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Abstract

Algorithmic traders acknowledge that their models are incorrectly specified, thus we allow for

ambiguity in their choices to make their models robust to misspecification in: (i) the arrival rate of

market orders (MOs), (ii) the fill probability of limit orders, and (iii) the dynamics of the midprice

of the asset they deal. In the context of market making, we demonstrate that market makers

(MMs) adjust their quotes to reduce inventory risk and adverse selection costs. Moreover, robust

market making increases the strategies Sharpe ratio and allows the MM to fine tune the tradeoff

between the mean and the standard deviation of profits. We provide analytical solutions for the

robust optimal strategies, show that the resulting dynamic programming equations have classical

solutions and provide a proof of verification. The behavior of the ambiguity averse MM are found

to generalize those of a risk averse MM, and coincide in a limiting case.

Keywords: Market Making, Ambiguity Aversion, Model Uncertainty, Algorithmic Trading, High

Frequency Trading, Short Term Alpha, Adverse Selection, Robust Optimization

1. Introduction

Market makers (MMs) provide liquidity to investors who require immediacy by posting bid and

offer prices to the market. In exchange, MMs expect to earn the spread between these sell and

buy quotes, but bear the risk of providing liquidity at a loss when trading with better informed
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traders and also face the risk of large losses when inventories are large and there is an unfavorable

price movement. With this in mind, the goal of the (MM) is to maximize expected profits whilst

managing adverse selection and inventory risks.

The standard approach to market making is to assume that the MM has perfect knowledge of the

stochastic dynamics of the different state variables which are required to work out how to trade in

and out of positions optimally. However, an additional source of risk is model risk. Clearly, any

model is an approximation of reality and making ‘optimal decisions’ with the wrong framework will

undoubtedly affect the profitability of market making activities. There is no such concept as the

“correct” model and one way in which MMs can address this risk is to acknowledge that the model

is misspecified. The main contribution of our work is to provide a framework where the MM deals

securities based on a model that is robust to misspecification. The MM recognizes that she does not

exactly know the probability laws of the stochastic processes required to maximize expected profits

so she also considers other models when devising a profit maximizing strategy. This framework

can also be applied to algorithmic trading scenarios other than market making, such as one sided

optimal execution, pairs trading and other strategies that aim to profit from price predictions.

To understand how MMs account for ambiguity in their models we first consider the case when the

MM is extremely confident about her choice of model and then we explicitly model misspecification

and ambiguity aversion. As a starting point the MM uses a reference model where the probability

law for the different state variables is known and the objective is to find the optimal market making

strategy that maximizes expected profits

sup
δ∈A

EP [f(θ)] , (1)

where δ are controls in the admissible set of strategies A, f(θ) is the profit function which depends

on the vector of state variables θ, and EP is the expectation operator under the reference measure

P (corresponding to the reference model).

If the MM is not confident about P she will consider other candidate models Q (measures) and

must specify how to choose amongst all alternatives. One method is to modify (1) by introducing

a function H(Q|P) which penalizes deviations from the reference model and captures the MM’s

degree of ambiguity aversion, to solve

sup
δ∈A

inf
Q∈Q

EQ [f(θ) +H(Q|P)] , (2)

where Q is the set of all alternative models, see Uppal and Wang (2003), Maenhout (2004), Hansen

et al. (2006), Hansen and Sargent (2007), Lim and Shanthikumar (2007), Hansen and Sargent

(2011), Jaimungal and Sigloch (2012), and Skiadas (2013). Most of these prior works deal with

portfolio optimization and/or consumption problems (Jaimungal and Sigloch (2012) is the exception

where the authors investigate ambiguity in the context of credit risk) where the underlying sources

of uncertainty are driven by Brownian motions (Lim and Shanthikumar (2007) and Skiadas (2013)
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are exceptions where uncertainty is driven by a Poisson process with ambiguity on its intensity).

Here, the underlying sources of uncertainty stem not only from a Brownian motion, but also from

Poisson random measures (PRMs) that drive arrival and execution price of market orders as well

as the filling of posted limit orders.

The market making problem requires MMs to model how liquidity is provided and taken in modern

electronic markets. In order driven markets all buyers and sellers provide liquidity by displaying

the prices and quantities at which they wish to buy or sell a particular security. These orders

are accumulated in the limit order book (LOB) until they are cancelled/amended or filled by an

incoming liquidity taking market order (MO).

During a typical trading day in US markets, between 9:30 am and 4:00 pm, the LOBs for liquid

stocks receive hundreds of thousands of messages with instructions to post, cancel, or amend limit

orders (LOs) as well as thousands of buy and sell market orders (MOs). The shape and innovations

in the LOB are important ingredients when making markets. A snapshot of the LOB allows the

MM to gauge the fill probability (conditioned on an MO arriving) of LOs at different levels, and

changes in the LOB convey information about how liquidity providers perceive the market.

Modelling the liquidity taking side of the market is also important. MOs may arrive in clusters,

sometimes the market is one-sided (more buys than sells or vice versa) or two-sided, see Cartea et al.

(2014). Along with the arrival of MOs one must also model the volumes and price impact of MOs,

as well as the informational content of both LOs and MOs, see Bayraktar and Ludkovski (2011),

Bayraktar and Ludkovski (2014), Gatheral et al. (2012), Schied (2013), Guéant and Lehalle (2015),

and Cartea et al. (2015). Large MOs walk through the LOB. Sometimes the LOB replenishes

quickly and the best bid and/or ask price reverts to the level prior to the arrival of the MO;

however, at other times the best quotes do move to reflect changes in the fundamental value of the

security, see Cartea and Jaimungal (2015). Thus, an MM who wishes to optimally trade in and out

of positions must model the dynamics of the LOB and the arrival of buy and sell MOs.

In this paper we assume that the MM considers a reference model where: i) MOs arrive according to

homogeneous Poisson processes, ii) minimum and maximum MO execution prices are exponentially

distributed from the midprice, and iii) the midprice is a drifted Brownian motion. Moreover, the

MM is ambiguous about her choices due to model misspecification and therefore considers other

models where she incorporates a penalization which reduces to relative entropy in special cases in

(2) to rank all possible alternatives. To the best of the authors’ knowledge, this is the first work to

account for ambiguity in optimal trading decisions in the context of algorithmic and high-frequency

trading.

One of the advantages of our framework is that the MM is allowed to place different degrees of

ambiguity aversion on the different building blocks of the model. Our results show that ambiguity

aversion specific to the drift of the midprice changes the optimal postings in the book such that:

(i) reversion to the optimal level of inventory is quicker, and (ii) total depth (buy depth plus sell
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depth) increases to help the MM recover the losses derived from trading with traders who possess

superior information. A similar result is obtained when the MM is ambiguous specific to the rate of

arrival of MOs. In this case, the MM behaves as if MOs arrive less often, a reduction that intensifies

with larger inventories (long or short), and the effect is to accelerate mean reversion in inventories

and to increase total depth.

Moreover, ambiguity specific to the execution price of MOs induces smaller depth on both sides

of the book which has the effect of increasing the probability that LOs are filled. The intuition

is that the MM is not sure that her model uses the correct distribution for the execution price

of MOs and fears not being able to obtain enough business. Thus, her optimal behavior is to

choose an alternative model where the probability of being filled is lower than that of the reference

measure. This makes her more aggressive to attract business by posting quotes which are closer to

the midprice, but also exposes the strategy to higher adverse selection costs.

So does robust market making help to improve the bottom line of MMs? To answer this question

we use simulations to evaluate the performance of market making strategies when the MM is

ambiguity averse. We assume a realistic model for the true dynamics where the midprice has a

short-term alpha component, the shape of the book is stochastic and depends on the informational

content and price impact of MOs, and the arrival rates of MOs follow mutually exciting processes

to capture trade clustering, see Large (2007) and Cartea et al. (2014). Our results show that there

are ranges where increasing ambiguity aversion produces a significant increase in the Sharpe ratio

of the strategy. We also show that increases in the ambiguity aversion to midprice drift allows

the MM to adjust the risk-return tradeoff by managing the exposure to inventory risk and adverse

selection costs.

Another contribution of our work is to show that ambiguity aversion to midprice drift is equivalent

to imposing a running penalty on inventories. To the best of our knowledge this result is also new

in the literature. The work of Cartea and Jaimungal (2015) introduced the running penalty in

an ad-hoc way and showed that the effect of this penalty is instrumental when MMs adjust their

strategies to trade off risk and return, see also Guilbaud and Pham (2015).

The rest of this paper is organized as follows. In Section 2 we describe the reference model and

show the MM’s optimal market making strategy. In Section 3 we show how the MM makes her

model robust to misspecification and prove a verification result. In Section 4 we show how the

optimal strategies under the effects of ambiguity aversion compare to those of the reference model.

Section 5 shows the financial benefits from robust market making. Section 6 concludes and in the

Appendices we collect proofs and outline the numerical method we employ.
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2. Reference Model

The profit maximization problem that the MM solves consists of deciding the level at which she

sends limit buy and limit sell orders to the LOB, see for instance Avellaneda and Stoikov (2008),

Guilbaud and Pham (2013), Guéant et al. (2012), and Fodra and Labadie (2012).2 These liquidity

providing quotes rest in the LOB until cancelled or filled by an incoming MO. Thus, to pose the

market making problem the MM must specify the reference model for: A) midquote dynamics, B)

MO arrival dynamics, and C) the interaction between incoming MOs and posted LOs. To this end,

we work on a completed filtered probability space (Ω,F,F = {Ft}0≤t≤T ,P) where F is the natural

filtration generated by the midprice (St)0≤t≤T and the jump processes (P±t )0≤t≤T (both of which

are defined below).

A: Reference Model: Midprice. The midprice St satisfies

dSt = α dt+ σ dWt , (3)

where α ∈ R and σ > 0 are constants and (Wt)0≤t≤T is a standard Brownian motion.

B: Reference Model: LOB. On the supply side of the market, liquidity providing participants

send quotes to the LOB where they specify the volume of shares they are willing to buy or

sell and how far away from the midquote St these are posted. The MM’s reference model

is that the distance from the midprice to the maximum (for buys) or minimum (for sells)

execution price of an incoming MO is exponentially distributed with parameters κ− and κ+,

for the buy and sell side respectively. An LO is filled by an MO if the maximum (for market

buys) or minimum (for market sells) execution price exceeds the price of the LO. Then, upon

the arrival of an MO the probability that it fills an LO of one share which is y dollars away

from the midquote (St ± y) is

p±(y) = e−κ
±y . (4)

Consequently, the deeper the MM posts, the less likely it is that the LOs will be filled.

C: Reference Model: MO Arrival. On the demand side, liquidity taking participants send

buy and sell MOs according to homogeneous Poisson processes M+
t and M−

t with intensity

parameters λ+ and λ− for the buy and sell side respectively. Note that a sell MO hits the

buy side of the LOB and a buy MO lifts the offer on the sell side of the LOB.

To formalize the MM’s problem we need to introduce more notation. Let N±t =
∫ t

0

∫ +∞
δ±s

µ±(dy, ds)

denote the counting processes for filled LOs where µ±(dy, ds) are independent PRMs (mutually

2For other trading algorithms that are designed to find the best execution prices for investors who wish to
minimize the price impact of large buy or sell orders see Almgren (2003), Kharroubi and Pham (2010), Cartea and
Jaimungal (2013), Bayraktar and Ludkovski (2014), Jaimungal and Kinzebulatov (2014), and Cartea et al. (2016).
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independent of W ) with compensators ν±(dy, ds) = λ± F±(dy) ds where F±(dy) = κ±e−κ
±ydy, and

δ±t are predictable processes representing the depth relative to midprice of orders that the MM

posts. The y variable corresponds to the distance from the midprice to the minimum or maximum

execution price of incoming MOs, while the time dependence models their arrivals. Further, the

number of MOs is given by M±
t =

∫ t
0

∫ +∞
0

µ±(dy, ds). Lastly, let P±t =
∫ t

0

∫ +∞
0

yµ±(dy, ds).

As mentioned above, we work on the natural filtration generated by (St)0≤t≤T and (P±t )0≤t≤T .

Observing the history of the processes (P±t )0≤t≤T means the agent knows the time and execution

price of each market order and allows her to reconstruct the counting processes (N±t )0≤t≤T and

(M±
t )0≤t≤T , which count the number of filled sell/buy LOs that the trader posts and the number

of MOs that arrive in the market respectively.

Upon a buy or sell order being filled, the MM pays St − δ−t or receives St + δ+
t and therefore the

MM’s wealth process (Xt)0≤t≤T satisfies the SDE

dXt = (St + δ+
t )dN+

t − (St − δ−t )dN−t .

For instance, a buy MO arrives with intensity λ+ and hits the sell side of the book and N+
t increases

by one if the maximum execution price of the MO is greater than St + δ+
t . Therefore, the rate of

execution of an LO which is posted δ± away from the midprice is Λ±t = λ± e−κ
±δ±t . Finally, the

total inventory of the MM is given by qt = N−t −N+
t and so qt ∈ Z for each t.

We assume that the MM is risk-neutral but capital constrained so she cannot build large, long or

short, inventory positions. Thus, the MM restricts her inventory so that −∞ < q ≤ qt ≤ q < +∞
for all t ≤ T . The MM seeks the strategy (δ±t )0≤t≤T which maximizes expected terminal wealth

H(t, x, q, S) = sup
(δ±s )t≤s≤T∈A

EP
t,x,q,S [XT + qT (ST − `(qT ))] , (5)

where the terminal date of the strategy is T > t, EP
t,x,q,S[ · ] denotes P expectation conditional on

Xt− = x, qt− = q and St = S, and A denotes the set of admissible strategies which are non-negative

Ft-predictable processes such that inventories are bounded above by q > 0 and below by q < 0

both finite. If qt = q, then the MM places only limit sell orders (i.e., she sets δ− = +∞) and if

qt = q, then the MM places only limit buy orders (i.e., she sets δ+ = +∞). Moreover, the function

`, with `(0) = 0 and `(q) increasing in q, is a liquidation penalty which consists of fees and market

impact costs when the MM sends an MO to unwind terminal inventory. For example `(q) = θ q

represents a linear impact when liquidating q shares.

6



2.1. Reference Model: The Feedback Control of the Optimal Market Making Strategy

To solve the optimal control problem described above, we consider the associated Hamilton-Jacobi-

Bellman (HJB) equation (see Fleming and Soner (2006) and Pham (2009)):

∂tH + α∂SH + 1
2
σ2∂SSH + sup

δ+≥0

{
λ+e−κ

+δ+ ∆+H
}

+ sup
δ−≥0

{
λ−e−κ

−δ− ∆−H
}

= 0 , (6)

where the operator ∆± acts as follows

∆±H(t, x, q, S) = H(t, x± (S ± δ±), q ∓ 1, S)−H(t, x, q, S), (7)

and subject to the terminal condition

H(T, x, q, S) = x+ q

(
S − `(q)

)
, (8)

where x, S, and q are the quantities at t− (and not t). The terminal condition is inherited from

the formulation of the control problem (5). The boundary conditions in the x and S dimensions

are that the value function is linear in each – indeed as we show below, the value function admits

an ansatz which is explicitly linear in x and S in the entire domain. For the q direction, recall that

the problem is set on the bounded domain [q, q], the agent can only trade to move away from these

boundary, and q is discrete. Hence, there is no need to specify the boundary conditions in q as

the agent’s optimization problem couples the value function along the boundary to its value in the

interior.

Moreover, recall that the set of admissible strategies imposes bounds on qt, this means that when

qt = q (q) the MM posts one-sided LOs which are obtained by solving (6) with the term proportional

to λ− (λ+) absent. Alternatively, one can view these boundary cases as imposing δ− = +∞
(δ+ = +∞) when q = q (q).

Intuitively, the various terms in the HJB equation represent the arrival of MOs that may be filled

by LOs together with the diffusion and drift of the asset price through the terms 1
2
σ2∂SSH and

α∂SH. The supremum over δ+ contain the terms due to the arrival of a market buy order, which is

filled by a limit sell order with fill rate λ+e−κ
+δ+ , and the change in the value function H. Similarly,

the supremum over δ− contain the analogous terms for sell MOs which are filled by buy LOs.

To solve the HJB equation we use the terminal condition (8) to make an ansatz for H. In particular,

write

H(t, x, q, S) = x+ q S + hq(t) , (9)

and upon substitution in (6) we obtain

∂thq + αq + sup
δ+,δ−≥0

{
λ+e−κ

+δ+
(
δ+ + hq−1 − hq

)
+ λ−e−κ

−δ−
(
δ− + hq+1 − hq

)}
= 0 , (10)
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with terminal condition hq(T ) = −q `(q). This allows us to solve for the optimal feedback controls,

in terms of hq(t), as shown in the proposition below. Here the subscript q in hq denotes dependence

on q. We delay a proof of existence and uniqueness to this equation until we have developed the

control problem that incorporates ambiguity aversion. The solution to equation (10) is a special

case of the solution to equation (23) which appears in Proposition 3. A verification that solutions to

the HJB equation (6) yield the value function defined in (5) is also postponed to the more general

setting when we include model ambiguity (see Theorem 4).

Proposition 1 (Optimal Feedback Controls). The optimal feedback controls of the HJB equa-

tion are given by

δ+∗
q (t) =

(
1
κ+
− hq−1(t) + hq(t)

)
+

, q 6= q ,

δ−∗q (t) =

(
1
κ−
− hq+1(t) + hq(t)

)
+

, q 6= q .

where (·)+ = max(·, 0).

Proof. Apply first order conditions to each supremum term in equation (10). If the resulting

critical value is negative, it is an easy task to check that the maximum is achieved at δ± = 0. �

To understand the intuition behind the feedback controls we first note that when δ±∗ > 0 it can

be decomposed into two terms. The first component, 1/κ±, is the optimal strategy that a risk-

neutral MM would employ in the absence of both terminal date restrictions; i.e. T = ∞, and no

inventory constraints. To see this, note that the expected gains from buying (selling) the asset at

the midprice St, followed by selling (buying) it using an LO at St− + δ+ (St− − δ−), is given by

δ±e−κ
±δ± , which is maximized if the LO is posted 1/κ± away from the midprice. The second term

−hq±1(t) + hq(t), controls for inventories through time. As expected, if inventories are long, then

the strategy consists of posting LOs that increase the probability of sell orders being hit by posting

closer to the midprice.

Figure 1 shows the optimal sell depth when κ± = 15, λ± = 2, σ = 0.01, α = 0, `(q) = θ q, θ = 0.01,

q = −q = 3 and T = 10 seconds when (10) is solved numerically after substituting the feedback

controls in Proposition 1. We observe that when inventories increase (decrease), the sell depth

decreases (increases) because the MM’s strategy is to make round-trip trades to earn their total

depth. The optimal buy depth is not shown due to the symmetry between the optimal buy and

sell depths which is caused by λ+ = λ−, κ+ = κ−, and α = 0 (this will be shown later in a more

general setting, Proposition 6).
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Figure 1: Optimal sell depth for an ambiguity neutral MM. Parameter values are κ± = 15, λ± = 2, σ = 0.01, α = 0,
`(q) = θ q, θ = 0.01, q = −q = 3 and T = 10 seconds.

3. Robust Modelling to Model Misspecification

Because the MM knows that her model is misspecified she considers alternative models of the

midprice dynamics, fill probabilities, and MO arrival – specified under a candidate measure Q
equivalent to the reference measure P. The MM ranks the alternatives by evaluating all admissible

strategies over a set of equivalent measures Q to choose the one which makes her model robust to

misspecification (below we define the class of candidate measures Q more precisely). To this end,

the MM introduces a penalty function in the optimization problem which measures the ‘cost’ of

rejecting the reference measure P and accepting a candidate model Q. For instance, if the MM

is very confident about the reference model, any ‘small’ deviation from the measure P is heavily

penalized, i.e. it is very costly to choose an alternative. On the other hand, if the MM is extremely

ambiguous about her choice of the reference measure, considering other models will only result in

a very small penalty.

In this way the MM chooses strategies which are robust to model misspecification by augmenting the

optimization problem to maximize expected penalized terminal wealth over all admissible market

making strategies, while minimizing expected penalized terminal wealth over a set of alternative

models. Therefore, the optimization problem in (5) becomes

H(t, x, q, S) = sup
(δ±s )t≤s≤T∈A

inf
Q∈Q

EQ
t,x,q,S

[
XT + qT

(
ST − `(qT )

)
+Ht,T (Q|P)

]
, (11)

where EQ
t,x,q,S[·] denotes Q expectation conditional on Xt− = x, qt− = q and St = S, Ht,T (Q|P) is

the penalization function introduced by the MM, and the class of measures Q reflects all alternative

models that the MM considers.
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A popular choice for the penalty function is the entropic penalty function

Ht,T (Q|P) =
1

ψ
log

{(
dQ
dP

)
T

/(
dQ
dP

)
t

}
, (12)

where ψ > 0 is a constant that shows how confident the MM is about her reference model. If the

MM is extremely confident about the reference model then ψ is very small. In the limiting case

ψ → 0 the MM is ambiguity neutral and therefore rejects any alternative model. If the MM is

extremely ambiguous about the reference model then ψ is very large – in the extreme case ψ →∞
the MM considers the worst case scenario when making markets.

Using the above entropic penalty function forces the MM to have the same level of ambiguity

aversion towards each aspect of the model. But it is possible that the MM has different levels of

confidence towards different aspects of the model, and we introduce a more general penalty function

motivated by entropic penalization which allows the MM to have different levels of ambiguity

aversion stemming from uncertainty in the model with respect to three factors: (i) drift, (ii) fill

probabilities / market order execution price, and (iii) arrival rate of market orders. Note that the

idea of splitting ambiguity into components and combining them with varying weights is similar

in spirit to Uppal and Wang (2003) who combine ambiguity from several sub-sets of asset classes

in a diffusive setting. It is also similar to source-dependent risk aversion in which different risk

aversion parameters are associated with each source of risk, such as in Hugonnier et al. (2013).

Here, however, a direct ambiguity aversion decomposition will be carried out on PRMs.

3.1. Measure Class and Decomposition

This section will introduce the full class of measures Q and an approach for decomposing the

measure change to account for varying levels of ambiguity on different aspects of the model. Define

two Radon-Nikodym derivative processes by

dQα(η)

dP
= exp

{
−1

2

∫ T

0

(
α− ηt
σ

)2

dt−
∫ T

0

α− ηt
σ

dWt

}
, (13)

and

dQα,λ,κ(η, g)

dQα(η)
=
∏
i=±

exp

{
−
∫ T

0

∫ ∞
0

(eg
i
t(y) − 1) νi(dy, dt) +

∫ T

0

∫ ∞
0

git(y)µi(dy, dt)

}
. (14)

Next, define a Radon-Nikodym derivative by their product

dQα,λ,κ(η, g)

dP
=
dQα(η)

dP
dQα,λ,κ(η, g)

dQα(η)
. (15)
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The superscript α, λ, κ is to indicate that the drift, arrival rate, and fill probability all become

different in changing from the reference measure P to the new measure Qα,λ,κ(η, g). The full class

of candidate measures to be considered by the MM is

Qα,λ,κ =

{
Qα,λ,κ(η, g) : η, g are F -predictable, EP

[
dQα(η)

dP

]
= 1,

EQα(η)

[
dQα,λ,κ(η, g)

dQα(η)

]
= 1, and EQα,λ,κ(η,g)

[∫ T

0

∫ ∞
0

y2eg
±
t (y)ν±(dy, dt)

]
<∞

}
. (16)

The constraints imposed on the first two expectations above guarantee that the Radon-Nikodym

derivatives as defined in (13) and (14) yield probability measures. The constraint on the Qα,λ,κ(η, g)

expectation is to ensure that the variance of the profits earned by the MM through filled orders is

finite in any candidate measure. In the measure Qα,λ,κ(η, g) the drift of the midprice is no longer

the constant α, but is changed to ηt. Similarly, the compensator of µ±(dy, dt) is ν±Q (dy, dt) =

eg
±
t (y)ν±(dy, dt) = eg

±
t (y)λ±F±(dy)dt, see Jacod and Shiryaev (1987), Chapter III.3c, Theorem 3.17.

Quantities that will also be of interest are the intensity of MO arrivals and the fill probabilities of

LOs in the candidate measure. The intensity of MO arrivals is given by

λ±Qt = λ±
∫ ∞

0

eg
±
t (y)F±(dy) , (17)

and the probability that an MO fills an LO posted at a price St± y under the candidate measure is

p±t (y) =

∫∞
y
eg
±
t (y′) F±(dy′)∫∞

0
eg
±
t (y′)F±(dy′)

. (18)

Note that if g±t = 0 then the MO and LO dynamics of the reference model are retrieved. Also, if

g±t (y) does not depend on y, then only the MO intensity is changed while fill probabilities remain

as they are in the reference model. And lastly, if g±t (y) is chosen so that∫ ∞
0

eg
±
t (y)F±(dy) = 1, (19)

for all t ∈ [0, T ], then the MO intensity in the candidate measure will remain constant at λ± while

the fill probabilities change to those in (18).

The form of the penalty function we introduce relies on decomposing the measure change induced

by the Radon-Nikodym derivative in (14) into two separate measure changes. To this end, given

the random field g±t (y), introduce two new random fields defined by

g±λt = log

(∫ ∞
0

eg
±
t (y) F±(dy)

)
and g±κt (y) = g±t (y)− g±λt . (20)

11



The first random field does not depend on y, and it is an easy task to check that g±κt (y) satisfies

the condition in (19). Thus, any measure Qα,λ,κ(η, g) ∈ Qα,λ,κ allows us to uniquely define two

measures Qα,λ(η, g) and Qα,κ(η, g) via the Radon-Nikodym derivatives:

dQα,λ(η, g)

dQα(η)
=
∏
i=±

exp

{
−
∫ T

0

∫ ∞
0

(eg
iλ
t − 1) νi(dy, dt) +

∫ T

0

∫ ∞
0

giλt µ
i(dy, dt)

}
,

dQα,κ(η, g)

dQα(η)
=
∏
i=±

exp

{
−
∫ T

0

∫ ∞
0

(eg
iκ
t (y) − 1) νi(dy, dt) +

∫ T

0

∫ ∞
0

giκt (y)µi(dy, dt)

}
.

These measure changes represent decomposing the full change from Qα(η) to Qα,λ,κ(η, g) into a

sequence of two changes, one in which only MO intensity is changed, and the other in which only

fill probability is changed. This can be represented graphically as in Figure 2.

P -
η

Qα
��

�
��*

Qα,λ
HH

HHHj

g±λ g±κ

g±κ g±λ

- Qα,λ,κ

HH
HHHj

g±

Qα,κ ��
�
��*

Figure 2: The three natural alternative routes from the reference measure P to a candidate measure Qα,λ,κ in which
midprice drift, MO intensity, and execution price distribution of MO have been altered.

Henceforth it will be convenient to think of g±λt and g±κt (y) as separately defined objects. If g±λt
does not depend on y and g±κt (y) satisfies the integral condition (19), then by defining the random

field g±t (y) = g±λt + g±κt (y), it is easily checked that the relations in (20) hold and there is a one to

one correspondence between arbitrary random fields g±t (y) and pairs of random fields (g±λt , g±κt (y)).

This equivalent viewpoint will assist in the computation of the optimal candidate measure in (11).

3.2. Penalty Function

Using relative entropy as the penalty function implies a graphical representation shown in Figure

3.

P -
ψ

Qα,λ,κ

Figure 3: The penalization implied by relative entropy with ambiguity aversion parameter ψ.
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P -
ϕα Qα

��
��

�*
Qα,λ

HHH
HHj

ϕλ ϕκ

ϕκ ϕλ

Qα,λ,κ

HHH
HHj Qα,κ ��

��
�*

Figure 4: Ambiguity weights associated with each sequential step of the full measure change.

We propose instead a penalty function which corresponds to the graphical representation shown in

Figure 4. The interpretation of Figure 4 is that the MM has different levels of ambiguity towards

misspecification of the factor of the model associated with each measure change. Thus, ϕα represents

the level of aversion to misspecification of the drift, ϕλ represents aversion to misspecification of

MO arrivals, and ϕκ represents aversion to misspecification of MO execution price or fill probability.

Furthermore, the penalty function will be defined in such a way that the following properties hold:

1. The expectation of the penalization term is non-negative.

2. If ϕα = ϕλ = ϕκ = ϕ, then the penalization term is equivalent to relative entropy with an

ambiguity aversion level of ϕ.

3. Let x be one of the labels α, λ, or κ. When ϕx is equal to zero, then the optimal candidate

measure Q∗α,λ,κ which results from the optimization in (11) has dynamics associated with x

that are identical to those of the reference measure P. This holds for any combination of ϕx’s

that are equal to zero.3

The penalty function we choose is given by

H
(
Qα,λ,κ(η, g) |P

)
=


1
ϕα

log

(
dQα(η)
dP

)
+ 1

ϕλ
log

(
dQα,λ(η,g)
dQα(η)

)
+ 1

ϕκ
log

(
dQα,λ,κ(η,g)
dQα,λ(η,g)

)
, if ϕλ ≥ ϕκ ,

1
ϕα

log

(
dQα(η)
dP

)
+ 1

ϕκ
log

(
dQα,κ(η,g)
dQα(η)

)
+ 1

ϕλ
log

(
dQα,λ,κ(η,g)
dQα,κ(η,g)

)
, if ϕλ ≤ ϕκ .

(21)

We allow the ambiguity parameters to be equal to zero by using the convention 0 · ∞ = 0. Note

that when ϕλ = ϕκ, both of the expressions in (21) are equal. The form of (21) implicitly defines

which route is taken from P to Qα,λ,κ(η, g) in Figure 2. If ϕλ > ϕκ then the sequence of measure

3For example, if ϕα = 0, then the optimal measure will have the same drift as the reference model. If ϕα = ϕκ = 0,
then the optimal measure will have the same drift and fill probabilities as the reference model.
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changes is performed such that the MO intensity changes first, and then the fill probability changes

second. This makes Qα,λ(η, g) the intermediate measure that is visited. The changes are performed

in the opposite order if ϕκ > ϕλ. If ϕλ = ϕκ, the two routes will contribute the same penalty so

either one can be considered, or the direct route from Qα(η) to Qα,λ,κ(η, g) can be taken.

Furthermore, note that the Qα,λ,κ(η, g) expectation of the penalty function can be written as:

EQα,λ,κ(η,g)
[
H
(
Qα,λ,κ(η, g) |P

)]
=

1

ϕα
EQα,λ,κ(η,g)

[
1

2

∫ T

0

(
α− ηt
σ

)2

dt

]

+
∑
i=±

{
EQα,λ,κ(η,g)

[∫ T

0

Kϕλ,ϕκi (giλt , g
iκ
t ) dt

]
1ϕλ≥ϕκ

+ EQα,λ,κ(η,g)

[∫ T

0

Kϕκ,ϕλi (giκt , g
iλ
t ) dt

]
1ϕλ<ϕκ

}
,

where, for the collection of functions {a(y), b(y)} and constants {c, d},

Kc,di (a, b) =
1

c

∫ ∞
0

[
−(ea(y) − 1) + a(y) ea(y)+b(y)

]
λi F i(dy)

+
1

d

∫ ∞
0

[
−(eb(y) − 1) ea(y) + b(y) ea(y)+b(y)

]
λi F i(dy) .

It is important to point out that the penalty (21) is not a relative entropy since each component

in (21) measures log-distances between various measures yet the optimization problem is given by

an expectation under the single measure Qα,λ,κ(η, g).

Proposition 2 (Properties of the penalty function). The map from Qα,λ,κ → R given by

Qα,λ,κ(η, g) 7→ EQα,λ,κ
[
H
(
Qα,λ,κ(η, g) |P

)]
satisfies properties 1 and 2 listed above.

Proof. See Appendix A.

Property 3 is not contained in Proposition 2 because its validity depends on performing the opti-

mization in (11). However, it will be seen that it does indeed hold when the optimization problem

is solved, and an intuitive explanation for why it should be true based on the form of (21) can

be given. Consider for example if ϕα = 0. Then any deviations of Qα(η) from P will result in

the quantity EQα,λ,κ [log dQα(η)
dP ] being positive. Thus, unless a small change in the drift causes the

expected terminal value of the MM’s wealth and inventory holdings to approach −∞, the infimum

in (11) would require that Qα(η) = P, meaning the drift in the optimal measure Q∗α,λ,κ will still

be the constant α. Similar reasoning holds for ϕλ = 0 and ϕκ = 0.
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3.3. Solving for the Value Function

With a well defined class of candidate measures and penalty function, we are now able to return

to and solve the optimization problem (11). The associated HJBI equation is

∂tH +
1

2
σ2∂SSH + inf

η

{
η ∂SH +

1

2ϕα

(
α− η
σ

)2}
+
∑
i=±

sup
δi≥0

inf
giλ

inf
giκ∈Gi

{
λi
[∫ ∞

δi
eg
iλ+giκ(y)F i(dy)

]
∆iH (22)

+Kϕλ,ϕκi (giλ, giκ)1ϕλ≥ϕκ +Kϕκ,ϕλi (giκ, giλ)1ϕλ<ϕκ

}
= 0 ,

subject to the terminal condition H(T, x, q, S) = x + q(S − `(q)), and where the set Gi is defined

as:

Gi =

{
g :

∫ ∞
0

eg(y)F i(dy) = 1

}
.

Proposition 3 (Solution to HJBI Equation). The HJBI equation admits the ansatz H(t, x, q, S) =

x+ q S + hq(t), where hq(t) satisfies

∂thq + inf
η

{
ηq +

1

2ϕα

(
α− η
σ

)2}
+ sup

δ+≥0

inf
g+λ

inf
g+κ∈G+

{
λ+

[∫ ∞
δ+

eg
+λ+g+κ(y)F+(dy)

]
(δ+ + hq−1(t)− hq(t))

+Kϕλ,ϕκ+ (g+λ, g+κ)1ϕλ≥ϕκ +Kϕκ,ϕλ+ (g+κ, g+λ)1ϕλ<ϕκ

}
(23)

+ sup
δ−≥0

inf
g−λ

inf
g−κ∈G−

{
λ−
[∫ ∞

δ−
eg
−λ+g−κ(y)F−(dy)

]
(δ− + hq+1(t)− hq(t))

+Kϕλ,ϕκ− (g−λ, g−κ)1ϕλ≥ϕκ +Kϕκ,ϕλ− (g−κ, g−λ)1ϕλ<ϕκ

}
= 0 ,

subject to terminal conditions hq(T ) = −q `(q). Moreover, the optimum in (23) is achieved, where
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the optimizers are given by

δ+∗
q (t) =

(
1
ϕκ

log

(
1 + ϕκ

κ+

)
− hq−1(t) + hq(t)

)
+

, q 6= q ,

δ−∗q (t) =

(
1
ϕκ

log

(
1 + ϕκ

κ−

)
− hq+1(t) + hq(t)

)
+

, q 6= q ,

η∗q (t) = α− ϕα σ2 q , (24)

g±λ∗q (t) =
ϕλ
ϕκ

log

(
1− e−κ±δ

±∗
q (t)

(
1− e−ϕκ(δ±∗q (t)+hq∓1(t)−hq(t))

))
,

g±κ∗q (t, y) = − log

(
1− e−κ±δ

±∗
q (t)

(
1− e−ϕκ(δ±∗q (t)+hq∓1(t)−hq(t))

))
− ϕκ

(
δ±∗q (t) + hq∓1(t)− hq(t)

)
1y≥δ±∗q (t) .

Furthermore, equation (23) together with its terminal conditions has as unique classical solution.

Proof. See Appendix A.

The expressions in (24) are those for which the sup inf in (23) achieve their optimal value pointwise.

Given that we have a unique classical solution to (23), the function H serves as a candidate optimal

solution to the control problem (11), and when the process qt is substituted for the state variable q

in (24), these serve as candidate optimal controls. Once we provide a verification theorem that the

candidate H is indeed the value function defined in (11), we will have shown that the candidate

optimal controls are indeed the ones which achieve the optimum for the control problem. This is

the task we proceed to next.

Theorem 4 (Verification Theorem). Let hq(t) be the solution to (23) and let H(t, x, q, S) =

x + q S + hq(t). Also let δ±�t = δ±∗qt , η�t = η∗qt(t), g±λ�t = g±λ∗qt (t), and g±κ�t (y) = g±κ∗qt (t, y) define

processes. Then δ±�, η�, g±λ�, and g±κ� are admissible controls. Further, H is the value function

to the agent’s control problem (11) and the optimum is achieved by these controls.

Proof. See Appendix A.

By scrutinizing the dependence of the optimal controls η∗, g±λ∗ and g±κ∗(y) on ϕα, ϕλ, and ϕκ,

we see that property 3 of the penalty function is indeed satisfied. If ϕα = 0, then the drift in the
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optimal candidate measure is α, the same as the reference measure. If ϕλ = 0, then g±λ∗q (t) = 0

implying that the MO intensities remain at the constants λ±. Lastly, if ϕκ = 0, then g±κ∗q (t, y) = 0

implying that the MO execution price distribution remains the same as in the reference measure

(as well note that in the limit ϕκ → 0, g±λ∗q (t) has a finite value).

With the above discussion in mind, we see that the value function and optimal controls are well

defined for all finite ϕα, ϕλ, and ϕκ. However, we cannot explicitly allow infinite values of these

parameters. See for example the expression for η∗q (t) in (24), in which the optimal drift would be

equal to ±∞ depending on the sign of q. This can be alleviated by placing large finite bounds on η

and g± which would allow infinite values of ambiguity parameters. The exact form of the optimal

controls in (24) would be different in this case, but qualitative behaviour of the optimal spreads

would be similar.

The following proposition provides a closed-form solution for the value function, and hence also the

optimal depths at which the agent posts, under suitable symmetry conditions between the fill rate

function and the ambiguity weights of MO and LO dynamics through the fill probabilities. The

equal ambiguity weights assumed in this proposition correspond to the case where both versions

of the penalty function in (21) are equivalent, and the route of the measure change decomposition

from Figure 2, therefore, is irrelevant.

Proposition 5 (Closed-form solution). If κ± = κ and ϕλ = ϕκ = ϕ, then write ωq(t) = eκhq(t).

Define the vector ω(t) = [ωq(t), ωq−1(t), . . . , ωq(t)]
′. Also, let A = diag[ξ+, ξ−, ακ q − 1

2
κϕασ

2 q2],

where ξ± =
(
1 + ϕ

κ

)−(1+ κ
ϕ)
λ±. Then,

ω(t) = eA(T−t)ω(T )

for all t ∈ [t0, T ], where ωq(T ) = e−κq `(q) and t0 = sup{t : ∃q δ±∗q (t) = 0} ∨ 0.

Proof. See Appendix A.

The following proposition justifies why, when market dynamics are symmetric, we focus solely

on the sell side of the optimal controls in discussions surrounding the intuition of the effects of

ambiguity.

Proposition 6 (Symmetry in depths). If α = 0, λ± = λ, κ± = κ, q = −q, and q `(q) is an

even function, then δ+∗
q (t) = δ−∗−q (t).
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Proof. See Appendix A.

4. The Effects of Ambiguity Aversion on Depth

At this point the effects of each ambiguity level parameter on the optimal depth of the MM are

investigated. First, each of the three parameters are considered separately by setting the other

two to zero. This allows us to analyze the effects of each type of ambiguity individually. Then we

consider cases where all three parameters are non-zero. In Appendix B we outline the numerical

method used to produce the figures in this section.

4.1. Robust modelling to misspecification of midprice dynamics

The MM recognizes that she does not have enough data to estimate the drift of the midprice

and/or does not possess the right technology to process information fast enough to use a realistic

and sophisticated model of the drift. In addition, the MM knows that she will be trading with other

market participants that do have the technology and who profit from trading with less informed

market participants – for example high frequency traders.

In Figure 5 (ϕα = 20, ϕλ = ϕκ = 0) solid lines show the optimal sell depths and total depths (sell

plus buy) for an MM who is ambiguous about the drift of the midprice and dashed lines show the

sell and total depths for the MM who is extremely confident about the reference model; i.e. is

ambiguity neutral (as in Figure 1). The picture on the left-hand side shows that as ambiguity on

drift increases, the depths move in a direction which induces faster mean reversion to the optimal

level of inventory. When inventory is positive (negative), the ambiguity averse MM posts smaller

(larger) sell depths than the ambiguity neutral MM and by symmetry we have a similar effect on

the buy depth. Thus, compared to an ambiguity neutral MM, mean reversion to the optimal level

of inventory is faster. In Proposition 7 below we prove that, under symmetric dynamics, the agent

will always alter her spreads in this manner when increasing ambiguity on drift. Moreover, the

picture on the right-hand side shows that the total depth increases with ϕα which helps the MM to

recover, on average, losses from trading with better informed market participants. In other words,

ambiguity to midprice drift creates a buffer to protect the MM against adverse selection losses.

Ambiguity on drift has important effects on how the MM manages exposure to inventory risk. We

observe that the MM picks a model where the midprice drifts at η∗q (ϕα) = α−ϕα σ2 q which clearly

depends on the level of inventory and the volatility of the midprice. Note that when q > 0 the

MM assumes that (compared to the reference model) the midprice is drifting at a lower speed,

η∗q (ϕα) < α, and the effect is to adjust the postings in the LOB so that inventories are reduced.

The larger the inventory is, the closer to the midprice are sell LOs posted and mean reversion to

the optimal level of inventory is quicker. The intuition is the following. Assume for simplicity that

α = 0, thus when the MM is long the asset her model assumes that the midprice will drift down and
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Figure 5: Optimal sell and total depths for an MM who is ambiguity averse to midprice drift (dashed lines are
ambiguity neutral depths). Parameter values are ϕα = 20, κ± = 15, λ± = 2, σ = 0.01, α = 0, `(q) = θ q, θ = 0.01,
q = −q = 3 and T = 10 seconds.

it is clear that holding long inventory in a falling market is not optimal so the strategy is to close

down the positions as soon as possible – the MM will perceive a falling market until her inventory

reaches q = 0. How quickly are positions closed depends also on the degree of ambiguity aversion

and the volatility of the midprice. A similar argument applies when q < 0.

Another important point we remark is that only when the MM is ambiguity averse to midprice

drift does the volatility of the midprice have an effect on the optimal strategy (σ2 only appears

in Proposition 3 when multiplied by ϕα). Here we see that the MM perceives more exposure to

inventory risk when σ is higher because the chances of observing unfavourable price movements are

higher.

Proposition 7 (Effect of Ambiguity on Drift). Suppose α = 0, λ± = λ, κ± = κ, q = −q, and

q `(q) is an even function. Fix ϕλ and ϕκ, and let ϕα < ϕ′α. Denote by δ±∗q (t;ϕα) and δ±∗q (t;ϕ′α)

the spreads corresponding to the feedback forms given in (24) for the respective parameters. Then

the sell spreads satisfy

δ+∗
q (t;ϕα) ≤ δ+∗

q (t;ϕ′α) , q < q ≤ 0 ,

δ+∗
q (t;ϕα) ≥ δ+∗

q (t;ϕ′α) , 0 < q ≤ q ,

and the buy spreads satisfy

δ−∗q (t;ϕα) ≤ δ−∗q (t;ϕ′α) , 0 ≤ q < q ,

δ−∗q (t;ϕα) ≥ δ−∗q (t;ϕ′α) , q ≤ q < 0 .
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Proof. See Appendix A.

4.1.1. Equivalence of ambiguity on midprice drift and inventory penalization

Consider an MM who maximizes expected terminal wealth, but rather than penalizing the payoff

with a relative entropy term she directly penalizes her running inventory position, as first proposed

in Cartea and Jaimungal (2015) and Guilbaud and Pham (2013). The value function is

Hφ(t, x, q, S) = sup
(δ±s )t≤s≤T∈A

EP
t,x,q,S

[
XT + qT (ST − `(qT ))− φσ2

∫ T

t

q2
s ds

]
,

where φ ≥ 0 and φσ2
∫ T
t
q2
s ds acts as a penalization on running inventory. The value function

satisfies the HJB equation

∂tH
φ + α∂SH

φ +
1

2
σ2∂SSH

φ − φσ2q2 + sup
δ±≥0

{
λ+e−κ

+δ+∆+Hφ + λ−e−κ
−δ−∆−Hφ

}
= 0 ,

subject to Hφ(T, x, q, S) = x+ q (S − `(q)). By making the ansatz Hφ(t, x, q, S) = x+ q S + hφq (t)

and substituting into the above equation, we obtain

∂th
φ
q + αq − φσ2q2 + sup

δ+,δ−≥0

{
λ+e−κ

+δ+
(
δ+ + hφq−1 − hφq

)
+ λ−e−κ

−δ−
(
δ− + hφq+1 − hφq

)}
= 0 ,

which, if we let φ = 1
2
ϕα, is equivalent to (23) when ϕλ = ϕκ = 0 (also see (A.16) in the proof

of Proposition 3). Moreover, the optimal posting strategies for this problem are identical to those

in Proposition 3 and the value function Hφ is equal to the value function H. This means that

ambiguity aversion specific to midprice drift is equivalent to imposing a penalization on running

inventory.

4.2. Robust modelling to misspecification of arrival of market orders

MOs are sent by impatient traders who seek immediate execution. The informational content of

these orders is important for MMs. Trading with better informed market participants will generally

result in a loss to MMs who naively post orders in the book. One way in which MMs protect

themselves from adverse selection costs is to post wider spreads so that on average the money they

lose to better informed traders is compensated by earning a wider spread from trading with other

market participants.

In the reference model the MM assumes that MOs arrive according to homogeneous Poisson pro-

cesses and that these orders have no informational content that could affect the midprice dynamics.

On the other hand, the MM knows that her model is misspecified. For example, it may be that on

average the MM knows how many orders arrive over a period of time, but over shorter time scales
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Figure 6: Optimal sell and total depths for an MM who is ambiguity averse to MO rate of arrival (dashed lines are
ambiguity neutral depths). Parameter values are ϕλ = 6, κ± = 15, λ± = 2, σ = 0.01, α = 0, `(q) = θ q, θ = 0.01,
q = −q = 3 and T = 10.

the arrival of orders is more complex. When the MM misspecifies the rate of arrival of MOs she

not only posts LOs which are suboptimal, but she also increases the probability of being adversely

selected by better informed market participants.

Figure 6 shows the optimal sell and total spreads for ϕλ = 6 (ϕα = ϕκ = 0). Similar to the

effect of ambiguity on drift we observe that the MM sends quotes to the book that induce faster

mean reversion to the optimal level of inventory, compared to the ambiguity neutral MM, and total

depths are wider to recover adverse selection costs.

4.3. Robust modelling to misspecification of fill probabilities

Here we consider an MM who is ambiguity averse to the fill probabilities of LOs, but not to their

rate of arrival of MOs or midprice drift. When the MM chooses a model robust to misspecification

in the fill probability of orders, the distribution of MO execution price relative to the midprice

corresponding to the optimal control is no longer exponential. In the reference measure P, the fill

probability for a given posting is as in (4), but under the optimal measure Q∗κ it inherits dependence

on the MM’s inventory and time and can be explicitly written:

p±t (y) =

∫ ∞
y

eg
±κ∗
q (t,y′) F±(dy′)

=


e−κ
±y−e−κ

±δ±∗q (t)(1−e−ϕκ(δ
±∗
q (t)+hq∓1(t)−hq(t)))

1−e−κ±δ
±∗
q (t)(1−e−ϕκ(δ

±∗
q (t)+hq∓1(t)−hq(t)))

, y < δ±∗q (t) ,

e−κ
±ye−ϕκ(δ

±∗
q (t)+hq∓1(t)−hq(t))

1−e−κ±δ
±∗
q (t)(1−e−ϕκ(δ

±∗
q (t)+hq∓1(t)−hq(t)))

, y ≥ δ±∗q (t) .

The left-hand panel of Figure 7 shows typical fill probabilities of orders for various levels of q at a
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Figure 7: Typical fill probabilities of orders volume for various levels of q and optimal sell and total depths for an
MM who is ambiguity averse to MO fill probabilities (dashed lines are ambiguity neutral depths). Parameter values
are ϕκ = 3 (ϕκ = 15 in left-hand panel to emphasize the change), κ± = 15, λ± = 2, σ = 0.01, α = 0, `(q) = θ q,
θ = 0.01, q = −q = 3.

fixed point in time. Notice that the fill probability under the optimal measure is strictly less than

the reference fill probability. The other two panels of the figure show that for ϕκ > 0 (ϕα = ϕλ = 0)

the MM posts smaller sell and total depths compared to the reference model. The MM fears that

her LOs will not be filled and therefore reduces depths to increase churn, but this strategy will not

help to recover adverse selection losses, as shown by narrower total depths in the right-hand side

panel of the figure.

4.4. Robust modelling to misspecification of arrival rate of MOs, fill probability of MOs, and mid-

price drift

In this section we allow the MM to penalize each of ambiguity to midprice drift, ambiguity to MO

arrival rate, and ambiguity to LO fill probability at the same time.

Figure 8 shows the optimal sell depths for an MM who is ambiguity averse with respect to all

three factors for various degrees of ambiguity aversion. Here we see that depending on the relative

values of ϕα, ϕλ, and ϕκ the effect on the optimal strategy might be different. For example, when

approaching maturity when there is ambiguity on fill probabilities:

δ±∗q (t) −−−→
t→T

1

ϕκ
log

(
1 +

ϕκ
κ

)
+ θ

(
(q ∓ 1)2 − q2

)
,

which is strictly less than the optimal strategy for an ambiguity neutral MM near maturity:

δ±∗q (t) −−−→
t→T

1

κ
+ θ

(
(q ∓ 1)2 − q2

)
.

However, as time to maturity increases, ambiguity aversion with respect to midprice drift and MO

arrival rate play a more significant role, and for some values of inventory, the optimal quotes can
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(a) sell depths: ϕα = 20, ϕλ = 10, ϕκ = 1

0 2 4 6 8 10
0.13

0.135

0.14

0.145

0.15

0.155

0.16

Time (secs)

T
o
ta
l
D
ep

th
(δ

+
+

δ
−

) q = 2

q = 1
q = 0

(b) total depths: ϕα = 20, ϕλ = 10, ϕκ = 1
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(c) sell depths: ϕα = 10, ϕλ = 1, ϕκ = 2
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(d) total depths: ϕα = 10, ϕλ = 1, ϕκ = 2

Figure 8: Optimal sell and total depths for an MM who is ambiguity averse towards MO arrival rate, fill probabilities,
and midprice drift (dashed lines are ambiguity neutral depths). Parameter values are κ± = 15, λ± = 2, σ = 0.01,
α = 0, `(q) = θ q, θ = 0.01, q = −q = 3 and T = 10.

become equal to, or even cross, those of the ambiguity neutral MM, see Figure 8 (a) for inventories

q = −2 and q = −1, where ϕα = 20, ϕλ = 10, and ϕκ = 1. This behaviour is not always present

and depends on the relative value of the ambiguity parameters. For example Figure 8 (c) shows

depths when ϕα = 10, ϕλ = 1, and ϕκ = 2 and we observe that the optimal depths of the ambiguity

averse MM are always less than those of the ambiguity neutral MM. This will generally be the case

when the degrees of ambiguity aversion are weighted more strongly towards fill probabilities than

to midprice drift and MO arrival rate.

Moreover, panels (b) and (d) of Figure 8 depict total depths. Panel (b) shows that well before expiry

total depths are always wider when the MM is ambiguity averse, and as previously discussed, this

helps the strategies to recover losses that stem from adverse selection. On the other hand, panel

(d) shows that if ambiguity aversion to midprice drift and MO arrival rate are decreased and

ambiguity aversion to fill probabilities is increased, total depths are narrower than those of the

ambiguity neutral MM.
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We comment that the varying modifications to the optimal quotes due to our notion of ambiguity

aversion is behaviour that cannot be captured by a CARA utility function. As seen in Guéant

et al. (2012), once the model is chosen and when a time and inventory level are fixed, including or

increasing risk aversion can only affect the optimal posting by moving it in one direction (δ±∗q (t; γ) is

monotone in γ, the risk aversion coefficient). The nature of the monotonicity may change depending

on the particular model chosen as well as q and t. Figure 8 and the discussion above show that

ambiguity aversion can cause either increases or decreases in the optimal depth within a fixed

reference model depending on an MM’s levels of ambiguity aversion relative to each other.

5. Robust Market Making and the Profit and Loss of MMs

Making optimal decisions with an incorrect model is costly. But how much does robust market

making help to protect the MM from model misspecification? In this section we assume that the

true dynamics of the state variables are different from those in the reference measure P, but the

MM considers alternative models to reflect her ambiguity aversion. In particular, we show that

the Sharpe ratio of the MM’s Profit and Loss (PnL) (the ratio of expectation of PnL to standard

deviation of PnL) can be considerably increased by including ambiguity aversion to the midprice

drift, and the expectation can be increased with ambiguity to arrival and fill probability of MOs

while keeping the Sharpe ratio essentially constant.

In this simulation, motivated by Cartea and Jaimungal (2015) and Cartea et al. (2014), where

they use real market data to motivate their models, we choose the true dynamics, which are not

observed by the MM, to be given by

dSt = αtdt+ σdWt ,

dαt = −βααtdt+ ε+ dM+
t − ε− dM−

t ,

dλ±t = βλ(θλ − λ±t )dt+ ηλdM
±
t + νλdM

∓
t ,

dκ±t = βκ(θκ − κ±t )dt+ ηκdM
±
t + νκdM

∓
t .

Here ε± = 0.001 is the market impact of MOs which affects (temporarily) the drift of the midprice

αt (short-term alpha) and the arrival rates of MOs follow a bivariate Hawkes process to reflect

trade clustering and cross-excitation. Finally, to capture the dynamics of the LOB, the true model

assumes that the fill rates are as in the reference model, see (4), but the parameter κ± follows

a mean-reverting process with jumps to reflect stochastic changes in the depth of the LOB as

a consequence of the arrival of MOs. We note that these dynamics correspond to the measure
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Figure 9: Expectation and standard deviation for various levels of ambiguity parameters when trading strategies
are executed for 300 seconds on the simulated process outlined above. The ϕα parameter ranges from 0 to 10 and
ϕλ = ϕκ = ϕ ranges from 0 to 20.

Qα,λ,κ(η, g) which is equivalent to the reference measure P, where

ηt = αt ,

g±λt = log

(
λ±t
λ±

)
,

g±κt (y) = log

(
κ±t
κ±

)
− (κ±t − κ±)y .

We use 30,000 simulations for each set of ambiguity parameters, liquidation penalty `(q) = θ q

where θ = 0.001, and q = −q = 8, to calculate the mean and standard deviation of the PnL of

the market making strategy. The remaining model parameters used in the simulations are given in

Table 1.

σ ε± βα θλ βλ ηλ νλ θκ βκ ηκ νκ
0.01 0.001 1 0.2 70/9 5 2 15 7/6 5 2

Table 1: Parameter values used to generate midprice, LOB, and MOs dynamics

We assume that the MM has enough data to calibrate her reference model, which assumes constant

arrival rate, exponential fill probabilities and a midprice with zero drift and constant volatility, and

calculates the long-run expected value of the above processes

α = lim
t→∞

E[αt|F0] , λ± = lim
t→∞

E[λ±t |F0] , κ± = lim
t→∞

E[κ±t |F0] ,

and obtains α = 0, λ± = 2, κ± = 27.

In Figure 9, each point on the graph represents the performance of a strategy corresponding to a
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specific set of ambiguity parameters. Each curve signifies the path traced out by a single value of ϕα
for various values of ϕ. The figure shows that there are ranges where increasing ambiguity aversion

to MO dynamics and fill probabilities increases expected profits. Moreover, ambiguity aversion to

the midprice drift helps the MM in the trade-off between expected and standard deviation of profits.

Overall, the result is to see that the Sharpe ratio of MM strategies can be considerably increased

when the MM acknowledges that her model is an approximation and she introduces ambiguity

aversion to make her decisions robust to misspecification which help her to manage inventory risks

and mitigate adverse selection costs.

6. Conclusions

We show how MMs can incorporate ambiguity aversion in their choice of model so that their market

making activities are robust to model misspecification. Depending on the degree of confidence that

the MM places on the different building blocks of her model our framework allows to control for

different degrees of ambiguity on the arrival rate of MOs, fill probability of LOs, and the drift of

the fundamental value of the asset they deal. We also find that the actions of an ambiguity averse

MM generalize those of an MM that is risk averse through more possible changes to behaviour

depending on circumstances.

Robust market making adjusts the MMs quotes to control for exposure to inventory risk and adverse

selection costs. Thus, we show that robust market making can generate significant improvements

in the profitability of market making strategies. In some cases expected profits increase without

increasing the standard deviation of profits and in other cases the increase in expected profits can

be achieved along a reduction in standard deviation.

Appendix A. Proof of Main Results

Appendix A.1. Proof of Proposition 2

Proof. First we show property 2. If ϕα = ϕλ = ϕκ = ϕ, then all three logarithm terms in the penalty

function may be combined and the product of three Radon-Nikodym derivatives becomes the single measure

change:

H(Qα,λ,κ(η, g)|P) =
1

ϕ
log

(
dQα,λ,κ(η, g)

dP

)
.

The Qα,λ,κ(η, g) expectation of this expression is relative entropy with the associated aversion level ϕ, as

desired.
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Next we show property 1. Consider ϕλ > ϕκ and take the Qα,λ,κ(η, g) expectation in two parts. First:

EQα,λ,κ(η,g)

[
1

ϕα
log

(
dQα(η)

dP

)]
=

1

ϕα
EQα,λ,κ(η,g)

[
1

2

∫ T

0

(
α− ηt
σ

)2

dt

]
≥ 0,

Second:

EQα,λ,κ(η,g)

[
1

ϕλ
log

(
dQα,λ(η, g)

dQα(η)

)
+

1

ϕκ
log

(
dQα,λ,κ(η, g)

dQα,λ(η, g)

)]
=

1

ϕλ

(
EQα,λ,κ(η,g)

[
log

(
dQα,λ(η, g)

dQα(η)

)]
+
ϕλ
ϕκ

EQα,λ,κ(η,g)

[
log

(
dQα,λ,κ(η, g)

dQα,λ(η, g)

)])
≥ 1

ϕλ

(
EQα,λ,κ(η,g)

[
log

(
dQα,λ(η, g)

dQα(η)

)]
+ EQα,λ,κ(η,g)

[
log

(
dQα,λ,κ(η, g)

dQα,λ(η, g)

)])
=

1

ϕλ
EQα,λ,κ(η,g)

[
log

(
dQα,λ,κ(η, g)

dQα(η)

)]
≥ 0 .

The case ϕκ ≥ ϕλ is identical. �

Appendix A.2. Proof of Proposition 3

Proof. Substituting the ansatz H(t, x, q, S) = x+ q S + hq(t) into the PDE (22) results in the system of

ODEs (23). The minimization in η is independent of the optimization in δ±, g±λ, and g±κ and so can be

done directly. First order conditions imply that η∗ = α−ϕασ2q, as desired. This value of η∗ is easily seen

to be unique as it is a quadratic optimization. For the optimization over δ±, g±λ, and g±κ, first consider

ϕλ > ϕκ. Then the term to be optimized is

G(δ±, g±λ, g±κ) = λ±
[∫ ∞

δ±
eg
±λ+g±κ(y)F±(y)dy

](
δ± + hq∓1 − hq

)
+Kϕλ,ϕκ± (g±λ, g±κ)

= λ±
[∫ ∞

δ±
eg
±λ+g±κ(y)F±(y)dy

](
δ± + hq∓1 − hq

)
. . .

+
1

ϕλ

[
λ±
∫ ∞

0
−(eg

±λ − 1) + g±λeg
±λ+g±κ(y)F±(y)dy

]
. . .

+
1

ϕκ

[
λ±
∫ ∞

0
−(eg

±κ(y) − 1)eg
±λ

+ g±κ(y)eg
±λ+g±κ(y)F±(y)dy

]
. (A.1)
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The remainder of the proof will proceed as follows:

1. Introduce Lagrange multipliers γ± corresponding to the constraints on g±κ(y).

2. Compute first order conditions for the unconstrained g±κ(y) which minimizes the Lagrange modified

term.

3. Compute the values of γ±.

4. Verify that the corresponding g±κ∗(y) provides a minimizer of G(δ±, g±λ, g±κ) for all functions

g±κ ∈ G±.

5. Compute first order conditions for g±λ.

6. Verify that the corresponding g±λ∗ provides a minimizer of G(δ±, g±λ, g±κ∗).

7. Compute first order conditions for δ± subject to the constraint δ± ≥ 0.

8. Verify that the corresponding δ±∗ provides a maximizer of G(δ±, g±λ∗, g±κ∗).

9. Prove existence and uniqueness for the solution h.

Parts 1 and 2: solving for g±κ: The constraint
∫∞

0 eg
±κ(y)F±(y)dy = 1 is handled by introducing

Lagrange multipliers γ± and then minimizing over unconstrained g±κ. The optimization with respect to

g±κ is handled in a pointwise fashion by minimizing the integrand with respect to g±κ(y) for each value

of y ∈ [0,∞). For y ∈ (δ±,∞), the quantity to be minimized is

λ±eg
±λ+g±κ(y)

(
δ± + hq∓1 − hq

)
+
λ±

ϕλ

(
−(eg

±λ − 1) + g±λeg
±λ+g±κ(y)

)
+
λ±

ϕκ

(
−(eg

±κ(y) − 1)eg
±λ

+ g±κ(y)eg
±λ+g±κ(y)

)
+ γ±

(
eg
±κ(y) − 1

)
. (A.2)

First order conditions in g±κ(y) give

g±κ(y) =− ϕκ
ϕλ
g±λ − γ±ϕκ

λ±
e−g

±λ − ϕκ(δ± + hq∓1 − hq) . (A.3)

Similarly, first order conditions in g±κ(y) for y ∈ [0, δ±] give

g±κ(y) = −ϕκ
ϕλ
g±λ − γ±ϕκ

λ±
e−g

±λ
. (A.4)

Combining equations (A.3) and (A.4) gives

g±κ∗(y) = −ϕκ
ϕλ
g±λ − γ±ϕκ

λ±
e−g

±λ − ϕκ(δ± + hq∓1 − hq)1y>δ± . (A.5)
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Part 3: solving for γ±: Substituting this expression into the integral constraint and performing some

computations gives an expression for γ±:

γ± =− g±λλ±

ϕλ
eg
±λ

+
λ±eg

±λ

ϕκ
log

(
1− e−κ±δ± + e−ϕκ(δ±+hq∓1−hq)e−κ

±δ±
)
.

Substituting this into equation (A.5) gives

g±κ∗(y) = − log

(
1− e−κ±δ± + e−ϕκ(δ±+hq∓1−hq)e−κ

±δ±
)
− ϕκ(δ± + hq∓1 − hq)1y>δ± . (A.6)

Part 4: verify that g±κ∗ is a minimizer over G±: To prove that this expression for g±κ∗(y) is indeed

a minimizer, it will be convenient to introduce some shorthand notation:

∆±hq =hq∓1 − hq , (A.7)

A± =1− e−κ±δ± + e−ϕκ(δ±+∆±hq)e−κ
±δ± , (A.8)

g± =− logA± , (A.9)

g± =− logA± − ϕκ(δ± + ∆±hq) . (A.10)

It is important to note that these quantities do not depend on g±λ. Also note that g± and g± are the

two possible values that g±κ∗(y) can take depending on whether y ≤ δ± or y > δ±. Let f± be any other

function in G± and define k±(y) = ef
±(y) − eg±κ∗(y). Then define f±ε (y) = log(εk±(y) + eg

±κ∗(y)). One can

easily check that f±ε ∈ G± for all ε ∈ [0, 1] and that f±0 = g±κ∗ and f±1 = f±. Let m(ε) = G(δ±, g±λ, f±ε ).

We will confirm that g±κ∗ is the minimizer by showing that

G(δ±, g±λ, g±κ∗) = m(0) ≤ m(1) = G(δ±, g±λ, f±) . (A.11)
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It is sufficient to show that m has non-negative second derivative for all ε ∈ [0, 1]. Substituting expressions

for f±ε and (A.6) into G(δ±, g±λ, f±ε ) gives

m(ε) = λ±
[∫ ∞

δ±
eg
±λ+fε(y)F±(y)dy

](
δ± + ∆±hq

)
. . .

+
1

ϕλ

[
λ±
∫ ∞

0
−(eg

±λ − 1) + g±λeg
±λ+fε(y)F±(y)dy

]
. . .

+
1

ϕκ

[
λ±
∫ ∞

0
−(efε(y) − 1)eg

±λ
+ fε(y)eg

±λ+fε(y)F±(y)dy

]
= λ±

[∫ ∞
δ±

eg
±λ

(eg
±

+ εk(y))F±(y)dy

](
δ± + ∆±hq

)
. . .

+
1

ϕλ

[
λ±
∫ δ±

0
−(eg

±λ − 1) + g±λeg
±λ

(eg
±

+ εk(y))F±(y)dy

]
. . .

+
1

ϕλ

[
λ±
∫ ∞
δ±
−(eg

±λ − 1) + g±λeg
±λ

(eg
±

+ εk(y))F±(y)dy

]
. . .

+
1

ϕκ

[
λ±
∫ δ±

0
−(eg

±
+ εk(y)− 1)eg

±λ
+ log(eg

±
+ εk(y))eg

±λ
(eg
±

+ εk(y))F±(y)dy

]
. . .

+
1

ϕκ

[
λ±
∫ ∞
δ±
−(eg

±
+ εk(y)− 1)eg

±λ
+ log(eg

±
+ εk(y))eg

±λ
(eg
±

+ εk(y))F±(y)dy

]
,

and taking a derivative with respect to ε gives

m′(ε) = λ±
[∫ ∞

δ±
eg
±λ
k(y)F (y) dy

](
δ± + ∆±hq

)
+

1

ϕλ

[
λ±
∫ ∞

0
g±λeg

±λ
k(y)F±(y)dy

]
. . .

+
1

ϕκ

[
λ±
∫ δ±

0
−k(y)eg

±λ
+ k(y)eg

±λ
+ k(y) log(eg

±
+ εk(y))eg

±λ
F±(y)dy

]
. . .

+
1

ϕκ

[
λ±
∫ ∞
δ±
−k(y)eg

±λ
+ k(y)eg

±λ
+ k(y) log(eg

±
+ εk(y))eg

±λ
F±(y)dy

]
= λ±

[∫ ∞
δ±

eg
±λ
k(y)F (y) dy

](
δ± + ∆±hq

)
. . .

+
1

ϕκ

[
λ±
∫ δ±

0
k(y) log(eg

±
+ εk(y))eg

±λ
F±(y)dy

]
. . .

+
1

ϕκ

[
λ±
∫ ∞
δ±

k(y) log(eg
±

+ εk(y))eg
±λ
F±(y)dy

]
.
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Evaluating this expression at ε = 0 gives

m′(0) = λ±
[∫ ∞

δ±
eg
λ±
k(y)F (y) dy

](
δ± + ∆±hq

)
. . .

+
1

ϕκ

[
λ±
∫ δ±

0
k(y)g±eg

λ±
F±(y)dy

]
+

1

ϕκ

[
λ±
∫ ∞
δ±

k(y)g±eg
λ±
F±(y)dy

]
= λ±

[∫ ∞
δ±

eg
λ±
k(y)F (y) dy

](
δ± + ∆±hq

)
− 1

ϕκ
λ±
∫ δ±

0
k(y) log(A±)eg

λ±
F (y) dy . . .

− 1

ϕκ
λ±
∫ δ±

0
k(y)

(
log(A±) + ϕκ(δ± + ∆±hq)

)
eg
λ±
F (y) dy

= 0 ,

as expected. Continuing by taking a second derivative with respect to ε:

m′′(ε) =
1

ϕκ
λ±
∫ δ±

0

eg
±λ
k2(y)

eg
±

+ εk(y)
F (y) dy +

1

ϕκ
λ±
∫ ∞
δ±

eg
±λ
k2(y)

eg
±

+ εk(y)
F (y) dy

=
1

ϕκ
λ±
∫ ∞

0

eg
±λ
k2(y)

eg±κ∗(y) + εk(y)
F (y) dy

=
1

ϕκ
λ±
∫ ∞

0

eg
±λ
k2(y)

efε(y)
F (y) dy .

This expression is non-negative for all ε ∈ [0, 1], showing that indeed the expression for g±κ∗(y) in equation

(A.6) is a minimizer. This expression is strictly positive unless k ≡ 0, showing that the inequality in (A.11)

is strict unless f = g±κ∗, therefore g±κ∗ is the unique minimizer.

Part 5: first order conditions for g±λ: After substituting the expression (A.6) into the term to be

minimized (A.1) and performing some tedious computations, we must minimize the following with respect

to g±λ:

λ±eg
±λ

eg
±

(δ± + ∆±hq)e
−κ±δ±

+
λ±

ϕλ

(
−(eg

±λ

− 1) + g±λeg
±λ

eg
±
)
e−κ

±δ± +
λ±

ϕκ

(
−(eg

±
− 1)eg

±λ

+ g±eg
±λ

eg
±
)
e−κ

±δ±

+
λ±

ϕλ

(
−(eg

±λ

− 1) + g±λeg
±λ

eg
±
)

(1− e−κ
±δ±) +

λ±

ϕκ

(
−(eg

±
− 1)eg

±λ

+ g±eg
±λ

eg
±
)

(1− e−κ
±δ±) .

(A.12)
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Applying first order conditions in g±λ and carrying out some tedious computations gives the candidate

minimizer:

g±λ∗ =
ϕλ
ϕκ

logA± =
ϕλ
ϕκ

log
(

1− e−κ±δ± + e−ϕκ(δ±+hq∓1−hq)e−κ
±δ±
)
. (A.13)

This is the unique root corresponding to the first order conditions.

Part 6: verify that g±λ∗ is a minimizer: Taking two derivatives of (A.12) with respect to g±λ and

cancelling terms gives

g±λeg
±λ

ϕλ
+
eg
±λ

ϕλ
− log(A±)eg

±λ

ϕκ
.

When the expression (A.13) is substituted above, this becomes A
±ϕλϕκ
ϕλ

, which is always positive because

A± > 0. Thus, this value of g±λ∗ provides a minimizer. Uniqueness of the root corresponding to first

order conditions (and the fact that it is the only critical value) implies that g±λ∗ is the unique minimizer.

Part 7: solving for δ±: Substituting expressions (A.7) to (A.10) and (A.13) into (A.12), after some

tedious computations we must maximize the following expression over δ±:

λ±

ϕλ

(
1− exp

{
ϕλ
ϕκ

log(1− e−κ±δ± + e−ϕκ(δ±+hq∓1−hq)e−κ
±δ±)

})
.

Maximizing this term is equivalent to minimizing

exp

{
ϕλ
ϕκ

log(1− e−κ±δ± + e−ϕκ(δ±+hq∓1−hq)e−κ
±δ±)

}
,

which is equivalent to minimizing:

1− e−κ±δ± + e−ϕκ(δ±+hq∓1−hq)e−κ
±δ± . (A.14)

Computing first order conditions for δ± gives

δ±∗ =
1

ϕκ
log

(
1 +

ϕκ
κ±

)
− hq∓1 + hq . (A.15)

If this value is positive, we check that it is a minimizer of (A.14) by taking a second derivative. If it is

non-negative, we show that the first derivative of (A.14) is positive for all δ± > 0, meaning that the desired
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value of δ±∗ is 0.

Part 8: verify that δ±∗ is a minimizer of (A.14): Suppose the value given by (A.15) is positive.

Taking two derivatives of (A.14) with respect to δ± gives

−κ±2e−κ
±δ± + (ϕκ + κ±)2e−ϕκ(δ±+hq∓1−hq)e−κ

±δ± .

Substituting (A.15) into this expression gives

κ±ϕκe
−κ±δ±∗ > 0

and so the value in (A.15) minimizes (A.14). Now suppose the value in (A.15) is non-positive. This means

the following inequality holds:

e−ϕκ(hq∓1−hq) ≤ κ±

κ± + ϕκ
.

The first derivative of (A.14) with respect to δ± is

(
κ± − (κ± + ϕκ)e−ϕκ(δ±+hq∓1−hq)

)
e−κ

±δ± ,

and the preceding inequality implies that this is non-negative for all δ± ≥ 0, implying that δ±∗ = 0 is the

minimizer of (A.14). Thus, the value of δ± which maximizes the original term of interest is

δ±∗ =

(
1

ϕκ
log(1 +

ϕκ
κ±

)− hq∓1 + hq

)
+

,

as desired. The case of ϕκ > ϕλ is essentially identical.
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Part 9: existence and uniqueness of h: Begin by substituting the optimal feedback controls, η∗, g±λ∗,

and g±κ∗(y) into equation (23). This results in:

∂thq + αq − 1

2
ϕασ

2q2

+ sup
δ+≥0

{
λ+

ϕλ

(
1− exp

{
ϕλ
ϕκ

log(1− e−κ+δ+ + e−κ
+δ+−ϕκ(δ++hq−1−hq))

})}
1q 6=q

+ sup
δ−≥0

{
λ−

ϕλ

(
1− exp

{
ϕλ
ϕκ

log(1− e−κ−δ− + e−κ
−δ−−ϕκ(δ−+hq+1−hq))

})}
1q 6=q = 0 ,

hq(T ) = −q `(q) .

(A.16)

This is a system of ODEs of the form ∂th = F(h). To show existence and uniqueness of the solution to

this equation, the function F will be shown to be bounded and globally Lipschitz. It suffices to show that

the function f is bounded and globally Lipschitz, where f is given by

f(x, y) = sup
δ≥0

{
λ

ϕλ

(
1− exp

{
ϕλ
ϕκ

log(1− e−κδ + e−κδ−ϕκ(δ+x−y))

})}
.

Boundedness and the global Lipschitz property of f implies the same for F, and so existence and uniqueness

follows from the Picard-Lindelöf theorem. The global Lipschitz property will be a result of showing that

all directional derivatives of f exist and are bounded for all (x, y) ∈ R2.

The supremum is attained at δ∗ = ( 1
ϕκ

log(1 + ϕκ
κ )− x+ y)+. Thus, two separate domains for f must be

considered: 1
ϕκ

log(1 + ϕκ
κ ) > x− y and 1

ϕκ
log(1 + ϕκ

κ ) ≤ x− y. First consider 1
ϕκ

log(1 + ϕκ
κ ) > x− y so

that δ∗ = 1
ϕκ

log(1 + ϕκ
κ )− x+ y. Substituting this into the expression for f yields:

f(x, y) =
λ

ϕλ

(
1− exp

{
ϕλ
ϕκ

log
(
1− e−

κ
ϕκ

log(1+ϕκ
κ

)+κ(x−y)
(1− e− log(1+ϕκ

κ
))
)})

=
λ

ϕλ

(
1− exp

{
ϕλ
ϕκ

log
(
1−Beκ(x−y)

)})
,

where B = ( κ
ϕκ+κ)

κ
ϕκ

ϕκ
ϕκ+κ > 0. Letting z = Beκ(x−y), the inequality 1

ϕκ
log(1 + ϕκ

κ ) > x− y implies

0 < z < (
κ

ϕκ + κ
)
κ
ϕκ

ϕκ
ϕκ + κ

e
κ
ϕκ

log(1+ϕκ
κ

)

= (
κ

ϕκ + κ
)
κ
ϕκ

ϕκ
ϕκ + κ

(
ϕκ + κ

κ
)
κ
ϕκ =

ϕκ
ϕκ + κ

< 1 .
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Since z is positive we have:

f(x, y) =
λ

ϕλ

(
1− exp

{
ϕλ
ϕκ

log
(
1− z

)})
<

λ

ϕλ
.

Taking partial derivatives of f in this domain gives

∂xf(x, y) = −∂yf(x, y) =
λ

ϕκ
e
ϕλ
ϕκ

log
(

1−Beκ(x−y)
)
Bκeκ(x−y)

1−Beκ(x−y)

=
λ

ϕκ
e
ϕλ
ϕκ

log
(

1−z
)

z

1− z
. (A.17)

This expression is non-negative and continuous for 0 ≤ z ≤ ϕκ
ϕκ+κ , and therefore achieves a finite maximum

somewhere on that interval. Thus, ∂xf and ∂yf are bounded in this domain, and so directional derivatives

exist and are also bounded everywhere in the interior of the domain. On the boundary, directional

derivatives exist and are bounded if the direction is towards the interior of the domain.

Now consider 1
ϕκ

log(1 + ϕκ
κ ) ≤ x− y, which implies δ∗ = 0. The expression for f(x, y) in this domain is

f(x, y) =
λ

ϕλ

(
1− e−ϕλ(x−y)

)

which is bounded by λ
ϕλ

(
1− e−

ϕλ
ϕκ

log(1+ϕκ
κ

)
)

. Partial derivatives of f are given by

∂xf(x, y) = −∂yf(x, y) = λe−ϕλ(x−y) . (A.18)

In this domain, the derivatives ∂xf and ∂yf are bounded by λe
−ϕλ
ϕκ

log(1+ϕκ
κ

)
. So similarly to the first

domain, directional derivatives exist and are bounded in the interior. On the boundary, they exist and are

bounded in the direction towards the interior of the domain. Thus, we have existence and boundedness

on the boundary towards either of the two domains. The directional derivative on the boundary is zero

when the direction is parallel to the boundary. Existence and boundedness of directional derivatives for

all (x, y) ∈ R2 allows us to show the Lipschitz condition easily:

|f(x2, y2)− f(x1, y1)| =
∣∣∣∣∫
C
∇f(x, y) · d~r

∣∣∣∣ ≤ ∫
C
|∇f(x, y)|ds ≤

∫
C
Ads = A|(x2, y2)− (x1, y1)|

where C is the curve which connects (x1, y1) to (x2, y2) in a straight line and A is a uniform bound on the

gradient of f . This proves that there exists a unique solution h to equation (23).
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Appendix A.3. Proof of Theorem (4)

Proof. Let h be the solution to equation (23) with terminal conditions hq(T ) = −q `(q), and define a

candidate value function by Ĥ(t, x, q, S) = x+ q S + hq(t). From Ito’s lemma we have

Ĥ(T,Xδ±

T− , ST− , q
δ±

T−) = Ĥ(t, x, S, q) +

∫ T

t
∂thqs(s)ds+

∫ T

t
αqsds+ σ

∫ T

t
qsdWs

+

∫ T

t

∫ ∞
δ+s

(
δ+
s + hqs−−1(s)− hqs− (s)

)
µ+(dy, ds)

+

∫ T

t

∫ ∞
δ−s

(
δ−s + hqs−+1(s)− hqs− (s)

)
µ−(dy, ds) .

Note that for any admissible measure Q(η, g) and admissible control δ± we have

EQ(η,g)

[∫ T

0

∫ ∞
δ±t

(δ±t )2 ν±Q(η,g)(dy, dt)

]
= EQ(η,g)

[∫ T

0

∫ ∞
δ±t

(δ±t )2eg
±
t (y) ν±(dy, dt)

]
≤ EQ(η,g)

[∫ T

0

∫ ∞
δ±t

y2eg
±
t (y) ν±(dy, dt)

]
≤ EQ(η,g)

[∫ T

0

∫ ∞
0

y2eg
±
t (y) ν±(dy, dt)

]
<∞.

The remainder of the proof proceeds as follows:

1. Show that the feedback forms of δ�, η�, g±λ�, and g±κ� are admissible.

2. For an arbitrary admissible δ = (δ±t )0≤t≤T , we define an admissible response measure indexed by M

which will be denoted Qα,λ,κ(η(δ), gM (δ)).

3. We show that M can be taken sufficiently large, independent of t and δ, such that the response

measure is pointwise (in t) ε-optimal.

4. We show that the candidate function Ĥ satisfies Ĥ(t, x, S, q) ≥ H(t, x, S, q).

5. We show that the candidate function Ĥ satisfies Ĥ(t, x, S, q) ≤ H(t, x, S, q).

Step 1: δ�, η�, g±λ�, and g±κ� are admissible: Since q is bounded between q and q, η� is bounded and

therefore admissible. The existence and uniqueness of a classical solution for h means that it achieves a
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finite maximum and minimum for some q ∈ {q, . . . , q} and t ∈ [0, T ]. Thus, from the feedback expressions

for g±λ� and g±κ�, we see that they are also bounded and therefore admissible. Admissibility of δ� is clear.

Step 2: Defining admissible response measure: Let δ = (δ±t )0≤t≤T be an arbitrary admissible control

and define pointwise minimizing response controls by

ηt(δ) = α− ϕα σ2 qt ,

g±λt (δ) =
ϕλ
ϕκ

log

(
1− e−κ±δ

±
t

(
1− e−ϕκ(δ±t +hqt∓1(t)−hqt (t))

))
,

g±κt (y; δ) = − log

(
1− e−κ±δ

±
t

(
1− e−ϕκ(δ±t +hqt∓1(t)−hqt (t))

))
− ϕκ

(
δ±t + hqt∓1(t)− hqt(t)

)
1y≥δ±t

.

These processes each have the same form as the pointwise minimizers found in Proposition 3, and so for a

given δ = (δ±t )0≤t≤T these controls achieve the pointwise infimum in equation (23). Since h is a classical

solution to equation (23), it is bounded for t ∈ [0, T ] and q ≤ q ≤ q. Using the boundedness of h, we see

that g±λt (0) is finite and bounded with respect to t, and limδ→∞ g
±λ
t (δ) = 0, therefore g±λt (δ) is bounded.

It is also clear that ηt(δ) is bounded. However, g±κt (y; δ) is only bounded from above, so it is possible

that the pair (ηt(δ), gt(δ)) does not define an admissible measure as per the definition in (16). In order to

proceed, we use a modification of g±κt :

g±κt,M (y; δ) = − log

(
1− e−κ±δ

±
t

(
1− e−ϕκ(δ±t +hqt∓1(t)−hqt (t))

))
− ϕκ min

(
δ±t + hqt∓1(t)− hqt(t),M

)
1y≥δ±t

.

Since g±κt,M is bounded, letting g±t,M (y; δ) = g±λt (δ) + g±κt,M (y; δ), the pair (ηt(δ), gM (δ)) does define an

admissible measure Qα,λ,κ(η(δ), gM (δ)). Note that for a fixed t and δt, g
±κ
t,M (y; δ)→ g±κt (y; δ) as M →∞

pointwise in y and in L1(F±(dy)).

Step 3: Showing pointwise ε-optimality: As in the proof of Proposition 3 in Section Appendix A.2,

consider the functional

G(t, δ±, g±λ, g±κ) = λ±
[∫ ∞

δ±
eg
±λ+g±κ(y)F±(y)dy

](
δ± + hq∓1(t)− hq(t)

)
+Kϕλ,ϕκ± (g±λ, g±κ)1ϕλ>ϕκ +Kϕκ,ϕλ± (g±κ, g±λ)1ϕκ>ϕλ .
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We will now show

lim
M→∞

G(t, δ±t , g
±λ
t (δ), g±κt,M (·; δ)) = G(t, δ±t , g

±λ
t (δ), g±κt (·; δ))

uniformly in t and δ. Consider the first term only, and compute the difference when evaluated at both

g±κt,M (·; δt) and g±κt (·; δt). which we will denote by J(t, δ,M):

J(t,δ,M)

= λ±eg
±λ
t (δ)

∣∣∣∣δ±t + hq∓1(t)− hq(t)
∣∣∣∣∣∣∣∣∫ ∞

δ±t

eg
±κ
t,M (y;δ)F±(y)dy −

∫ ∞
δ±t

eg
±κ
t (y;δ)F±(y)dy

∣∣∣∣
= λ±e

(1−ϕκ
ϕλ

)g±λt (δ)
∣∣∣∣δ±t + hq∓1(t)− hq(t)

∣∣∣∣e−κ±δ±t ∣∣∣∣e−ϕκ min(δ±t +hq∓1(t)−hq(t),M) − e−ϕκ(δ±t +hq∓1(t)−hq(t))
∣∣∣∣

= λ±e
(1−ϕκ

ϕλ
)g±λt (δ)

∣∣∣∣δ±t + hq∓1(t)− hq(t)
∣∣∣∣e−κ±δ±t e−ϕκM ∣∣∣∣1− e−ϕκ(δ±t +hq∓1(t)−hq(t)−M)

∣∣∣∣1δ±t +hq∓1(t)−hq(t)≥M

≤ λ±e(1−ϕκ
ϕλ

)g±λt (δ)
∣∣∣∣δ±t + hq∓1(t)− hq(t)

∣∣∣∣e−κ±δ±t e−ϕκM .

As previously noted, both h and g±λ are uniformly bounded, say by C and D respectively, so clearly

J(t, δ,M) is bounded. For an arbitrary ε′ > 0, we may choose M sufficiently large such that

J(t, δ,M) ≤ λ±e|1−
ϕκ
ϕλ
|D
(
δ±t + 2C

)
e−κ

±δ±t e−ϕκM < ε′ for all δ±t ≥ 0 .

Showing uniform convergence of Kϕλ,ϕκ± (g±λt (δ), g±κt,M (·; δ))1ϕλ>ϕκ and Kϕκ,ϕλ± (g±κt,M (·, δ), g±λ(δ))1ϕκ>ϕλ is

essentially the same and so the details are omitted.

Let ε > 0 be arbitrary and let M be sufficiently large (chosen independently of t and δ) so that

0 < G(t, δ±t , g
±λ
t (δ), g±κt,M (·; δ))−G(t, δ±t , g

±λ
t (δ), g±κt (·; δ)) < ε .
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Then since δ is arbitrary and h satisfies equation (23), the following inequality holds almost surely for

every t:

∂thqt + ηt(δ)qt +
1

2ϕα

(
α− ηt(δ)

σ

)2

+ λ+

[∫ ∞
δ+t

eg
+λ
t (δ)+g+κt,M (y;δ)F+(dy)

]
(δ+
t + hqt−1(t)− hqt(t))

+Kϕλ,ϕκ+ (g+λ
t (δ), g+κ

t,M (·; δ))1ϕλ≥ϕκ +Kϕκ,ϕλ+ (g+κ
t,M (·; δ), g+λ

t (δ))1ϕλ<ϕκ

+ λ−
[∫ ∞

δ−t

eg
−λ
t (δ)+g−κt,M (y;δ)F−(dy)

]
(δ−t + hqt+1(t)− hqt(t))

+Kϕλ,ϕκ− (g−λt (δ), g−κt,M (·; δ))1ϕλ≥ϕκ +Kϕκ,ϕλ− (g−κt,M (·; δ), g−λt (δ))1ϕλ<ϕκ < ε .

(A.19)

Thus, the measure Qα,λ,κ(η(δ), gM (δ)) is pointwise (in t) ε-optimal, uniformly in δ.

Step 4: Showing Ĥ(t, x, S, q) ≥ H(t, x, S, q): Taking an expectation of Ĥ(T,Xδ±

T− , ST− , q
δ±

T−) in the

measure Qα,λ,κ(η(δ), gM (δ)), and using (A.19), gives

EQα,λ,κ(η(δ),gM (δ))
t,x,q,S

[
Ĥ(T,Xδ±

T− , ST− , q
δ±

T−)

]
= Ĥ(t, x, S, q) + EQα,λ,κ(η(δ),gM (δ))

t,x,q,S

[∫ T

t
∂thqs(s)ds+

∫ T

t
αqsds+ σ

∫ T

t
qsdWs

+

∫ T

t

∫ ∞
δ+s

(
δ+
s + hqs−1(s)− hqs(s)

)
ν+
Qα,λ,κ(η(δ),gM (δ))

(dy, ds)

+

∫ T

t

∫ ∞
δ−s

(
δ−s + hqs+1(s)− hqs(s)

)
ν−Qα,λ,κ(η(δ),gM (δ))

(dy, ds)

]
.

≤ Ĥ(t, x, S, q) + ε(T − t) + EQα,λ,κ(η(δ),gM (δ))
t,x,q,S

[
− 1

2ϕα

∫ T

t

(
α− ηs(δ)

σ

)2

ds

−
∫ T

t

(
Kϕλ,ϕκ+ (g+λ

s (δ), g+κ
s,M (·; δ))1ϕλ≥ϕκ +Kϕκ,ϕλ+ (g+κ

s,M (·; δ), g+λ
s (δ))1ϕλ<ϕκ

)
ds

−
∫ T

t

(
Kϕλ,ϕκ− (g−λs (δ), g−κs,M (·; δ))1ϕλ≥ϕκ +Kϕκ,ϕλ− (g−κs,M (·; δ), g−λs (δ))1ϕλ<ϕκ

)
ds

]
.
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Therefore, the candidate function satisfies

Ĥ(t, x, S, q) + ε(T − t)

≥ EQα,λ,κ(η(δ),gM (δ))
t,x,q,S

[
Ĥ(T,Xδ±

T− , ST− , q
δ±

T−) +
1

2ϕα

∫ T

t

(
α− ηs(δ)

σ

)2

ds

+
∑
i=±

∫ T

t

(
Kϕλ,ϕκi (giλs (δ), giκs,M (·; δ))1ϕλ≥ϕκ +Kϕκ,ϕλi (giκs,M (·; δ), giλs (δ))1ϕλ<ϕκ

)
ds

]

= EQα,λ,κ(η(δ),gM (δ))
t,x,q,S

[
Ĥ(T,Xδ±

T , ST , q
δ±
T ) +Ht,T

(
Qα,λ,κ(η(δ), gM (δ))|P

)]
= EQα,λ,κ(η(δ),gM (δ))

t,x,q,S

[
Xδ±
T + qδ

±
T (ST − `(qδ

±
T )) +Ht,T

(
Qα,λ,κ(η(δ), gM (δ))|P

)]
.

Since this holds for one particular choice of admissible measure Qα,λ,κ(η(δ), gM (δ)), we have

Ĥ(t, x, S, q) + ε(T − t) ≥ inf
Q∈Q

EQ
t,x,q,S

[
Xδ±
T + qδ

±
T (ST − `(qδ

±
T )) +Ht,T (Q|P)

]
.

This inequality holds for the arbitrarily chosen control δ±t , therefore

Ĥ(t, x, S, q) + ε(T − t) ≥ sup
(δ±s )t≤s≤T∈A

inf
Q∈Q

EQ
t,x,q,S

[
Xδ±
T + qδ

±
T (ST − `(qδ

±
T )) +Ht,T (Q|P)

]
= H(t, x, S, q) ,

and letting ε→ 0 we finally obtain

Ĥ(t, x, S, q) ≥ H(t, x, S, q) . (A.20)

Step 5: Showing Ĥ(t, x, S, q) ≤ H(t, x, S, q): Now, let δ� = (δ±�t )0≤t≤T be the control process defined in

the statement of the theorem, and let ηt, g
±λ
t and g±κt (y) be arbitrary such that they induce an admissible
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measure Qα,λ,κ(η, g) ∈ Qα,λ,κ. Then from Ito’s lemma and the fact that h satisfies equation (23):

EQα,λ,κ(η,g)
t,x,q,S

[
Ĥ(T,Xδ±�

T− , ST− , q
δ±�

T− )

]
= Ĥ(t, x, S, q) + EQα,λ,κ(η,g)

t,x,q,S

[∫ T

t
∂thqs(s)ds+

∫ T

t
αqδ

±�
s ds+ σ

∫ T

t
qδ
±�
s dWs

+

∫ T

t

∫ ∞
δ+�s

(
δ+�
s + hqs−1(s)− hqs(s)

)
ν+
Qα,λ,κ(η,g)

(dy, ds)

]
+

∫ T

t

∫ ∞
δ−�s

(
δ−�s + hqs+1(s)− hqs(s)

)
ν−Qα,λ,κ(η,g)

(dy, ds)

]
≥ Ĥ(t, x, S, q) + EQα,λ,κ(η,g)

t,x,q,S

[
− 1

2ϕα

∫ T

t

(
α− ηs
σ

)2

ds

−
∑
i=±

∫ T

t

(
Kϕλ,ϕκi (giλs , g

iκ
s )1ϕλ≥ϕκ +Kϕκ,ϕλi (giκs , g

iλ
s )1ϕλ<ϕκ

)
ds

]
.

And so the candidate function satisfies

Ĥ(t, x, S, q) ≤ EQα,λ,κ(η,g)
t,x,q,S

[
Ĥ(T,Xδ±�

T− , ST− , q
δ±�

T− ) +
1

2ϕα

∫ T

t

(
α− ηs
σ

)2

ds

+
∑
i=±

∫ T

t

(
Kϕλ,ϕκi (giλs , g

iκ
s )1ϕλ≥ϕκ +Kϕκ,ϕλi (giκs , g

iλ
s )1ϕλ<ϕκ

)
ds

]
= EQα,λ,κ(η,g)

t,x,q,S

[
Ĥ(T,Xδ±�

T , ST , q
δ±�
T ) +Ht,T (Qα,λ,κ(η, g)|P)

]
= EQα,λ,κ(η,g)

t,x,q,S

[
Xδ±�
T + qδ

±�
T (ST − `(qδ

±�
T )) +Ht,T (Qα,λ,κ(η, g)|P)

]
.

Since this holds for any arbitrary admissible measure Qα,λ,κ(η, g), we have

Ĥ(t, x, S, q) ≤ inf
Q∈Qα,λ,κ

EQ
t,x,q,S

[
Xδ±�
T + qδ

±�
T (ST − `(qδ

±�
T )) +Ht,T (Q|P)

]
.

Therefore,

Ĥ(t, x, S, q) ≤ sup
(δ±s )t≤s≤T∈A

inf
Q∈Qα,λ,κ

EQ
t,x,q,S

[
Xδ±
T + qδ

±
T (ST − `(qδ

±
T )) +Ht,T (Q|P)

]
= H(t, x, S, q) . (A.21)
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Combining (A.20) and (A.21) gives

Ĥ(t, x, q, S) = H(t, x, q, S),

as desired. �

Appendix A.4. Proof of Proposition 5

Proof. Under the stated hypotheses, and assuming δ±∗q (t) > 0, substituting the optimizers from Propo-

sition 3 into equation (23) gives the following:

∂thq + αq − 1

2
ϕασ

2q2 +
ξ+

κ
e−κ(−hq−1+hq)1q 6=q +

ξ−

κ
e−κ(−hq+1+hq)1q 6=q = 0 . (A.22)

The substitution ωq(t) = eκhq(t) yields an ODE for ωq:

∂tωq + (ακq − 1

2
ϕακσ

2q2)ωq + ξ+ωq−11q 6=q + ξ−ωq+11q 6=q = 0 .

In matrix form this reads

∂tω(t) + Aω(t) = 0 .

The boundary condition hq(T ) = −q `(q) implies ωq(T ) = e−κq `(q) and this first order coupled system has

solution

ω(t) = eA(T−t)ω(T ).

Equation (A.22) only holds for t ∈ [t0, T ], so this solution only holds in the same interval. �
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Appendix A.5. Proof of Proposition 6

Proof. Let ĥq(t) = h−q(t). Then:

∂tĥq − ϕασ2q2

+ sup
δ+≥0

inf
g+λ

inf
g+κ∈G+

{
λ

[∫ ∞
δ+

eg
+λ+g+κ(y)F (dy)

]
(δ+ + ĥq+1(t)− ĥq(t))

+Kϕλ,ϕκ+ (g+λ, g+κ)1ϕλ≥ϕκ +Kϕκ,ϕλ+ (g+κ, g+λ)1ϕλ<ϕκ

}
+ sup
δ−≥0

inf
g−λ

inf
g−κ∈G−

{
λ

[∫ ∞
δ−

eg
−λ+g−κ(y)F (dy)

]
(δ− + ĥq−1(t)− ĥq(t))

+Kϕλ,ϕκ− (g−λ, g−κ)1ϕλ≥ϕκ +Kϕκ,ϕλ− (g−κ, g−λ)1ϕλ<ϕκ

}
= 0 .

Since δ±, g±λ, and g±κ appearing inside the optimization are dummy variables, their labels can be changed

by making the substitution ± → ∓, and the hypotheses of the proposition also imply K− = K+. Then

the functional form of the ODE for ĥq is equivalent to that of hq, and they also share the same terminal

conditions, ĥq(T ) = hq(T ) = −q `(q) so we have h−q(t) = ĥq(t) = hq(t). Then from the feedback form of

δ±∗q (t) in Proposition 3, it is clear that δ+∗
q (t) = δ−∗−q (t), as desired. �

Appendix A.6. Proof of Proposition 7

Proof. We prove the result for the sell spread and for q < q ≤ 0 only, as the proof for the buy spread

and other values of q follows analogously.

Define χq(t;ϕ) = hq(t;ϕ) − hq−1(t;ϕ) for q < q ≤ q, where hq(t;ϕ) is the solution to equation (23)

corresponding to drift ambiguity parameter ϕ. From (A.16) in the proof of Proposition 3 we have

∂tχq =− ϕσ2(1− 2q)− sup
δ+≥0

{
λ

ϕλ

(
1− exp

{
ϕλ
ϕκ

log(1− e−κδ+ + e−κδ
+−ϕκ(δ+−χq))

})}
− sup
δ−≥0

{
λ

ϕλ

(
1− exp

{
ϕλ
ϕκ

log(1− e−κδ− + e−κδ
−−ϕκ(δ−+χq+1))

})}
1q 6=q

+ sup
δ+≥0

{
λ

ϕλ

(
1− exp

{
ϕλ
ϕκ

log(1− e−κδ+ + e−κδ
+−ϕκ(δ+−χq−1))

})}
1q−1 6=q

+ sup
δ−≥0

{
λ

ϕλ

(
1− exp

{
ϕλ
ϕκ

log(1− e−κδ− + e−κδ
−−ϕκ(δ−+χq))

})}
,

(A.23)

with terminal condition χq(T ;ϕ) = 0. In the proof of Proposition 6 we also show that under the stated

hypotheses we have the symmetry result hq(t;ϕ) = h−q(t;ϕ), which implies χq(t;ϕ) = −χ−q+1(t;ϕ). Using
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this symmetry property, we further have χ1 = −χ0. Hence, we can rewrite (A.23) by treating the q = 0

case separately as follows

∂tχq =− ϕσ2(1− 2q)− sup
δ+≥0

{
λ

ϕλ

(
1− exp

{
ϕλ
ϕκ

log(1− e−κδ+ + e−κδ
+−ϕκ(δ+−χq))

})}
− sup
δ−≥0

{
λ

ϕλ

(
1− exp

{
ϕλ
ϕκ

log(1− e−κδ− + e−κδ
−−ϕκ(δ−+χq+1))

})}
1q 6=q1q 6=0

− sup
δ−≥0

{
λ

ϕλ

(
1− exp

{
ϕλ
ϕκ

log(1− e−κδ− + e−κδ
−−ϕκ(δ−−χ0))

})}
1q=0

+ sup
δ+≥0

{
λ

ϕλ

(
1− exp

{
ϕλ
ϕκ

log(1− e−κδ+ + e−κδ
+−ϕκ(δ+−χq−1))

})}
1q−1 6=q

+ sup
δ−≥0

{
λ

ϕλ

(
1− exp

{
ϕλ
ϕκ

log(1− e−κδ− + e−κδ
−−ϕκ(δ−+χq))

})}
,

(A.24)

In this form, the ODEs for q < q ≤ 0 are decoupled from those of 0 < q ≤ q. Focusing on q < q ≤ 0, we

can write the collection of ODEs in matrix form as follows

∂tχ = G(χ;ϕ) ,

for a vector valued function G(·; ·), parameterized by its second argument, with the property that (i)

G(χ;ϕα) > G(χ;ϕ′α) componentwise, and (ii)

∂Gq
∂χq′

≤ 0, q 6= q′ ,

(this follows from (A.17) and (A.18) in the proof of Proposition 3). Thus, due to a classical comparison

principle (see Ważewski (1950)) we have χq(t;ϕ
′
α) ≥ χq(t;ϕα) which implies δ+∗

q (t;ϕ′α) ≥ δ+∗
q (t;ϕα) for

q < q ≤ 0. �

Appendix B. Outline of Numerical Scheme

Here we outline a numerical scheme for solving equation (23), and which we employ to produce the figures

in Section 4. The only exception to this is in Figure 5 where we apply Proposition 5 to solve for the

optimal depth exactly since this example satisfies the required symmetry conditions (we also use this

closed-form solution to compute the ambiguity-neutral spreads, which use the same set of parameters as

those in Figure 1).

As mentioned in the proof of Proposition 3 (see equation (A.16)), the coupled differential equations (23)
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can be written in the form:

∂th = F (h) ,

with terminal condition hq(T ) = −q `(q). To approximate the solution to this system, we employ a fully

explicit finite-difference method. In particular, let ∆t = T
N and tn = n∆t, denote the approximation of

the classical solution at time tn by ĥ(n), we then recursively compute ĥ(n) by

ĥ(n) = ĥ(n+ 1)− F (ĥ(n+ 1))∆t , 0 ≤ n < N ,

ĥq(N) = −q `(q) .
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