 
u ei: 

with g(u) the value ofthe optima] solution ofthe problem (GPu). 
The solution space in the reformuialed problem consists of the set of possible 

selections. The properties of a solution can be studied by looking at the sub-
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problem that must be solved in order to obtain the corresponding solution value 
g(u). If (G pt') is infeasible, we say that g(u) = +oo. The dual of (G pu) is a 
maximum cost flow problem (G Du) on a network Nu = (V, A1 U A2 U Aj) = 
(V, A a). The network Na will be referred to as the salution network correspond­
ing to the selection u. 

For the general scheduling problem, the following corollary of Lemma 3.2 
holds. 

Corollary 3.5 (Strong duality) 
lf g(u), the cast of a selection-optimal schedule corresponding to the selection 
u, isjinite, then there exists a flow x* with cast g(u) in the salution network Na. 
lfthe maximum castflow in the salution network Na hasfinite cast za, then there 
exists a selection-optimal schedule with cost za. 

3.4.2 Feasibility 

From Theorem 3.4 we know that we can find a selection-optimaJ schedule if one 
exists. Since aU individual cost functions fv and fvw as wellas S4i . and S4i are 

!lljn max 
assumed to be bounded from below, and the number of operations ts finite, ( G P) 
is not unbounded, and thus ( G pa) is not unbounded for any selection u. It is, 
however, very well possible that no feasible solution of (G pa) exists. The fol­
lowing wen known lemma from duality theory deals with the situation in which 
no finite optima) solution exists. 

Lemma 3.6 (lnfeasibility and t,mboundedness) 
Let (P) be an arbitrary linear programming problem, and let ('D) be its dual. lf 
(P) is unbounded, then ('D) is infeasible. lf (P) is infeasible, then ('D) is infea­
sible or unbounded. 

Consider a linear program min{ ex I A x = b, x ::: 0}. The homogeneaus farm 
of this problem is min{cx I Ax = 0, x ::: 0}. The last statement of Lemma 3.6 
can be strengthened in the foHowing way. 

Lemma 3.7 (lnfeasibility and unboundedness) 
lf (P) is infeasible, then ('D) is unbounded in homogeneaus form. 

Proof. See Bazaraa et al. [1990], p.252. 0 

Now we can formulate a necessary and sufficient condition fora selection to 
be feasible. Let the capacity of a cycle in a network be defined as the smallest 
capacity of any of the arcs in the cycle, and let the cost of a cycle be defined as 
the sum of the costs of all arcs in the cycle. 
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Theorem 3.8 (Feasibility) 
Consider an instanee ( G P) of the general scheduling problem. Let u be an arbi­
trary selection ofthe disjunctive constraints. Afeasible schedule corresponding 
to this selection exists if and only if the network Na does not contain a cycle of 
infinite capacity with positive cost. 

Proof. Suppose ( G pa) is infeasible. The homogeneous form of ( G Da) is 

max L CvwXvw 
(v,W)EA" 

(GDó) s.t. L Xuv- L Xvw = 0' 
(u,v)EA". w;(v,w)eA"' 

0:5 Xvw :5 hvw, 

Yv e V 

Y(v, w) E Aa 

( G D0) is again a maximum cost flow problem on Na. From Lemma 3. 7 it fol­
lows that (G D0) is unbounded. Because all demands are zero, positive flow can 
only occur in cycles in Na. The number of cycles is finite. Therefore, a cycle 
with positive cost and infinite capacity must exist. 

Now suppose that there exists a cycle in Na of infinite capacity and with pos­
itive cost. Then, ( G va) is unbounded, which implies that ( G pa) is infeasible 
(Lemma 3.6). D 

Note that in the case of the job shop problem allarcsin a solution network 
have infinite capacity and positive cost, except for the arcs leaving s. 

Corollary 3.9 (Job shop problem) 
A selection of the disjunctive constraints in a standard job shop problem is in­
feasible if and only if the corresponding salution network contains a cycle. 

Since all arcsin Aj have infinite capacity and positive cost, also the following 
corol1ary of Theorem 3.8 holds. 

Corollary 3.10 (Total ordering on machines) 
Consider an instanee ( G P) of the general scheduling problem. Let u be an arbi­
trary selection of the disjunctive constraints. IJ the corresponding ordering im­
posed on the operations that require a common machine is not transitive, then 
the selection u is infeasible. 

In the following, N00 = (V, A00) denotes the network obtained from aso­
lution network N by de1eting a11 arcs with finite capacity (thus, hvw = oo, for 
(v, w) e A00 ). A selection u is feasible if and only if N~ does not contain a 
cycle with positive cost. 
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3.4.3 Obtaining seJection-optimal scheduJes from ftows 

We have seen that the value of a selection-optimal schedule can be obtained by 
computing the maximum cost flow in the solution network corresponding to that 
selection. We are, however, not just interested in the value of the schedule, but 
also in the schedule itself, i.e., the starting times of the various operations. In 
general, there are several schedules that are optimal fora given selection. We can 
use the well known complementary slackness relations to obtain a description of 
the set of selection-optimaJ schedules. 

Lemma 3.11 (Complementary slackness relations) 
Let (V) be a maximum costflow problem on a network N =(V, A), and let (P) 

beitsdual. Letc~w = Cvw+Sv-Swdenotethereducedcostofanarc(v, w) E A 
with respect to the values of Sv and S111• S* is an optima/ solution of(P) and x* 
is an optima[ solution of (V) if and only if for every ( v, w) E A: 

lf c~: > 0, then x;w = hvw· 

lfO < X~w < hvw• then c~: = 0. 

lf c~: < 0, then x;w = 0. 

Corollary 3.12 (Re lating optimal solutions of (P) and (V)) 
Let x* be an optima/ solution of(V). LetS be afeasible solution ofthefollowing 
system of equalities and inequalities: 

Sw- Sv = Cvw. V(v, w): 0 < X~w < hvw 

Then S is an optima[ solution of (P). 

A solution of the system mentioned in Corollary 3.12 can be obtained by solv­
ing a longest path problem on the so-called residual network corresponding to the 
flow x*. For each (v, w) such that x~w = 0 there is an are (v, w) with cost Cvw 
in the residual network; for each ( v, w) such that x;w = h vw we introduce an are 
(w, v) with cost -Cwv; fina11y, for each (v, w) such that 0 < x;w < hvw. an are 
(v, w) with cost Cvw and an are (w, v) with cost -Cwv are introduced. By taking 
Sv equal to the length of the Jongest path from s to v in the residual network, an 
optimal solution of (P) is obtained. 

The S thus obtained could be called the left-justified schedule corresponding 
to x*, because the Sv are as small as possible while still satisfying the system in 
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Corollary 3.12. Similarly, by adding a nodetand arcs (v, t) with zero cost for 
all v e V to the residual network, computing the length dvt of the longest path 
from v to t, and taking Sv = dst - dvt for all v e V, also the right-justified 
schedule corresponding to an optimal flow in the solution network can be found. 
Note, however, that ('D) may have several optimal solutions, each of which bas 
different left-justified and right-justified schedules. 

In order to obtain a schedule that is optimal for a given feasible selection u of 
the disjunctive constraints, one must construct the solution network Nu, compute 
the maximum cost flow x* in Nu, and extract starting times Sv from the optimal 
solution of the maximum cost flow problem. The time required to create a net­
work is negligible compared to the time required to solve a maximum cost flow 
problem on that network. Furthermore, since starting times can be obtained from 
an optimal flow by solving a longest path problem (Corollary 3.12), which is a 
special case of the maximum cost flow problem, the time complexity of finding 
a selection-optimal schedule is completely determined by the complexity of the 
maximum cost flow problem. 

The maximum cost flow problem and the equivalent minimization variant have 
received much attention throughout the last decennia, and many algorithms have 
been proposed. Abuja et al. [1993] discuss fivebasic pseudo-polynomial algo­
rithms and six polynomial algorithms, and they give references to many more 
publications in this field. The underlying ideas in all these algorithms are quite 
similar: either one maintains a feasible flow and gradually reduces dual infeasi­
bility, or one tries to achieve primal feasibility while maintaining dual feasibility. 
Still, the performance of the different algorithms varles considerably. lt is there­
fore not obvious which type of algorithm will be most efficient in solving max­
imum cost flow problems that arise from the general scheduling problem, and 
it is worthwhile to study the re lation between problem structure ( cost function, 
preeedenee structure, etcetera) and the performance of network flow algorithms. 
The best available time bound for solving the maximum cost flow problem is 
O(min{nm log(n2/m) log(nC),nm(log log U) log(nC),(m log n)(m+n logn)}), 
where n is the number of nodes, m is the number of arcs, C is the largest are cost, 
and U is the largest are capacity (see Abuja et al. [1993]). 

The longest path problem can be solved in O(min{nm, n112m log(nC)}) time. 
In the same time, also the presence of a cycle with positive cost can be detected. 
If the network is acyclic, as in the case of a feasible selection in the job shop 
problem (Corollary 3.9), longest paths can be found in O(m) time. 

The given time bounds show that the number of nodes and the number of arcs 
determine to a large extent the amount of time required to solve maximum cost 
flow and longest path problems. This may be important when modeling issues 
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have to be settled. For example, as discussed in Section 3.3.3, one can model the 
tardiness of an operation in two ways, either by using start-start constraints or by 
using an adjusted start-start constraint. The first metbod results in the introdue­
tion of a node and two arcs in the solution network, whereas the second metbod 
requires the introduetion of only one are. 

Note also, that for each breakpoint in a piecewise linear cost function an are is 
introduced. lt is possible to get close approximations ofnon-linear convex func­
tions by means of piecewise linear functions, but this requires a large number of 
breakpoints, and therefore a large number of arcs in the solution networks. 

3.4.4 The reduced solution network 

Corollary 3.10 offers a possibility for reducing the size of a solution network in 
order to speed up the maximum cost flow algorithm. Let Aj be thesetof selected 
disjunctive constraints, corresponding toa selection a. From Corollary 3.10 we 
know that, if a is a feasible selection, (V, Aj) does not contain a cycle, which 
implies that for each machine a total ordering on all operations that require that 
machine must exist. The following lemma states that only arcs (u, v) such that 
u and v are consecutive operations in such an ordering have to be included in the 
solution network. 

Lemma 3.13 (Reduced solution network) 
Let a beafeasible selection, and let 011- = (v1, v2, ... , vk) he the corresponding 
processing order of operations on machine f.J.,. Any maximum cost flow i in the 
solution network N" is such that i vi. vj = O,for all i, j, with j =I i + 1. 

Proof. Let x be a maximum cost flow in the solution network N". Suppose that 
Xvi,vj = Ç > 0, forsome i, j, with j =I i+ 1. All arcs (vk, v1), I > k, have 
positive cost Pvk,vt and infinite capacity. Furthermore, since Puw = Pu + 8uw. 

with Pu > 0 and the set-up times 8uv satisfying the triangle inequality, we have 

Pvk,vt + Pvt,vm > Pvk,vm, Vk, I, m. Therefore, the flow i with ivi,vj = 0, and 
ivk,vk+l = Xvk,vk+l + Ç, for k =i, ... , j -1, is feasible and bas higher cost, thus 
contradicting the optimality of the flow x. D 

Thus, no are (vi, vi), with j =j:. i+ 1, is ever used in an optimal flow. Any so­
lution network cao therefore be reduced by removing these redundant arcs. Note 
that a lso the arcs (s, vi), with i > 1 , corresponding to constraints Sv; ::: 0, can be 
removed as long as the are (s, v 1) remains. The same procedure can be applied 
to all other machines. The resulting network will be called the reduced solution 
network. The number of arcs in a reduced solution network can be substantially 



74 3. The general scheduling problem 

smaller than the number of arcs in the original complete solution network. Let 
v be the number of operations that require a specific machine. The number of 
arcs for this machine in the complete solution graph is O(v2), whereas in the re­
duced solution graph only O(v) arcs remain. When the reduced solution graph 
is used, optimal starting times for a feasible selection of a job shop problem can 
be obtained in O(n) time, where nis equal to the number of operations. 

3.5 Other objective functions and constraints 

In the previous sections, we have established that the main decision that bas to be 
made in order to find a solution of the general scheduling problem consists of de­
termining the order in which operations are performed on the various machines. 
Given this order, corresponding optimal starting times of the operations can be 
obtained by solving a maximum cost flow problem. In Chapter 4, this result will 
be used in the development of solution methods. 

In this section, some types of constraints and cost functions are discussed that 
do oot fit in the description of the general scheduling problem as given in Sec­
tion 3.3.4. I will oot give an extensive treatment of all possible complications. 
First, I will show that in case of a regular objective function, even if it does oot fit 
in the formulation of (G P), the subproblem still reduces toa longest path prob­
lem. Then, I will discuss a type of objective function that makes this subproblem 
NP-hard. Finally, I will discuss a class of more general constraints and farmu­
late a conjecture on the NP-hardness of the corresponding subproblem. 

3.5.1 Regular cost functions 

A cost function is called regular if it is non-decreasing in the starting times of the 
operations. Consider now the problem GSPR, a variant of the general scheduling 
problem in which the cost function is regular but not necessarily convex. 

Lemma 3.14 (Left-justified schedules) 
Let Na he the solution network corresponding to a feasible selection u for an 
instanee of GSPR. The left-justified schedule, in which Sv is equal to the length 
of the longest path from s to v in Na, is optima/ for u. 

Proof. Given some processing order, no operation can be started earlier than at 
its starting time in the left-justified schedule. Furthermore, no cost reduction can 
be obtained by processing an operation later than at its earliest possible starting 
time. Thus, the left-justified schedule is optimal. 0 
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Note that it is possible that the first operation on a given machine, for which 
there are no operations on other machines that have to be performed before, still 
cannot start at its release time. For example, if there exists a maximum delay 
relation with some other operation that is to be performed later, this may force 
the operation to be started later than one would expect to be necessary at first 
glance. 

Lemma 3.14 holds for all regular cost-functions, convex or non-convex. Let 
Uv= 1 if Sv > dv, and Uv= 0 otherwise. Then, Lveo Uv, the number of late 
jobs, is a regular cost function, and, although Uv is certainly notconvex in Sv. 
the left-justified schedule is optimal. 

Ifthe considered cost function is non-increasing inthestarting times ofthe op­
erations, the right-justified schedule, in which each operation is started as late as 
possib1e while still satisfying all constraints, is optima!. Also the right-justified 
schedule can be obtained by solving a longest path problem. 

3.5.2 Non-regular cost fundions 

If the cost function is regular or tractable, a selection-optimal schedule can be 
obtained in polynomia1 time (Lemma 3.14 and Theorem 3.4). In case of general 
non-regular cost functions this is no Jonger true, as the following theorem shows. 

Theorem 3.15 (Minimizing the number ofviolated constraints) 
Let A* ~ A 1 be an arbitrary subset of the set of start-start constraints. The 
problem of finding starting time.s S v for all v E V, corresponding to a selection 
a, such that all constraints in At \A* are satisfied and the number ofviolated 
constraints in A* is minimal is NP-hard. 

Proof. I will show that the problem is NP-hard even if there are no disjunc­
tive constraints. The proof uses a transformation from the vertex cover problem. 
Consider an undirected graph G = (W, E), descrihing an instanee ofthe vertex 
cover problem. From this graph, we obtain an instanee of the scheduling prob­
lem in the following way. For each w e W, we introduce two operations wa and 
Wb, and start-start constraints Swb- Swa 2: 1 and Swa- Swb 2: -2. For each edge 
{ v, w} E E, we introduce start-start constraints Swb- Sua 2: 3 and Svb- Swa 2: 3. 
Each operation bas a machine for itself, so there are no disjunctive constraints. 

In Figure 3.3, a graph G and the network N1 = (V, A1) of the corresponding 
scheduling problem are given. 

Note that a11 arcs in N1 are from a-operations to b-operations, except for those 
corresponding tostart-start constraints ofthe form Swa- Swb 2: -2. Thesetof 
constraints of this form wilJ be denoted by A*. I claim that the graph G contains a 
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Figure 3.3: A grapb G and the corresponding network N1• 

vertex cover of size smal1er than or equal tok, with k some given positive integer, 
if and only if there exists a schedule for the corresponding scbeduling problem 
in which at most k constraints in A* are violated. 

Suppose that a schedule with k violated constraints, (wl, w~), ... , (w~, w!). 
exists. Then C = { w 1 , ••• , wk} c V is a vertex cover for G. If C is not a ver­
tex cover, then there is an edge {u, v} E E with u :f:. wi, and v :f:. wi, for all 
i E {1, ... , k}. In Nt. this corresponds toa cycle (ua, Vb, Va, ub, ua) ofpositive 
length, which indicates that in any schedule at least one of the associated con­
straints must be violated. This contradiets the assumption that only the k given 
constraints were violated. 

Now suppose that C = {w 1, ••• , wk} c V is a vertex cover for G. Let 
Ac = u:=l (wt. w~). Then the network Ne = (V, A1 \Ac) does not contain 
a cycle with positive length, and thus starting times Sv for all v E V which do 
not violate any of the constraints in (A 1 \Ac) can be obtained. Any cycle in Ne 
would altemately visit a-operations and b-operations. A cycle containing only 
two operations, (Va, vb, Va) has length -1. Any larger cycle would contain an 
are ofthe form (ua, Vb) which indicates that in the original graph an edge {u, v} 
exists. This implies that either u = wi or v = wi, forsome i e {1, ... , k}. 
Then, not both (ub, u a) and (vb. Va) occur in Ne, which makes it impossible for 
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a cycle to contain (u0 , vb). 

The cost function ofthe problem described in Theorem 3.15 is 

L g(Sva- Svb), 
(Vb,Va)EA* 

77 

0 

with g(y) = 1 if y > 2, and g(y) = 0 otherwise. This function is clearly not 
convex. 

3.5.3 Multiple time windows 

The start-start constraints Sw- Sv ~ Cvw allow us to impose minimum and max­
imum values on the time lags between any two operations as well as on the start­
ing times of individual operations. In some practical situations, however, other 
kinds of restrictions on the starting times of operations are encountered. Thema­
chines may, for example, not be available throughout the entire planning period. 
As long as for each machine J.L a single availability interval [tf, tf] is given, such 

a situation can be modeled by introducing two start-start constraints Sv ~ T1Mv 

and Sv :::: T2Mv' with TlMv = maxj.tEMv ti and rtv = miniLEMv tf. 
I conjecture that the problem of finding optimal starting times for a given pro-­

cessing order of the operations becomes NP -hard when multiple time windows 
occur. 

Conjecture 3.16 (Multiple time windows) 
Consider GSPT, a variant ofthe general scheduling problem in which each oper­
ation must be processed in one of at most k given time intervals. For this problem. 
jinding a selection-optimal schedule is NP-hard. 

If Conjecture 3.16 holds, then it is not sufficient to determine the processing 
order of the operations; one must al so determine in which time intervals the oper­
ations must be performed. This decision is of a different nature than the ordering 
decisions and therefore disjunctive constraints cannot be used in modeling mul­
tiple time windows. 
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Solution methods 

4.1 Introduetion 

In Chapter 3, I have shown that the main difficulty in the general scheduling prob­
lem arises from the disjunctive constraints. As soon as a feasible selection of 
the disjunctive constraints has been obtained, the corresponding optimal starting 
timescan be found in polynomial time by solving a maximum cost flow problem. 
Furthermore, the situation in which no feasible starting timesexistfora given se­
lection can be detected easily; a selection is infeasible if and only if there exists 
a cycle of infinite capacity with positive cost in the corresponding solution net­
work. 

The problem of finding a good schedule has thus been reduced to the prob­
lem of finding a good selection of the disjunctive constraints. Although this is a 
substantial rednetion when the size of the solution space is considered (there are 
infinitely many possible schedules, but there is only a finite number of possible 
selections ), it does not help us too much from a complexity viewpoint In fact, 
the general scbeduling problem is NP-hard, and therefore we may nothope to 
find an optima! selection in polynomial time. Of course, it is always possible to 
evaluate all possiblè selections or to develop branch-and-bound methods or other 
partial enumeration schemes. These methods, however, will require too much 
time, especially for application in an intemctive planning system, and therefore 
other approaches must be considered. 

In this chapter, I discuss two kinds of solution techniques, construction meth­
ods and Jocal search algorithms. These two techniques can be combined in an al­
gorithm that finds selections of reasonable qua1ity in reasonable time. Initially, a 
construction algorithm is applied to obtain a feasible selection, and this selection 
is then used as a starting point for a local search algorithm. Unfortunately, even 
the problem of finding a feasible selection is already NP-hard för the geneml 
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scheduling problem. However, in Section 4.2 I will identify a class of instances 
for which feasible selections can be obtained in polynomial time. In my discos­
sion of construction and local search methods (Sections 4.3 and 4.4), I will focus 
on this c1ass of problems. InSection 4.5, I wil1 discuss two relaxation techniques 
for solving also the more difficult problems. 

Many of the results presented in this chapter involve generalizations of well 
known concepts. The presentation is in terms of selections and salution networks 
rather than in terms of schedules. I hope to make clear that the concept of solu­
tion network:s does not simply provide a different way of look:ing at solutions of 
scheduling problems: it gives also more insight in the structure of these solutions. 
This insight can be used in the design of better salution methods. 

4.2 Complexity 

4.2.1 Complexity of finding optimal selections 

The general scheduling problem is NP-hard. I could leave it at this observation, 
but I want to emphasize the hardness of the problem by mentioning a number 
of very special cases that are already NP-hard. Lawler et al. [1993] give an 
extensive treatment of the subject. This section is largely based on their work:, 
and I use their three-field classification scheme. 

One subclass of the general scheduling problem is the class of single-machine 
scheduling problems. The following problems are already NP-hard: llri ILmax. 
11 pree! I: C i, 111 I: Tj. A few results for single-machine scheduling are worth 
mentioning. IIILmax can be solved by applying the earliest due date (EDD) rule, 
which is due to Jack:son [1955]. Lawler [1973] generalized this result to solve 
llpreclfmax in 0(n2) time. Furthermore, Smith [1956] showed that 111 L WjCj 
is solved by putting the operations in order of non-decreasing ratios pi 1 w j. 

In the area of single-machine scheduling with non-regular objective functions, 
there are hardly any positive results (see Baker and Scudder [1990]). The prob­
lem of minimizing the weighted sum of earlinesses and tardinesses is NP-hard 
even if a11 due dates are assumed to be identical. 

Another well studied subclass of the general scheduling problem is the class 
of shop scheduling problems. The following open shop problems are known to 
be NP-hard: 03IICmax• 0211Lmax• 0211 L Cj. Solvable in polynomial time 
is only 0211Cmax (Gonzales and Sahni [1976]). NP-hard flow shop problems 
are F311Cmax. F211Lmax, and F211 L Cj. F211Cmax can be solved in O(nlogn) 
time by Johnson's algorithm [1954]. For job shop problems, the sirnation is even 
worse. J31n = 31Cmax (number of jobs is at most 3) and J211Cmax are already 
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NP-hard. Solvable in polynomial time are Jin = 21Cmax (Akers [1956]) and 
J21n = k!Cmax (Brucker [1994]). I am notaware ofany workon shop schedul­
ing with non-regular criteria. 

4.2.2 Complexity of finding feasible selections 

Consider the job shop scheduling problem in which aU jobs must be completed 
before a given common deadline d*. This problem has a feasible solution if and 
only if the corresponding standard job shop scheduling problem (without dead­
lines) bas a solution with makespan at most d"'. Thus, since the standard job 
shop scheduling problem is NP-hard, finding afeasible solution forthe problem 
with deadlines is NP-hard. This implies that finding a feasible solution for the 
general scheduling problem is NP-hard. In contrast to the results presenled in 
Section 4.2.1 it is possible to identify reasonably large subclasses of the general 
problem for which the feasibi1ity problem can be solved in polynomial time. In 
the discussion of complexity issues, I will focus on the structure of the start-start 
constraints; the number of operations, the number of machines, the machine re­
quirements, and the processing times are all assumed to be part of the problem 
instance. 

Theorem 3.8 states that a selection CT is feasible if and only if the network 
N~ = (V, A1 U A1P does not contain a cycle with positive cost. (Recall that 
N00 is the network obtained from N by removing all arcs with finite capacity.) 
This leads to the following observation. 

Lemma 4.1 (lnfeasible problem) 
Consider an instanee of the general seheduling problem. lf the eorresponding 
network N1 = (V, At) contains a eycle with positive eost, then the instanee is 
infeasible. 

Proof. Suppose that N1 contains a cycle with positive cost. Then, for any se­
lection CT, this cycle will also be in N~ = (V, A1 U A)), and thus no feasible 
selection exists. D 

A cycle with positive costin N1 occurs, for example, when there are conflict­
ing preeedenee constraints (e.g., u before v, v before w, and w before u) orwhen 
some deadline cannot be reached (e.g., u must be processed before wand Pu + Pw 
is larger than dw, the deadline of w). The existence of a cycle with positive cost 
in a network can be checked in polynomial time by applying a longest path al­
gorithm with an incorporated cycle detection mechanism. 

If N1 does not contain a cycle with positive cost, then a feasible selection may 
exist or not. If N1 is acyclic, then the feasibility problem tums outto be easy. A 
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topological ordering of the nocles in a network N = (V, A) is a function :rt' : 
V ~ {1, ... , lVI} such that :rt'(v) :f: :rt'(w) for all v :f: w, and :rt'(v) < :rt'(w) 
for all ( v, w) e A. A network is acyclic if and only if it possesses a topological 
ordering of its nocles. 

Lemma 4.2 (Maintaining acyclicity) 
Let N = (V, A) be an acyclic network, and let :rt' be a topological ordering of 
the nodesin N. Any network N' that arises from N by adding arcs (u, v) such 
that :rt'(u) < :rt'(v) is acyclic. 

Proof. The proof is by induction. Define A;/l' = {(x, y) I :rt'(x) < :rt'(y)}. Let 
Nk, k e z+, be the set of networks that can be formed by adding k arcs (u, v) 
from A1r toN. 

Suppose that aH networks in Nk are acyclic. Let Nk = (V, Ak) e Nk. If 
Nk+l =(V, Ak U {(x, y)}), with (x, y) e A1r, contains acycle, then this cycle 
must contain the are {x, y), since Nk is acyc1ic. Let C = (x, y, w1. ... , w1, x) 
be such a cycle. Then Nk must contain the path 0 = (y, w 1 , ••• , w1, x). All 
arcs (u, v) in Ak are such that rr(u) < :rt'(v), and thus rr(x) > rr(wl) > ... > 
rr(w1) > :rt'(y), which contradiets the assumption that (x, y) e A;/l'. Thus Nk+l 
is acyclic. This holds for any Nk e Nk and for any (x, y) e A;/l'. Hence all 
networks in Nk+ 1 are acyclic. 

The induction assumption holds for k = 0. Hence all networks that are formed 
by adding arcs from A;/l' to N are acyclic. 0 

Lemma 4.2 is used in the proof of the fo11owing theorem. 

Theorem 4.3 (Feasible selections) 
Consider an instanee of the general scheduling problem. IJ the corresponding 
network Nt = (V, At) is acyclic, then afeasible selection exists and one such 
feasible selection can be found in polynomial time. 

Proof. A topological ordering rr of the nocles in N1 can be obtained in O(mt) 
time, where m1 =lAt I· The are set A)= {(v, w) I {v, w} e A3, :rt'(v) < rr(w)} 

can be obtained in O(m3) time, where m3 = I A3 I· The network N~ = (V, A1 U 
A)) is acyclic (Lemma 4.2). Thus, the selection u is feasible and can be found 
in O(mt + m3) time. 0 

Theorem 4.3 gives only a sufficient condition for an instanee of the general 
scheduling problem to have a feasible selection. Problems that do not satisfy 
this condition do not necessari1y have to be infeasible, but, as bas been shown 
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for the job shop seheduling problem with deadlines, finding a feasible selection 
for such probtems is in general .NP-hard. There are, however, atso problems for 
which N1 does contain a cycle (with non-positive cost) and for whieh feasible 
selections ean be found in polynomial time. Consider, for example, the job shop 
problem with maximum delays. This problem is identieat to the standard job 
shop seheduling problem, except for the maximum bounds on the delays between 
two eonsecutive operations of a job. The network N 1 fora typicat instanee of this 
problem is depicted in Figure 4.1. The maximum delay eonstraints correspond 
to the dotted ares. 

-8 -9 

5 

0 

-6 

6 

Figure 4.1: N1 fora job shop problem with maximum delays. 

Consider an arbitrary instanee of the job shop problem with maximum delays. 
Let rr be an ordering ofthe nodesin Nt such that rr(v) < rr(w) if (v, w) rep­
resents a normal preeedenee constraint, and rr(w) = rr(v) + 1 if (w, v) repre­
sents a maximum delay eonstraint. The numbering of the nodes in Figure 4.1 
eorresponds to sueh an ordering. The selection u sueh that (x, y) E Aj for all 
{x, y} E A3 with 1r(x) < 1r(y) is feasible. 

This example shows that there arealso problems with cyclie N1 for whieh the 
feasibility problem is easy. In the remainder of this thesis, however, I will main­
tain the distinetion between problems with aeyclic N 1, for which feasible se lee­
tions can be found in polynomial time, and problems with cyclie N1, for whieh 
the problem of finding a feasible selection is .N1' -hard. 

Let A 1 be the set of start-start constraints in an arbitrary instanee of the gen­
eral scheduling problem. Suppose that all constraints (v, w) E A1 are such that 
Cvw :::: 0. If the network (V, A 1) is acyclic, a feasible selection ean be found 
in polynomial time. If the network eontains a cycle, the instanee is triviatly in-
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feasible. Thus, we can say that the constraints (v, w) e A1 such that Cvw :::; 0 
(nonnegativity, precedence, and minimum delay constraints) are 'easy' from a 
feasibility point of view. Correspondingly, the constraints (v, w) e A1 such that 
Cvw < 0 (maximum delays and deadlines) are considered to be 'hard'. Such a 
distinction between easy and hard constraints is used in Section 4.5 in order to 
apply relaxation techniques to problems with cyclic N1• 

4.3 Construction methods 

A straightforward way to obtain a selection would be to consider the disjunctive 
constraints {u, v} e A3 one after the other and decide for each constraint whether 
u is to be performed before v or vice versa. In this way, a selection (and the 
corresponding solution network) is constructed gradually. 

In this section, I discuss two special kinds of construction methods that have 
received considerable attention in the scheduling literature. Both dispatching (or 
list scheduling) and insertion algorithms do nothandle one disjunctive constraint 
after the other, but consider in each iteration a set of constraints associated with 
a particular operation. I show that both methods can be implemented in such a 
way that feasible selections are obtained for instances of the general scheduling 
problem that have acyclic N1• Furthermore, I describe an efficient implementa­
tion of the insertion algorithm for a specific subclass of the general scheduling 
problem. 

4.3.1 Dispatching 

Dispatching is one of the earliest proposed solution methods for scheduling prob­
lems. It is very simple and very fast, and, probably for this reason, it is the tech­
nique that is most widely applied. In the original setting, a dispatching algorithm 
creates a left-justified schedule by selecting in each iteration an operation v that 
has not yet been scheduled and positioning it as early as possible after the sched­
uled operations on the machines in the machine set Mv. Here, I will discuss dis­
patching in terms of processing orders and solution networks. 

Because of the general nature of the constraints and the objective functions, 
the selection-optimal starting time of an operation cannot be determined if only 
its predecessors are known. This does not imply, however, that it is impossible to 
use the idea of dispatching for the general scheduling problem. The only differ­
ence is that in each iteration not the starting time of an operation is determined 
but only its position in the processing order of the operations that require the 
same machines. At the beginning of each iteration, we have a set U of already 
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positioned operations and a set 0\ U of operations that still have to be positioned. 
Then an operation v e 0 \ U is selected, and it is positioned after the operations 
in U that require a machine in Mv. In the solution network, this corresponds to 
adding arcs (v, w) for a11 operations we 0\ (U U {v}) such that {v, w} e A3. 

Note that the arcs (u, v) for operations u e U such that {u, v} e A3 must have 
been added in previous iterations. 

The general form of a dispatching algorithm is as follows. 

procedure general dispatching 
begin 

Au·- fl!. 3 .-u, 
u:= 0; 
repeat 

select an operation v from 0 \ U; 
A3 :=A3 U {(v, w) I we éJ \(U U {v}), {v, w} e A3}; 
U:= UU{v}; 

until U= éJ; 
end. 

Figure 4.2: The general dispatching algorithm. 

For each pair of operations { v, w} e A3, it is decided whether vis performed 
before w (the are (v, w) is in A3) or the other way around (the are (w, v) is in 
A3). Thus, a dispatching algorithm ofthe above form will result in an are set A3 
that corresponds to a selection. This selection a, however, does not have to be 
feasible. 

The most important implementation issue for dispatching algorithms concerns 
the selection of an operation in each iteration. After an operation bas been se­
lected, its position is uniquely determined. A dispatching algorithm can thus be 
characterized by the order in which the operations are selected. Many different 
criteria can be (and have been) applied in order todetermine this dispatching 
order. The following theorem states that an optimal selection can always be ob­
tained by some dispatching algorithm. 

Theorem 4.4 (Optima[ dispatching) 
Let r be an optima/ selection of the disjunctive constraints of an instanee of the 
general scheduling problem, and let A3 be the corresponding are set. Let 1r be 
an ordering ofthe setofoperations such that 1fv < 1fw if(v, w) E A3. When the 
operations are selectedinorder ofincreasing 1r-value, the general dispatching 
algorithm yields the selection r. 
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Proof. As discussed before, the general dispatching algorithm always results in 
a selection. Let u be this selection. We just have to show that A3 = Aj. Soppose 
that there is a pair of operations {v, w} such that (v, w) E A3 and (w, v) E A). 
Since (w, v) E Aj, wis selected before vin the dispatching algorithm. Since 
v and w require a common machine, this implies that the are ( w, v) is added to 
Aj, which is a contradiction. D 

Theorem 4.4 does nothelpus much. We know that an optimal dispatching or­
der exists, but it is by no means easy to find such an order. It is, however, possible 
to develop a polynomial-time dispatching algorithm that finds feasible selections 
for instances for which N1 is acyclic. This result is a direct corollary of Theo­
rem 4.3. 

Corollary 4.5 (Feasible dispatching) 
Consider an instanee ofthe general scheduling problemfor which N1 is acyclic. 
Let 7i be a topological ordering ofthe nodesin N1. Dispatching the operations 
in order of increasing 7i -value results in a feasible selection. 

Reeall the notion of reduced solution network introduced inSection 3.4.4. The 
general dispatching algorithm described above creates a complete solution net­
work, and the reduced network can be obtained by deleting redundant arcs. lt 
is, however, more efficient to immediately create the reduced solution network. 
The algorithm displayed in Figure 4.3 creates a reduced solution network corre­
sponding to a feasible selection for instances of the general scheduJing problem 
for which N 1 is acyclic. 

Theorem 4.6 (Dispatching) 
Consider an instanee ofthe general scheduling problemfor which N1 is acyclic. 
The reduced solution network corresponding to a feasible selection can be ob­
tained by applying the acyclic dispatching algorithm in 0 (m 1 + nq) time, where 

m1 =lAt I. n = 101, and q = maxveo IMvl· 

Proof. At any moment in the course of the algorithm, the set C of candidates 
forselection consists of operations for which all predecessor operations have al­
ready been scheduled. Thus, the dispatching order corresponds to a topological 
ordering, which guarantees for acyclic N1 that a feasible selection is obtained. 

The time complexity of the algorithm is O(m 1 + nq ). The initialization of the 
c5-values requires 0(m 1) time, and for each are (v, w) E At. with both v and 
w E 0, one c5-value is updated once in the course ofthe algorithm, which again 
takes O(m 1) time in total. Furthermore, in each of the n iterations, an operation 
can be selected in constant time, and then O(q) arcs are added to Aj. D 
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procedure acyclic dispatching 
begin 

A (1 ·- 0· 3 .- • 
U:=0; 
for all t.t e M do 

lil := null; (last operation on machine J.t) 
for all v e 0 do 

8v := number of arcs (u, v) E A1 such that u E 0; 
C := {v l8v = 0}; (candidatesfordispatching) 
repeat 

select an operation v from C; 
for all J.t e Mv do 

begin 
if IJL =I null then A3 := A3 U {(lil, v)}; 
IJL := v; 

end; 
U:= U U {v}; 

for all w e CJ \ U do 
if (v, w) e A1 then 

begin 
Ow := 8w -1; 
if8w =ûthenC :=CU{w}; 

end; 
until U= 0; 

end. 

Figure 4.3: The acyclic dispatching algorithm. 
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Note that also in the acyclic dispatching algorithm in each iteration an opera­
tion must be selected from a given set. This set C, however, is now such that fea­
sibility is guaranteed no matter which operation is selected. Different selection 
criteria (priority rules) can be applied to obtain feasible solutions for different 
kinds of problems. Obviously, the choice of the priority rule may affect the time 
complexity of the algorithm. 

Both the objective function and the structure of the constraints are of impar­
tanee in deciding which priority rule can be expected to give selections of reason-
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able quality. In general it is, however, not possible to decide beforehand which 
priority rule will perfonn best for a certain problem type. Extensive empirical 
studies have been perfonned for different kinds of scheduling problems (see, 
e.g., Panwalkar et al. [1977], and Haupt [1989]), but the main condusion seems 
to be that it is very difficult to develop a priority rule that perfonns well for all in­
stances of a given problem type. Consiclering the fact that the objective function 
of the general scheduling problem is much more general than any objective func­
tion considered in these studies on dispatching algorithms, the hope of finding a 
priority rule that perfonns well for all instances of the general problem must be 
very small. 

4.3.2 Insertion 

The outcome of a dispatching algorithm is completely detennined by the dis­
patching order. In each iteration, the selected operation is positioned after the 
previously selected operations even if positioning that operation somewhere else 
might be much more favorable. This Jack of flexibility is absent in insertion algo­
rithms. In an insertion algorithm, again in each iteration an operation is selected, 
but its position relative to the previously selected operation is not predetennined. 

Insertio(l algorithms have been proposed for several problem types. Nawaz 
et al. [1985] describe an insertion metbod for flow shop problems. Bräsel et al. 
[1993] and Wemer and Winkier [1995] report good results for construction al­
gorithms for open shop and job shop problems based on insertion techniques. 

I will use the tenn partial selection to indicate a situation in which only those 
disjunctive constraints {u, v} E A3 have been settled for which both u and vare 
in some subset U c 0. The solution network in which only the correspond­
ing are set A3 (U) is included will be referred to as the partial solution network 
Na (U). A partial selection is feasible if the corresponding partial solution net­
work does not contain a cycle of infinite capacity with positive cost. 

Let v be an operation that is to be inserted in a partial solution network Na (U). 
Let Q ~ U be the set of previously selected operations that require at least one 
of the machines in Mv. Inserting operation v involves detennining its position 
relative to the operations in Q. For each operation in Q it must be detennined 
whether it will be perfonned before v or after v. An insertion can thus be char­
acterized by the subset L ~ Q of operations that are to be perfonned before v. 
In the solution network, arcs (u, v) for all u E Land (v, w) for all w E Q \ L 
are added. 

An insertion will be denoted by the pair (v, L). If L = Q, then insertion is 
identical to dispatching. Thus, insertion is a generalization of dispatching. 
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Example 4.1 Consider an instanee of the general scheduling problem with 0 = 
{1, ... , 9}, V = 0 U {s, ZJ, zz}, and M = {A,B,C,D}. In Figure 4.4, a partial 
solution netwerk N(T (U) for this instanee is depicted. The solid arcs represent 
arcsin A 1, the dotted arcs represent arcs in A2, and the dasbed arcs represent arcs 
in Aj (U). Here, U = {1, 2, 3, 5, 6, 7, 8}. The letters associated with the dasbed 
arcs correspond to the machines for which the arcs indicate a processing order. 
For example, on machine B, the processing order is (1, 2, 8). Operatiens 4 and 9 
still have to be inserted. Cbserve that the partial selection (J' for operations in U 
is feasible; there is no cycle in Na (U) containing only arcsof infinite capacity. 
All cycles in Na (U) contain at least one of the arcs in A2• 

Figure 4.4: A partial solution netwerk. 

Suppose that operatien 4, which requires the machine set {B,C}, is to be in­
serted. Then, Q = {1, 2, 3, 6, 7, 8}. A possible insertion is (4, L), with L = 
{1, 2, 7}. Note that this insertion is infeasible, since the are (3, 7) together with 
the added arcs (7, 4) and (4, 3) forms a cycle of infinite capacity. The insertion 
(4, L') with L' = {1, 2, 3, 7} is feasible. 0 

The general form of an insertion algorithm is given in Figure 4.5. 
When an insertion algorithm is developed, two major implementation issues 

have to be dealt with: which selection rule is used todetermine the insertion or­
der, and how must the set of operations be determined after which the selected 
operatien is positioned? 

The advantage of insertion as compared to dispatching is clear. After an op­
eration bas been selected, it is possible to look for a good position for that oper­
ation. In dispatching algorithms, if eperation vis selected before operatien w, 



90 

procedure general insertion 
begin 

A (1 ·-a.. 3 .- v, 

u:= 0; 
repeat 

select an operation v from 0 \ U; 
Q :={u EU I {u, v} E A3}; 
determine a subset L s:;:; Q; 

4. Solution methods 

Aj :=AjU {(u, v) I u EL} U {(v, w) I wE Q \ L}; 
U:=UU{v}; 

until U= 0; 
end. 

Figure 4.5: The general insertion algorithm. 

then v will be performed before w. If insertion is used, we can decide to per­
form w before or after v, whatever seems best at the moment that wis inserted. 
The insertion order is therefore ]ess important for the quality of the selection ob­
tained with an insertion algorithm than the dispatching order for the quality of a 
dispatching algorithm. 

One would expect an insertion algorithm to give better selections than a dis­
patching algorithm, and in general this is true, although at some cost. A good in­
sertion algorithm is more time consuming both in implementation and in running 
time. I wiJl show that it is possible to develop an insertion algorithm that is guar­
anteed to give feasible selections for the same class of problems for which a fea­
sible dispatching algorithm can be applied, and that still offers a lot of freedom 
for choosing the position. How this freedom can be used strongly depends on the 
specific structure of the problem and the objective function. In Section 4.3.3, an 
insertion algorithm fora problem with makespan (or maximum lateness) min­
imization as objective is described. This algorithm is shown to perform better 
than any dispatching algorithm, while still reasonably little time is required. 

In this section, I will only discuss feasibility aspects of insertion algorithms. 
Suppose that all operations in some subset U c 0 have already been selected 
and inserted. Let Aj (U) be the corresponding set of added arcs. I assume that 
the network N~(U) = (V, A1 U Aj(U)) is acyclic. Suppose that operation v 
is now selected and bas to be inserted. I will show that a feasible insertion of 
v, i.e., an insertion such that N~(U U {v}) is acyclic, exists and can be found in 
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polynomial time. As a consequence, we can develop a polynomial-time insertion 
algorithm for instances with acyclic N1 that gives a feasible selection for any 
insertion order. 

Lemma 4.7 (Feasible insertion) 
Let N = (V, A) be an acyclic network. For any v e V and any Q C V, there 
exists a subset L s;;; Q such that the network NL that arises from N by adding 
arcs (u, v)forall u eLand arcs (v, w)forall we Q \Lis acyclic. 

Proof. Let v be an arbitrary element of V, and let Q be an arbitrary subset of V. 
Suppose that the network NL corresponding toa particular L s;;; Q contains a 
cycle. Since N is acycJic, this cycle must contain at least one of the added arcs 
(u, v) forsome u e L, or (v, w) for sorne w e Q \ L. There are three possible 
situations: 

1. N contains a path from v to some u e L. 

2. N contains a path from some w e Q \ L to v. 

3. N contains a path from some w e Q \ L to some u e L. 

-- .... ---

' 

Q 
' ' ' ___ .{?) 

' ' 

' ' 
' 

' ' ' ' 

' ' 

' ' ' 

o_---- 3 
', ......... 

' ' ' 
' ' 

---

Figure 4.6: An acyclic network and three cycles after insertion. 

In Figure 4.6, the relevant part of an acyclic network is depicted. Operation 
vis to be inserted, and Q = {1, 2, 3, 4, 5, 6}. The insertion (v, L) with L = 
{1, 2, 3} results in a network with three cycles corresponding to the three situ­
ations described above (situation 1: u = 1; situation 2: w = 4; sîtuation 3: 
u= 2, w = 6). 
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If we can show that it is possible to choose L in such a way that none of the 
three situations occurs, then the proof is complete. 

Let Q 1 Ç Q be the set of nodes u for which a path from u to v in N exists. 
Let Qz Ç Q be the set of nodes x for which there is no path from x to v and 
no path from v to x in N. Let Q3 be thesetof nodes w for which a path from 
v to win N exists. In the example of Figure 4.6, Q1 = {3, 4}, Q2 = {2, 6}, 
and Q3 = {1, 5}. Observe that Q1, Qz, and Q3 are pairwise disjoint and forma 
partition of Q. 

Any L for which none of the three situations holds must be such that Q1 Ç L 
and Q3 Ç Q \ L. Therefore, we only have to assign the elementsin Q2 toL and 
Q \ L in such a way that no cycle is created. Situations 1 and 2 cannot occur in 
any assignment of Qz to L and Q \ L because of the definition of Q2• Suppose 
that situation 3 occurs. That is, there are a u e L and a w e Q \ L such that a 
path from w to u in N exists. Note that u is not in Q3 and wis not in Q1• There 
are again three possibilities: 

1. u e QJ, we QzUQ3: theexistence ofapath from w tou in N togetherwith 
the fact that u e Q1 impHes that w must be in Q., which is a contradiction. 

2. u e Qz, w e Q3: the existence of a path from w to u in N together with the 
fact that w e Q3 impHes that u must be in Q3, which is a contradiction. 

3. u e Qz, w e Qz: this situation may occur. 

Thus, a cycle in NL can only occur if a path in N from w e Q2 to u e Q2 
exists, and u is assigned to L and w to Q \ L. 

Since N is acyclic, it is possible to obtain an ordering p of the operations in 
Q2 such that p(w) < p(u) if a path from w to u in N exists. For any r eN, the 
assignment of the elements in Q2 to L and Q \ L such that u e L if p(u) ::::; r 
and u e Q \ L if p(u) > r results in a feasible insertion (v, L). D 

Theorem 3.8 states that only arcs with infinite capacity are relevant in deter­
mining the feasibility of a selection. Let u be a partial selection for the operations 
in U c 0. From Lemma 4. 7 it follows that if Nu (U) does not contain a cycle of 
infinite capacity, then any operation can be inserted in such a way that the result­
ing solution network again does not contain a cycle of infinite capacity. Since 
N1 is assumed to be acyclic, it foiJows that, independent of the order in which 
operations are inserted, a feasible selection can always be obtained by inserting 
the operations one after another. 

The insertion algorithm given in Figure 4.7 creates a reduced solution net­
work corresponding to a feasible selection for instances of the general schedul­
ing problem for which N1 is acyclic. RecalJ from Section 3.4.4 that the machine 
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procedure acyclic insertion 
begin 

AO' ·- n.. 3 .- v, 

u:= 0; 
for all p., E M do 

OJL := (sJL, tJL); 
repeat 

select an operation v from 0 \ U; 
for all J.L E Mv do 

begin 
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x :=Jast x in OIJ. such that 3 path from x to vin (V, A1 u An; 
y := first yin OJL such that 3 path from v toy in (V, A 1 U A3); 
select two consecutive operations (u, w) from (x, ... , y) c OJL; 
Aj :=AjU {(u, v), (v, w)} \{(u, w)}; 
insert v between u and win OJL; 

end; 
U:=UU{v}; 

until U= 0; 
end. 

Figure 4.7: The acyclic insertion algorithm. 

ordering OJL = (v1, ••• , v1) represents the order in which operations are per­
formed on machine J.L. Such a machine ordering corresponds to a path in the 
reduced salution network. In the described algorithm dummy operations siJ. and 
tJL are used tomark the beginning and end of a machine ordering. Initially, OJL 
is set to (sJL, tJL) for all J.L EM. 

Theorem 4.8 (lnsertion) 
Consider an instanee of the general scheduling problem for which N1 is acyclic. 
By applying the acyclic insertion algorithm, the reduced solution network corre­
sponding to afeasible selection can be obtained in O(nq(mJ +nq)) time, where 
n = 101, q = maxveO IMvl. and m1 = IAtl. 

Proof. In each iteration, an operation v is .selected and inserted. First, a feasible 
position for v on the first machine of its machine set is determined and the corre­
sponding arcs are added to the salution network. From the proof of Lemma 4. 7 
it follows that any position between x and y on this machine is feasible. The sec­
tion between x and yin the machine ordering OJL corresponds to the set Q2 and 
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the orderingpof elementsin Q2 is obtained directly from o",.. The procedure is 
then repeated for the other machines in Mv. 

The time complexity of the acyclic insertion algorithm is O(nq(m1 + nq)). 
There aren iterations. In each iteration, for aJI O(q) machines in the machine 
set M v the operations between which an operation v cao be inserted must be de­
termined. For this purpose, the nodes w for which no path from w to v exists 
and the nodes u for which no path from v to u in (V, A1 U Aj) exists must be 
identified. This can be done by applying any longest ( or shortest) path algorithm. 
Such an algorithm requires 0(m1 +nq) time, since the considered networks are 
acyclic, I A 1l = m 1, and I Ajl is at most nq in a reduced solution network. 0 

Example 4.2 Consider again the situation in Example 4.1. Instead of deaJing 
with the solution network depicted in Figure 4.4, we will use the reduced solution 
network. In the reduced network, the arcs (1 ,8) and (3,6) do not occur. 

Operation 4 is to be inserted on machines B and C. Os = (1, 2, 8). There is 
a path from 1 to 4, and there is no path from 2 to 4 that does oot use an are in 
A2• Hence, x = 1. Furthermore, since there is no infinite capacity path from 4 
to any node in Os, we have y = t8 • This corresponds to three feasible insertion 
positions for operation 4 on machine B: between 1 and 2, between 2 and 8, and 
after 8. Soppose that we decide to insert 4 between 2 and 8. Then the are (2,8) is 
removed, and arcs (2,4) and (4,8) are added. Now, consider machine C. We have 
Oe = (3, 7, 6). There is a path from 3 to 4, since the are (2, 4) bas been added, 
and a path from 4 to 6. Hence, x = 3, y = 6. The corresponding possible inser­
tion positions are between 3 and 7 and between 7 and 6. The solution network 
that arises when the first possibility is selected is given in Figure 4.8. 0 

As the example shows, there may be many feasible positions for an operation 
to be inserted in. Let v be an upper bound on the number of operadons that are 
already positioned on a machine. In general, there are O(v) possible insertion 
positions for an operation v on a machine J.t. The number of machines on which 
v is to be inserted is O(q ). Thus, the total number of possible insertion positions 
is O(vq). Finding the best insertion by evaluating aH possible insertions requires 
O(vqT) time, where T is the time required to evaluate a (partial) selection. In 
case of large machine sets, this time requirement wiU be prohibitively large, and 
it may be wise to use some beuristic to determine good insertion positions. 

In the next section, I wiH show fora specific subclass of the general scheduling 
problem that it is possible to find the best insertion position in time polynomial 
in q. 
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Figure 4.8: The reduced solution network after insertion of operation 4. 

4.3.3 An eflicient insertion algorithm 

In this section, I consider the following special case of the general scheduling 
problem: 

min S1 

s.t. Sw - Sv :::::: Cvw ' 
Sw 2::: Sv + Pv V Sv 2::: Sw + Pw , 
Ss =0, 

V(v, w) E At 
V{v, w} E A3 

with Cvw 2::: Pv > 0, V(v, w) e At. w =I= t. At does not contain any arcs (t, v}, 
and the network Nt = (V, At) is acyclic, with V= 0 U {s, t}. 

AH wen known shop scheduling probieros in which the objective is to mini­
mize the makespanor the maximum latenesscan be formulated iri this way, as 
well as variants of these probieros in which each operation requires a machine 
set rather than a single machine. 

For this special case, an optimal flow in a solution network Nu corresponds 
toa longest path from s tot in Nu (see Section 3.2). I assume that A 1 is such 
that there is a path from s to u and a path from u tot in N1 =(V, At). for each 
u e 0. This is notastrong assumption, si nee constraints Su - Ss :::::: - K and 
S1 - Su 2::: - K, forsome large K, can be added. 

Note that aU arcs have infinite capacity and, except for possibly the arcs (v, t), 
positive cost. Any cycle in a solution network therefore indicates that the corre­
sponding selection is infeasible. 
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When the general insertion aJgorithm was introduced, it was mentioned that 
the most important implementation issue was concemed with determining the 
set of operations after which v should be inserted. In the aJgorithm this corre~ 
sponded to the step 'determine a subset L s; Q'. In this section, I will present 
a metbod to find the best subset L s; Q, or, equivaJently, the best insertion 
of a given operation v e 0 \ U in a given partiaJ solution network Na (U). 
Here, an insertion is considered the best if it results in an acyclic solution net­
work Na (U U {v}) in which the longest path from s tot is as short as possible. 

As mentioned in Section 4.3.2, the number of possible insertions is exponen­
tiaJ in the size of the machine set M 11 • I will show that we only need to consider 
a set of O(n) insertions, which is guaranteed to contain an optimaJ one. In the 
presented approach, the position in which v is to be inserted is not determined for 
each machine separately, as in the acyclic insertion algorithm. lnstead, all oper­
ations that use at least one of the machines in M 11 are considered simultaneously, 
as in the general insertion algorithm. 

First, I will describe a procedure for finding an L * s; Q such that the insertion 
(v, L *) results in a solution networkin which the longest path from s tot is as 
short as possible. Afterwards, I will show that (v, L *) is a feasible insertion, by 
showing that the resutting salution network is acyclic. 

Let N =Nu (U) be the acyclic partial solution network corresponding to the 
selection u for the operations in U, and let N L be the network that arises from N 
by adding arcs (u, v) for all u e L, and arcs (v, w) for alt w e Q \ L, forsome 
L s; Q. Por the time being, I assume that NL is acyclic, i.e., the insertion (v, L) 
is feasible. Let duw and d!w be the lengtbs of the longest paths from node u to 
nodewin N and NL respectively. Note that dsu and dur are well defined for aH 
u e 0, even if u has not yet been inserted, since N1 is assumed to contain paths 
from s to u and from u tot for all u e 0. 

Since NL arises from N by only adding arcs incident to v, teaving the rest of 
N unchanged, we have 

d.~ = max{d 81 ,d.~ 11 +d~}. (4.1) 

Furthermore, 

dsLv = max{dsu• max(dsu + PuH = dsv + max(dsu + Pu- dsv)+, (4.2) 
ueL ueL 

and 

d~=max{dur. max (Pv+dwr>l=dvt+ max (Pu+dwt-dvt)+,(4.3) 
WEQ\L weQ\L 

where x+= max{x, 0}. Substituting (4.2) and (4.3) in (4.1), we get 

d~ = max{d.vt, dsv+max(dsu+Pu-dsv)+ +dvr+ max (Pv+dwr-dvr)+} 
ueL WEQ\L 
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The problem is to find an L Ç Q for which dfr is minimaL Let au = dsu + 
Pu -dsv• bu = Pv +dut -dvt· Then a;I- is the increase ofthe length ofthe longest 
path from s to v if v is positioned after u, and b;I" is the increase of the length of 
the longest path from v tot if vis positioned before u. Let C(L) be the increase 
in the lengthof the longest path from s tot through v when the insertion (v, L) 
is performed. That is, C(L) = dfr- (dsv + dv1 ). We are interested in finding L * 
such that 

C(L*) =min C(L) = min(maxat + max b~). 
Ls;Q Ls;Q ueL weQ\L 

Let u be an arbitrary operation in Q. We must assign u to either L or Q \ L. 
Three situations can be distinguished: 

• au ::::; 0. For any L, u f/. L, we have C(L U {u}) ::::; C(L), and u can be 
assigned to L * immediately. 

• au > 0, bu ::::; 0. For any L, u f/. L, we have C(L U {u})?: C(L), and u can 
be assigned to Q \ L * immediately. 

• au > 0 and bu > 0. Now we cannot conclude beforehand for a given L with 
u f/. L whether C(L U {u}) or C(L) bas the smallest value. 

Thus, in looking for an optimal L, only the operations u with au > 0 and 
bu > 0 still have to be assigned. The following lemma states that an optima] 
assignment can be obtained efficiently. 

Lemma 4.9 (Optima/ parfition) 
Given a set W, and associated with each w e W two positive numbers aw, bw. 
Consider the problem of finding a partilion (WJ, Wz) ofW such that C(WI) = 
maxwew1 aw + maxwew2 bw is minima!. There exists an optima[ partition ofthe 
form Wt ={wE W I aw < k}, Wz ={wE W I aw?: k},forsomek EN, and 
it can befound in O(n logn) time, where n = IWI. 

Proof. Let u, w e W be such that au ::::; aw and bu ::::; bw; wis said to dominate 
u. If au = aw and bu = bw, some tie-breaker is used todetermine which ele­
ment dominates the other, for example the one with lowest index. Suppose that 
w e W1 and u e W2. Then C(W1 U {u}) ::::; C(WJ). Similarly, if w E W2 and 
u e W1, then C(W1 \{u})::::; C(Wt). Thus, we only have to consider those par­
titions ( W1 , Wz) of W for which both u and w are in W1 or in W2. After having 
decided whether the dominating element is assigned to W1 or to Wz, we assign 
the dominated element to the same set. 

Now consider W' Ç W, the set ofundominated elements. Por any X Ç W', 
let X Ç W be the set consisting of elements in X and elements that are dominated 
by some element in X. Note that C(X) = maxwex aw + maxweW'\X bw. 
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If we sort the elementsof W' in order of increasing aw, we get alf (I) < a71'(2) < 
... < alf(IW'I) and b1rm > blf(2) > ... > blf(IW'D· Let X be an arbitrary subset 
of W', and let i e {0, ... , IW'I} be the largest index such that n(i) e X, with 
i = 0 if X= 0. Let Ti = {n(j) Ij ~i} ç;; W'. Since 

maxaw = maxaw, and max . bw ~ max bw, 
weTi weX weW'\T' weW'\X 

we have 

(4.4) 

lt foJlows from (4.4) that there exists ani such that C(fi) ~ C(Wt), for any 
W1 ç;; W. Hence, there exists an optimal partition of the form (fi, W \ fi). 
Note that 

C(fi) = a7f{i) + blf(i+I)• 

with a1r(O) = blf(IW'I+l) = 0. Let iopt e argmin;e{O, ... ,IW'I}alf(i) + b1r(ï+l)· Then 
(fiopt, W \ fiorrt) is an optimal partition. 

The total time required to obtain this optimal partition is O(n logn). Instead 
of first removing the dominated elements from W and then sorting the remaining 
elements, we first sort the elements of W in order of non-decreasing a-value, 
which can be done in O(n log n) time, and then remove the dominated elements 
in the following way. 

Let ap(l) ~ ap(2) ~ ... ~ ap(l Wl). In the first iteration of the procedure we set 
n ( 1) = p (1), and l = 1. Atthe beginning of each following iteration, we have a 
list of operations with an(i) < a1f(i+l) and b1r(i) > blf(i+l)• for i = 1, ... , l - 1, 
where l < I W I is the number of operations in the list, and arr(O) = 0, brr(l+ 1) = 0. 
In the jth iteration, we consider the operation p(j). 

If bp(j) 2: blf(l)• then we remove all operations that are dominated by p(j): 
let i be the smallest index such that brr(i) ~ bp<i>; we set l =i and n(l) = p(j). 

If bp(j) < b1r(l) and ap(j) > Drr(l)• then we add p(j) to the Hst by setting 
n(l + 1) = p(j) and l = l + 1. 

If bp(j) < b1r(l) and ap(j) = alf(/)• then p(j) is dominated by n(l) and is 
therefore not added to the list. 

After I W I iterations, the procedure terminates with the list of undominated 
nodes sorted in order of increasing a-value. Each operation is added at most once 
to the list and deleted at most once from the list, and therefore the procedure takes 
O(n) time. 

Finding an iopt for which alT(iopt) + blT(iopt+I) is minimaland adding the domi­
nated operations to obtain fiopt both take O(n) time. Hence, the optimal partilion 
can be found in O(n logn) time. D 
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Example 4.3 Consider the following instanee of the partilion problem. The el­
ements are already sorted in order of non-decreasing a-value. 

w 1 
3 

16 

2 3 4 
4 6 7 

11 12 10 

5 6 7 
8 9 9 

10 6 8 

8 
11 
5 

9 
12 
2 

10 
16 
4 

Note that 2, 4, 6, and 9 are dominated by, respectively, 3, 5, 7, and 10. 

0 1 2 3 4 5 6 7 
7r(i) 1 3 5 7 8 10 
aJr(i) 0 3 6 8 9 11 16 
h7r(i) 16 12 10 8 5 4 0 

aTr(i) + h7r(i+l) 16 15 16 16 14 15 16 

C(fi) is minimal for i = 4, and ({1, 2, 3, 4, 5, 6, 7}, {8, 9, 10}) is the corre-
sponding optima! partition with value 14. D 

For any element v e 0\ U, an insertion ( v, L *) in the partial solution network 
Nu (U) cao be found such that the length of the longest path from s tot in the 
resulting solution network is as· small as possible. It remains to be shown that 
the insertion (v, L *) is feasible. 

Lemma 4.10 (Feasihle insertion) 
Let N(T (U) he an acyclic partlal solution network, and let Q he the set of opera­
tions u in U suchthat{u, v} E A3. Let Lk ={wE Q I aw::;: Ov(aw < k, hw > 
0)}. The insertion (v, Lk) isfeasible,forany kEN. 

Proof. Recall, from the proof of Lemma 4.7, the partition (Qt. Qz, Q3) of Q. 
Q1 is thesetof operations u in Q for which a path from u to vin Nu (U) exists, 
Q2 is the set of operations u for which no paths from u to v and from v to u 
in Nu (U) exist, and Q3 is the set of operations u for which a path from v to u 
in Nu (U) exists. lt has been shown that the insertion (v, L) is feasible if L = 
Q 1 U {u e Q2 1 p (u) < r}, for some r e N and some ordering p of the operations 
in Q2 such that p(w) < p(u) if a path from w to u in Nu (U) exists. In other 
words, L is feasible if Q1 s; L, Q3 n L = 0, and there are nou, w E Qz, such 
that a path from w to u in Nu (U) exists and u eL, w e Q \ L. · 
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Let u e Q1. Since there exists a path from u to v, we have dsv 2: dsu + Pu. 
and thus au= dsu + Pu- dsv ~ 0. Therefore, Ql ~ Lk. 

Let w E Q3. Since there exists a path from v to w, we have dsw 2: dsv + dvu• 
and thus aw = dsw + Pw -dsv 2: dvu + Pw > 0. Furthermore, dvr 2: dvw +dwt• 
and thus hw = Pv + dwr- dvt ~ Pv- dvw ~ 0. Therefore, Q3 n Lk = 0. 

Let u, w e Q2 be such that a path from w to u in Na (U) exists. Then, au = 
dsu + Pu -dsv 2: dsw +dwu + Pu -dsv 2: dsw + Pw + Pu -dsv > aw. Furthermore, 
hw = Pv + dwt - dvt 2: Pv + dwu +dut - dvt > hu. Suppose that u E L k. Then, 
au ~ 0 or au < k, bu > 0. In the first case, also aw ~au ~ 0, and w ELk. In 
the second case, aw < au < k, and hw > bu > 0, and w E L k. 

This completes the proof. D 

In Figure 4.9, the algorithm for finding an optimal insertion of an operation v 
in an acyclic partial so1ution network Na (U) is given. 

procedure best insertion 
begin 

Q :={u e U I {u, v} e A3}; (1) 
for all u e Q U { v} do (2) 

compute dsu and dur; 
tor all u e Q do (3) 

begin 
compute au = dsu + Pu - dsv and hu = dut + Pu - dvt; 
ifau ~ Othen L := L U{u}; Q := Q \{u}; 
if (au > 0, bu ~ 0) then Q := Q \{u}; 

end; 
sort the operations in Q in order of non-decreasing au; (4) 
Q' :={u e Q I u not dominated by any we Q}; (5) 

(aJT(I) ~ •.. ~ a1T(I Q'l>) 
aJT(O) := 0; b1T(IQ'J+I) := 0; 
i 0 pt :=argmin;e{O ..... JQ'l}aJT(i) + bJT(i+l); (6) 
for all u e Q do (7) 

if au ~ aJT(iopt) then L :=LU {u}; 
end; 

Figure 4.9: The best insertion algorithm. 
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Theorem 4.11 (Best insertion) 
The best insertion algorithm .finds an optima! insertion ( v, L) of operation v in a 
reduced partial solution network Nu (U) in O(mt +nq) time, where mt = lAt I. 
n = 101, and q = maxveO IMvl· 

Proof. The obtained insertion is such that w e L if aw :5 0, and w e Q \ L if 
aw > 0 and hw :::; 0 (step 3). The remaining operations are assigned toL and 
Q \ L in an optimal way (Lemma 4.9) in steps 4 to 7. From Lemma 4.10 follows 
that ( v, L) is feasible. 

The time required to detennine the set Q in step 1 depends on the data stroc­
ture that is used, but it wiJl not exceed O(qn), which is the time required to find 
for each machine in M 11 the operations that are perfonned on that machine. 

Step 2 of the aJgorithm requires O(m 1 + nq) time. Since the solution network 
is acyclic, a so-called reaching algorithm cao be used to compute the longest 
paths from one node to all the other nodesin the network (see, e.g., Abuja et 
al. [1993]). The time required by a reaching algorithm is linear in the number of 
arcs in the network. The are set in the reduced solution network consists of m 1 

arcsin At. and O(nq) arcsin Aj (U). The reaching algorithm is applied twice, 
once for computing dsu and èmce for computing dur· 

In step 3, for each operation u e Q some elementary operations are per­
formed. These take O(n) time. 

Sorting the operations of Q in step 4 requires O(n log q) time. On each ma­
chine, the operations are already in the correct order. AH that is required is to 
merge these O(q) sorted lists. If the information about the processing order on 
the various machines would oot be used, then step 4 would require O(n logn) 
time. 

Removing the dominated operations from Q in step 5 requires O(n) time, as 
bas been shown in the proof of Lemma 4.9. 

Finding fopt in step 6 and adding the dominated operations in step 7 both re­
quire O(n) time. 

Thus, the total time required is O(mt + nq). 0 

Suppose that A1 represents tree-like preeedenee constraints, and that there is 
a fixed upper bound on the size of the machine sets. This is true for job shop 
problems (q = 1) and open shop problems (q = 2). Then m1 = O(n), and also 
the running time ofthe best insertion algorithm is O(n). 
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Example 4.4 Consider the partial solution network given in Figure 4.10. The 
number associated with a node v represents the processing time Pv of operation 
v. The lengthof an are (u, v) is equal to Pu· The objective is to minimize the 
makespan S,. 

, , , 

0 
' ' ' 
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' 

, 
, , 

' ' ' ' 
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---~ ----------, 

' 

- 11 

' ' ' ' ' ' 

------------- .:.:-_:::_-_:::_:0 

Figure 4.10: The partial solution network. 

We can associate a (partial) left-justified schedule with this solution network. 
The makespan of this schedule is dst = 12. The schedule is depicted in Fig­
ure 4.11. 

0 5 10 

6 9 

B 1 5 s lwl 11 

5 7 

ITJ 5 6 

Figure 4.11: The (partial) left-justified schedule. 
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We want to find the best insertion of operation 12 on the machine set {A,D}. 
Applying the best insertion algorithm, we find: 

(1) Q = {1, 2, 3, 4, 5, 6, 9, 11} 

(2) 

u 1 2 3 4 5 6 9 11 12 

dsu 0 0 2 2 5 7 9 10 4 

dut 12 1l 9 10 7 4 2 2 2 

(3) 

u 1 2 3 4 5 6 9 11 

au -2 -3 0 1 3 5 7 8 
bu 12 11 9 10 7 4 2 2 

Note that au ::::; 0 for u = 1, 2, 3. Thus operations 1,2, and 3 are inL. 

(4) and (5) Q' = {4, 5, 6, 11} (operation 9 is dominated by operation 11). 

j 1 2 3 4 
TC(j) 4 5 6 11 
an:(J) 1 3 5 8 
bn:(j) 10 7 4 2 

(6) 

an:(O) + bn(l) = 0 + 10 = 10 
an(l) + bn(2) = 1 + 7 = 8 
atr(2) + btr(3) = 3 + 4 = 7 
an:(3) + bn(4) = 5 + 2 = 7 

an:(4) + btr(5) = 8 + 0 = 8 

The minimum is obtained for iopt = 3 (or iopt = 2). 

(7) The optimal subset obtained is L"' = {1, 2, 3, 4, 5, 6}, with C(L"') = 5 + 
2 7. Thus, operation 12 is inserted between operations 6 and 9 on machine 
A and between operations 6 and 11 on machine D, and the makespan of the 
new schedule is d~· = max{dst• dsv+dvt +C(L*)} = max{l2, 4+2+7} = 
13. 

The new schedule is depicted in Figure 4.12. 0 
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0 5 10 

A 1 6 12 9 I 

B 1 5 8 Iw I [ill 

c 

D [IJ 5 6 12 11 

Figure 4.12: The new schedule. 

Computational experiments 
The best insertion algorithm can be incorporated in an 0(n(m 1 +nq)) construc­
tion algorithm. In each iteration, an operation is selected and inserted in the par­
tial salution network in the best possible position. As in dispatching algorithms, 
various priority rul es can be applied in the selection of the operation that is to he 
inserted. 

Lioce and Martini [ 1995] report on computational experiments with our con­
structive insertion algorithm. They consider nine different problem types, in­
cluding job shop (JS), flow shop (FS), and open shop (OS) problems, as well as 
variants of these problems in which operations require machine sets (JS2, JS3, 
FS2, FS3) or more general preeedenee relations occur (OSh, OSp). In all these 
problem types, the objective is to minimize the makespan. The test set is de­
scribed in the appendix. 

A summary of the resu lts is given in Table 4.1. For each of the nine problem 
types, results are reported for the insertion algorithm with two different prior­
ity rules and for the dispatching algorithm with two different priority rules. In 
the insertion algorithm, rule 11 selects operations randomly, and rule I2 selects 
operations in order of decreasing processing time. Among the considered pri­
ority rules, rule I2 gives the best results on average for the problem instances 
inthetest set. In the dispatching algorithm, priority rule Dl selects operations 
randomly from thesetof dispatchable operations (C in the acyclic dispatching 
algorithm). Rule D2 selects the operation v that has minimal dsv (earliest possi­
biestarting time), and in case of a tie, the operation with maximal Pv + dvr (most 
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work remaining) is selected. We use the relative distance from the best known 
solution value as a measure for the quality of a solution obtained by one of the 
algorithms. Let zA be the value of a solution obtained by algorithm A, and let z* 
be the best known solution value. The relative distance then is equal to 

zA- z* 
---*100. 

z* 

In the appendix, it is described how the best known salution values are obtained. 

problem average relative distance from best known value 
type Dl 02 11 12 

JS 110.09 42.47 22.39 16.15 
JS2 148.17 71.40 25.37 22.10 
JS3 151.03 70.36 29.21 19.64 
FS 120.66 60.93 17.60 9.95 
FS2 138.92 88.07 36.22 25.85 
FS3 138.44 88.62 38.86 20.13 
os 167.61 100.78 14.91 1.95 
OSh 151.88 100.81 23.18 8.84 
OSp 140.05 87.18 29.26 18.02 

1 

all problems 139.90 75.45 26.20 16.54 
cpu (sec.) (0.13) (0.82) (1.22) (1.21) 

Table 4.1: Comparison of dispatching and insertion algorithms. 

From Table 4.1, we can conclude that insertion gives better results than dis­
patching for the considered problem types. For all problem types, the insection 
algorithm with priority rule 12 finds solutions that are on average within 26% of 
the best known salution values. The 'good' dispatching algorithm does not ob­
tain a score of less than 40% for any problem type. Furthermore, we see that the 
choice of the priority rule has a substantial effect on the quality of the obtained 
solutions. Both the dispatching and the insertion algorithm give better results 
when the good priority rule is used than when the random rule is used. How­
ever, the random insertion rule still gives fairly good results, and clearly outper­
farms the good dispatching rule. Insertion requires more time than dispatching 
(O(n2) versus O(n) forthese problem types, when the random priority ruleis 
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applied), but this larger time requirement seems to be outweighed by the much 
higher quality of the obtained solutions. 

For various problem types, it is possible to develop good construction methods 
by exploiting the specific structural properties of the considered problem. The 
major advantage of dispatching and insertion, as compared to such other con­
struction methods, is their wide applicability. Furthennore, with respect to in­
sertion we add that solutions of reasonable quality are obtained for a large class 
of problems. 

No experiments have been performed for problems with other objectives than 
makespan minimization. Dispatching is likely to perform even worse for the 
more general problems than for the problems considered in the reported experi­
ments. Before efficient insertion methods can be developed, the structure of op­
timal flows must be studied more extensively. Finding the best insertion position 
fora single operation, which can be done efficiently when the makespan is to be 
minimized, is probably much more difficult for arbitrary objective functions. 

Insertion offers more flexibility than dispatching, and the described insertion 
algorithm is shown to outperfarm dispatching algorithms. I am not aware of 
any existing purely constructive methods in which the disjunctive constraints are 
dealt with individually, one after the other. Such methods would provide even 
more flexibi1ity than insertion methods. It wou]d be interesting to find out if this 
flexibility can be exploited in order to obtain better selections. 

4.4 Local search methods 

4.4.1 Local search 

The solution space of an instanee of the general scheduling problem consists of 
the set of all possible selections. Since this set is finite and wel1 defined, it is 
possible to generate and evaluate all solutions in order to find the optimum. This 
procedure, however, is often too time consuming. The solution procedures dis­
cussed in the previous section, dispatching and insertion, require very little time 
but the obtained solutions are often of poor quality. Local search provides an 
alternative way to find good solutions. 

The idea bebind local search is very simpte. One starts with a feasible solu­
tion and tries to obtain a new, improved solution by modifying it slightly. This 
procedure is repeated over and over again. 

The most important concept in local search is the neighborhood function H. 
Let :E be the solution space. Associated with each solution u e :E there is a 
neighoorbood H (a) c :E. Each solution in H (u) is called a neighbor of u. A 
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local search algorithm searches the solution space by moving from one solution 
to another (neighboring) solution, over and over again. A move from u to r is 
denoted by [u, T]. 

A more general neighoorbood concept is used in 'genetic algorithms'. Here, 
at each stage a population :E1 c E is maintained, and a hypemeighborhood 
H (E1) c :E is defined for such a population. A new population is then obtained 
from the current one by selecting a set of solutions in this hypemeighborhood. 

A straightforward implementation of local search is 'iterative improvement'. 
Given an initial solution, the neighborhood of this solution is searched for solu­
tions of higher quality. When no such neighbor exists, the current solution is a 
local optimum. If there is a better solution in the neighborhood, then either the 
best neighbor ('best improvement') or the first neighbor of higher quality that is 
found ('first improvement') is selected as the next solution. 

Iterative improvement always ends up with a local optimum. The quality of 
alocal optimum, however, may be poor. Several methods have been proposed 
that improve on iterative improvement algorithms by offering the possibility to 
get out of alocal optimum. These methods do not only have fancy narnes such as 
'variable depth search', 'simulated annealing', or 'taboo search', but they may 
also work very well. Vaessens et al. [ 1994] survey local search algorithms for 
the standard job shop scheduling problem, and find that taboo search and variabie 
depth search perform best for this problem. 

A neighborhood function H is said to be connected 'if for each solution u1 

there is an optimal solution CTk that can be reached from u 1 by performing a se­
quence of moves [uJ, cr2], [u2, a3], ... , [uk-I· uk], where u; E H(u;-t). Con­
nectivity is a property of mainly theoretica} importance. The fact that an opti­
ma] solution can be reached from any solution does by no means guarantee that 
such an optimal solution will actua1ly be found. If a neighborhood function is 
connected, then simulated annealing can be proved to converge almost surely 
to an optimal solution. Simulated annealing as an optimization algorithm does 
require, however, infinite running time. Any optimization algorithm, even com­
plete enumeration, is more efficient. StiJl, connected neighborhood functions are 
preferred to those that are not connected. When a neighborhood function that is 
not connected is used, the probability of getting trapped in an uninteresting part 
of the solution space is generally higher than when a conneeled neighborhood 
function is used. 

4.4.2 Two neighborhoods 

In this section, I restriet my attention to the study of neighborhoods .. I discuss two 
neighborhoods that can be applied in iterative improvement, simulated anneal-
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ing, variabie depth search, or taboo search algorithms for the general scheduling 
problem. In all these algorithms, it is important that the neighborhood can be 
searched efficiently. Two aspects of neighborhoods are important in this context: 
infeasibility detection and neighborhood reduction. Time spent in consirlering 
infeasible neighbors is wasted time. lf conditions can be formulated under which 
infeasibility ( or feasibility) is guaranteed, these conditions can be used to discard 
infeasible neighbors in an early stage and to focus on feasible neighbors. Neigh­
borhood reduction can he applied when it is possible to distinguish 'promising' 
and 'unpromising' neighbors beforehand. The unpromising neighbors are dis­
carded, and attention is restricted to the promising neighbors. When the reduced 
neighborhood is much smaller than the original one, the time spent in searching 
a neighborhood is reduced substantially. I will show for the two neighborhoods 
that are discussed in this section that they can be reduced by discarding a large 
number of neighbors that are guaranteed to be non-improving. 

The swap neighborhood 
The swap neighborhood is the simplest neighborhood for the general scheduling 
problem that one can think of. For a given selection a, the swap neighborhood 
H s (a) consists of all selections r that can be obtained from a by reversing the 
processing order of one pair of operations {u, v}. That is, r is a neighbor of a if 
A] =A]\ (u, v) U (v, u), forsome (u, v) e A). We say that ris obtained from 
a by performing the swap (u, v). 

Suppose that operation x is performed between operations u and il on some 
machine. Then (u, x), (x, v), and (u, v) are in A). If (u, v) is replaced by (v, u), 

then there is a cycle consisting of the arcs (u, x), (x, v), and (v, u), and the re­
sulting selection is infeasible. In the remainder, I will therefore consider only 
swaps (u, v) such that u and v are performed consecutively onsome machine. 
Note that this corresponds to the are (u, v) appearing in the reduced solution net­
work. The following lemma gives necessary and sufficient conditions for such a 
swap to be feasible. 

Lemma 4.12 (Feasible swap) 
Let a be a feasible selection. The selection r obtained from a by performing 
the swap (u, v) is feasible if and only if the longest path from u to v in N~, not 
containing the are (u, v), is shorter than - Pvu· 

Proof. The selection r is feasible if and only if there is no cycle with positive 
length in N~. Since N~ does not contain a cycle with positive length and N~ 
arises from N~ by reversing the are (u, v), any positive length cycle in N~ must 
contain the are (v, u) which bas length Pvu· Therefore, a cycle with positive 
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length in N~ will occur if and only if there is a path from u to vin N6o, not 
using the (reversed) are (u, v), that is longer than -Pvu· 0 

Lemma 4.12 states that it is possible to check if a swap is feasible in the time 
that is required to compute a longest path in N6o. Especially when such a longest 
path can be computed efficiently, for example when N~ is acyclic, or when the 
number of infeasible neighbors is expected to be very high, it may be worthwhile 
to check if a neighbor is feasible before spending a lot of time in evaluating its 
quality. 

The following lemma states that, if we are only interested in improving neigh­
bors, the swap neighborhood can be reduced substantially. Later on, I will use 
Lemma 4.12 to show that for specific problem types, any selection in this reduced 
swap neighborhood is feasible. 

Reeall that g(a ), the costof a selection a, is equal to the value of a maximum 
eost flow in the solution network Nu. 

Lemma 4.13 ( Critical swap neighborhood) 
Let a be a feasible selection, and let x be a feasible flow in the solution network 
Nu = (V, Au) with cost g(a). Let (u, v) e A a be such that Xuv = 0. Let T be 
the selection obtainedfrom a by performing the swap {u, v). Then g(T) 2: g(a). 

Proof. The solution network N' contains allarcsin A a, except the are (u, v) 
which is replaeed by an are (v, u). Since Xuv = 0, the flow x', with 

, { 0, (w, z) = (v, u), 
Xwz = h .. 

Xwz, ot erwtse, 

is feasible for the network N'. The eostof this flow is equal to g(a ), the costof 
the flow x in N". Hence, g(r) 2: g(a). 0 

Thus, ifthere exists a selection T such that g(r) < g(a) in the swap neigh­
borhood of a, then. T is obtained from a by performing a swap (u, v) such that 
Xuv > 0, where x is a maximum eost flow in Nu. The flow x will somelimes be 
referred to as a criticalflow, and the arcs (u, v) such that Xuv > 0 will be called 
critica/ arcs. From now on, I will only consider swaps of critical arcs. The eor­
responding neighborhood is called the critical swap neighborhood. 

Note that the number of arcs (u, v) e A3 sueh that Xuv > 0 can be as high 
as the number of arcsin the reduced solution network. Therefore, Lemma 4.13 
does not help us in reducing the time eomplexity of finding, for example, the 
best neighbor. In most cases, however, the critica] swap neighborhood is much 
smaller than the original neighborhood, and the neighborhood search will require 
much less time. 
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The following lemma identifies a subclass of the general scheduling problem 
for which a11 neighbors of a feasible selection in the critical swap neighborhood 
are guaranteed to be feasible. 

Lemma 4.14 (Feasible critica/ swaps) 
Consider an instanee of the general scheduling problem with 

Cuv;:: Puw.for all u,v,w such that (u, v) E At and {u, w} E A3. 

Let a be a feasible selection. All selections in the critica/ swap neighborhood 
Hes ( <T) are feasible. 

Proof. Let g(a) be the costof a maximum cost flow x in Nu, and let (u, v) e A~ 
be such that Xuv > 0. 

First, I show that the longest path from u to vin N~ bas length Puv· 
Suppose that there is a path 0 = (u, w1, ••• , wk, v) from u to vin N~ with 

length do > Puv· Then, the flow x', with 

{ 

0, (y, z) =(u, v), 

X~z = Xyz + XutH (y, Z) În 0, 
Xyz, otherwise, 

satisfies all flow balance and flow bound constraints and bas cost (do- Puv)Xuv+ 
g(a) > g(a), which contradiets the optimality ofthe flow x. Hence, the longest 
path from u to vin N~ bas length Puv· 

Now I show that there cannot be any path from u to v in N~, not using the 
are (u, v) itself. From Lemma 4.12 it then follows that the selection 'l' obtained 
from a by swapping the critica] are (u, v) is feasible, thus eompleting the proof. 

Reeall form Section 3.3 that V= OU{s, Z~ax• ••• , z~. z!un• ... , Z~ 0 }. The 
nodes z~in• i = 1, ... , /2, do nothave any outgoing arcsin the solution network 
since they eorrespond to variables Sz; . that occur only in constraints of the form 

mm 

Sv - Sz;. ;:: -ev. Similarly, the nodes z~ax• i = 1, ... , l1o do nothave any 
mm 

outgoing ares. Hence, a path from u to v in N~ does not contain any of the z-
nodes. 

The nodesis also not eontained in any path from u to v. Suppose that there 
would be such a path containing s. Then there would exist a path from u to s in 
N~ with positive length, which contradiets the feasibility of a. 

Thus, any path from u to vin N~ is ofthe form 0 = (u, w1, •.. , wk. v), with 
w; e 0. For the length do of such a path we have 
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do Puwa + Pwaw2 + • • · + Pwt,V 

Pu + Pw1 + · • • + Pwk + 8uwl + 8wlW2 + · • • + 8wkv 
(**) 
> Pu +8uv = Puv• 

which is in contradiction with the length of the longest path from u to v hav­
ing length Puv· Inequality (*) holds because ofthe condition formulated in the 
lemma, and ( **) holds since Pw; > 0 and the set-up times 8xy satisfy the triangle 
inequality. D 

All problems with sequence-independent processing times, in which the con­
straints in A 1 are nonnegativity or ordinary preeedenee constraints, satisfy the 
condition formulated in Lemma 4.14. Examples are the job shop and the open 
shop scheduling problem. An example of a different problem that satisfies this is 
the open shop problem with sequence-dependent set-up times, where A 1 consists 
of nonnegativity arcs (s, v) only. 

If processing times are sequence-independent, but Cuv is not guaranteed to be 
larger than the processing time of u, then a critica) swap may result in an infea­
sible selection, even if all Cuv are nonnegative. For example, let (x, y} e Aj be 
a critical are with length Pxy = Px = 6, and let (x, w) and (w, y) be aresin At 
with Cxw = Cwy = 2. Swapping the are (x, y) would result in a cycle oflength 
4 + py. consisting of the arcs (x, w), (w, y), and (y, x). 

Similarly, if the processing times are sequence-dependent, critical swaps may 
be infeasible, even if Cuv > Pu for all (u, v} e At. Forexample, let (x, y) e Aj 
be a critica! are with length Pxy = Px + 8xy = 2 + 4 = 6, and let (x, w) and 
(w, y} be arcsin At with Cxw = Px = 2, and Cwy = Pw = 2. Then again, 
swapping (x, y) results in a positive length cycle. 

When the restrictions on the possible values of Puv and Cuv as formulated in 
Lemma 4.14 are sadsfied, the critica! swap neighborhood is connected. 

Theorem 4.15 (Connectivity) 
Consider an instanee of the general scheduling pmblem that satis.fies the condi­
tion formulated in Lemma 4.14. For each feasible selection ao there exists a finite 
sequence ofselections (ao, Ut. a2, •.. , UJ), where at is an optimal selection, and 
a; is obtained from a; -1 by peiforming a critica/ swap. 

Proof. The proof is analogous to the proof by Van Laarhoven et al. [1992] of 
the connectivity of the swap neighborhood function for the job shop scheduling 
problem. 
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Let a* be an optimal selection. Associated with each feasible selection t', 
there is a critical flow xf in Nf. Let Ll(t') be the number of arcs (u, v) e A~ 
such that (v, u) e Af, and let .6.c(t') be the number of critical arcs (u, v) e A~ 
such that (v, u) e Af. Obviously, .6.c(t') :;s .6.('r), for all t'. 

Suppose that .6.c(t') = 0. Then the flow xf is feasible in Nu*, and thus g(a*) ~ 
g(t'). Since a* is optimal, equality must hold and t' is optimal. 

Suppose that .6.c(r) > 0. Then there is a critieal are (u, v) e A3 sueh that 
(v, u) e Af. From Lemma 4.14 it follows that the swap (u, v) results in a fea­
sible selection t'

1
, and .6. ( t'1

) = .6. ( r) - 1. 
Thus, for an arbitrary feasible selection a;, either optimality ean be demon­

strated, or a eritical are (u, v) such that (v, u) e Af can be identified. In the 
second case, a feasible selection ai+1 is formed by performing the swap (u, v). 
Starting from a0, a series offeasible selections with decreasing .ó.(aï) can be ob­
tained. Afterat most .ó.(ao) steps, a selection a1 is found with .6.c(a1) = 0. D 

Theorem 4.15 is of only limited importanee. It can be compared to Theo­
rem 4.4, which states that an optimal selection can be obtained by a dispatching 
algorithm. In the proofs of both theorems, extensive use is made of informa­
tion about an optimal selection. This information is generally not available, and 
therefore the sequence of selections described in Theorem 4.15 cannot be con­
structed, just as it is not possible to construct the optimal dispatching order. 

For the problem in its most general form, no connectivity results for the swap 
neighborhood can be given, even if also non-critical swaps are considered. Con­
sider the example given in Figure 4.13. 

Figure 4.13: Only infeasible swaps. 
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The solid a.rcs are in A 1, the dasbed arcs are in A3. The arcs in Az are not 
drawn he re. All arcs in A 1 have length 0. Suppose that there is a unique optimal 
selection a* withAf = {(v, u), (x, w)}. Any swapofan are in A3 results in 
an infeasible selection. Thus, it is not possible to obtain an optimal solution by 
performing swaps only. 

The swap neighborhood bas been thoroughly studied for the job shop schedul­
ing problem. Several authors have proposed modifications of the critical swap 
neighborhood in order to improve its performance (Van Laarhoven et al. [1992], 
Matsuo et al. [1988], Dell' Amico and Trubian [1993]). These modifications 
may also be applied to the swap neighborhood for the general scheduling prob­
lem. 

The jump neighborhood 
The jump neighborhood ( or reinsertion neighborhood) H i (a) of a selection CT 

consists of all selections that can be obtained by changing the position of one 
operation in the processing order. In other words, a selection 'l' is in the jump 
neighborhood of a if it can be obtained from a by reversing only arcs (u, v) 
and ( v, w) in A3, for some v e 0. Performing the move from CT to 'l' boils 
down to 'removing' v from a, i.e., removing all arcs (u, v) and (v, w) in A3, 
and then 'reinserting' vin the thus formed partial solution network Nu (V\ { v }). 
Analogous to insertion as described in Section 4.3.2, a jump can be denoted by 
a pair (v, L), where L C 0 is thesetof operations w such that {v, w} e A3 and 
(w, v) e Aj. 

Feasibility aspects of insertion have al ready been discussed in Section 4.3.2. 
The following lemma characterizes feasible jumps. 

Lemma 4.16 (Feasible jump) 
Let CT be a feasible selection. Let Nu (V \ { v}) be the partial salution network 
that arises when all arcs (u, v) and (v, w), forsome v E 0, are removedfrom 
AJ". Let d;y be thelength ofthe longest pathfrom x toy in N~(V \ {v}). Let 
Q :={u e 0 I {u, v} E A3}, and let L ~ Q. 

The selection 'l' obtained from a by performing the jump ( v, L) is feasible if 
and only if 

• d~u .:S -Puv• VuE L, 

• d~w ::::; - Pvw, Vw E Q \ L, 

• d~ 1 u .:S -(Puv + Pvw). VuE L, wE Q \ L. 

Proof. The three conditions correspond to the three cycles in Figure 4.6; a cycle 
with positive length of one of the three types arises from the insertion ( v, L) if 
and on1y if the corresponding condition is violated. 0 
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Note that the swap neighborhood is contained in the jump neighborhood. Any 
swap (u, v) can beseen as a reinsertion of operation u (or v). Since the jump 
neighborhood is much Iarger, one may expect that it contains better selections, 
and therefore that a local search algorithm that uses this neighborhood will per­
form better than an algorithm that uses the swap neighborhood. This is only par­
tially true. EspeciaUy when one is interested in the time-quality ratio of an algo­
rithm, smaller neighborhoods may be preferred. A smaller neighborhood can be 
searched more efficiently, and the higher quality of neighbors in the larger neigh­
borhood may be outweighed by the amount of time that is required to find them. 
Powerful neighborhood reduction is therefore required. 

Lemma 4.17 (Critica/ jump neighborhood) 
Let u be a feasible selection, and let x be a critica/ flow in the solution network 
Nu = (V, Au) with cost g(u). Let v E 0 be such that Xuv = Xvw = O,for all 
(u, v), (v, w) e Aj. Let r be a selection obtainedfrom u by peiforming ajump 
of operation v. Then g( r) ::: g(u ). 

Proof. The solution network Nr contains all arcs in A u, except for arcs which 
have zero flow. The flow x', with 

1 { Û, W = V Of Z = V, 
Xwz = h . 

Xwz• ot erwtse, 

is feasible for the network Nr. The cost ofthis flow is equal to g(u), the costof 
the flow x in Nu. Hence, g(r) ::: g(u). 0 

Reinsertion of an operation v that does not occur in the critical flow will never 
result in an improved selection. The size of the jump neighborhood is, how­
ever, not only determined by the number of operations that can be reinserted, 
but also by the number of possible reinsertion positions for each operation. As 
discussed in Section 4.3.2, this number is exponential in the size of the machine 
sets. Therefore, a complete search of the cri ti cal jump neighborhood will be too 
time consuming, even if the machine sets are of moderate size. Other search 
strategies must be considered. If the problem is of the form as described in Sec­
tion 4.3.3, the best reinsertion position of a given operation v can be computed 
in O(n(ml +nq)) time, and finding the best neighbor in the criticaljump neigh­
borhood takes 0(n(m 1 + nq)) time. If good insertion positions cannot bede­
termined efficiently, it may be necessary to use beuristic arguments in order to 
obtain a reduced jump neighborhood of acceptable size. 

Since a swap can be seen as a special case of a jump, the positive connectiv­
ity results that have been given for the critica! swap neighborhood also hold for 
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the critica! jump neighborhood. lf the jump neighborhood is reduced even fur­
ther, for example by consirlering only 'optimal' reinsertions, then the connectiv­
ity properties are lost. Although the jump neighoorbood is much larger thao the 
swap neighborhood, also the jump neighoorbood function is oot connected for 
the problem in its most general form. In the example given in Figure 4.13, there 
are no feasible swaps aod no feasible reinsertions, except for reinsertions that do 
oot modify the current selection. 

Computational experiments 
Based on the results presented above, local search methods that use the swap aod 
the jump neigh~rhood for the general scheduling problem cao be developed. 
Much research, however, bas still to be performed before such methods cao be 
made time efficient. The jump neighborhood is too large to make a complete 
neighoorbood search possible, and it is not clear beforehaod in which way a suf­
ficient reduction of the si ze of this neighoorbood cao be obtained. Furthermore, 
although a selection can be evaluated in polynomial time by solving a maximum 
cost flow problem, the time requirement is still so high that a straightforward im­
plementation would spend too much time in evaluating each of the maoy selec­
tions that must be considered. Efficient updating of maximum cost ftows when 
sma11 modifications of solution networks occur is required in order to obtain a 
more efficient algorithm. 

I wiJl therefore discuss only some experiments with the two neighborhoods 
performed on the subclass of the general scheduling problem that is described in 
Section 4.3.3. For this subclass, evaluation of a selection requires only longest 
path computations, and the best neighbor in the jump neighborhood cao be found 
efficiently. 

The goal of the first experiment is to compare the quality of local minima ob­
tained by the iterative improvement algorithm with the jump neighborhood aod 
the swap neighborhood. The goal of the second experiment is to find out whether 
the better performance of the jump neighborhood, as observed in the first experi­
ment, stiJl holds when a time-quality comparison is made. For this purpose, ooth 
neighborhoods are incorporated in a taboo search algorithm, aod then both algo­
rithms are given the same amount of time. In both experiments, the test set as 
described in the appendix is used. 

Experiment 1. 
For alJ 90 problem instances in the test set, 1000 selections are generated by ap­
plying the dispatching algorithm with the random priority rule. Starting from 
each of these 90,000 selections, four iterative improvement algorithms are ap-
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plied in order to find local minima. The four algorithms use either the swap or 
the jump neighborhood, and apply either first improverneut orbest improvement. 

Since only improving neighbors are of interest, only swaps or reinsertions on 
the critical flow (or, in this case, critical path) need to be considered. The al­
gorithms that use the jump neighborhood consider each operation on the criti­
cal path, and check if it can be reinserted in a profitable way by applying the 
best insertion algorithm described in Section 4.3.3. When first improverneut is 
used, the first profitable reinsertion is actually performed, and the procedure is 
repeated for the new selection. When best improvement is applied, aJI operations 
on the critica! path are considered, and the reinsertion that is most profitable is 
performed. 

Let t:1 be the current selection, and let ds1 be the makespan of the correspond­
ing schedule. Let r be a neighboring selection with makespan d;,. In the algo­
rithms used in both experiments, the value of d;, is not computed exactly, but an 
estimate e~, is computed that bas the following properties (see, e.g., Dell' Amico 
and Tmbian [1993]): 

• If d;, < dst• then d;, :5 e.~t :5 dst· 

• If d;, :::. dst• then e~, = d;1• 

The advantage of using the estimate is that it can be computed more efficiently 
than the actual value, while improving neighbors are still identified. 

In the iterative improvement algorithm that uses the swap neighborhood, the 
estimate for d;1 is computed for each possible swap on the critica) path. When 
first improvement is used, the first swap for which the estimate is smaller than 
dst is actually performed. When best improverneut is used, the swap with the 
smallest estimate (if smaller than dst) is performed. 

For each of the four algorithms, a sample of 1000 local minima for each of the 
90 instances is obtained. The empirical distributions of the quality of the four 
kinds of local minima, based on these four times 90,000 observations, are de­
picted in Figure 4.14. On the horizontal axis, the relative distance (in percents) 
from the best known value is set out. The vertical axis represents the observed 
fraction of local minima with smaller relative distance. 

The jump neighborhood clearly outperforms the swap neighborhood. More 
often solutions with small relative distance from the best known are obtained. 
With first improvement, about 90% of the observed local minima obtained with 
the jump neighborhood have a relative distance of 40% or less, against 20% of 
the local minima obtained with best improvement. For best improvement, these 
figures are 56% and 12%, respectively. The average relative distance fora local 
minimum obtained with the jump neighborhood using first improverneut is about 
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Figure 4.14: Distri bution of locaJ minima. 

28%, whereas the same value for the swap neighborhood is about 56%. 
Surprisingly. first improvement gives better results than best improvement. 

For both neighborhoods, the local optima obtained with first improvement are on 
average closer to the best known solution value than the local minima obtained 
with best improvement. The average distance is about 40% for best improve­
ment with the jump neighborhood and about 62% with the swap neighborhood 
against. respectively, 28% and 56% for first improvement. Spending more time 
in order to find the best neighbor brings. apparently, an increased risk of getting 
stuck early in a local minimum. 

Figure 4.14 gives information aggregated over all nine considered problem 
types. There are, however, some variations in the results obtained for different 
problem types. Consider the empirical density functions depicted in Figures 4.15 
and 4.16. The vertical axis now represents the fraction of observations that have 
a particular relative distance from the best known value. 

The OSh problem is a variant of the open shop problem in which each job con­
sists of two sets of operations. The operations of the first set must be performed 
before the operations of the second set, but there is no restrietion on the process­
ing order of operations within the same set. The four density functions for the 
job shop problem have a simHar shape, and in particular the density functions 
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Pigure 4.16: Density functions 
for OSh instances. 

af best impravement with the jump neighborhood and first impravement with 
the swap neighoorbood are almost identical. Por the OSh instances, on the other 
hand, the differences between the swap and the jump neighborhood are much 
more pronounced. 

Experiment 2 

The first experiment bas shown that the jump neighborhood is more powerful 
than the swap neighborhood. The question that remains is whether jumps are 
also competitive when the higher time requirement is taken into account. Lioce 
and Martini [1995] have implemenled a taboo search algorithm in which they 
have incorporated the swap and the jump neighborhood. The taboo search imple­
mentation is similar to the implementation of Dell' Amico and Trubian [1993]. 
Several experiments have been conducted in which a fixed number of iterations 
was performed. Por alJ problem types, the jump neighborhood gave better re­
sults than the swap neighborhood, thus confirming the results of the experiment 
described above. I will only discuss the experiments in which the sarne amount 
of time bas been given to both algorithms, and refer to the report of Lioce and 
Martini for a discussion of other experiments. 

Por each of the 90 problem in stances, five different selections were obtained 
by the constructive insection algorithm, in which the first 60% of the operations 
were inserted in order of decreasing processing times, and the remaining 40% 
(with smallest processing times) were inserted in random order. Starting from 
each selection 5000 iterations of the taboo search algorithm with the jump neigh­
borhood were performed. After 1000 iterations, the value of the best salution 
found so far as well as the required time was recorded. The same was done after 
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problem average relative distance from best known value 
type swap jump 

t1000 t5000 1000 iter 5000 iter 

JS 2.7 2.1 4.9 2.9 
JS2 7.8 7.1 6.0 3.2 
JS3 7.1 6.4 5.5 2.7 
FS 2.6 2.0 3.1 1.6 
FS2 13.6 12.6 6.0 3.8 
FS3 11.6 10.7 5.3 3.3 
os 2.7 2.4 0.2 0.1 
OSh 7.4 6.7 2.6 1.3 
OSp 9.8 7.6 4.1 1.7 

All problems 7.0 6.2 4.4 2.4 
cpu (sec.) (50.3) (248.3) (50.3) (248.3) 

Table 4.2: Time-quality comparison of the two neighborhoods in a taboo search 
algorithm. 

the complete run of 5000 iterati.ons. Then, the algorithm with the swap neigh­
borhood was given the same amount of time. The best solution found within the 
time required for 1000 jump iterations as well as the best solution found during 
the entire run were recorded. In Table 4.2, a summary of the results is given. 

For each of the nine problem types, the last two columns give the average rel­
ative distance from the best known value for selections obtained by the taboo 
search algorithm with the jump neighborhood after 1000 and 5000 iterations. 
The two other columns, t1000 and t5000 give the average relative distance ob­
tained by the algorithm with the swap neighborhood when it was given the same 
amount of time as required by 1000 and 5000 jump iterations. The average time 
requirement for 1000 jump iterations was 50.3 seconds on a SUN SP ARC 5. In 
the same time, on average about 20,000 swap iterations could be performed. 

In Table 4.2, we see that the jump neighborhood outperfarms the swap neigh­
borhood also in a time-quality comparison, except for the job shop (JS) and the 
flow shop (FS) problem. For the job shop problem, the swap neighborhood gives 
better results than the jump neighborhood when the same amount of time is given 
to both algorithms. For the considered instances of the flow shop problem, this 
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is true for the time required by 1000 jump iterations (2.6% versus 3.1%), but 
the situation is reversed when 5000 jump iterations are considered (2.0% versus 
1.6%). 

Very good results are obtained for the open shop problems. After 1000 jump 
iterations, the average relative distance from the optimal value is only 0.21 %. In­
section seems to be very powerful for open shop problems, because also the con­
structive insection algorithm gave very good results for this problem. We must 
keep in mind, however, that the results depend strongly on the difficulty of the 
considered instances. The job shop instances are known to be hard. Many re­
searchers have tried to solve them with only limited success. Perhaps more dif­
ficult open shop problems must be generated befare we can make any justified 
statements about the power of the insection technique when applied to this kind 
ofproblem. 

4.5 Relaxation 

Consider an arbitrary instanee of the general scheduling problem: 

min 

s.t. 
(GP) 

f3 + L bvSv + L hvwavw 
veV (v,w)EA2 

Sw - Sv 2: Cvw , 
Sw - Sv + avw 2: Cvw , 
Sw 2: Sv + Pvw V Sv 2: Sw + Pwv , 
Ss= 0 
avw 2: 0, 

V(v, w) E A1, 

V(v, w) E A2, 
V{v, w} E A3, 

V(v, w) E A2, 

A straightforward approach for solving this problem consists of two phases: 

1. Find a feasible selection of the disjunctive constraints using one of the con­
struction methods discussed in Section 4.3. 

2. Use this selection as a starting point fora local search algorithm that uses 
one of the neighborhoods discussed in Section 4.4. 

With respect to the second phase, I will focus on the critica! swap neighborhood. 
If we are not able to apply this simple neighborhood, then there is little hope that 
the more complicated jump neighborhood can be applied successfully. 

As discussed in Section 4.3, a feasible selection for problem ( G P) can be ob­
tained by a dispatching or insertion algorithm if the network N1 = (V, AI) is 
acyclic. Furthermore, in Section 4.4, I have given a condition on the lengtbs of 
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the arcs in N 1 under which cri ti cal swaps are guaranteed to be feasible and the 
critical swap neighborhood function is connected. If these conditions are sat­
isfied, it is possible to apply straightforwardly any local search algorithm that 
uses the critical swap neighborhood. Por example, taboo search and simulated 
annealing algorithms that have been applied successfully to the job shop prob­
lem require only modification of the selection evaluation procedure, and some 
finetuning of some of the parameters. Of course, more research is required to 
develop efficient algorithms, but the basic ideas bebind existing algorithms can 
also be applied to instances of the general scheduling problem that satisfy the 
abovementioned conditions. 

There are, however, many problems that do not satisfy these conditions. Por 
example, N1 is cyclic for job shop problems with deadlines, and ifthe processing 
times are sequence-dependent feasibility of critica] swaps cannot be guaranteed. 
Even if a feasible selection is found for such a problem, the probability that a 
local search algorithm gets stuck in a selection of poor quality is very high. In 
Pigure 4.13, I gave an example of a feasible selection which could only be left 
by performing an infeasible swap. 

In this section, I discuss two different relaxation techniques that may be useful 
in developing solution methods for such 'hard' problems. 

4.5.1 Lagrangian relaxation 

Let A 1 ç; A 1 be a set of cons~ints such that the oetwork Ni = (V, A j) is 
acyclic and Cuv ?! Puw• for all u, v, and w such that (u, v) E Ai and {u, w} E A3. 
Ai canthen be considered as a set of 'easy' constraints and A1 \Ai as a set of 
'difficult' constraints. Let À be a nonnegative vector of Lllgrangian multipliers. 
The Lagrangian relaxation LR(À) of problem (G P) is 

min 

s.t. 
(LR(À)) 

f3 + L bvSv + L hvwClvw + L Àvw<cvw + Sv - Sw) 
veV (v.w)EA2 (v.w)EAJ \Ai 

Sw- Sv ::::: Cvw' V(v, w) E Aj, 
Sw- Sv + Clvw ::::: Cvw' V(v, w) E A2. 

Sw 2: Sv + Pvw V Sv 2: Sw + Pwv, V{v, w} E A3, 
Ss =Ü 

V(v, w) E A2. 

Note that the Lagrangian relaxation is again an instanee ofthe general schedul­
ing problem. The hard constraints are removed, and the new objective function 
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can be rewritten as 

fJÀ + Lb~Sv + L hvwavw• 
veV ~.w)eAz 

with 

fJÀ = fJ + L ÀvwCvw• 
(v,w)EAt \Aj 

and 

b~ = bv + L Àvw + L Àuv· 
w:(v,w)EAt \Aj u:(u,v)EAt \Aj 

The problem structure, however, bas changed in such a way that a feasible 
selection can be obtained by one of the described construction methods (the net­
work (V, Aj) is acyclic), and the critica} swap neighborhood of a feasible selec­
tion contains only feasible selections. The construction and local search methoos 
discussed before can thus be applied to find good solutions for the Lagrangian 
relaxation. In the following lemma, a re lation between the values of the optima! 
solutions of the original problem and the Lagrangian relaxation is established. 

Lemma 4.18 (Lower bound) 
Let ( G P) be an instanee of the general scheduling problem, and let LR(À) be 
the LagrangJan relaxation. For any nonnegative vector À of LagrangJan multi­
pliers, the value ZLR(>.) ofthe Lagrangfan relaxation is a lower bound on zap, 

the optima/ value of ( G P ). 

Proof. LetS* be an optimal salution of (G P), with value zap, and let À be a 
nonnegative vector ofLagrangian multipliers. S* is feasible for problem LR(Ä), 

and it bas value ZGP + L(v,w)eA 1\A* Àvw(Cvw + s:- S~) .:S Zap, since Cvw + s: - S~ .:::; 0 (feasibility) and Àvw 
1
:;::: 0. The value of any feasible salution of 

LR(À) is an upper bound on the optima} value ZLR(À)· Thus, ZGP 2: ZLR(J.)· D 

The optimization problem 

max ZLR(>..} 
À::!O 

is referred to as the LagrangJan multiplier problem or the Lagrangian dual. Let 
ZLD be the optimal value of this problem. From Lemma 4.18, we have for any 
nonnegative vector À of Lagrangian multipliers, 

ZLR(>..) .:S ZLD .:S ZGP· (4.5) 
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The optimal solution of the Lagrangian dual gives the strongest lower bound 
on the value of the optimal salution of (G P) that can be obtained by solving a 
Langrangian relaxation. The following theorem identifies situations in which the 

optimal salution of a Lagrangian relaxation can be shown to be optimal for the 
original problem as well. 

Theorem 4.19 (Optima/ solutions) 
Let ( G P) be an instanee of the general scheduling problem. Let SJ.. be an optima/ 
solution of the Lagrangion relaxation L R(À). lf SJ.. is feasible for problem ( G P) 

and Àvw(Cvw+S~-S~) = Oforall (v, w) E At \Aj, then ZLR(>..) = ZLD =zap, 
and s>.. is an optima/ solution of ( G P). 

Proof. Since s>.. is an optimal salution of LR(À), we have 

ZLR(J..) = f3 + LbvS~ + L hvwa~w + L Àvw(Cvw+S~-S~), 
VEV (V, W)EA2 (!1, w)EAI \At 

with a~w = max{O, Cvw + s~- S~}. If Àvw(Cvw + s~- S~) = 0 for all (v, w) E 
At\ Aj, and SJ.. is feasible for (GP), then 

ZLR(>..} = L bvS~ + L hvwa~w :::: ZGP· 
VEV (V,W)EA2 

From (4.5) it follows that ZGP = ZLR(J..), and that SJ.. is an optimal solution of 
(GP). D 

In general, however, there is a positive duality gap zap- ZLD· It may still be 

worthwhile to try to solve the Lagrangian dua1. The optima] solution of the La­
grangian dual often gives a good lower bound on the optimal value of the orig­
inal problem. Furthermore, one may find feasible or near-feasible solutions of 
the original problem while looking for optimal solutions of the Lagrangian dual. 
It may sametimes be possible to modify such near-feasible solutions in order to 
obtain feasible solutions of good quality, for example by using themasastarting 
point for a penalty metbod as wil1 be described in Section 4.5.2. 

Several strategies for solving the Lagrangian dual problem can be thought of. 
A natura] approach would be tostart with some vector ofLagrangian multipliers, 
solve the corresponding Lagrangian relaxation, and use information about the so­
lution of this relaxation to update the multipliers. In almost all successful appli­
cations of Lagrangian relaxation, problem specit1c multiplier adjustment strate­
gies are used, and such strategy wi11 probably also be required when Lagrangian 
relaxation is applied to the general scheduling problem. 
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4.5.2 Penalty methods 

An alternative approach to the Lagrangian relaxation methad discussed above is 
to apply a penalty methad. We can associate a penalty cost lfuv with each hard 
constraint (u, v) e At \Ai. For each unit by which the constraint (u, v) is vi­
olated, a cost lfuv is incurred. As has been discussed shortly in Section 3.3.2, 
adjusted start-start constraints are useful for rnadeling such violations. 

Let Sw - Sv ;:::: Cvw be a hard constraint. Replacing this constraint by the 
constraints Sw - Sv + CXvw ;:::: Cvw and avw ;:::: 0 corresponds to transforming 
the original constraint into a soft constraint, with avw representing the amount 
of violation of the original constraint. Such a violation can then be penalized by 
intraducing a penalty cost hvw for each unit of violation. 

In this way, the following problem is obtained: 

min 

s.t. 
(GP(1r)) 

fJ + L bvSv + L hvwavw + L lfvwavw 
vEV (V,UI)EA2 (v,w)EA 1\Aj 

Sw- Sv::: Cvw. V(v, w) E At. 

Sw- Sv + CXvw ::: Cvw. V(v, w) E A2 u (At \Ai), 
Sw;:::: Sv + Pvw V Sv;:::: Sw + Pwv, V{v, w} E A3, 
Ss =0 
CXvw ;:::: 0 • V(v, w) E A2 U (A1 \Ai). 

(GP(7r)) is again an 'easy' instanee ofthe general scheduling problem, and 
the discussed construction and local search methads can be used to find good 
solutions. 

Ifthe penalty coefficients are sufficiently large, any solution of (GP(7r)) in 
which one of the constraints in A 1 \ A i is violated ( or, better, in which avw is 
positive for some ( v, w) e A 1 \ A i), has higher cost than any selection in which 
none of these constraints is violated. Therefore, for 7f sufficiently large, the op­
ti mal solution of (G P(7r)) is also an optima) solution for (G P). 

Hence, a natural approach for solving an instanee of the general scheduling 
problem would be (1) to identify hard constraints, (2) to incorporate these con­
straints in the objective function with high penalty coefficients, (3) to find a fea­
sible selection for the madified problem, and (4) to apply local search (with the 
critical swap neighborhoad) to find goad selections for the madified problem. 

There is, however, one important disadvantage of large penalties combined 
with local search. When penalties become larger, it becomes increasingly diffi­
cult to get out of Jocal minima. For a given selection, a number of constraints is 
violated and a number of constraints is satisfied. Any swap that does not change 
the number of violated constraints is much preferred to a swap that causes an in­
crease of the number of violated constraints. Performing such a 'bad' move may, 
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however, be necessary to obtain any substantial impravement in later stages of 
the algorithm. 

If the algorithm gets trapped in a local minimum of this kind, it will be diffi­
cult to get out of it. Even if more sophisticated search strategies such as taboo 
search or simulated annealing are applied, it is difficult to prevent the search to 
be limited to a small part of the salution space around some local minimum. The 
quality of these solutions can be poor, for example when the number of violaled 
constraints is positive, and local search is likely to result in selections of poor 
quaJity. 

One way of overcoming this problem is to start with low penalties and grad­
ually increase the penalty coefficients of constraints that are violated. Starting 
with low penalties rr0, a good selection is obtained for the problem (G P(rro)) 
by applying local search. For this selection, some of the constraints in At \AT 
are violated and some are not. The penalty coefficients ofthe violaled constraints 
are then increased whereas the other penalty coefficients remain unchanged (or 
are increased less strongly, or even decreased). A new problem (G P(rr1)) is ob­
tained, and the procedure is repeated. 

In this way, a sequence of probieros (G P(rro)), (G P(rrt)). (G P(rr2)), ... is 
formed. The first problems are used to search for promising areas of the solu­
tion space, both with respect to feasibility and quality, and to identify hard con­
straints. In later stages, attention is focused on these promising areas and because 
of the increasing penaJties the search is guided more and more in the direction 
of feasible selections. 

Obviously, the proposed approach is not guaranteed to give feasible selec­
tions. However, because of the low penalties, local search methods such as taboo 
search and simulated annealing are given the opportunity to search the salution 
space more or less thoroughly in order to identify promising areas. The proba­
bility of getting trapped in a small area around some local minimum is smaller 
than when large penalties are used. 

4.5.3 Comparison of the two relaxation methods 

There are two important differences between the penalty metbod and Lagrangian 
relaxation. 

First, the penalty metbod is guaranteed to give optimal solutions of ( G P) if 
the subproblem ( G P (rr)) can be solved to optimality. If the Lagrangian sub­
problem LR(À) can be solved to optimality, however, only the optimal solution 
of the Lagrangian dual can be obtained, which gives only a lower bound on the 
optimal solution of (G P). 

Secondly, there are substantial differences between the subproblems ( G P (1r)) 
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and LR(J...). In (G P(n)), the hard start-start constraints are replaced by adjusted 
start-start constraints. The solution networks of (G P) and (G P(n)) are identi­
cal, except for the capacities of the arcs associated with the hard start-start con­
straints. In the solution networks associated with LR(À), the arcs corresponding 
to hard start-start constraints are removed entirely, and some of the demands bv 
are changed. Possibly, more efficient maximum cost flow problems cao be ap­
plied to networks from which specific arcs are removed. If this is the case, local 
search methods applied to LR(J...) will be more efficient than similar methods ap­
plied to (G P(n)). 

Anyhow, more research is required before any of the two proposed relaxation 
methods cao be implemented successfully. lt is important to find good methods 
for identifying promising areas of the solution space and to develop good strate­
gies for updating the Lagrangian multipliers or the penalty coefficients. 
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Discussion 

The rnain topic of this thesis has been the identification of cornrnon aspects of 
planning problerns that can be exploited in the design of a planning board gener­
ator (PBG). I have used a top-down approach to develop specification rnethods 
for problern instances and types, and used a bottorn-up approach to define the 
general scheduling problern and to develop solution rnethods for it in order to 
provide algorithrnic support for the rnanipulations offered by a planning board. 

In this chapter, I surnrnarize the results obtained and describe, in an inforrnal 
way, sorne steps that have to be taken before a PBG can actually be developed. 
Furtherrnore, I discuss how the results obtained for the general scheduling prob­
lern contribute to the theory of machine schedu1ing and present sorne further gen­
eralizations and suggestions for future research. 

5.1 Towards a planning board generator 

In Chapter 1, the concept of a planning board generator (PBG) was introduced. 
Given a specification of the problern type for which a planning board has to be 
developed and a specification of the desired representations and rnanipulations, 
a PBG should autornatically create an initia! version of the planning board. In 
the discussion that followed, a conflict between two objectives of a PBG was 
pointed out. On the one hand, a PBG should be as general as possible, supporting 
a broad variety of planning problern types; on the other hand, for a given problern 
type it should be able to generate a planning board that can deal with the specific 
characteristics of that problern type in an efficient way. 

In order to deal with both objectives, a PBG wiJl contain a basic irnplernen­
tation of each of the procedures that support a representation or rnanipulation. 
On the basis of inforrnation about the problern, these basic irnplernentations can 
be tailored to the specific properties of the problern type for which a planning 
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board is to be developed. This tailorlog may occur in several ways. Sometimes 
one formulates a general procedure and tunes it to the specHic properties of a 
problem type by setting some parameter values. In other cases, the requirements 
for some representation or manipulation are structurally different for different 
problem types and the tailorlog of a basic procedure may involve incorporating 
approprlate predefined subroutines. 

The distinction between the two tailorlog methods discussed is related to the 
distinction between a top-down and a bottorn-up approach. In a top-down ap­
proach, generally applicable methods are developed, which may be adjusted to 
deal with specific situations. Often when such an approach is applied success­
fully, a general procedure that requires tailoring in the form of the setting of pa­
rameter values can be formulated. In a bottorn-up approach, one develops an ef­
ficient, problem-specific metbod and trles to adjust this metbod in order to deal 
with more general problem situations. No further generalization is pursued ifthe 
desired level of efficiency cannot be maintained. The bottorn-up approach will 
then result in a number of structurally different methods for different classes of 
problems. In such a situation, tailoring of a basic implementation of a proce­
dure wiJl genera11y involve incorporating methods that are most approprlate for 
a considered problem type. 

Obviously, a lot of work bas still to be done before a PBG can actually be cre­
ated. In the following, I present some of my thoughts about two important ele­
ments of a PBG, methods for providing it with the required information, and the 
above mentioned procedures for supporting various representations and manip­
ulations. In the discussion, I pay special attention to the possibilities and impos­
sibilities of top-down and bottorn-up approaches in trying to obtain the desired 
results. 

5.1.1 Providing the PBG with the required information 

Any planning problem is characterized by the processes and resources, the time 
system, and the constraints that must be satisfied when processes are assigned to 
resources and time intervals. The constraints are expressed in terros of properties 
of the processes and resources or in terms of relations between processes and 
resources. 

This problem structure bas enabled us to develop a general method, based on 
attrlbuted graphs, for the specification of problem instances. Nodes represent 
processes and resources. Attrlbutes of nodes represent properties of the cocre­
sponding objects. Graph constrocts like arcs, edges, and K I.n 's are introduced 
to represent relations between objects. In Chapter 2, a detailed specification of 
properties of processes and resources and the various kinds of relations is given. 
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The instanee specification method, however, can easily be extended or modified 
in order to deal with elements of planning problems that have notbeen discussed. 

The instanee specification method has served as a basis for the problem type 
specification method. A problem type is a set of instances that satisfy certain 
restrictions. In the type specification method, these restrictions are formulated 
as restrictions on the attributes and the structure of the instanee graph. 

In this thesis, I have not discussed methods for providing the PBO with infor­
mation about desired representations and manipulations. A top-down approach 
seems appropriate in designing such methods. 

There is only a limited number of representations that will occur on a plan­
ning board: Gantt charts, inventory graphs, data tables, the 'views' of the in­
stance graph as introduced in Section 2.2. 7, and perhaps some novel representa­
tion mechanisms like Jones's [1988] three-dimensiona] Gantt chart. The desires 
of a user of a planning board with respect to representations will be formulated 
in terms of the representation mechanism and the elements of an instanee or a 
plan that must be represented. In the case of a timetabling problem for a school, 
the planner may want two different Gantt charts, one with teachers and one with 
classrooms along the vertical axis. In a production scheduling problem, the plan­
ner may desire a data table in which for each process the name, the size, the re­
lease time, and the due date are given. 

With respect to manipulations the situation is similar. There are only a few 
essentiaHy different kinds of manipulations. Any planning board must support 
manual plan construction. Therefore, a planner must be enabled to insert a pro­
cess on the Gantt chart, to move a process from one position on the Gantt chart 
to another, to shift a process in time, and to remove a process from the Gantt 
chart. Furthermore, any planning board should be able to automatically con­
struct a plan, to complete a partial plan, and to evaluate and improve a given plan. 
Beside the manipulations that are required for creating and modifying plans, a 
planning board must, of course, support standard graphical manipulations in or­
der to enable a planner to get the best views of the problem and the plan. All 
planning boards, irrespective of the problem type for which they are designed, 
should offer the mentioned manipulations. However, a further specification of 
the desired manipulations may be necessary, especially when they are related to 
the advisor functions of a planning board. In the case ofthe timetabling problem, 
the planner may want to ask the planning board to remove alllessoos given by a 
particular teacher from the plan, and to complete the resulting partial plan with­
out reassigning any of the lessoos to that teacher. In a machine scheduling prob­
lem, the planner may want to know if a given schedule can be improved without 
changing the processing order of the operations that are scheduled for the next 
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fourhours. 
Knowied ge of the specific characteristics of problem types is not required for 

the development of a language for transferring information about representations 
and manipulations to the PBG. The specification metbod introduced in Chapter 2 
highlights those characteristics of problem types that are essential for the imple­
mentation of representations and manipulations. It would therefore be sufficient 
if the developed language allows for incorporating elements from the problem 
specification. 

Por example, in the type specification of the timetabling problem, we ean iden­
tify two resource groups, Teacher and Classroom. A simple statement like 

Gantt(Teacher) 
Gantt( Classroom) 

would then suffice to indicate that two Gantt charts are desired, one with teachers 
and one with classrooms along tbe vertica1 axis. 

5.1.2 Procedures for supporting representations and manipulatlons 

After the designer of a planning board bas provided the PBG witb information 
about tbe problem type and tbe desired representations and manipulations, this 
information must be processed and an initia] version of a planning board must be 
produced. To a large extent, this comes down to generating customized imple­
mentations of procedures by tailorlog the basic implementations of these proce­
dures to the formulated desires. 

The most important element in all procedures that oceur in a planning board 
is the plan. Tbe implementation of a procedure determines bow a plan is rep­
resented or how a plan can be modified. If we want to develop powerfut basic 
implementations, we must be able to refer to elements of plans in a uniform way 
for different problem types. 

A general metbod for representing problem instances bas already been dis­
eussed: the instanee graphof Chapter 2. This instanee grapb can be extended 
in order to represent plans as we11. One possible way is to introduce an assign­
ment attribute for processes. This attribute contains the resources and the time 
intervals that a process is assigned to. If tbe assignment attribute eontains the 
predecessors and suceessors of a process on the various resources as well, then 
the solution network as introduced in Cbapter 3 can be eonstructed from infor­
mation represented in the extended instanee graph. 

As soon as we have decided about a uniform way of storing information about 
plans, it is possible to develop general procedures for representing these plans. 
Such a procedure can be designed, for example, for drawing a Gantt ehart. We 
have al ready discussed the possibilities of providing a PBG witb the neeessary 
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information about the problem type and the desires formulated by the planner. 
This information can be used to set certain parameters in the considered proce­
dure, ensuring that the time system and the resources are represented properly 
on the axes. The information stared in the assignment attribute can then imme­
diately be translated into reetangles drawn at the right position. Similar proce­
dures can be formulated for data tables, inventory graphs, and other representa­
tion mechanisms. 

The assignment attribute will also play an important role in procedures that 
support manipulations. Consider, for example, the 'move' manipulation, which 
involves indicating which process is to be moved, specifying its new position, 
and checking if the new assignment is feasible. Processes can be indicated in 
a uniform way for all planning problems, for example by mouse clicking. The 
same holds for the specification of their new positions, although several clicks 
may be required, one for each resource that the process will be assigned to, and 
at least one for the starting time of the process. When the process and its new 
position have been determined, the assignment attribute is updated correspond­
ingly, and immediately the representations are updated as welt. 

Note, however, that it may not be possible to develop one subroutine for check­
ing the feasibility of a plan that can be used in all possible problem situations. 
In case of the general scheduling problem, feasibility is tested by determining 
whether the salution network contains a cycle of positive length with infinite 
capacity. In timetabling problems, other methods wiJl be much more effective. 
While the previously mentioned elementsof the 'move' procedure can bedealt 
with by means of a proper handling of input parameters, the feasibility testing 
may require the incorporation of entire subroutines. Different subroutines must 
be developed for all problem classes that require a different treatment of feasi­
bility testing. 

The same holds when a manipulation invokes the use of a construction or im­
provement algorithm. Algorithms developed for the entire general problem class 
are bound to be very time consuming or to give bad results when applied to spe­
eitic subclasses. It does not make sense to create a library with the most efficient 
algorithms for all possible problem types and to include this library in a PBG. 
The number of possible planning problems is so large that it will be impossible 
to fill the library to any reasanabie extent. A bottorn-up approach may be suc­
cessful: we identify algorithms that are efficient for eertaio problem types, and 
adjust them in such a way that they can handle wider problem classes as well. 
In the end, this approach should lead to a limited number of fairly large prob­
lem classes. Por each such problem class, a library of algorithms can be created. 
These algorithms must be sufficiently efficient for all prob1em types in the con-
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sidered class. 
In Chapters 3 and 4, I have shown how such a bottorn-up approach works fora 

class of machine scheduling problems. A relatively straightforward generaliza­
tion of the mathematical model that is used in many salution methods for the job 
shop problem makes it possible to handle much more general objective functions 
and constraints. Although the result of this approach is that generally applicable 
methods are obtained that may not be very efficient when applied to a specific 
problem type, the toss in efficiency can be reduced substantially by exploiting 
additional information about that problem type. If we know, for example, that 
the objective in a particular problem type is to minimize the makespan, then the 
general metbod can be customized for this problem by replacing the incorpo­
rated maximum cost flow procedure by a longest path procedure, and by using 
the efficient insertion procedure of Section 4.3.3 instead of a generally applica­
ble insertion algorithm. Tailoring can thus be applied within subroutines, even 
if the subroutines cannot be applied to all planning problems. 

5.2 Machine scheduling 

5.2.1 The general scheduling problem 

Research in machine scheduling is characterized by a hu ge number of very spe­
cific problem types, many of which are of only limited practical importance. In 
my research, I have studied a relatively large class of scheduling problems, and 
I have paid special attention to generalizations of existing models that allow for 
more realistic types of constraints and objective functions. 

The general scheduling problem introduced in Chapter 3 includes several well 
studied models, such as single-machine, flow shop and job shop scheduling prob­
lems. One important common property of these problems is that solutions are 
characterized by the order in which operations are processed on the various ma­
chines. As soon as this processing order is determined, the starting times of the 
operations and the quality of the schedule, i.e., the makespan, can be computed 
efficiently. Because of this property local search methods, in which new solu­
tions are obtained by making small modifications in the processing order, are 
very attractive for these problems. The general scheduling problem preserves 
this property, but at the same time it allows for several new kinds of constraints 
and objective functions. 

The most fundamental generalization that we have obtained concerns the ob­
jective functions. In the scheduling literature, regular objective functions have 
received by far the most attention. Regular cost functions are non-decreasing in 
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the completion times of the operations. As a consequence, left-justified sched- . 
ules in which each operation is started as early as possible are preferred. Left­
justified schedules can be analyzed easily, which is one of the main reasons for 
the popularity of regular cost functions. In the general scheduling problem it is 
possible to formulate a large variety of non-regular objective functions. For ex­
ample, any cost function that is convex piecewise linear in the starting time of an 
operation can be dealt with in the genera] scheduling problem. 

The general scheduling problem aJlows for more general constraints as well. 
Release times and minimum delays can be considered as straightforward gener­
aJizations of the nonnegativity and preeedenee constraints in the job shop sched­
uling problem, but aJso deadlines and maximum delays occur in the general prob­
lem. 

A final genera1ization concerns the machine requirements. In the job shop 
scheduling problem, each operation requires one particular machine. In the gen­
eral scheduling problem, each operation must be performed on a given machine 
set. This property makes it possible to model problems like the open shop sched­
uling problem, in which certain operations are notallowed to be performed at the 
same time. 

The mentioned generalizations are useful in severaJ applications. In just-in­
time management, for example, the preferred completion times are not as early 
as possible, but as close as possible to some given due date. Nonregular cost 
functions are used to model the penaJty associated with a discrepancy between 
completion time and due date. Nonregular criteria may aJso apply when a given 
schedule must be adjusted, for example because new orders have arrived or be­
cause a machine has broken down. The quality of the new schedule is not only 
expressed in terms of the actual objective function, but aJso in terms of the differ­
ence between the originaJ schedule and the new schedule. When there is a large 
deviation from the original schedule, the new schedule is valued less than when 
the deviation is small. Taking the deviation into account results in a non-regular 
objective function even if the originaJiy formulated cost function is regular. 

I think, however, that the main contribution is not simply the formulation of 
a general model that can be applied in practical situations. More important is 
the framework that is offered for studying problems with difficult but realistic 
characteristics, such as maximum delays, deadlines, and non-regular objective 
functions. These characteristics have received too little attention in the machine 
scheduling community. 
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5.2.2 Solution methods 

A relatively small price is to be paid for all the generalizations. Fora given pro­
cessing order of the operations in a job shop scheduling problem, the starting 
timescan be obtained by solving a longest path problem; for the general schedul­
ing problem a maximum costjlow problem in a (reduced) salution network must 
be found. 

I have discussed two kinds of salution methods for instances of the general 
scheduling problem, construction methods and local search methods. 

In the first type of construction method, dispatching, solutions are obtained by 
selecting the operations one after the other and positioning them after all previ­
ously selected operations. In insection methods, operations are also selected one 
after the other, but they can be positioned anywhere. For both construction meth­
ods, I have formulated conditions under which feasible solutions are guaranteed 
to be obtained. Although insertion methods offer more freedom, and therefore 
are expected to give better solutions, their time requirement may make them less 
interesting. For a special subclass of the general scheduling problem, in which 
no deadlines or maximum delays occur and the objective is simply to minimize 
the makespan, an efficient implementation is presented. This implementation is 
shown to give substantially better results than any dispatching algorithm. I have 
mentioned also a third type of construction method, in which the disjunctive con­
straints are considered one after the other and for each constraint it is decided 
which of the two concerned operations is performed first. This metbod has not 
been studied in detail. 

With respect to local search methods, most attention has been paid to studying 
the swap neighborhood, which allows for reversing the processing order of two 
consecutive operations or, equivalently, reorienting an are in the reduced salution 
network. Generalizing a well known result for the job shop scheduling problem, 
it is shown that swapping an are that does not occur in the maximum cost flow 
in the salution network cannot result in a salution of higher quality. For this rea­
son, the maximum cost flow is referred to as the critica] flow. Forthermore I have 
formulated conditions under which swapping a critical are is guaranteed to re­
sult in a feasible solution. Another neighborhood, the jump neighborhood, bas 
been introduced. Th is neighborhood allows for removing one eperation from the 
processing order, and reinserting it in a completely different position. Compu­
tational experiments for the problem with makespan minimization as objective 
suggest that the jump neighborhood can be applied successfully. For job shop 
problems with machine sets and problems with open shop characteristics, better 
results are obtained with the jump neighborhood than with the swap neighbor­
hood. 
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Although the general scheduling problem allows for deadlines and maximum 
delay constraints, these constraints cause a sizeable complication when a local 
search metbod is used. Normally only feasibJe solutions are allowed in local 
search methods. When deadlines or maximum delay constraints occur, the exis­
tence of feasible neighbors is not guaranteed. One possible way of circumvent­
ing this problem is to relax the hard constraints and include them in the objective 
function. I have discussed two relaxation methods, using Lagrangian relaxation 
and penalty costs, that may be applied in a local search context. 

5.2.3 Suggestions for forther research 

Although local search methods seem to be particularly suitable for the general 
scheduling problem, other techniques can be applied as well. For the job shop 
problem, for example, several solution methods have been developed that use 
the disjunctive programming formulation that was at the basis of our discussion. 
Branch-and-bound methods (see, e.g., Applegate and Cook [1991], or Brucker 
et al. [1994]) have been applied more or less successfully to the job shop prob­
lem. The relative success of these algorithms is to some extent due to the lower 
bounding procedures that are applied. Fora branch-and-bound algorithm for the 
general schedu1ing problem to be succesful, fast and good lower bounding pro­
cedures are required. Much effort has been put in obtaining such procedures for 
the job shop problem, but these cannot readily be applied to the general schedul­
ing problem, because they rely heavily on the one-dimensional character of the 
makespan as objective function. For a similar reason, the well known shifting 
bottleneck beuristic of Adams et al. [1988], cannot be applied directly to the 
general scheduling problem. Nevertheless, it may still be worthwhile to investi­
gate the possibilities of such other solution methods. 

The key result of Chapter 3 is that as soon as a decision about the processing 
order bas been made, the corresponding starting times of the operations can be 
computed efticiently. This result may be useful for even more general problems 
as well. One important generalization would involve allowing an operation to be 
performed on any of a given collection of machines or machine sets. These kinds 
of machine requirements occurs in, e.g., multiprocessor job shop scheduling and 
vehicle routing problems. In these problems, it is not sufticient to determine the 
processing order of the operations; it must also be decided on which machine 
sets the various operations are performed. As soon as both kinds of decisions 
have been made, again a solution network can be created, and the corresponding 
maximum cost flow problem can be solved in orderto obtain the starting times of 
the operations. Problems in which multiple time windows occur can be tackled 
in a simi1ar way. Besides determining the processing order, one must also de-
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cide about the time intervals in which the various operations are to be performed 
before the starting times can be obtained. 

Before considering such further generalizations, we must first try to develop 
truly efficient local search methods for instances of the general scheduling prob­
lem itself. Interesting research topics are related to finding the most efficient al­
gorithms for solving maximum cost ftow problems in solution networks, to de­
signing efficient methods for updating a maximum cost ftows after a smalt mod­
ification of the network, and to the early identification of interesting swaps. Fur­
thermore. more research must be conducted in the area of relaxation techniques 
before we can apply local search successfully to problems with hard constraints 
like maximum delays and deadlines. 



Appendix: The test set 

For the computational experiments of Chapter 4, we have constructed a test set of 
90 problem instauces of nine different types. In all problem types, the objective 
is to minimize the makespan, aud the only start-start constraints that occur are 
nonnegativity and ordinary preeedenee constraints. 

JS instauces are standard job shop probie ms. 

JS2 instauces are modified job shop problems in which each operation requires 
a machine set consisting of two machines. 

JS3 instances are modified job shop problems in which each operation requires 
a machine set consisting of three machines. 

FS instauces are standard flow shop problems. 

FS2 instances are modified flow shop problems in which each operation requires 
a machine set consisting of two machines. 

FS3 instauces are modified flow shop problems in which each operation requires 
a machine set consisting of three machines. 

OS instances are staudard open shop instances. 

OSh instances are modified open shop instauces in which each job consists of 
two groups of operations. All operations in the first group must be performed 
before all operations in the second group. 

OSp instances are modified open shop instauces in which there are two special 
machines, a 'preprocessor' and a 'postprocessor'. For each job, the operation on 
the preprocessor must be performed first, and the operation on the postprocessor 
must be performed last. The other operations eau be performed in auy desired 
order. 

In the test set, 14 JS instances are included: the notorious 10 x 10 (10 jobs, 10 
machines) instanee ofFisher aud Thompson [1963], the instauces LA02 (10x5), 
LA19 (10 x 10), LA21, LA24, LA25 (15 x 10), LA27, LA29 (20 x 10), LA36, 
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LA37, LA38, LA39, and LA40 (15 x 15) ofLawrence [1984], and the (20 x 15) 
instanee Tai117 of Taillard [1993]. 

For each JS instance, a JS2 instanee is created in the following way. Let M 
be the number of machines in the JS instance. The number of machines in the 
JS2 instanee is then 2M. Each operation v has a machine set {ttÏ, tt2}, with tt} E 

{ 1, ... , M} the machine that must process v in the original JS in stance, and tt2 e 
{M + 1, ... , 2M}. The second machine in the machine set is selected according 
toa simpte rule. This ruleis best explained by means of an example. In Table .1, 
the machines JLÏ. e {6, ... , 10} are given for all operations v in a 7 x 5 JS2 
instance. 

The JS3 instances are obtained in a simHar way. Let N be the number of 
jobs and M be the number of machines in a JS instance. The number of ma­
chines in the corresponding JS3 instanee is then 3M + 2N. Each operation v 
has a machine set {JLÏ, ttÏ• tt3}, with tti e {1, ... , M} the machine that must 
process vin the origina1 JS instance, and tt2 e {M + 1, ... , M + 2N} and 
tt3 E {M + 2N + 1, ... , 3M + 2N} se1ected according toa simple rule. Again, 
this rule is illustrated best by the 7 x 5 example in Table .1. 

2nd machine in JS2 2nd and 3rd machine in JS3 
6 7 8 9 10 6,20 13, 21 12,22 19,23 11,24 

10 6 7 8 9 7,25 14,26 6,27 13,28 12,29 
9 10 6 7 8 8,24 15,20 7,21 14,22 6,23 
8 9 10 6 7 9,29 16,25 8,26 15,27 7,28 
7 8 9 10 6 10,23 17,24 9,20 16,21 8,22 
6 7 8 9 10 11,28 18,29 10,25 17,26 9, 27 

10 6 7 8 9 12,22 19,23 11,24 18,20 10,21 

Figure .1: Machine requirements in the JS2 and JS3 instances obtained from a 
JS instanee with 7 jobs and 5 machines. 

The eight FS instauces inthetest set are the relatively smaiJ CARt up to CAR8 
of CaTlier [1978]. The FS2 and FS3 in stances are obtained from these flow shop 
problems in the same way as the JS2 and JS3 instances were obtained from job 
shop instances. Note that the FS2 and FS3 instances cannot be called flow shop 
instances anymore. Only the first machines in the machine sets exhibit a flow 
shop character. 

The eight OS instances inthetest set are T31, T38, T39, T40 (10 x 10), T45, 
T49, TSO (15 x 15), and T52 (20 x 20) by Taillard [1993]. 
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For each OS instance, an OSh instanee is created in the following way. Let 
M be the number of machines. The operations of each job are divided into two 
groups. The first group contains the operations that must be processed by one of 
the machines in {1, ... , LM/2J}, the second group contains the operations that 
must be processed by one of the other machines. All operations in the first group 
have to be completed before any of the operations in the second group èan be 
started. There are no restrictions on the order in which operations within one 
group are to be performed. The preeedenee graph for an arbitary job consisting 
of 5 operations in an OSh instanee is depicted in Figure .2.a. For each job, we 
introduce a dummy operadon with zero processing time. 

OSp instances are created from OS instances in the following way. Machine 
1 is designated to be the preprocessor and machine M is the postprocessor. For 
each job, the operation that must be performed on the preprocessor is processed 
first. Then the operations on the machines 2 up to M - 1 are to be performed 
in any desired order. Finally, the postprocessor finishes the job. The preeedenee 
graph for an arbitary job consisting of 5 operations in an OSp instanee is depicted 
in Figure .2.b. 

3 2 

5 

Figure .2: a. A job in an OSh instance. b. A job in an OSp instance. 

The JS, FS, and OS instances are well known benchmark instances. Optimal 
solution values are known for most of these instances, and for the hardest in­
stances good lower and upper bounds exist. The instances of the other problem 
types are newly created, and upper bounds forthese instances are obtained by 
performing many long runs of our taboo search algorithm with both the swap 
and the jump neighborhood. The 'best known solution values' obtained in this 
way are not guaranteed to be the optima] values. In fact, they may be substan­
tially higher than these optima) values. However, since we are mainly interested 
in determining the relative quality of different solution methods, the quality of 
the obtained upper bounds is suftkient for our analysis. 
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Samenvatting 

Processen die zich afspelen in de tijd kunnen vaak op elegante wijze gerepresen­
teerd worden in een zogenaamde Gantt chart. Op bladzijde 1 van dit proefschrift 
wordt een voorbeeld van een Gantt chart gegeven. Het gaat daarbij om een tijd­
schema voor een muziekfestival. Op de verticale as staan de vier podia waarop 
optredens plaatsvinden en op horizontale as staat de tijd van vier uur 's middags 
tot twee uur 's nachts uitgezet. De rechthoeken in de Gantt chart geven aan welke 
artiesten waar en wanneer optreden. In het algemeen worden op de verticale as 
van een Gantt chart hulpmiddelen gerepresenteerd en de horizontale as is de tij­
das. De rechthoeken geven een toewijzing van processen aan hulpmiddelen en 
tijdintervallen weer. 

In dit proefschrift besteed ik aandacht aan planborden, interactieve planning­
systemen die de Gantt chart als qelangrijkste representatie hanteren. Planborden 
zijn instrumenten die gebruikt kunnen worden bij het oplossen van een grote ver­
scheidenheid van problemen. Voorbee1den zijn het maken van een lesrooster, 
waarbij Jessen moeten worden toegewezen aan leraren, klaslokalen en lesuren, 
en het bepalen van een produktieschema, waarbij operaties door machines moe­
ten worden uitgevoerd in bepaalde tijdintervallen. 

Ik beschouw een planbord niet alleen als een 'assistent' die een planner de 
mogelijkheid biedt om plannen te creëren en op te slaan om ze later weer aan 
te kunnen passen. Een planbord moet ook als 'adviseur' kunnen optreden door 
zelf plannen te genereren en moge1ijke verbeteringen in een bestaand plan aan 
te geven. 

Hoewel planborden gebruikt kunnen worden voor problemen uit heel verschil­
lende toepassingsgebieden, zijn er toch veel overeenkomsten in de wijze waarop 
ze ingericht zijn en in de structuur van de problemen waarvoor ze bedoeld zijn. 
Het gaat er altijd om een goede toewijzing van processen aan hulpmiddelen en 
tijdintervallen te vinden. Dit heeft als gevolg dat op verschillende planborden 
vaak dezelfde representaties worden aangeboden en dezelfde manipulaties kun-
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nen worden uitgevoerd. Het uitgangspunt van dit onderzoek was dat het mogelijk 
moet zijn om die gemeenschappelijke kenmerken te benutten en het ontwikkelen 
van planborden te vereenvoudigen. Daarbij was de ontwikkeling van een plan­
bordgenerator (PBG) het uiteindelijke doel. Een PBG moet, op basis van infor­
matie over het probleemtype waarvoor een planbord ontwikkeld moet worden 
en de wensen van de uiteindelijke gebruiker van het planbord, automatisch een 
eerste versie van een planbord kunnen genereren. 

Twee conflicterende doelstellingen komen naar voren als we de functionali­
teit van een PBG beschouwen. Aan de ene kant moet een PBG een zo groot mo­
gelijke verscheidenheid van planningsproblemen ondersteunen; aan de andere 
kant moeten de planborden die gegenereerd worden voor bepaalde probleemty­
pen goed uitgerust zijn voor de specifieke eigenschappen van die problemen. 

Een aanpak die het moge1ijk maakt om een juiste balans te vinden tussen beide 
doelstellingen, is de volgende. Voor elke procedure die in een planbord gebruikt 
wordt bevat de PBG een basis-implementatie. Op grond van de probleemspe­
cifieke informatie die aan een PBG wordt aangeboden wordt die implementa­
tie verder toegesneden op het probleemtype waarvoor een planbord ontwikkeld 
moet worden. Dit toesnijden kan gepaard gaan met het bepalen van de juiste 
waarden van bepaalde parameters of het opnemen van een van te voren gedefi­
nieerde subroutine. 

Een belangrijke rol is daarbij weggelegd voor de probleemspecificatie. Een 
PBG zal slechts in staat kunnen zijn om een goed planbord te genereren voor een 
bepaald probleemtype als dat probleemtype op een goede wijze is gespecificeerd. 
Het is dus essentieel dat er een specificatiemethode is die het mogelijk maakt om 
die eigenschappen van probleemtypen te beschrijven die van belang zijn voor 
de uiteindelijke invulling van de procedures die representaties en manipulaties 
ondersteunen. 

In hoofdstuk 2 behandel ik zo'n specificatiemethode. Eerst wordt er een me­
thode voor het specificeren van probleeminstanties geïntroduceerd. Deze me­
thode maakt gebruik van de algemene structuur van planningsproblemen: pro­
cessen moeten worden toegewezen aan hulpmiddelen en tijdintervallen waarbij 
aan een aantal restricties voldaan moet worden. We kunnen een instantie dan ook 
beschrijven door aan te geven welke processen en hulpmiddelen er zijn en aan 
welke restricties toewijzingen van processen aan hulpmiddelen en tijdinterval­
len moeten voldoen. Deze informatie kan verwerkt worden in een zogenaamde 
instantiegraaf. In een instantiegraaf worden processen en hulpmiddelen gere­
presenteerd door knopen, en hun eigenschappen worden weergegeven in termen 
van attributen van die knopen. De beperkingen waaraan plannen moeten voldoen 
worden, voor zover ze niet in termen van eigenschappen van individuele proces-
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sen of hulpmiddelen kunnen worden uitgedrukt, gerepresenteerd door kanten, 
pijlen of andere graafstructuren die relaties tussen verschillende objecten kunnen 

weergeven. Omdat een probleemtype gezien kan worden als een verzameling 
instanties die aan bepaalde beperkingen voldoen, kan een probleemtype vervol­
gens gespecificeerd worden door beperkingen op de instantiegraaf te formuleren. 

Het is dus mogelijk gebleken om de vele overeenkomsten in de structuur van 
planningsproblemen te benutten bij het ontwikkelen van een algemeen toepas­
bare specificatiemethode. Voor een aantal procedures die in een planbord ge­
bruikt worden is zo'n algemene aanpak ook mogelijk. Voor die procedures kan 
dan een ba'iis-implementatie in een PBG opgenomen worden die door het een­
voudig invullen van de juiste parameterwaarden toegesneden kan worden op be­
paalde probleemtypen. In andere gevallen is zo'n 'top-down' benadering niet 
mogelijk. Vooral als het gaat om de algoritmische ondersteuning van manipu­
laties zullen zulke algemeen toepasbare procedures leiden tot een te geringe ef­
ficiëntie. Omdat het aantal probleemtypen vrijwel oneindig is, is de alternatieve 
aanpak waarbij voor elk probleemtype de meest geschikte algoritmen in een bi­
bliotheek worden opgenomen evenmin te gebruiken. We kunnen echter probe­
ren om een beperkt aantal redelijk brede probleemklassen aan te wijzen en voor 
elke klasse algoritmen te ontwikkelen die voldoende efficiënt zijn voor alle pro­
blemen in die klasse. 

Een 'bottom-up' benadering lijkt geschikt om tot een goede definitie van zulke 
probleemklassen te komen. We beginnen met een probleemtype waarvoor ef­
ficiënte algoritmen ontwikkeld zijn of ontwikkeld kunnen worden, en proberen 
dan een bredere probleemklasse te vinden waarvoor dezelfde algoritmen, in licht 
aangepaste vorm, ook gebruikt kunnen worden. Zodra de gewenste efficiëntie 
niet meer haalbaar blijkt, wordt afgezien van verdere generalisatie. 

Een voorbeeld van zo'n bottorn-up benadering is te vinden in hoofdstuk 3. 
Als uitgangspunt is het bekende job shop scheduling probleem genomen. Veel 
oplossingsmethoden voor dit probleem maken gebruik van de eigenschap dat 
slechts de volgordes waarin de operaties op de verschillende machines uitge­
voerd worden bepaald moeten worden. Zodra dit is gedaan kunnen de bijbeho­
rende starttijden gevonden worden door een langste-padprobleem op te lossen. 
Het langste-padprobleem is een speciaal geval van het probleem van het vinden 
van een stroom van maximale kosten. Deze observatie heeft geleid tot de formu­
lering van het 'general scheduling probleem'. De belangrijkste eigenschap van 
het general scheduling probleem is dat wederom slechts de volgordes waarin de 
operaties op de verschillende machines worden uitgevoerd bepaald moeten wor­
den, waarbij de bijbehorende starttijden nu echter gevonden kunnen worden door 
een stroom van maximale kosten in een netwerk te vinden. 
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Het general scheduling probleem generaliseert het job shop scheduling pro­
bleem op vele manieren. Zo is het niet meer noodzakelijk dat elke operatie ver­
werkt wordt op één machine; we kunnen ook omgaan met situaties waarin een 
operatie op een aantal machines tegelijk wordt uitgevoerd. Bovendien kunnen 
in het general scheduling probleem naast de bekende niet-negativiteits- en pre­
cedentiebeperkingen ook vroegst mogelijke starttijden, uiterste voltooiingstijden 
en grenzen op de duur van de periode tussen twee operaties meegenomen wor­
den. De belangrijkste generalisatie betreft echter de doelstellingsfunctie. Binnen 
het general scheduling probleem is het mogelijk om verscheidene niet-reguliere 
kostenfuncties te formuleren. 

Oplossingsmethoden die toegepast kunnen worden op het job shop scheduling 
probleem kunnen op eenvoudige wijze geschikt gemaakt worden voor het gene­
ral scheduling probleem. In hoofdstuk 4 worden constructieve en lokale zoekme­
thoden behandeld. Ik geef aan onder welke voorwaarden toegelaten oplossingen 
gegarandeerd kunnen worden gevonden met behulp van constructieve methoden 
die gebruik maken van dispatching- of insertietechnieken. Voor een bepaalde 
deelklasse van het general scheduJing probleem wordt aangetoond dat de beste 
insertiepositie voor een operatie op efficiënte wijze gevonden kan worden. Op 
het gebied van lokale zoekmethoden heb ik aandacht besteed aan twee soorten 
buurruimtes. In de 'swap' -buurruimte worden buuroplossingen gevonden door 
de volgorde waarin twee operaties die na elkaar op een machine worden uitge­
voerd om te keren. Ik geef aan onder welke voorwaarden zo'n omkering toe­
gelaten is en tot een verbetering kan leiden. In de 'jump' -buurruimte worden 
buren verkregen door een operatie uit een oplossing te verwijderen en op een 
andere positie weer in te voegen. Voor de klasse van problemen waarvoor de 
efficiënte insertiemethode is ontwikkeld zijn experimenten uitgevoerd die dui­
delijk maken dat de jump-buurruimte vaak betere resultaten geeft dan de swap­
buurruimte, vooral als operaties op meer machines tegelijkertijd moeten worden 
uitgevoerd. 

Lokale zoekmethoden kunnen niet zonder meer worden toegepast op proble­
men waarin bepaalde moeilijke beperkingen, zoals bijvoorbeeld uiterste voltooi­
ingstijden, voorkomen. Het vinden van een toegelaten oplossing is voor derge­
lijke problemen al NP-lastig, en als er al een toegelaten oplossing gevonden kan 
worden, dan kan de toegelatenheid van buuroplossingen niet worden gegaran­
deerd. Zoals ik aan het eind van hoofdstuk 4 aangeef, is het misschien mogelijk 
om tot redelijke oplossingen te komen door gebruik te maken van Lagrangiaanse 
relaxatie of strafkostenmethoden. 

De twee onderdelen die ik in dit proefschrift behandel, probleemspecifica­
tie en algoritmische ondersteuning van manipulaties voor een deelklasse van de 
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klasse van planningsproblemen, zijn niet voldoende om tot daadwerkelijke im­
plementatie van een PBO te komen. In hoofdstuk 5 bespreek ik op informele 
wijze hoe andere onderdelen aangepakt kunnen worden. Bovendien beschrijf ik 
daar hoe de resultaten die zijn verkregen voor het general scheduling probleem 
bijdragen aan de theorie van de machinevolgordeproblemen en geef ik enkele 
suggesties voor verder onderzoek. 
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I 

Het' general scheduling problem' zoals dat is gedefinieerd in hoofdstuk 3 van dit 
proefschrift is een machinevolgordeprobleem in de letterlijke betekenis van het 
woord. 

II 

Zij Q een verzameling van n paren (a;, b;), met a;, b; E N voor i = 1, ... , n. 
Een deelverzameling Q' ç; Q waarvoor max;eQ' a; + max;eQ\Q' b; minimaal is 
kan in O(n Jogn) tijd gevonden worden. 

M. WENNINK, R. VAESSENS (1995). An efficient insertion algorithm for scheduling 

problems with multiprocessor operations. Ongepubliceerd manuscript. 

III 

De insertietechniek kan met succes gebruikt worden in constructie- en verbete­
ringsmethoden voor een brede klasse van machinevolgordeproblemen (zie 
hoofdstuk 4 van dit proefschrift). 

IV 

Het vinden van de beste insertie van een gehele opdracht in een partiële oplossing 
van een open shop probleem is een sterk NP-lastig probleem. 

V 

In veel verhandelingen over de evolutietheorie wordt het beeld geschetst van een 
verbeteringsproces dat heeft geleid tot een (voorlopig) hoogtepunt, de mens. 
Daarbij wordt voorbijgegaan aan het feit dat de meeste ontwikkelingen zich heb­
ben afgespeeld in takken van de 'boom des levens' die niets van doen hebben met 
het kleine twijgje waaraan de mens hangt. Algoritmen voor optimaliseringspro­
blemen die gebaseerd zijn op een analogie met de evolutietheorie gaan uit van 
hetzelfde misverstand als zou er in de evolutie sprake zijn van een doelgerichte 
ontwikkeling en missen dan ook elke grond. 



VI 

De grootte van instanties van het handelsreizigersprobleem die opgelost kunnen 
worden is geen maatstaf voor de geboekte vooruitgang binnen de combinatori­
sche optimalisering. 

VII 

Het is niet alleen goed voor de ontwikkeling van een promovendus om onderzoek 
te verrichten aan een andere universiteit dan die waar hij zijn opleiding heeft ge­
noten; het komt ook de kwaliteit van een onderzoeksgroep ten goede als promo­
vendi met verschillende achtergronden worden aangesteld. 

vm 

a. Hoe compacter de formulering, hoe scherper de stelling. 

b .. 

IX 

Fabrikanten die hun produkten aanprijzen met de term 'duurzaam', waar zij •tang 
meegaand' bedoelen, appelleren op oneigenlijke wijze aan het milieubewustzijn 
van potentiële klanten. 

0 .S. TROMP. 1995. Towards sustainable quality. Proefschrift Rijksuniversiteit Gronin­
gen. 

x 

Dat de Witrus Igor Zjelezovski tijdens zijn laatste poging om een gouden me­
daille te halen op de Olympische Spelen veel minder aandacht kreeg dan de Ame­
rikaan Dan Jansen, hoewel dat niet gerechtvaardigd werd door hun prestaties in 
voorgaande jaren, is te wijten aan de overheersing van het westerse perspectief 
in de internationale berichtgeving. 


