
In CRC Handbook of Algorithms and Theory of Computation,
M.J. Atallah, ed., 1998, pp. 46:1–46:19.

Algorithmic Techniques for Networks of Processors

Russ Miller and Quentin F. Stout
State University of New York at Buffalo and University of Michigan

Introduction

This chapter is concerned with designing algorithms for machines constructed from multiple processors.
In particular, we discuss algorithms for machines in which the processors are connected to each other
by some simple, systematic, interconnection pattern. For example, consider a chess board, where each
square represents a processor (for example, a processor similar to one in a home computer) and every
generic processor is connected to its 4 neighboring processors (those to the north, south, east, and west).
This is an example of amesh computer, a network of processors that is important for both theoretical
and practical reasons.

The focus of this chapter is on algorithmic techniques. Initially, we define some basic terminol-
ogy that is used to discuss parallel algorithms and parallel architectures. Following this introductory
material, we define a variety of interconnection networks, including the mesh (chess board), which are
used to allow processors to communicate with each other. We also define an abstract parallel model of
computation, thePRAM, where processors communicate with memory instead of with each other. We
then discuss several parallel programming paradigms, including the use of high-level data movement
operations, divide-and-conquer, pipelining, and master-slave. Finally, we discuss the problem of map-
ping the structure of an inherently parallel problem onto a target parallel architecture. This mapping
problem can arise in a variety of ways, and with a wide range of problem structures. In some cases,
finding a good mapping is quite straightforward, but in other cases it is a computationally intractable
NP-complete problem.

Terminology

In order to initiate our investigation, we first define some basic terminology that will be used throughout
the remainder of this chapter.

Shared Memory versus Distributed Memory

In ashared memorymachine, there is a single global image of memory that is available to all processors
in the machine, typically through a common bus or switching network (see Figure 1). This model is
similar to a blackboard, where any processor can read or write to any part of the board (memory), and
where all communication is performed through messages placed on the board.

Each processor in adistributed memorymachine has access only to its private (local) memory (see
Figure 1). In this model, processors communicate by sending messages to each other, with the messages
being sent through some form of interconnection network. This model is similar to a school in which
each professor occupies a unique classroom equipped with a blackboard. For professorW to access
information maintained on the board of professorX, W sends a message toX requesting the informa-
tion, andX sends a message back with the information. In this classroom scenario, messages might be
transmitted by students running through the halls. In such message-passing systems, the overhead and

1

delay can be significantly reduced if it can be arranged so thatX sends the information toW without
a request being sent. This is particularly useful if it can be arranged so that the data fromX arrives
beforeW needs to use it, for thenW will not be delayed waiting for the data. This analogy repre-
sents an important aspect of developing efficient programs for distributed memory machines, especially
general-purpose machines in which communication can take place concurrently with calculation so that
the communication time is effectively hidden.

For small shared memory systems, it may be that the network is such that each processor can access
all memory cells in the same amount of time. For example, many symmetric multiprocessor (SMP)
systems have this property. However, since memory takes space, systems with a large number of pro-
cessors are typically constructed as modules (i.e., a processor/memory pair) that are connected to each
other via an interconnection network. Thus, while memory may be logically shared in such a model,
in terms of performance each processor acts as if it is distributed, with some memory being “close”
(fast access) to the processor and some memory being “far” (slow access) from the processor. Notice
the similarity to distributed memory machines, where there is a significant difference in speed between
a processor accessing its own memory versus a processor accessing the memory of a distant proces-
sor. Such shared memory machines are called NUMA (non-uniform memory access) machines, and
often the most efficient programs for NUMA machines are developed by using algorithms efficient for
distributed memory architectures, rather than using ones optimized for uniform access shared memory
architectures.

Efficient use of the interconnection network in a parallel computer is often an important considera-
tion for developing and tuning parallel programs. For example, in either shared or distributed memory
machines, communication will be delayed if a packet of information must pass through many commu-
nication links. Similarly, communication will be delayed by contention if many packets need to pass
through the same link. As an example of contention at a link, in a distributed memory machine config-
ured as a binary tree of processors, suppose that all leaf processors on one side of the machine need to
exchange values with all leaf processors on the other side of the machine. Then a bottleneck occurs at
the root since the passage of information proceeds in a sequential manner through the links in and out
of the root.

Both shared and distributed memory systems can also suffer from contention at the destinations.
In a distributed memory system, too many processors may simultaneously send messages to the same
processor, which causes a processing bottleneck. In a shared memory system, there may be memory
contention, where too many processors try to simultaneously read or write from the same location.

Another common feature of both shared and distributed memory systems is that the programmer
has to be sure that computations are properly synchronized, i.e., that they occur in the correct order.
This tends to be easier in distributed memory systems, where each processor controls the access to its
data, and the messages used to communicate data also have the side-effect of communicating the status
of the sending processor. For example, suppose processorW is calculating a value, which will then
be sent to processorR. If the program is constructed so thatR does not proceed until the message
fromW arrives, then it is guaranteed of using the correct value in the calculations. In a shared memory
system, the programmer needs to be more careful. For example, in the same scenario,W may write
the new value to a memory location thatR reads. However, ifR reads beforeW has written, then it
may proceed using the wrong value. This is known as arace condition, where the correctness of the
calculation depends on the order of the operations. To avoid this, various locking or signaling protocols
need to be enforced so thatR does not read the location until afterW has written to it. Race conditions
are a common source of programming errors, and are often difficult to locate because they disappear
when a deterministic, serial debugging approach is used.

2

Memory

Interconnection Network

PE(1) PE(2) PE(3) PE(n)

Interconnection Network

PE(1) PE(2) PE(3) PE(n)

Mem(1) Mem(2) Mem(3) Mem(n)

Figure 1: Shared memory (top) and distributed memory (bottom) machines. (PE is used represent a
processing element andMemis used to represent memory.)

3

Flynn’s Taxonomy

In 1966, Michael Flynn classified computer architectures with respect to theinstruction stream, that
is, the sequence of operations performed by the computer, and thedata stream, that is, the sequence
of items operated on by the instructions [Flynn, 1966]. While extensions and modifications to Flynn’s
taxonomy have appeared, Flynn’s original taxonomy [Flynn, 1972] is still widely used. Flynn charac-
terized an architecture as belonging to one of the following four classes.

� Single-Instruction Stream, Single-Data Stream (SISD)

� Single-Instruction Stream, Multiple-Data Stream (SIMD)

� Multiple-Instruction Stream, Single-Data Stream (MISD)

� Multiple-Instruction Stream, Multiple Data Stream (MIMD)

Standard serial computers fall into thesingle-instruction stream, single data stream (SISD)category,
in which one instruction is executed per unit time. This is the so-called “von Neumann” model of
computing, in which the stream of instructions and the stream of data can be viewed as being tightly
coupled, so that one instruction is executed per unit time to produce one useful result. Modern “serial”
computers include various forms of modest parallelism in their execution of instructions, but most of
this is hidden from the programmer and only appears in the form of faster execution of a sequential
program.

A single-instruction stream, multiple-data stream (SIMD)machine typically consists of multiple
processors, a control unit (controller), and an interconnection network, as shown in Figure 2. The

Controller

PE

PE

PE

PE

PE

I
n
t
e
r
c
o
n
n
e
c
t
i
o
n

N
e
t
w
o
r
k

Figure 2: A SIMD machine. (PE is used to represent a processing element.)

control unit stores the program and broadcasts the instructions to all processors simultaneously. Active
processors execute the instruction on the contents of their own local memory. Through the use of a

4

mask, processors may be in either an active or inactive state at any time during the execution of the
program. Masks can be dynamically determined, based on local data or the processor’s coordinates.
Note that one side-effect of having a centralized controller is that the system is synchronous, so that
no processor can execute a second instruction until all processors are finished with the first instruction.
This is quite useful in algorithm design, as it eliminates many race conditions and makes it easier to
reason about the status of processors and data.

Multiple-instruction stream, single-data stream (MISD)machines consist of two or more processors
that perform separate instructions on the same data. This model is rarely implemented.

A multiple-instruction stream, multiple-data stream (MIMD)machine typically consists of multiple
processors and an interconnection network. In contrast to the single-instruction stream model, the
multiple-instruction stream model allows each of the processors to store and execute its own program,
providing multiple instruction streams. Each processor fetches its own data on which to operate. (Thus,
there are multiple data streams, as in the SIMD model.) Often, all processors are executing the same
program, but may be in different portions of the program at any given instant. This is thesingle-program
multiple-data (SPMD)style of programming, and is an important mode of programming because it is
rarely feasible to have a large number of different programs for different processors. The SPMD style,
like the SIMD architectures, also makes it somewhat simpler to reason about the status of data structures
and processors.

MIMD machines have emerged as the most commonly used general-purpose parallel computers,
and are available in a variety of configurations. Both shared and distributed memory machines are
available, as are mixed architectures where small numbers of processors are grouped together as a
shared memory symmetric multiprocessor, and these SMPs are linked together in a distributed memory
fashion.

Granularity

When discussing parallel architectures, the termgranularity is often used to refer to the relative number
and complexity of the processors. Afine-grained machinetypically consists of a relatively large num-
ber of small, simple processors (in terms of local memory and computational power), while acoarse-
grained machinetypically consists of relatively few processors, each of which is large and powerful.
Fine-grained machines typically fall into the SIMD category, where all processors operate in lockstep
fashion (i.e., synchronously) on the contents of their own small, local, memory. Coarse-grained ma-
chines typically fall into the shared memory MIMD category, where processors operate asynchronously
on the large, shared, memory. Medium-grained machines are typically built from commodity micro-
processors, and are found in both distributed and shared memory models, almost always in MIMD
designs.

For a variety of reasons, medium-grained machines currently dominate the parallel computer mar-
ketplace in terms of number of installations. Because they utilize commodity processors and have the
ability to efficiently perform as general-purpose (parallel) machines, medium-grained machines tend to
have cost/performance advantages over systems utilizing special-purpose processors. In addition, they
can also exploit much of the software written for their component processors. Fine-grained machines
are difficult to use as general-purpose computers because it is often difficult to determine how to ef-
ficiently distribute the work to such simple processors. However, fine-grained machines can be quite
effective in tasks such as image processing or pattern matching.

By analogy, one can also use the granularity terminology to describe data and algorithms. For
example, a database is a coarse-grained view of data, while considering the individual records in the
database is a fine-grained view of the same data.

5

Interconnection Networks

In this section, we discuss interconnection networks that are used for communication among processors
in a distributed memory machine. First, we define some terminology. Thedegree of processorP is the
number of other processors thatP is directly connected to via bi-directional communication links. The
degree of the networkis the maximum degree of any processor in the network. Thedistancebetween
two processors is the number of communication links on a shortest path between the processors. The
communication diameterof the network is the maximum, over all pairs of processors, of the distance
between the processors. Thebisection bandwidthof the network corresponds to the minimum number
of communication links that need to be removed (or cut) in order to partition the network into two pieces,
each with the same number of processors. Goals for interconnection networks include minimizing the
degree of the processors (to minimize the cost of building a processor), minimizing the communication
diameter (to minimize the communication time for any single message), and maximizing the bisection
bandwidth (to minimize contention when many messages are being sent concurrently). Unfortunately,
these design goals are in conflict. Other important design goals include simplicity (to reduce the design
costs for the hardware and software) and scalability (so that similar machines, with a range of sizes, can
be produced).

Before defining some network models (i.e., distributed memory machines characterized by their
interconnection networks), we briefly discuss theparallel random access machine (PRAM), which is
an idealized parallel model of computation, with a unit-time communication diameter. The PRAM
is a shared memory machine that consists of a set of identical processors, where all processors have
unit-time access to any memory location. The appeal of a PRAM is that one can ignore issues of
communication when designing algorithms, focusing instead on obtaining the maximum parallelism
possible in order to minimize the running time necessary to solve a given problem. The PRAM model
typically assumes a SIMD strategy, so that operations are performed synchronously. If multiple proces-
sors try to simultaneously read or write from the same memory location, then a memory conflict occurs.
There are several variations of the PRAM model targeted at handling these conflicts, ranging from the
Exclusive Read Exclusive Write (EREW) model, which prohibits all such conflicts, to Concurrent Read
Concurrent Write (CRCW) models, which have various ways of resolving the effects of simultaneous
writes. One popular intermediate model is the concurrent read exclusive write (CREW) PRAM, in
which there may be concurrent reads to a memory location, but not concurrent writes. For example,
a classroom is usually conducted in a CREW manner. In the classroom, even if several students are
writing simultaneously on the blackboard, they are doing so in different locations, and hence there are
no write conflicts.

The PRAM does not use a regular interconnection scheme for communication and the unit-time
memory access requirement is not scalable (i.e., it is not realistic for a large number of processors and
memory). However, in creating parallel programs, it is sometimes useful to describe a PRAM algorithm
and then either perform a stepwise simulation of every PRAM operation on the target machine, or
perform a higher-level simulation by using global operations. In such settings, it is often useful to
design the algorithm for a powerful CRCW PRAM model, since often the CRCW PRAM can solve a
problem faster or more naturally than an EREW PRAM. Since one is not trying to construct an actual
PRAM, objections to the difficulty of implementing CRCW are not relevant; rather, having a simpler
and/or faster algorithm is the dominant consideration.

In the remainder of this section, several specific interconnection networks are defined. See Figure 3
for illustrations of these. The networks defined in this section are among the most commonly utilized
networks. However, additional networks have appeared in both the literature and in real machines, and
variations of the basic networks described here are numerous.

6

Figure 3: Sample interconnection networks (from top to bottom): ring, mesh, hypercube, and tree.

7

Ring

In a ring network, then processors are connected in a circular fashion so that processorPi is directly
connected to processorsPi�1 andPi+1 (the indices are computed modulon, so that processorsP0 and
Pn�1 are connected). While the degree of the network is only 2, the communication diameter isbn=2c,
which is quite high. The bisection bandwidth is only 2, which is quite low.

Meshes and Tori

Then processors of a2-dimensional square meshnetwork are configured so that an interior processor
Pi;j is connected to its four neighbors, processorsPi�1;j , Pi+1;j, Pi;j�1, andPi;j+1. The four corner
processors are each connected to their 2 neighbors, while the remaining processors that are on the
edge of the mesh are each connected to 3 neighbors. So, by increasing the degree of the network to
4, as compared to the degree 2 of the ring, the communication diameter of the network is reduced
to 2(

p
n � 1), and the bisection bandwidth is increased to

p
n. The diameter is further reduced, to

2bpn=2c, and the bisection bandwidth is increased, to2
p
n, in a 2-dimensional torus, which has all

the connections of the 2-dimensional mesh plus connections between the first and last processors in
each row and column. Meshes and tori of higher dimensions can be constructed, where the degree of a
d-dimensional mesh or torus is2d, and, whenn is a perfectdth power, the diameter is eitherd(n1=d�1)

or dbn1=d=2c, respectively, and the bisection bandwidth is eithern(d�1)=d or 2n(d�1)=d, respectively.
Notice that the ring is a 1-dimensional torus.

For a 2-dimensional mesh, and similarly for higher-dimensional meshes, the mesh can be rectangu-
lar, instead of square. This allows a great deal of flexibility in selecting the size of the mesh, and the
same flexibility is available for tori as well.

Hypercube

A hypercubewith n processors, wheren is an integral power of 2, has the processors indexed by the
integersf0; : : : ; n � 1g. Viewing each integer in this range as a (log2 n)-bit string, two processors
are directly connected if and only if their indices differ by exactly one bit. Some advantages of a
hypercube are that the communication diameter is onlylog2 n and the bisection bandwidth isn=2. A
disadvantage of the hypercube is that the number of communication links needed by each processor
grows aslog2 n, unlike the fixed degree for processors in ring and mesh networks. This makes it
difficult to manufacture reasonably generic hypercube processors that could scale to extremely large
machines, though in practice this is not a concern because the cost of an extremely large machine
would be prohibitive.

Tree

A complete binary treeof heightk, k � 0 an integer, hasn = 2k+1 � 1 processors. The root node
is at level 0 and the2k leaves are at levelk. Each processor at level1; : : : ; k � 1 has two children
and one parent, the root processor does not have a parent processor, and the leaves at levelk do not
have children processors. Notice that the degree of the network is 3 and that the communication di-
ameter is2k = 2blog2 nc. One severe disadvantage of a tree is that when extensive communication
occurs, all messages traveling from one side of the tree to the other must pass through the root, caus-
ing a bottleneck. This is because the bisection bandwidth is only 1. Fat trees, introduced by Leiser-
son [Leiserson, 1985], alleviate this problem by increasing the bandwidth of the communication links
near the root. This increase can come from changing the nature of the links, or, more easily, by us-
ing parallel communication links. Other generalizations of binary trees include completet-ary trees

8

of heightk, where each processor at level0; : : : ; k � 1 hast children. There are(tk+1 � 1)=(t � 1)
processors, the maximum degree ist+ 1, and the diameter is2k = 2blogt nc.

Designing Algorithms

Viewed from the highest level, many parallel algorithms are purely sequential, with the same overall
structure as an algorithm designed for a more standard “serial” computer. That is, there may be an input
and initialization phase, then a computational phase, and then an output and termination phase. The
differences, however, are manifested within each phase. For example, during the computational phase,
an efficient parallel algorithm may be inherently different from its efficient sequential counterpart.

For each of the phases of a parallel computation, it is often useful to think of operating on an entire
structure simultaneously. This is a SIMD-style approach, but the operations may be quite complex. For
example, one may want to update all entries in a matrix, tree, or database, and view this as a single
(complex) operation. For a fine-grained machine, this might be implemented by having a single (or
few) data item per processor, and then using a purely parallel algorithm for the operation. For example,
suppose ann�n arrayA is stored on ann�n 2-dimensional torus, so thatA(i; j) is stored on processor
Pi;j . Suppose one wants to replace each valueA(i; j) with the average of itself and the four neighbors
A(i � 1; j), A(i + 1; j), A(i; j � 1) andA(i; j + 1), where the indices are computed modulon (i.e.,
“neighbors” is in the torus sense). This average filtering can be accomplished by just shifting the array
right, left, up, and down by one position in the torus, and having each processor average the four values
received along with its initial value.

For a medium- or coarse-grained machine, operating on entire structures is most likely to be im-
plemented by blending serial and parallel approaches. On such an architecture, each processor uses
an efficient serial algorithm applied to the portion of the data in the processor, and communicates with
other processors in order to exchange critical data. For example, suppose then� n array of the previ-
ous paragraph is stored in ap� p torus, wherep evenly dividesn, so thatA(i; j) is stored in processor
Pbip=nc;bjp=nc. Then, to do the same average filtering onA, each processorPk;l still needs to communi-
cate with its torus neighborsPk�1;l, Pk;l�1, but now sends them either the leftmost or rightmost column
of data, or the topmost or bottommost row. Once a processor receives its boundary set of data from
its neighboring processors, it can then proceed serially through its subsquare of data and produce the
desired results. To maximize efficiency, this can be performed by having each processor send the data
needed by its neighbors, then perform the filtering on the part of the array that it contains that does not
depend on data from the neighbors, and then finally perform the filtering on the elements that depend
on the data from neighbors. Unfortunately, while this maximizes the possible overlap between commu-
nication and calculation, it also complicates the program because the order of computations within a
processor needs to be rearranged.

Global Operations

To manipulate entire structures in one step, it is useful to have a collection of operations that perform
such manipulations. Theseglobal operationsmay be very problem-dependent, but certain ones have
been found to be widely useful. For example, the average filtering example above made use of shift
operations to move an array around.Broadcastis another common global operation, used to send
data from one processor to all other processors. Extensions of the broadcast operation include simul-
taneously performing a broadcast within every (predetermined and distinct) subset of processors. For
example, suppose matrixA has been partitioned into submatrices allocated to different processors, and
one needs to broadcast the first row ofA so that if a processor contains any elements of columni then

9

it obtains the value ofA(1; i). In this situation, the more general form of a subset-based broadcast can
be used.

Besides operating within subsets of processors, many global operations are defined in terms of
a commutative, associative, semigroup operator
. Examples of such semigroup operators include
minimum , maximum, or , and , sum, andproduct . For example, suppose there is a set of values
V (i), 1 � i � n, and the goal is to obtain the maximum of these values. Then
 would represent
maximum, and the operation of applying
 to all n values is calledreduction. If the value of the
reduction is broadcast to all processors, then it is sometimes known asreport. A more general form of
the reduction operation involves labeled data items, i.e., each data item is embedded in a record that
also contains a label, where at the end of the reduction operation the result of applying
 to all values
with the same label will be recorded in the record.

Global operations provide a useful way to describe major actions in parallel programs. Further,
since several of these operations are widely useful, they are often made available in highly optimized
implementations. The language APL provided a model for several of these operations, and some paral-
lel versions of APL have appeared. Languages such as C* [Thinking Machines Corporation, 1991] and
FORTRAN 90 [Brainerd, Goldberg, and Adams, 1990] also provide for some forms of global opera-
tions, as do message-passing systems such as MPI [Snir, Otto, Huss-Lederman, Walker, and Dongarra,
1995]. Reduction operations are so important that most parallelizing compilers detect them automati-
cally, even if they have no explicit support for other global operations.

Besides broadcast, reduction, and shift, other important global operations include the following.

Sort: LetX = fx0; x1; : : : ; xn�1g be an ordered set such thatxi < xi+1, for all 0 � i < n� 1. (That
is,X is a subset of a linearly ordered data type.) Given that then elements ofX are arbitrarily
distributed among a set ofp processors, the sort operation will (re)arrange the members ofX so
that they are ordered with respect to the processors. That is, after sorting, elementsx0; : : : ; xbn=pc
will be in the first processor, elementsxbn=pc+1; : : : ; xb2n=pc will be in the second processor, and
so forth. Note that this assumes an ordering on the processors, as well as on the elements.

Merge: Suppose that setsD1 andD2 are subsets of some linearly ordered data type, andD1 andD2 are
each distributed in an ordered fashion among disjoint sets of processorsP1 andP2, respectively.
Then the merge operation combinesD1 andD2 to yield a single sorted set stored in ordered
fashion in the entire set of processorsP = P1 [P2.

Associative Read/Write: These operations start with a set ofmasterrecords indexed by unique keys.
In the associative read, each processor specifies a key and ends up with the data in the master
record indexed by that key, if such a record exists, or else a flag indicating that there is no such
record. In the associative write, each processor specifies a key and a value, and each master
record is updated by applying
 to all values sent to it. (Master records are generated for all keys
written.)

These operations are extensions of the CRCW PRAM operations. They model a PRAM
with associative memory and a powerful combining operation for concurrent writes. On most
distributed memory machines the time to perform these more powerful operations is within a
multiplicative constant of the time needed to simulate the usual concurrent read and concurrent
write, and the use of the more powerful operations can result in significant algorithmic simplifi-
cations and speedups.

Compression: Compression moves data into a region of the machine where optimal interprocessor
communication is possible. For example, compressingk items in a fine-grain two-dimensional
mesh will move them to a

p
k �p

k subsquare.

10

Parallel Prefix (Scan): Given a set of valuesai, 1 � i � n, theparallel prefixcomputation determines
pi = a1
a2
� � �
ai, for all i. This operation is available in APL, where it is calledscan. Note
that the hardware feature known as “fetch-and-op” implements a variant of parallel prefix, where
“op” is
 and the ordering of the processors is not required to be deterministic.

All-to-all broadcast: Given dataD(i) in processori, every processor receives a copy ofD(i), for all
i.

All-to-all personalized communication: Every processorPi has a data itemD(i; j) that is sent to
processorPj , for all i 6= j.

Example: Maximal Point Problem
As an example of the use of global operations, consider the following problem from computational
geometry. LetS be a finite set of planar (i.e., 2-dimensional) points. A pointp = (px; py) in S is a
maximal pointof S if px > qx orpy > qy, for every point(qx; qy) 6= p in S. Themaximal point problem
is to determine all maximal points ofS. See Figure 4. The following parallel algorithm for the maximal
point problem was apparently first noted by Atallah and Goodrich [Atallah and Goodrich, 1986].

Figure 4: The maximal points of the set are shaded.

1. Sort then planar points in reverse order byx-coordinate, with ties broken by reverse order by
y-coordinate. Let(ix; iy) denote the coordinates of theith point after the sort is complete. There-
fore, after sorting, the points will be ordered so that ifi < j then eitherix > jx or ix = jx and
iy > jy.

2. Use parallel prefix on theiy values, where the operation
 is taken to be maximum. The resulting
valuesfLig are such thatLi is the largesty-coordinate of any point with index less thani.

3. The point(ix; iy) is an extreme point if and only ifiy > Li.

The running timeT (n) of this algorithm is given by

T (n) = Sort(n) + Prefix(n) +O(1) ; (1)

11

whereSort(n) is the time to sortn items andPrefix(n) is the time to perform parallel prefix. On
all parallel architectures known to the authors,Prefix(n) = O(Sort(n)), and hence on such ma-
chines the time of the algorithm is�(Sort(n)). It is worth noting that for the sequential model,
[Kung, Luccio, and Preparata, 1975] have shown that the problem of determining maximal points is
as hard as sorting.

Divide-and-Conquer

Divide-and-conquer is a powerful algorithmic paradigm that exploits the repeated subdivision of prob-
lems and data into smaller, similar problems. It is quite useful in parallel computation because the
logical subdivisions into subproblems can correspond to physical decomposition among processors,
where eventually the problem is broken into subproblems that are each contained within a single pro-
cessor. These small subproblems are typically solved by an efficient sequential algorithm within each
processor.

As an example, consider the problem of labeling the figures of a black/white image, where the
interpretation is that of black objects on a white background. Two black pixels are defined to beadjacent
if they are vertical or horizontal neighbors, andconnectedif there is a path of adjacent black pixels
between them. Afigure(i.e.,connected component) is defined to be a maximally connected set of black
pixels in the image. The figures of an image are said to belabeledif every black pixel in the image has
a label, with two black pixels having the same label if and only if they are in the same figure.

We utilize a generic parallel divide-and-conquer solution for this problem, given, for example,
in [Miller and Stout, 1996]. Suppose that then � n image has been divided intop subimages, as
square as possible, and distributed one subimage per processor. Each processor labels the subimage it
contains, using whatever serial algorithm is best and using labels that are unique to the processor (so
that no two different figures can accidentally get the same label). For example, often the label used is
a concatenation of the row and column coordinates of one of the pixels in the figure. Notice that so as
long as the global row and column coordinates are used, the labels will be unique. After this step, the
only figures that could have an incorrect global label are those that lie in two or more subimages, and
any such figures must have a pixel on the border of each subimage it is in (see Figure 5). To resolve
these labels, a record is prepared for each black pixel on the border of a subimage, where the record
contains information about the pixel’s position in the image, and its current label. There are far fewer
such records than there are pixels in the original image, yet they contain all of the information needed to
determine the proper global labels for figures crossing subimages. The problem of reconciling the local
labels may itself be solved via divide-and-conquer, repeatedly merging results from adjacent regions,
or may be solved via other approaches. Once these labels have been resolved, information is sent back
to the processors generating the records, informing them of the proper final label.

One useful feature of many of the networks described in the section on Interconnection Networks
is that they can be divided into similar subnetworks, in a manner that matches the divide-and-conquer
paradigm. For example, if the component labeling algorithm just described were performed on a mesh
computer, then each subregion of the image would correspond to a subsquare of the mesh. As another
example, consider an implementation of quicksort on a hypercube. Suppose a pivot is chosen and that
the data is partitioned into items smaller than the pivot and items larger than the pivot. Further, suppose
that the hypercube is logically partitioned into two subcubes, where all of the small items are moved
into one subcube and all of the large items are moved into the other subcube. Now, the quicksort routine
may proceed recursively within each subcube. Because the recursive divide-and-conquer occurs within
subcubes, all of the communication will occur within the subcubes and not cause contention with the
other subcube.

12

A

B

C

D

E

F

G H

I J

K L

M

N

The 14 labels shown were generated after each quadrant performed its own, local, labeling algorithm.
While the labels are unique, they need to be resolved globally. Notice that once the labels are resolved

(not shown), the image will have only 5 unique labels, one corresponding to each of the 5 figures.

Figure 5: Divide-and-Conquer for Labeling Figures

13

Master-Slave

One algorithmic paradigm based on real-world organization paradigms is the master-slave (sometimes
referred to as manager-worker) paradigm. In this approach, one processor acts as the master, directing
all of the other slave processors. For example, many branch-and-bound approaches to optimization
problems keep track of the best solution found so far, as well as a list of subproblems that need to be
explored. In a master-slave implementation, the master maintains both of these items and is responsible
for parceling out the subproblems to the slaves. The slaves are responsible for processing the sub-
problems and reporting the result to the master (which will determine if it is the current best solution),
reporting new subproblems that need to be explored to the master, and notifying the master when it
is free to work on a new subproblem. There are many variations on this theme, but the basic idea is
that one processor is responsible for overall coordination, and the other processors are responsible for
solving assigned subproblems. Note that this is a variant of the SPMD style of programming, in that
there are two programs needed, rather than just one.

Pipelining and Systolic Algorithms

Another common parallel algorithmic technique is based on models that resemble an assembly line. A
large problem, such as analyzing a number of images, may be broken into a sequence of steps that must
be performed on each image (e.g., filtering, labeling, scene analysis). If one had three processors, and
if each step takes about the same amount of time, one could start the first image on the first processor
that does the filtering. Then the first image is passed on to the next processor for labeling, while the
first processor starts filtering the second image. In the third time step, the initial image is at the third
processor for scene analysis, the second image is at the second processor for labeling, and the third
image is at the first processor for filtering. This form of processing is calledpipelining, and it maps
naturally to a parallel computer configured as a linear array (i.e., a 1-dimensional mesh or, equivalently,
a ring without the wraparound connection).

This simple scenario can be extended in many ways. For example, as in a real assembly line, the
processors need not all be identical, and may be optimized for their task. Also, if some task takes longer
to perform than others, then more than one processor can be assigned to it. Finally, the flow may not
be a simple line. For example, an automobile assembly process may have one line working on the
chassis, while a different line is working on the engine, and eventually these two lines are merged. Such
generalized pipelining is calledsystolic processing. For example, some matrix and image-processing
operations can be performed in a two-dimensional systolic manner (see [Ullman, 1984]).

Mappings

Often, a problem has a natural structure to be exploited for parallelism, and this needs to be mapped
onto a target machine. Several examples follow.

� The average filtering problem, discussed in the section on Designing Algorithms, has a natural
array structure that can easily be mapped onto a mesh computer. If, however, one had the same
problem, but a tree computer, then the mapping might be much more complicated.

� Some artificial intelligence paradigms exploit a blackboard-like communication mechanism that
naturally maps onto a shared memory machine. However, a blackboard-like approach is more
difficult to map onto a distributed-memory machine.

14

� Finite-element decompositions have a natural structure whereby calculations at each grid point
depend only on values at adjacent points. A finite-element approach is frequently used to model
automobiles, airplanes, and rocket exhaust, to name a few. However, the irregular (and perhaps
dynamic) structure of such decompositions might need to be mapped onto a target parallel archi-
tecture that bears little resemblance to the finite-element grid.

� A more traditional example consists of porting a parallel algorithm designed for one parallel
architecture onto another parallel architecture.

In all of these examples, one starts with a source structure that needs to be mapped onto a target
machine. The goal is to map the source structure onto the target architecture so that calculation and
communication steps on the source structure can be efficiently performed by the target architecture.
Usually, the most critical aspect is to map the calculations of the source structure onto the processors of
the target machine, so that each processor performs the same amount of calculations. For example, if
the source is an array, and each position of the array represents calculations that need to be performed,
then one tries to map the array onto the machine so that all processors contain the same number of
entries. If the source model is a shared-memory paradigm with agents reading from a blackboard, then
one would map the agents to processors, trying to balance the computational work.

Besides trying to balance the computational load, one must also try to minimize the time spent on
communication. The approaches used for these mappings depend on the source structure and target
architecture, and some of the more widely used approaches are discussed in the following subsections.

Simulating Shared Memory

If the source structure is a shared memory model, and the target architecture is a distributed memory
machine, then besides mapping the calculations of the source onto the processors of the target, one must
also map the shared memory of the source onto the distributed memory of the target.

To map the memory onto the target machine, suppose that there are memory locations0 : : : n� 1 in
the source structure, andp processors in the target. Typically one would map locations0 : : : bn=p� 1c
to processor0 of the target machine, locationsbn=pc : : : b2n=p� 1c to processor1, and so forth. Such
a simple mapping balances the amount of memory being simulated by each target processor, and makes
it easy to determine where data is located. For example, if a target processor needs to read from shared
memory locationi, it sends a message to target processorbip=nc asking for the contents of simulated
shared memory locationi.

Unfortunately, some shared memory algorithms utilize certain memory locations far more often
than others, which can cause bottlenecks in terms of getting data in and out of processors holding the
popular locations. If popular memory locations form contiguous blocks, then this congestion can be al-
leviated by stripping (mapping memory locationi to processori mod p) or other mappings. Replication
(having copies of frequently read locations in more than one processor) or adaptive mapping (dynam-
ically moving simulated memory locations from heavily loaded processors to lightly loaded ones) are
occasionally employed to relieve congestion, but such techniques are more complicated and involve
additional overhead.

Simulating Distributed Memory

It is often useful to view distributed memory machines as graphs. Processors in the machine are rep-
resented by vertices of the graph, and communication links in the machine are represented by edges in
the graph. Similarly, it is often convenient to view the structure of a problem as a graph, where vertices
represent work that needs to be performed, and edges represent values that need to be communicated

15

in order to perform the desired work. For example, in a finite-element decomposition, the vertices of
a decomposition might represent calculations that need to be performed, while the edges correspond to
flow of data. That is, in a typical finite-element problem, if there is an edge from vertexp to vertex
q, then the value ofq at timet depends on the values ofq andp at timet � 1. (Most finite-element
decompositions are symmetric, so thatp at timet would also depend onq at timet � 1.) Questions
about mapping the structure of a problem onto a target architecture can then be answered by considering
various operations on the related graphs.

The best situation is when the graph representing the structure of a problem is a subgraph of the
graph representing the target architecture. For example, if the structure of a problem was represented as
a connected string ofp vertices and the target architecture was a ring ofp processors, then the mapping
of the problem onto the architecture would be straightforward and efficient. In graph terms, this is
described through the notion of embedding. Anembeddingof an undirected graphG = (V;E) (i.e.,G
has vertex setV and edgesE) into an undirected graphG0 = (V 0; E0) is a mapping� of V into V 0 such
that

� every pair of distinct verticesu; v 2 V , map to distinct vertices�(u), �(v) 2 V 0, and

� for every edgefu; vg 2 E, f�(u); �(v)g is an edge inE0.

Let G represent the graph corresponding to the structure of a problem (i.e., thesource structure) and
letG0 represent the graph corresponding to the target architecture. Notice that if there is an embedding
of G intoG0, then values that need to be communicated may be transmitted by a single communication
step in the target architecture represented byG0. The fact that embeddings map distinct vertices ofG to
distinct vertices ofG0 ensures that a single calculation step for the problem can be simulated in a single
calculation step of the target architecture.

One reason that hypercube computers were quite popular is that many graphs can be embedded
into the hypercube (graph). An embedding of the one-dimensional ring of size2d into ad-dimensional
hypercube is called ad-dimensional Gray code. In other words, iff0; 1gd denotes the set of alld-bit
binary strings, then thed-dimensional Gray codeGd is a 1-1 map of0 : : : 2d� 1 ontof0; 1gd, such that
Gd(j) andGd((j + 1) mod2d) differ by a single bit, for0 � j � 2d � 1. The most common Gray
codes, calledreflected binaryGray codes, are recursively defined as follows:Gd is a 1–1 mapping from
f0; 1; : : : ; 2d � 1g ontof0; 1gd, given byG1(0) = 0, G1(1) = 1, and ford � 2,

Gd(x) =

(
0Gd�1(x) 0 � x � 2d�1 � 1

1Gd�1(2d � 1� x) 2d�1 � x � 2d � 1:
(2)

Alternatively, the same Gray code can be defined in a non-recursive fashion asGd(x) = x � bx=2c,
wherex andbx=2c are interpreted asd-bit strings. Further, the inverse of the reflected binary Gray code
can be determined by

G�1d (y0 : : : yd�1) = x0 : : : xd�1; (3)

wherexd�1 = yd�1, andxi = yd�1 � � � � � yi for 0 � i < d� 1.
Meshes can also be embedded into hypercubes. LetM be ad-dimensional mesh of sizem1 �

m2 � � � � � md, and letr =
Pd

i=1dlog2mie. ThenM can be embedded into the hypercube of size
2r. To see this, letri = dlog2mie, for 1 � i � d. Let � be the mapping of mesh node(a1; : : : ; ad)
to the hypercube node which has as its label the concatenationGr1(a1) � : : : � Grd(ad), whereGri

denotes anyri-bit Gray code. Then� is an embedding. Wrapped dimensions can be handled using
reflected Gray codes rather than arbitrary ones. (A meshM is wrappedin dimensionj if, in addition
to the normal mesh adjacencies, vertices with indices of the form(a1; : : : ; aj�1; 0; aj+1; : : : ; ad) and
(a1; : : : ; aj�1;mj � 1; aj+1; : : : ; ad) are adjacent. A torus is a mesh wrapped in all dimensions.) If

16

dimensionj is wrapped andmj is an integral power of 2, then the mapping� suffices. If dimensionj
is wrapped andmj is even, but not an integral power of 2, then to ensure that the first and last nodes in
dimensionj are mapped to adjacent hypercube nodes, use�, but replaceGrj (aj) with

(
Grj (aj) if 0 � aj � mj=2� 1

Grj (aj + 2rj �mj) if mj=2 � aj � mj � 1;
(4)

whereGrj is therj-bit reflected binary Gray code. This construction ensures thatGrj (mj=2 � 1) and
Grj (2rj � mj=2) differ by exactly one bit (the highest order one), which in turns ensures that the
mapping takes mesh nodes neighboring in dimensionj to hypercube neighbors.

Any treeT can be embedded into a(jT j�1)-dimensional hypercube, wherejT j denotes the number
of vertices inT , but this result is of little use since the target hypercube is exponentially larger than the
source tree. Often one can map the tree into a more reasonably sized hypercube, but it is a difficult
problem to determine the minimum dimension needed, and there are numerous papers on the subject.

In general, however, one cannot embed the source structure into the target architecture. For example,
a complete binary tree of height 2, which contains 7 processors, cannot be embedded into a ring of
any size. Therefore, one must consider weaker mappings, which allow for the possibility that the
target machine has fewer processors than the source, and does not contain the communication links of
the source. Aweak embeddingof a directed source graphG = (V;E) into a directed target graph
G0 = (V 0; E0) consists of

� a map�v of V into V 0, and

� a map�e of E ontopathsin G0, such that if(u; v) 2 E then�e((u; v)) is a path from�v(u) to
�v(v).

(Note that ifG is undirected, each edge becomes two directed edges that may be mapped to different
paths inG0. Most machines that are based on meshes, tori, or hypercubes have the property that a
message from processorP to processorQ may not necessarily follow the same path as a message sent
from processorQ to processorP , if P andQ are not adjacent.) The map�v shows how computations
are mapped from the source onto the target, and the map�e shows the communication paths that will
be used in the target.

There are several measures that are often used to describe the quality of a weak embedding(�v; �e)
of G intoG0, including the following.

Processor Load: the maximum, over all verticesv0 2 V 0, of the number of vertices inV mapped
onto v0 by �v. Note that if all vertices of the source structure represent the same amount of
computation, then the processor load is the maximum computational load by any processor in the
target machine. The goal is to make the processor load as close as possible tojV j=jV 0j. If vertices
do not all represent the same amount of work, then one should use labeled vertices, where the
label represents the amount of work, and try to minimize the maximum, over all verticesv0 2 V 0,
of the sum of the labels of the vertices mapped ontov0.

Link Load (Link Congestion): the maximum, over all edges(u0; v0) 2 E0, of the number of edges
(u; v) 2 E such that(u0; v0) is part of the path�e((u; v)). If all edges of the source structure
represent the same amount of communication, then the link load represents the maximum amount
of communication contending for a single communication link in the target architecture. As for
processor load, if edges do not represent the same amount of communication, then weights should
be balanced instead.

17

Dilation: the maximum, over all edges(u; v) 2 E, of the path length of�e((u; v)). The dilation
represents the longest delay that would be needed to simulate a single communication step along
an edge in the source, if that was the only communication being performed.

Expansion: the ratio of the number of vertices ofG0 divided by the number of vertices ofG. As
was noted in the example of trees embedding into hypercubes, large expansion is impractical.
In practice, usually the real target machine has far fewer processors than the idealized source
structure, so expansion is not a concern.

In some machines, dilation is an important measure of communication delay, but in most modern
general-purpose machines it is far less important because each message has a relatively large start-up
time that may be a few orders of magnitude larger than the time per link traversed. Link contention may
still be a problem in such machines, but some solve this by increasing the bandwidth on links that would
have heavy contention. For example, as noted earlier,fat-trees[Leiserson, 1985] add bandwidth near
the root to avoid the bottlenecks inherent in a tree architecture. This increases the bisection bandwidth,
which reduces the link contention for communication that poorly matches the basic tree structure.

For machines with very large message start-up times, often the number of messages needed becomes
a dominant communication issue. In such a machine, one may merely try to balance calculation load
and minimize the number of messages each processor needs to send, ignoring other communication
effects. The number of messages that a processor needs to send can be easily determined by noting that
processorsp andq communicate if there are adjacent verticesu andv in the source structure such that
�v mapsu to p andv to q.

For many graphs that cannot be embedded into a hypercube, there are nonetheless useful weak
embeddings. For example, keeping the expansion as close to 1 as is possible (given the restriction that a
hypercube has a power of 2 processors), one can map the complete binary tree onto the hypercube with
unit link congestion, dilation two, and unit processor contention. See, for example, [Leighton, 1992].

In general, however, finding an optimal weak embedding for a given source and target is an NP-
complete problem. This problem, sometimes known as themapping problem, is often solved by various
heuristics. This is particularly true when the source structure is given by a finite-element decomposition
or other approximation schemes for real entities, for in such cases the sources are often quite large and
irregular. Fortunately, the fact that such sources often have an underlying geometric basis makes it
easier to find fairly good mappings rather quickly.

For example, suppose the source structure is an irregular grid representing the surface of a 3-
dimensional airplane, and the target machine is a 2-dimensional mesh. One might first project the
airplane onto thex-y plane, ignoring thez-coordinates. Then one might locate a medianx-coordinate,
call it �x, where half of the plane’s vertices lie to the left of�x and half to the right. The vertices may then
be mapped so that those that lie to the left of�x are mapped onto the left half of the target machine, and
those vertices that lie to the right of�x are mapped to the right half of the target. In the left half of the
target, one might locate the mediany-coordinate, denoted�y, of the points mapped to that half, and map
the points above�y to the top-left quadrant of the target, and map points below�y to the bottom-left. On
the right half a similar operation would be performed for the points mapped to that side. Continuing in
this recursive, divide-and-conquer manner, eventually the target machine would have been subdivided
down into single processors, at which point the mapping would have been determined. This mapping
is fairly straightforward, balances the processor load, and roughly keeps points adjacent in the grid
near to each other in the target machine, and hence it does a reasonable approximation of minimizing
communication time.

Note that if message start-up time is very high then this probably would not minimize the number
of messages sent by each processor, and in such a situation it may be better to partition the plane by
cutting along only, say, thex-axis at each step. Each processor would end up with a cross-sectional

18

slab, with all of the source vertices in given range ofx-coordinates. If grid edges are not longer than the
width of such a slab, then each processor would have to send messages to only two processors, namely
the processor with the slab to the left and the processor with the slab to the right.

Other complications can arise because the nodes or edges of such sources may not all represent
the same amount of computation or calculation, respectively, in which case weighted mappings are
appropriate. A variety of programs are available that perform such mappings, and over time the quality
of the mapping achieved, and the time to achieve it, has significantly improved. For irregular source
structures, such packages are generally superior to what one would achieve without considerable effort.

A more serious complication is that the natural source structure may be dynamic, adding nodes
or edges over time. In such situations one often needs to dynamically adjust the mapping to keep the
computational load balanced and keep communication minimal. This introduces additional overhead,
which one must weigh against the costs of not adjusting the imbalance. Often the dynamical remappings
are made incrementally, moving only a little of the data to correct the worst imbalances. Deciding how
often to check for imbalance, and how much to move, typically depends quite heavily on the problem
being solved.

Research Issues and Summary

The development of parallel algorithms and efficient parallel programs lags significantly behind that of
standard serial computers. This is perhaps due to the fact that only recently have parallel computers
become commercially available. Therefore, parallel computing is in a rapidly growing phase, with
important research and development still needed in almost all areas. Extensive theoretical and practical
work continues in discovering parallel programming paradigms, in developing a wide range of efficient
parallel algorithms, in developing ways to describe and manage parallelism, in developing techniques
to automatically detect parallelism, and in developing libraries of parallel routines.

Another factor that has hindered parallel algorithm development is the fact that there are many
different parallel computing models. As noted earlier, architectural differences can significantly affect
the efficiency of an algorithm, and hence parallel algorithms have traditionally been tied to specific
parallel models. One advance is that various hardware and software approaches are being developed to
help hide some of the architectural differences. Thus, one may have, say, a distributed memory machine,
but have a software system that allows the programmer to view it as a shared memory machine. While
it is true that a programmer will usually only be able to achieve the highest performance by directly
optimizing the code for a target machine, in many cases acceptable performance can be achieved without
tying the code to excessive details of an architecture. This, then, allows code to be ported to a variety of
machines, which encourages code development. In the past, extensive code revision was needed every
time the code was ported to a new parallel machine, and this strongly discouraged many users who did
not want to plan for an unending parade of changes.

Another factor that has limited parallel algorithm development is that most computer scientists were
not trained in parallel computing. As the field matures, more courses will incorporate parallel comput-
ing and the situation will improve. However, many thousands of small shared-memory systems have
already been purchased, often to be used as departmental or corporate compute servers. Unfortunately,
do to the dearth of parallel programmers, many of these systems are used only to run concurrent serial
programs, or to run turnkey parallel programs (such as databases). There is a serious need for profes-
sionals who are able to utilize the full power of these parallel machines, since there are a great many
problems which are beyond the power of single processors.

19

Defining Terms

Distributed memory: Each processor only has access to only its own private (local) memory, and
communicates with other processors via messages.
Divide-and-conquer: A programming paradigm whereby large problems are solved by decomposing
them into smaller, yet similar, problems.
Global operations: Parallel operations that affect system-wide data structures.
Interconnection network: The communication system that links together all of the processors and
memory of a parallel machine.
Master-slave: A parallel programming paradigm whereby a problem is broken into a collection of
smaller problems, with a master processor keeping track of the subproblems and assigning them to the
slave processors.
Parallel Random Access Machine (PRAM):A theoretical shared-memory model, where typically the
processors all execute the same instruction synchronously, and access to any memory location occurs
in unit time.
Pipelining: A parallel programming paradigm that abstracts the notion of an assembly line. A task is
broken into a sequence of fixed subtasks corresponding to the stations of an assembly line. A series
of similar tasks is solved by starting one task through the subtask sequence, then starting the next task
through as soon as the previous task has finished its first subtask. At any point in time, several tasks are
in various stages of completion.
Shared memory:All processors have the same global image of (and access to) all of the memory.
Single Program Multiple Data (SPMD): The dominant style of parallel programming, where all of
the processors utilize the same program, though each has its own data.

20

References

[Akl and Lyon, 1993] Akl, S.G. and Lyon, K.A. 1993.Parallel Computational Geometry, Prentice-
Hall, Englewood Cliffs, NJ.

[Atallah and Goodrich, 1986] Atallah, M.J. and Goodrich, M.T. 1986. Efficient parallel solutions to
geometric problems,Journal of Parallel and Distributed Computing3 (1986), pp. 492-507.

[Brainerd, Goldberg, and Adams, 1990] Brainerd, W.S., Goldberg, C., and Adams, J.C. 1990.Pro-
grammers Guide to FORTRAN 90, McGraw-Hill Book Company, New York, NY.

[Flynn, 1966] Flynn, M.J. 1966. Very high-speed computing systems,Proc. of the IEEE, 54(12):1901-
1909.

[Flynn, 1972] Flynn, M.J. 1972. Some computer organizations and their effectiveness,IEEE Transac-
tions on Computers, C-21:948-960.

[JáJá, 1992] J´aJá, J. 1992.An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA.

[Kung, Luccio, and Preparata, 1975] Kung, H.T., Luccio, F., and Preparata, F.P. 1975. On finding the
maxima of a set of vectors,Journal of the ACM22(4):469-476.

[Leighton, 1992] Leighton, F.T. 1992.Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes, Morgan Kaufmann Publishers, San Mateo, CA.

[Leiserson, 1985] Leiserson, C.E. 1985. Fat-trees: Universal networks for hardware-efficient super-
computing,IEEE Transactions on Computers, C-34(10):892-901.

[Li and Stout, 1991] Li, H. and Stout, Q.F. 1991.Reconfigurable Massively Parallel Computers, Pren-
tice Hall, Englewood Cliffs, NJ.

[Miller and Stout, 1996] Miller, R. and Stout, Q.F. 1996.Parallel Algorithms for Regular Architec-
tures: Meshes and Pyramids, The MIT Press, Cambridge, MA.

[Quinn, 1994] Quinn, M.J. 1994.Parallel Computing Theory and Practice, McGraw-Hill, Inc., New
York, NY.

[Reif, 1993] Reif, J., ed. 1993.Synthesis of Parallel Algorithms, Morgan Kaufmann Publishers, San
Mateo, CA.

[Snir, Otto, Huss-Lederman, Walker, and Dongarra, 1995] Snir, M., Otto, S.W., Huss-Lederman, S.,
Walker, D.W., and Dongarra, J. 1995.MPI: The Complete Reference, The MIT Press, Cambridge,
MA.

[Thinking Machines Corporation, 1991] Thinking Machines Corporation. 1991.C* Programming
Guide, Version 6.0.2, Cambridge, MA.

[Ullman, 1984] Ullman, J.D. 1984.Computational Aspects of VLSI, Computer Science Press,
Rockville, MD.

21

Further Information

A good introduction to parallel computing at the undergraduate level isParallel Computing: Theory and
Practiceby Michael J. Quinn. This book provides a nice introduction to parallel computing, including
parallel algorithms, parallel architectures, and parallel programming languages.Parallel Algorithms
for Regular Architectures: Meshes and Pyramidsby Russ Miller and Quentin F. Stout focuses on fun-
damental algorithms and paradigms for fine-grained machines. It advocates an approach of designing
algorithms in terms of fundamental data movement operations, including sorting, concurrent read, and
concurrent write. Such an approach allows one to port algorithms in an efficient manner between ar-
chitectures. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubesis a
comprehensive book by F. Thomson Leighton that also focuses on fine-grained algorithms for several
traditional interconnection networks. Finally, for the reader interested in algorithms for the PRAM,An
Introduction to Parallel Algorithmsby J. JáJá covers fundamental algorithms in geometry, graph theory,
and string matching. It also includes a chapter on randomized algorithms.

There are several professional societies that sponsor conferences, publish books, and publish jour-
nals in the area of parallel algorithms. These include theAssociation for Computing Machinery (ACM),
which can be found at http://www.acm.org,The Institute for Electrical and Electronics Engineers, Inc.
(IEEE), which can be found at http://www.ieee.org, and theSociety for Industrial and Applied Mathe-
matics (SIAM), which can be found at http://www.siam.org.

Since parallel computing has become so pervasive, most computer science journals cover work con-
cerned with parallel and distributed systems. For example, one would expect a journal on programming
languages to publish articles on languages for shared-memory machines, distributed memory machines,
networks of workstations, and so forth. For several journals, however, the primary focus is on parallel
algorithms. These journals include theJournal for Parallel and Distributed Computing, published by
Academic Press (http://www.apnet.com), theIEEE Transactions on Parallel and Distributed Systems
(http://computer.org/pubs/tpds), and for results that can be expressed in a condensed form,Parallel
Processing Letters, published by World Scientific. Finally, several comprehensive journals should be
mentioned that publish a fair number of articles on parallel algorithms. These include theIEEE Trans-
actions on Computers, Journal of the ACM, andSIAM Journal on Computing.

Unfortunately, due to very long delays from submission to publication, most results that appear in
journals (with the exception ofParallel Processing Letters) are actually quite old. (A delay of 3-5 years
from submission to publication is no uncommon.) Recent results appear in a timely fashion in confer-
ences, most of which are either peer reviewed or panel reviewed. The first conference devoted primarily
to parallel computing is theInternational Conference on Parallel Processing (ICPP), which had its in-
augural conference in 1972. Many landmark papers have been presented at ICPP, especially during the
1970s and 1980s. Proceedings from this conference have been published in recent years by the IEEE
Computer Society and CRC. In recent years, theInternational Parallel Processing Symposium (IPPS)
(http://www.ippsxx.org) has emerged as the premier conference devoted to parallel computing. IPPS
is quite comprehensive in that in addition to the conference, it offers a wide variety of workshops and
tutorials. Another conference that has matured nicely in recent years is theACM Symposium on Parallel
and Distributed Processing (SPDP). It is interesting to note that both IPPS and SPDP initially started as
regional conferences. In fact, in 1998, IPPS and SPDP will hold a combined conference. A conference
that focuses on very theoretical, primarily PRAM-based, algorithms is theACM Symposium on Parallel
Algorithms and Architectures (SPAA). This conference is an offshoot of the premier theoretical confer-
ences in computer science,ACM Symposium on Theory of Computing (STOC)andIEEE Symposium on
Foundations of Computer Science (FOCS). A conference which focuses on very large parallel systems
is SC ’XY(http://www.supercomp.org), where XY represents the last two digits of the year. This con-
ferences includes the presentation of the Gordon Bell Prize for best parallelization. Awards are given in

22

various categories, such as highest sustained performance and best price/performance.
Finally, a variety of sites exist that can be used to effectively navigate the web, including theIEEE

Technical Committee on Parallel Processing (IEEETCPP), which can be found at http://www.cs.buffalo.edu/tcpp.
This site contains links to conferences, journals, people in the field, bibliographies on parallel process-
ing, on-line course material, books, and so forth. Another nice site (http://www.computer.org/parascope)
is currently maintained by David A. Bader (UMIACS) with support from the IEEE. Finally, several
newsgroups cater to parallel computing, including comp.parallel and comp.arch.

23

