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Abstract—Algorithmic systems that employ machine learning
play an increasing role in making substantive decisions in modern
society, ranging from online personalization to insurance and
credit decisions to predictive policing. But their decision-making
processes are often opaque—it is difficult to explain why a certain
decision was made. We develop a formal foundation to improve
the transparency of such decision-making systems. Specifically,
we introduce a family of Quantitative Input Influence (QII)
measures that capture the degree of influence of inputs on outputs
of systems. These measures provide a foundation for the design
of transparency reports that accompany system decisions (e.g.,
explaining a specific credit decision) and for testing tools useful
for internal and external oversight (e.g., to detect algorithmic
discrimination).

Distinctively, our causal QII measures carefully account for
correlated inputs while measuring influence. They support a
general class of transparency queries and can, in particular,
explain decisions about individuals (e.g., a loan decision) and
groups (e.g., disparate impact based on gender). Finally, since
single inputs may not always have high influence, the QII
measures also quantify the joint influence of a set of inputs
(e.g., age and income) on outcomes (e.g. loan decisions) and the
marginal influence of individual inputs within such a set (e.g.,
income). Since a single input may be part of multiple influential
sets, the average marginal influence of the input is computed
using principled aggregation measures, such as the Shapley value,
previously applied to measure influence in voting. Further, since
transparency reports could compromise privacy, we explore the
transparency-privacy tradeoff and prove that a number of useful
transparency reports can be made differentially private with very
little addition of noise.

Our empirical validation with standard machine learning algo-
rithms demonstrates that QII measures are a useful transparency
mechanism when black box access to the learning system is
available. In particular, they provide better explanations than
standard associative measures for a host of scenarios that we
consider. Further, we show that in the situations we consider,
QII is efficiently approximable and can be made differentially
private while preserving accuracy.

I. INTRODUCTION

Algorithmic decision-making systems that employ machine

learning and related statistical methods are ubiquitous. They

drive decisions in sectors as diverse as Web services, health-

care, education, insurance, law enforcement and defense [1],

[2], [3], [4], [5]. Yet their decision-making processes are often

opaque. Algorithmic transparency is an emerging research area

aimed at explaining decisions made by algorithmic systems.

The call for algorithmic transparency has grown in in-

tensity as public and private sector organizations increas-

ingly use large volumes of personal information and complex

data analytics systems for decision-making [6]. Algorithmic

transparency provides several benefits. First, it is essential

to enable identification of harms, such as discrimination,

introduced by algorithmic decision-making (e.g., high interest

credit cards targeted to protected groups) and to hold entities

in the decision-making chain accountable for such practices.

This form of accountability can incentivize entities to adopt

appropriate corrective measures. Second, transparency can

help detect errors in input data which resulted in an adverse

decision (e.g., incorrect information in a user’s profile because

of which insurance or credit was denied). Such errors can then

be corrected. Third, by explaining why an adverse decision

was made, it can provide guidance on how to reverse it (e.g.,

by identifying a specific factor in the credit profile that needs

to be improved).

Our Goal. While the importance of algorithmic transparency

is recognized, work on computational foundations for this

research area has been limited. This paper initiates progress

in that direction by focusing on a concrete algorithmic trans-

parency question:

How can we measure the influence of inputs (or features) on
decisions made by an algorithmic system about individuals or
groups of individuals?

Our goal is to inform the design of transparency reports,

which include answers to transparency queries of this form.

To be concrete, let us consider a predictive policing system

that forecasts future criminal activity based on historical data;

individuals high on the list receive visits from the police.

An individual who receives a visit from the police may seek

a transparency report that provides answers to personalized
transparency queries about the influence of various inputs

(or features), such as race or recent criminal history, on the

system’s decision. An oversight agency or the public may

desire a transparency report that provides answers to aggregate
transparency queries, such as the influence of sensitive inputs

(e.g., gender, race) on the system’s decisions concerning the

entire population or about systematic differences in decisions
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among groups of individuals (e.g., discrimination based on

race or age). These reports can thus help identify harms and

errors in input data, and provide guidance on what input

features to work on to modify the decision.

Our Model. We focus on a setting where a transparency
report is generated with black-box access to the decision-

making system1 and knowledge of the input dataset on which

it operates. This setting models the kind of access available

to a private or public sector entity that pro-actively publishes

transparency reports. It also models a useful level of access

required for internal or external oversight of such systems

to identify harms introduced by them. For the former use

case, our approach provides a basis for design of transparency

mechanisms; for the latter, it provides a formal basis for

testing. Returning to our predictive policing system, the law

enforcement agency that employs it could proactively publish

transparency reports, and test the system for early detection

of harms like race-based discrimination. An oversight agency

could also use transparency reports for post hoc identification

of harms.

Our Approach. We formalize transparency reports by introduc-

ing a family of Quantitative Input Influence (QII) measures

that capture the degree of influence of inputs on outputs of

the system. Three desiderata drove the definitions of these

measures.

First, we seek a formalization of a general class of

transparency reports that allows us to answer many useful

transparency queries related to input influence, including but

not limited to the example forms described above about the

system’s decisions about individuals and groups.

Second, we seek input influence measures that appropriately

account for correlated inputs—a common case for our target

applications. For example, consider a system that assists in

hiring decisions for a moving company. Gender and the

ability to lift heavy weights are inputs to the system. They

are positively correlated with each other and with the hiring

decisions. Yet transparency into whether the system uses the

weight lifting ability or the gender in making its decisions (and

to what degree) has substantive implications for determining if

it is engaging in discrimination (the business necessity defense

could apply in the former case [7]). This observation makes

us look beyond correlation coefficients and other associative

measures.

Third, we seek measures that appropriately quantify input

influence in settings where any input by itself does not have

significant influence on outcomes but a set of inputs does.

In such cases, we seek measures of joint influence of a set

of inputs (e.g., age and income) on a system’s decision (e.g.,

to serve a high-paying job ad). We also seek measures of

marginal influence of an input within such a set (e.g., age)

on the decision. This notion allows us to provide finer-grained

1By “black-box access to the decision-making system” we mean a typical
setting of software testing with complete control of inputs to the system and
full observability of the outputs.

transparency about the relative importance of individual inputs

within the set (e.g., age vs. income) in the system’s decision.

We achieve the first desideratum by formalizing a notion

of a quantity of interest. A transparency query measures the

influence of an input on a quantity of interest. A quantity of

interest represents a property of the behavior of the system for

a given input distribution. Our formalization supports a wide

range of statistical properties including probabilities of various

outcomes in the output distribution and probabilities of output

distribution outcomes conditioned on input distribution events.

Examples of quantities of interest include the conditional

probability of an outcome for a particular individual or group,

and the ratio of conditional probabilities for an outcome for

two different groups (a metric used as evidence of disparate

impact under discrimination law in the US [7]).

We achieve the second desideratum by formalizing causal
QII measures. These measures (called Unary QII) model the

difference in the quantity of interest when the system operates

over two related input distributions—the real distribution and a

hypothetical (or counterfactual) distribution that is constructed

from the real distribution in a specific way to account for

correlations among inputs. Specifically, if we are interested in

measuring the influence of an input on a quantity of interest of

the system behavior, we construct the hypothetical distribution

by retaining the marginal distribution over all other inputs and

sampling the input of interest from its prior distribution. This

choice breaks the correlations between this input and all other

inputs and thus lets us measure the influence of this input

on the quantity of interest, independently of other correlated

inputs. Revisiting our moving company hiring example, if the

system makes decisions only using the weightlifting ability of

applicants, the influence of gender will be zero on the ratio of

conditional probabilities of being hired for males and females.

We achieve the third desideratum in two steps. First, we

define a notion of joint influence of a set of inputs (called

Set QII) via a natural generalization of the definition of the

hypothetical distribution in the Unary QII definition. Second,

we define a family of Marginal QII measures that model the

difference on the quantity of interest as we consider sets with

and without the specific input whose marginal influence we

want to measure. Depending on the application, we may pick

these sets in different ways, thus motivating several different

measures. For example, we could fix a set of inputs and ask

about the marginal influence of any given input in that set on

the quantity of interest. Alternatively, we may be interested in

the average marginal influence of an input when it belongs

to one of several different sets that significantly affect the

quantity of interest. We consider several marginal influence

aggregation measures from cooperative game theory originally

developed in the context of influence measurement in voting

scenarios and discuss their applicability in our setting. We

also build on that literature to present an efficient approximate

algorithm for computing these measures.

Recognizing that different forms of transparency reports

may be appropriate for different settings, we generalize our QII

measures to be parametric in its key elements: the intervention
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used to construct the hypothetical input distribution; the quan-

tity of interest; the difference measure used to quantify the

distance in the quantity of interest when the system operates

over the real and hypothetical input distributions; and the

aggregation measure used to combine marginal QII measures

across different sets. This generalized definition provides a

structure for exploring the design space of transparency re-

ports.

Since transparency reports released to an individual, reg-

ulatory agency, or the public might compromise individual

privacy, we explore the possibility of answering transparency

queries while protecting differential privacy [8]. We prove

bounds on the sensitivity of a number of transparency queries

and leverage prior results on privacy amplification via sam-

pling [9] to accurately answer these queries.

We demonstrate the utility of the QII framework by de-

veloping two machine learning applications on real datasets:

an income classification application based on the benchmark

adult dataset [10], and a predictive policing application

based on the National Longitudinal Survey of Youth [11].

Using these applications, we argue, in Section VII, the need

for causal measurement by empirically demonstrating that

in the presence of correlated inputs, observational measures

are not informative in identifying input influence. Further,

we analyze transparency reports of individuals in our dataset

to demonstrate how Marginal QII can provide insights into

individuals’ classification outcomes. Finally, we demonstrate

that under most circumstances, QII measures can be made

differentially private with minimal addition of noise, and can

be approximated efficiently.

In summary, this paper makes the following contributions:

• A formalization of a specific algorithmic transparency

problem for decision-making systems. Specifically, we

define a family of Quantitative Input Influence metrics

that accounts for correlated inputs, and provides answers

to a general class of transparency queries, including the

absolute and marginal influence of inputs on various

behavioral system properties. These metrics can inform

the design of transparency mechanisms and guide pro-

active system testing and posthoc investigations.

• A formal treatment of privacy-transparency trade-offs,

in particular, by construction of differentially private

answers to transparency queries.

• An implementation and experimental evaluation of the

metrics over two real data sets. The evaluation demon-

strates that (a) the QII measures are informative; (b) they

remain accurate while preserving differential privacy; and

(c) can be computed quite quickly for standard machine

learning systems applied to real data sets.

II. UNARY QII

Consider the situation discussed in the introduction, where

an automated system assists in hiring decisions for a moving

company. The input features used by this classification system

are : Age, Gender, Weight Lifting Ability, Marital Status and

Education. Suppose that, as before, weight lifting ability is

strongly correlated with gender (with men having better overall

lifting ability than woman). One particular question that an

analyst may want to ask is: “What is the influence of the input

Gender on positive classification for women?”. The analyst

observes that 20% of women are approved according to his

classifier. Then, he replaces every woman’s field for gender

with a random value, and notices that the number of women

approved does not change. In other words, an intervention on

the Gender variable does not cause a significant change in

the classification outcome. Repeating this process with Weight
Lifting Ability results in a 20% increase in women’s hiring.

Therefore, he concludes that for this classifier, Weight Lifting
Ability has more influence on positive classification for women

than Gender.

By breaking correlations between gender and weight lifting

ability, we are able to establish a causal relationship between

the outcome of the classifier and the inputs. We are able to

identify that despite the strong correlation between a negative

classification outcome for women, the feature gender was not

a cause of this outcome. We formalize the intuition behind

such causal experimentation in our definition of Quantitative

Input Influence (QII).

We are given an algorithm A. A operates on inputs (also

referred to as features for ML systems), N = {1, . . . , n}.
Every i ∈ N , can take on various states, given by Xi. We let

X =
∏

i∈N Xi be the set of possible feature state vectors, let

Z be the set of possible outputs of A. For a vector x ∈ X
and set of inputs S ⊆ N , x|S denotes the vector of inputs in

S. We are also given a probability distribution π on X , where

π(x) is the probability of the input vector x. We can define a

marginal probability of a set of inputs S in the standard way

as follows:

πS(x|S) =
∑

{x′∈X|x′|S=x|S}
π(x′) (1)

When S is a singleton set {i}, we write the marginal

probability of the single input as πi(x).
Informally, to quantify the influence of an input i, we

compute its effect on some quantity of interest; that is, we

measure the difference in the quantity of interest, when the

feature i is changed via an intervention. In the example above,

the quantity of interest is the fraction of positive classification

of women. In this paper, we employ a particular interpretation

of “changing an input”, where we replace the value of every

input with a random independently chosen value. To describe

the replacement operation for input i, we first define an

expanded probability space on X × X , with the following

distribution:

π̃(x,u) = π(x)π(u). (2)

The first component of an expanded vector (x,u), is just

the original input vector, whereas the second component repre-

sents an independent random vector drawn from the same dis-

tribution π. Over this expanded probability space, the random

variable X(x, ui) = x represents the original feature vector.
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The random variable X−iUi(x,u) = x|N\{i}ui, represents the

random variable with input i replaced with a random sample.

Defining this expanded probability space allows us to switch

between the original distribution, represented by the random

variable X , and the intervened distribution, represented by

X−iUi. Notice that both these random variables are defined

from X ×X , the expanded probability space, to X . We denote

the set of random variables of the type X ×X → X as R(X ).

We can now define probabilities over this expanded space.

For example, the probability over X remains the same:

Pr(X = x) =
∑

{(x′,u′)|x′=x}
π̃(x′,u′)

=

⎛
⎝ ∑
{x′|x′=x}

π(x′)

⎞
⎠(∑

u′
π(u′)

)

= π(x)

Similarly, we can define more complex quantities. The

following expression represents the expectation of a classifier

c evaluating to 1, when i is randomly intervened on:

E(c(X−iUi) = 1) =
∑

{(x,u)|c(xN\iui)=1}
π̃(x, ui).

Observe that the expression above computes the probability

of the classifier c evaluating to 1, when input i is replaced

with a random sample from its probability distribution πi(ui).

∑
{(x,u)|c(xN\iui)=1}

π̃(x, ui)

=
∑
x

π(x)
∑

{u′i|c(xN\iu′i)=1}

∑
{u|ui=u′i}

π(u)

=
∑
x

π(x)
∑

{u′i|c(xN\iu′i)=1}
πi(u

′
i)

We can also define conditional distributions in the usual

way. The following represents the probability of the classifier

evaluating to 1 under the randomized intervention on input i
of X , given that X belongs to some subset Y ⊆ X :

E(c(X−iUi) = 1 | X ∈ Y) = E(c(X−iUi) = 1 ∧X ∈ Y)
E(X ∈ Y) .

Formally, for an algorithm A, a quantity of interest QA(·) :
R(X ) �→ R is a function of a random variable from R(X ).

Definition 1 (QII). For a quantity of interest QA(·), and an

input i, the Quantitative Input Influence of i on QA(·) is

defined to be

ιQA(i) = QA(X)−QA(X−iUi).

In the example above, for a classifier A, the quantity of

interest, the fraction of women (represented by the set W ⊆
X ) with positive classification, can be expressed as follows:

QA(·) = E(A(·) = 1 | X ∈ W),

and the influence of input i is:

ι(i) = E(A(X) = 1 | X ∈ W)−E(A(X−iUi) = 1 | X ∈ W).

When A is clear from the context, we simply write Q rather

than QA. We now instantiate this definition with different

quantities of interest to illustrate the above definition in three

different scenarios.

A. QII for Individual Outcomes

One intended use of QII is to provide personalized trans-

parency reports to users of data analytics systems. For exam-

ple, if a person is denied a job application due to feedback

from a machine learning algorithm, an explanation of which

factors were most influential for that person’s classification

can provide valuable insight into the classification outcome.

For QII to quantify the use of an input for individual

outcomes, we define the quantity of interest to be the classifi-

cation outcome for a particular individual. Given a particular

individual x, we define Qx
ind(·) to be E(c(·) = 1 | X = x).

The influence measure is therefore:

ιxind(i) = E(c(X) = 1 | X = x)− E(c(X−iUi) = 1 | X = x)
(3)

When the quantity of interest is not the probability of

positive classification but the classification that x actually

received, a slight modification of the above QII measure is

more appropriate:

ιxind-act(i) = E(c(X) = c(x) | X = x)
−E(c(X−iUi) = c(x) | X = x)

= 1− E(c(X−iUi) = c(x) | X = x)
= E(c(X−iUi) �= c(x) | X = x)

(4)

The above probability can be interpreted as the probability

that feature i is pivotal to the classification of c(x). Computing

the average of this quantity over X yields:

∑
x∈X Pr(X = x)E(i is pivotal for c(X) | X = x)

= E(i is pivotal for c(X)).
(5)

We denote this average QII for individual outcomes as

defined above, by ιind-avg(i), and use it as a measure for

importance of an input towards classification outcomes.
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B. QII for Group Outcomes

As in the running example, the quantity of interest may

be the classification outcome for a set of individuals. Given a

group of individuals Y ⊆ X , we define QYgrp(·) to be E(c(·) =
1 | X ∈ Y). The influence measure is therefore:

ιYgrp(i) = E(c(X) = 1 | X ∈ Y)− E(c(X−iUi) = 1 | X ∈ Y)
(6)

C. QII for Group Disparity

Instead of simply classification outcomes, an analyst may

be interested in more nuanced properties of data analytics

systems. Recently, disparate impact has come to the fore as a

measure of unfairness, which compares the rates of positive

classification within protected groups defined by gender or

race. The ‘80% rule’ in employment which states that the

rate of selection within a protected demographic should be

at least 80% of the rate of selection within the unprotected

demographic. The quantity of interest in such a scenario is

the ratio in positive classification outcomes for a protected

group Y from the rest of the population X \ Y .

E(c(X) = 1 | X ∈ Y)
E(c(X) = 1 | X �∈ Y)

However, the ratio of classification rates is unstable at at

low values of positive classification. Therefore, for the com-

putations in this paper we use the difference in classification

rates as our measure of group disparity.

QYdisp(·) = |E(c(·) = 1 | X ∈ Y)− E(c(·) = 1 | X �∈ Y)|
(7)

The QII measure of an input group disparity, as a result is:

ιYdisp(i) = QYdisp(X)−QYdisp(X−iUi). (8)

More generally, group disparity can be viewed as an as-

sociation between classification outcomes and membership

in a group. QII on a measure of such association (e.g.,

group disparity) identifies the variable that causes the associ-

ation in the classifier. Proxy variables are variables that are

associated with protected attributes. However, for concerns

of discrimination such as digital redlining, it is important

to identify which proxy variables actually introduce group

disparity. It is straightforward to observe that features with

high QII for group disparity are proxy variables, and also cause

group disparity. Therefore, QII on group disparity is a useful

diagnostic tool for determining discriminiation. The use of QII

in identifying proxy variables is explored experimentally in

Section VII-B. Note that because of such proxy variables,

simply ensuring that protected attributes are not input to

the classifier is not sufficient to avoid discrimination (see

also [12]).

III. SET AND MARGINAL QII

In many situations, intervention on a single input variable

has no influence on the outcome of a system. Consider, for

example, a two-feature setting where features are age (A) and

income (I), and the classifier is c(A, I) = (A = old) ∧ (I =
high). In other words, the only datapoints that are labeled 1

are those of elderly persons with high income. Now, given

a datapoint where A = young , I = low , an intervention on

either age or income would result in the same classification.

However, it would be misleading to say that neither age nor

income have an influence over the outcome: changing both the

states of income and age would result in a change in outcome.

Equating influence with the individual ability to affect the

outcome is uninformative in real datasets as well: Figure 1 is a

histogram of influences of features on outcomes of individuals

for a classifier learnt from the adult dataset [13]2. For most

individuals, all features have zero influence: changing the state

of one feature alone is not likely to change the outcome of

a classifier. Of the 19537 datapoints we evaluate, more than

half have ιx(i) = 0 for all i ∈ N , Indeed, changes to outcome

are more likely to occur if we intervene on sets of features.

In order to get a better understanding of the influence of a

feature i ∈ N , we should measure its effect when coupled

with interventions on other features. We define the influence

of a set of inputs as a straightforward extension of the influence

of individual inputs. Essentially, we wish the influence of a set

of inputs S ⊆ N to be the same as when the set of inputs is

considered to be a single input; when intervening on S, we

draw the states of i ∈ S based on the joint distribution of the

states of features in S, πS(uS), as defined in Equation (1).

We can naturally define a distribution over X ×∏i∈S Xi,

naturally extending (2) as:

π̃(x, uS) = π(x)πS(uS). (9)

We also define the random variable X−SUS(x,uS) =
x|N\SuS ; X−S(x,uS) has the states of features in N \ S
fixed to their original values in x, but features in S take on

new values according to uS .

Definition 2 (Set QII). For a quantity of interest Q, and an

input i, the Quantitative Input Influence of set S ⊆ N on Q
is defined to be

ιQ(S) = Q(X)−Q(X−SUS).

Considering the influence of a set of inputs opens up a

number of interesting questions due to the interaction between

inputs. First among these is how does one measure the

individual effect of a feature, given the measured effects of

interventions on sets of features. One natural way of doing so

is by measuring the marginal effect of a feature on a set.

2The adult dataset contains approximately 31k datapoints of users’ personal
attributes, and whether their income is more than $50k per annum; see
Section VII for more details.
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Fig. 1: A histogram of the highest specific causal influence

for some feature across individuals in the adult dataset. Alone,

most inputs alone have very low influence.

Definition 3 (Marginal QII). For a quantity of interest Q, and

an input i, the Quantitative Input Influence of input i over a

set S ⊆ N on Q is defined to be

ιQ(i, S) = Q(X−SUS)−Q(X−S∪{i}US∪{i}).

Notice that marginal QII can also be viewed as a difference

in set QIIs: ιQ(S ∪ {i}) − ιQ(S). Informally, the difference

between ιQ(S ∪ {i}) and ιQ(S) measures the “added value”

obtained by intervening on S ∪ {i}, versus intervening on S
alone.

The marginal contribution of i may vary significantly based

on S. Thus, we are interested in the aggregate marginal
contribution of i to S, where S is sampled from some

natural distribution over subsets of N \ {i}. In what follows,

we describe a few measures for aggregating the marginal

contribution of a feature i to sets, based on different methods

for sampling sets. The primary method of aggregating the

marginal contribution is the Shapley value [14]. The less

theoretically inclined reader can choose to proceed to Section

V without a loss in continuity.

A. Cooperative Games and Causality

In this section, we discuss how measures from the theory of

cooperative games define measures for aggregating marginal

influence. In particular, we observe that the Shapley value [14]

is characterized by axioms that are natural in our setting.

However, other measures may be appropriate for certain input

data generation processes.

Definition 2 measures the influence that an intervention on

a set of features S ⊆ N has on the outcome. One can naturally

think of Set QII as a function v : 2N → R, where v(S) is the

influence of S on the outcome. With this intuition in mind,

one can naturally study influence measures using cooperative
game theory, and in particular, prevalent influence measures in

cooperative games such as the Shapley value, Banzhaf index

and others. These measures can be thought of as influence

aggregation methods, which, given an influence measure v :
2N → R, output a vector φ ∈ R

n, whose i-th coordinate

corresponds in some natural way to the aggregate influence,

or aggregate causal effect, of feature i.
The original motivation for game-theoretic measures is

revenue division [15, Chapter 18]: the function v describes

the amount of money that each subset of players S ⊆ N can

generate; assuming that the set N generates a total revenue of

v(N), how should v(N) be divided amongst the players? A

special case of revenue division that has received significant

attention is the measurement of voting power [16]. In voting

systems with multiple agents with differing weights, voting

power often does not directly correspond to the weights of the

agents. For example, the US presidential election can roughly

be modeled as a cooperative game where each state is an agent.

The weight of a state is the number of electors in that state (i.e.,

the number of votes it brings to the presidential candidate who

wins that state). Although states like California and Texas have

higher weight, swing states like Pennsylvania and Ohio tend

to have higher power in determining the outcome of elections.

A voting system is modeled as a cooperative game: players

are voters, and the value of a coalition S ⊆ N is 1 if S
can make a decision (e.g. pass a bill, form a government,

or perform a task), and is 0 otherwise. Note the similarity

to classification, with players being replaced by features. The

game-theoretic measures of revenue division are a measure

of voting power: how much influence does player i have

in the decision making process? Thus the notions of voting

power and revenue division fit naturally with our goals when

defining aggregate QII influence measures: in both settings,

one is interested in measuring the aggregate effect that a single

element has, given the actions of subsets.

A revenue division should ideally satisfy certain desiderata.

Formally, we wish to find a function φ(N, v), whose input

is N and v : 2N → R, and whose output is a vector in

R
n, such that φi(N, v) measures some quantity describing

the overall contribution of the i-th player. Research on fair

revenue division in cooperative games traditionally follows an

axiomatic approach: define a set of properties that a revenue

division should satisfy, derive a function that outputs a value

for each player, and argue that it is the unique function that

satisfies these properties.

Several canonical fair cooperative solution concepts rely

on the fundamental notion of marginal contribution. given a

player i and a set S ⊆ N \ {i}, the marginal contribution of

i to S is denoted mi(S, v) = v(S ∪ {i}) − v(S) (we simply

write mi(S) when v is clear from the context). Marginal QII,

as defined above, can be viewed as an instance of a measure of

marginal contribution. Given a permutation π ∈ Π(N) of the

elements in N , we define Pi(σ) = {j ∈ N | σ(j) < σ(i)};
this is the set of i’s predecessors in σ. We can now simi-

larly define the marginal contribution of i to a permutation

σ ∈ Π(N) as mi(σ) = mi(Pi(σ)). Intuitively, one can think

of the players sequentially entering a room, according to some

ordering σ; the value mi(σ) is the marginal contribution that

i has to whoever is in the room when she enters it.
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Generally speaking, game theoretic influence measures

specify some reasonable way of aggregating the marginal

contributions of i to sets S ⊆ N . That is, they measure a

player’s expected marginal contribution to sets sampled from

some distribution D over 2N , resulting in a payoff of

ES∼D[mi(S)] =
∑
S⊆N

Pr
D
[S]mi(S).

Thus, fair revenue division draws its appeal from the degree

to which the distribution D is justifiable within the context

where revenue is shared. In our setting, we argue for the use

of the Shapley value. Introduced by the late Lloyd Shapley, the

Shapley value is one of the most canonical methods of dividing

revenue in cooperative games. It is defined as follows:

ϕi(N, v) = Eσ[mi(σ)] =
1

n!

∑
σ∈Π(N)

mi(σ)

Intuitively, the Shapley value describes the following process:

players are sequentially selected according to some randomly

chosen order σ; each player receives a payment of mi(σ). The

Shapley value is the expected payment to the players under

this regime. The definition we use describes a distribution

over permutations of N , not its subsets; however, it is easy

to describe the Shapley value in terms of a distribution over

subsets. If we define p[S] = 1
n

1

(n−1
|S| )

, it is a simple exercise

to show that

ϕi(N, v) =
∑
S⊆N

p[S]mi(S).

Intuitively, p[S] describes the following process: first, choose

a number k ∈ [0, n− 1] uniformly at random; next, choose a

set of size k uniformly at random.

The Shapley value is one of many reasonable ways of

measuring influence; we provide a detailed review of two

others — the Banzhaf index [17], and the Deegan-Packel
index [18] — in Appendix A.

B. Axiomatic Treatment of the Shapley Value

In this work, the Shapley value is our function of choice for

aggregating marginal feature influence. The objective of this

section is to justify our choice, and provide a brief exposition

of axiomatic game-theoretic value theory. We present the

axioms that define the Shapley value, and discuss how they

apply in the QII setting. As we show, by requiring some

desired properties, one arrives at a game-theoretic influence

measure as the unique function for measuring information use

in our setting.

The Shapley value satisfies the following properties:

Definition 4 (Symmetry (Sym)). We say that i, j ∈ N are

symmetric if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N \ {i, j}.
A value φ satisfies symmetry if φi = φj whenever i and j are

symmetric.

Definition 5 (Dummy (Dum)). We say that a player i ∈ N
is a dummy if v(S ∪ {i}) = v(S) for all S ⊆ N . A value φ
satisfies the dummy property if φi = 0 whenever i is a dummy.

Definition 6 (Efficiency (Eff)). A value satisfies the efficiency
property if

∑
i∈N φi = v(N).

All of these axioms take on a natural interpretation in the

QII setting. Indeed, if two features have the same probabilistic

effect, no matter what other interventions are already in place,

they should have the same influence. In our context, the

dummy axiom says that a feature that never offers information

with respect to an outcome should have no influence. In the

case of specific causal influence, the efficiency axiom simply

states that the total amount of influence should sum to

Pr(c(X) = c(x) | X = x)− Pr(c(X−N ) = c(x) | X = x)

=1− Pr(c(X) = c(x)) = Pr(c(X) �= c(x)).

That is, the total amount of influence possible is the likelihood

of encountering elements whose evaluation is not c(x). This is

natural: if the vast majority of elements have a value of c(x),
it is quite unlikely that changes in features’ state will have any

effect on the outcome whatsoever; thus, the total amount of

influence that can be assigned is Pr(c(X) �= c(x)). Similarly,

if the vast majority of points have a value different from x,

then it is likelier that a random intervention would result in a

change in value, resulting in more influence to be assigned.

In the original paper by [14], it is shown that the Shapley

value is the only function that satisfies (Sym), (Dum), (Eff),

as well as the additivity (Add) axiom.

Definition 7 (Additivity (Add)). Given two games

〈N, v1〉, 〈N, v2〉, we write 〈N, v1 + v2〉 to denote the game

v′(S) = v1(S)+ v2(S) for all S ⊆ N . A value φ satisfies the

additivity property if φi(N, v1) + φi(N, v2) = φi(N, v1 + v2)
for all i ∈ N .

In our setting, the additivity axiom makes little intuitive

sense; it would imply, for example, that if we were to multiply

Q by a constant c, the influence of i in the resulting game

should be multiplied by c as well, which is difficult to justify.

[19] offers an alternative characterization of the Shapley

value, based on the more natural monotonicity assumption,

which is a strong generalization of the dummy axiom.

Definition 8 (Monotonicity (Mono)). Given two games

〈N, v1〉, 〈N, v2〉, a value φ satisfies strong monotonicity if

mi(S, v1) ≥ mi(S, v2) for all S implies that φi(N, v1) ≥
φi(N, v2), where a strict inequality for some set S ⊆ N
implies a strict inequality for the values as well.

Monotonicity makes intuitive sense in the QII setting: if a

feature has consistently higher influence on the outcome in one

setting than another, its measure of influence should increase.

For example, if a user receives two transparency reports (say,

for two separate loan applications), and in one report gender

had a consistently higher effect on the outcome than in the

other, then the transparency report should reflect this.

Theorem 9 ([19]). The Shapley value is the only function that
satisfies (Sym), (Eff) and (Mono).

604604



To conclude, the Shapley value is a unique way of measur-

ing aggregate influence in the QII setting, while satisfying a

set of very natural axioms.

IV. TRANSPARENCY SCHEMAS

We now discuss two generalizations of the definitions

presented in Section II, and then define a transparency schema

that map the space of transparency reports based on QII.

a) Intervention Distribution: In this paper we only con-

sider randomized interventions when the interventions are

drawn independently from the priors of the given input.

However, depending on the specific causal question at hand,

we may use different interventions. Formally, this is achieved

by allowing an arbitrary intervention distribution πinter such

that

π̃(x,u) = π(x)πinter(u).

The subsequent definitions remain unchanged. One example

of an intervention different from the randomized intervention

considered in the rest of the paper is one held constant at a

vector x0:

πinter
x0

(u) =

{
1 for u = x0

0 o.w.

A QII measure defined on the constant intervention as

defined above, measures the influence of being different from

a default, where the default is represented by x0.

b) Difference Measure: A second generalization allows

us to consider quantities of interest which are not real numbers.

Consider, for example, the situation where the quantity of

interest is an output probability distribution, as in the case

in a randomized classifier. In this setting, a suitable measure

for quantifying the distance between distributions can be

used as a difference measure between the two quantities of

interest. Examples of such difference measures include the

KL-divergence [20] between distribution or distance metrics

between vectors.

c) Transparency Schema: We now present a transparency

schema that maps the space of transparency reports based on

QII measures. It consists of the following elements:

• A quantity of interest, which captures the aspect of the

system we wish to gain transparency into.

• An intervention distribution, which defines how a coun-

terfactual distribution is constructed from the true distri-

bution.

• A difference measure, which quantifies the difference

between two quantities of interest.

• An aggregation technique, which combines marginal QII

measures across different subsets of inputs (features).

For a given application, one has to appropriately instantiate

this schema. We have described several instances of each

schema element. The choices of the schema elements are

guided by the particular causal question being posed. For

instance, when the question is: “Which features are most

important for group disparity?”, the natural quantity of interest

is a measure of group disparity, and the natural intervention

distribution is using the prior as the question does not suggest

a particular bias. On the other hand, when the question is:

“Which features are most influential for person A’s classifica-

tion as opposed to person B?”, a natural quantity of interest is

person A’s classification, and a natural intervention distribution

is the constant intervention using the features of person B.

A thorough exploration of other points in this design space

remains an important direction for future work.

V. ESTIMATION

While the model we propose offers several appealing prop-

erties, it faces several technical implementation issues. Several

elements of our work require significant computational effort;

in particular, both the probability that a change in feature state

would cause a change in outcome, and the game-theoretic

influence measures are difficult to compute exactly. In the

following sections we discuss these issues and our proposed

solutions.

A. Computing Power Indices

Computing the Shapley or Banzhaf values exactly is gen-

erally computationally intractable (see [21, Chapter 4] for a

general overview); however, their probabilistic nature means

that they can be well-approximated via random sampling.

More formally, given a random variable X , suppose that we

are interested in estimating some determined quantity q(X)
(say, q(X) is the mean of X); we say that a random variable

q∗ is an ε-δ approximation of q(X) if

Pr[|q∗ − q(X)| ≥ ε] < δ;

in other words, it is extremely likely that the difference

between q(X) and q∗ is no more than ε. An ε-δ approximation
scheme for q(X) is an algorithm that for any ε, δ ∈ (0, 1) is

able to output a random variable q∗ that is an ε-δ approxima-

tion of q(X), and runs in time polynomial in 1
ε , log 1δ.

[22] show that when 〈N, v〉 is a simple game (i.e. a game

where v(S) ∈ {0, 1} for all S ⊆ N ), there exists an ε-

δ approximation scheme for both the Banzhaf and Shapley

values; that is, for φ ∈ {ϕ, β}, we can guarantee that for any

ε, δ > 0, with probability ≥ 1− δ, we output a value φ∗i such

that |φ∗i − φi| < ε.

More generally, [23] observe that the number of i.i.d.

samples needed in order to approximate the Shapley value and

Banzhaf index is parametrized in Δ(v) = maxS⊆N v(S) −
minS⊆N v(S). Thus, if Δ(v) is a bounded value, then an ε-

δ approximation exists. In our setting, coalitional values are

always within the interval [0, 1], which immediately implies

the following theorem.

Theorem 10. There exists an ε-δ approximation scheme for
the Banzhaf and Shapley values in the QII setting.

B. Estimating Q

Since we do not have access to the prior generating the

data, we simply estimate it by observing the dataset itself.

Recall that X is the set of all possible user profiles; in this
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case, a dataset is simply a multiset (i.e. possibly containing

multiple copies of user profiles) contained in X . Let D be a

finite multiset of X , the input space. We estimate probabilities

by computing sums over D. For example, for a classifier c,
the probability of c(X) = 1.

ÊD(c(X) = 1) =

∑
x∈D �(c(x) = 1)

|D| . (10)

Given a set of features S ⊆ N , let D|S denote the elements

of D truncated to only the features in S. Then, the intervened

probability can be estimated as follows:

ÊD(c(X−S) = 1) =

∑
uS∈D|S

∑
x∈D �(c(x|N\SuS) = 1)

|D|2 .

(11)

Similarly, the intervened probability on individual outcomes

can be estimated as follows:

ÊD(c(X−S) = 1|X = x) =

∑
uS∈DS

�(c(x|N\SuS) = 1)

|D| .

(12)

Finally, let us observe group disparity:∣∣∣ÊD(c(X−S) = 1 | X ∈ Y)− ÊD(c(X−S) = 1 | X /∈ Y)
∣∣∣

The term ÊD(c(X−S) = 1 | X ∈ Y) equals

1

|Y|
∑
x∈Y

∑
uS∈DS

�(c(x|N\SuS) = 1),

Thus group disparity can be written as:∣∣ 1

|Y|
∑
x∈Y

∑
uS∈DS

�(c(x|N\SuS) = 1)

− 1

|D \ Y|
∑

x∈D\Y

∑
uS∈DS

�(c(x|N\SuS) = 1)
∣∣. (13)

We write Q̂Ydisp(S) to denote (13).

If D is large, these sums cannot be computed efficiently.

Therefore, we approximate the sums by sampling from the

dataset D. It is possible to show using the According to the

Hoeffding bound [24], partial sums of n random variables

Xi, within a bound Δ, can be well-approximated with the

following probabilistic bound:

Pr

(∣∣∣∣∣ 1n
n∑

i=1

(Xi − EXi)

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(−2nε2
Δ

)

Since all the samples of measures discussed in the paper

are bounded within the interval [0, 1], we admit an ε-δ
approximation scheme where the number of samples n can

be chosen to be greater than log(2/δ)/2ε2. Note that these

bounds are independent of the size of the dataset. Therefore,

given an efficient sampler, these quantities of interest can be

approximated efficiently even for large datasets.

VI. PRIVATE TRANSPARENCY REPORTS

One important concern is that releasing influence measures

estimated from a dataset might leak information about in-

dividual users; our goal is providing accurate transparency

reports, without compromising individual users’ private data.

To mitigate this concern, we add noise to make the measures

differentially private. We show that the sensitivities of the QII

measures considered in this paper are very low and therefore

very little noise needs to be added to achieve differential

privacy.

The sensitivity of a function is a key parameter in ensuring

that it is differentially private; it is simply the worst-case

change in its value, assuming that we change a single data

point in our dataset. Given some function f over datasets, we

define the sensitivity of a function f with respect to a dataset

D, denoted by Δf(D) as

max
D′

|f(D)− f(D′)|

where D and D′ differ by at most one instance. We use the

shorthand Δf when D is clear from the context.

In order to not leak information about the users used

to compute the influence of an input, we use the standard

Laplace Mechanism [8] and make the influence measure

differentially private. The amount of noise required depends

on the sensitivity of the influence measure. We show that

the influence measure has low sensitivity for the individuals

used to sample inputs. Further, due to a result from [9] (and

stated in [25]), sampling amplifies the privacy of the computed

statistic, allowing us to achieve high privacy with minimal

noise addition.

The standard technique for making any function differ-

entially private is to add Laplace noise calibrated to the

sensitivity of the function:

Theorem 11 ([8]). For any function f from datasets to R,
the mechanism Kf that adds independently generated noise
with distribution Lap(Δf(D)/ε) to the k output enjoys ε-
differential privacy.

Since each of the quantities of interest aggregate over a

large number of instances, the sensitivity of each function is

very low.

Theorem 12. Given a dataset D,
1) ΔÊD(c(X) = 1) = 1

|D|
2) ΔÊD(c(X−S) = 1) ≤ 2

|D|
3) ΔÊD(c(X−S) = 1|X = x) = 1

|D|
4) Q̂Ydisp(S) ≤ max

{
1

|D∩Y| ,
1

|D\Y|
}

Proof. We examine some cases here. In Equation 10, if two

datasets differ by one instance, then at most one term of the

summation will differ. Since each term can only be either 0
or 1, the sensitivity of the function is

ΔÊD(c(X) = 1) =

∣∣∣∣ 0

|D| −
1

|D|
∣∣∣∣ = 1

|D| .
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Similarly, in Equation 11, an instance appears 2|D| − 1
times, once each for the inner summation and the outer

summation, and therefore, the sensitivity of the function is

ΔÊD(c(X−S) = 1) =
2|D| − 1

|D|2 ≤ 2

|D| .

For individual outcomes (Equation (12)), similarly, only one

term of the summation can differ. Therefore, the sensitivity of

(12) is 1/|D|.
Finally, we observe that a change in a single element x′ of

D will cause a change of at most 1
|D∩Y| if x′ ∈ D ∩ Y , or

of at most 1
|D\Y| if x′ ∈ D \ Y . Thus, the maximal change to

(13) is at most max
{

1
|Y| ,

1
|D\Y|

}
.

While the sensitivity of most quantities of interest is low

(at most a 2
|D| ), Q̂

Y
disp(S) can be quite high when |Y| is either

very small or very large. This makes intuitive sense: if Y is

a very small minority, then any changes to its members are

easily detected; similarly, if Y is a vast majority, then changes

to protected minorities may be easily detected.

We observe that the quantities of interest which exhibit

low sensitivity will have low influence sensitivity as well:

for example, the local influence of S is �(c(x) = 1) −
ÊD(c(X−S) = 1] | X = x); changing any x′ ∈ D (where

x′ �= x will result in a change of at most 1
|D| to the local

influence.

Finally, since the Shapley and Banzhaf indices are normal-

ized sums of the differences of the set influence functions, we

can show that if an influence function ι has sensitivity Δι,
then the sensitivity of the indices are at most 2Δι.

To conclude, all of the QII measures discussed above

(except for group parity) have a sensitivity of α
|D| , with α

being a small constant. To ensure differential privacy, we need

only need add noise with a Laplacian distribution Lap(k/|D|)
to achieve 1-differential privacy.

Further, it is known that sampling amplifies differential

privacy.

Theorem 13 ([9], [25]). If A is 1-differentially private, then
for any ε ∈ (0, 1), A′(ε) is 2ε-differentially private, where
A′(ε) is obtained by sampling an ε fraction of inputs and
then running A on the sample.

Therefore, our approach of sampling instances from D to

speed up computation has the additional benefit of ensuring

that our computation is private.

Table I contains a summary of all QII measures defined in

this paper, and their sensitivity.

VII. EXPERIMENTAL EVALUATION

We demonstrate the utility of the QII framework by develop-

ing two simple machine learning applications on real datasets.

Using these applications, we first argue, in Section VII-A,

the need for causal measurement by empirically demonstrat-

ing that in the presence of correlated inputs, observational

measures are not informative in identifying which inputs were

actually used. In Section VII-B, we illustrate the distinction

between different quantities of interest on which Unary QII

can be computed. We also illustrate the effect of discrimination

on the QII measure. In Section VII-C, we analyze transparency

reports of three individuals to demonstrate how Marginal QII

can provide insights into individuals’ classification outcomes.

Finally, we analyze the loss in utility due to the use of

differential privacy, and provide execution times for generating

transparency reports using our prototype implementation.

We use the following datasets in our experiments:

• adult [10]: This standard machine learning benchmark

dataset is a a subset of US census data that classifies

the income of individuals, and contains factors such as

age, race, gender, marital status and other socio-economic

parameters. We use this dataset to train a classifier that

predicts the income of individuals from other parameters.

Such a classifier could potentially be used to assist credit

decisions.

• arrests [11]: The National Longitudinal Surveys are a

set of surveys conducted by the Bureau of Labor Statistics

of the United States. In particular, we use the National

Longitudinal Survey of Youth 1997 which is a survey of

young men and women born in the years 1980-84. Re-

spondents were ages 12-17 when first interviewed in 1997

and were subsequently interviewed every year till 2013.

The survey covers various aspects of an individual’s life

such as medical history, criminal records and economic

parameters. From this dataset, we extract the following

features: age, gender, race, region, history of drug use,

history of smoking, and history of arrests. We use this

data to train a classifier that predicts history of arrests to

aid in predictive policing, where socio-economic factors

are used to decide whether individuals should receive a

visit from the police. This application is inspired by a

similar application in [26].

The two applications described above are hypothetical ex-

amples of decision-making aided by machine learning that use

potentially sensitive socio-economic data about individuals,

and not real systems that are currently in use. We use these

classifiers to illustrate the subtle causal questions that our QII

measures can answer.

We use the following standard machine learning classifiers

in our dataset: Logistic Regression, SVM with a radial basis

function kernel, Decision Tree, and Gradient Boosted Decision

Trees. Bishop’s machine learning text [27] is an excellent

resource for an introduction to these classifiers. While Logistic

Regression is a linear classifier, the other three are nonlinear

and can potentially learn very complex models. All our ex-

periments are implemented in Python with the numpy library,

and the scikit-learn machine learning toolkit, and run on an

Intel i7 computer with 4 GB of memory.

A. Comparison with Observational Measures

In the presence of correlated inputs, observational measures

often cannot identify which inputs were causally influential.

To illustrate this phenomena on real datasets, we train two
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Name Notation Quantity of Interest Sensitivity
QII on Individual Outcomes (3) ιind(S) Positive Classification of an Individual 1/|D|
QII on Actual Individual Outcomes (4) ιind-act(S) Actual Classification of an Individual 1/|D|
Average QII (5) ιind-avg(S) Average Actual Classification 2/|D|
QII on Group Outcomes (6) ιYgrp(S) Positive Classification for a Group 2/|D ∩ Y|
QII on Group Disparity (8) ιYdisp(S) Difference in classification rates among groups 2max(1/|D \ Y|, 1/|D ∩ Y|)

TABLE I: A summary of the QII measures defined in the paper

classifiers: (A) where gender is provided as an actual input,

and (B) where gender is not provided as an input. For classifier

(B), clearly the input Gender has no effect and any correlation

between the outcome and gender is caused via inference from

other inputs. In Table II, for both the adult and the arrests

dataset, we compute the following observational measures:

Mutual Information (MI), Jaccard Index (Jaccard), Pearson

Correlation (corr), and the Disparate Impact Ratio (disp) to

measure the similarity between Gender and the classifiers

outcome. We also measure the QII of Gender on outcome.

We observe that in many scenarios the observational quantities

do not change, or sometimes increase, from classifier A to

classifier B, when gender is removed as an actual input

to the classifier. On the other hand, if the outcome of the

classifier does not depend on the input Gender, then the QII

is guaranteed to be zero.

B. Unary QII Measures

In Figure 2, we illustrate the use of different Unary QII

measures. Figures 2a, and 2b, show the Average QII measure

(Equation 5) computed for features of a decision forest classi-

fier. For the income classifier trained on the adult dataset, the

feature with highest influence is Marital Status, followed by

Occupation, Relationship and Capital Gain. Sensitive features

such as Gender and Race have relatively lower influence.

For the predictive policing classifier trained on the arrests

dataset, the most influential input is Drug History, followed by

Gender, and Smoking History. We observe that influence on

outcomes may be different from influence on group disparity.

QII on group disparity: Figures 2c, 2d show influences

of features on group disparity for two different settings. The

figure on the left shows the influence of features on group

disparity by Gender in the adult dataset; the figure on the

right shows the influence of group disparity by Race in the

arrests dataset. For the income classifier trained on the

adult dataset, we observe that most inputs have negative

influence on group disparity; randomly intervening on most

inputs would lead to a reduction in group disparity. In other

words, a classifier that did not use these inputs would be fairer.

Interestingly, in this classifier, marital status and not sex has

the highest influence on group disparity by sex.

For the arrests dataset, most inputs have the effect of

increasing group disparity if randomly intervened on. In

particular, Drug history has the highest positive influence on

disparity in arrests. Although Drug history is correlated with

race, using it reduces disparate impact by race, i.e. makes fairer

decisions.

In both examples, features correlated with the sensitive

attribute are the most influential for group disparity according

to the sensitive attribute instead of the sensitive attribute

itself. It is in this sense that QII measures can identify

proxy variables that cause associations between outcomes and

sensitive attributes.

QII with artificial discrimination: We simulate discrimi-

nation using an artificial experiment. We first randomly assign

ZIP codes to individuals in our dataset. Then to simulate

systematic bias, we make an f fraction of the ZIP codes

discriminatory in the following sense: All individuals in the

protected set are automatically assigned a negative classifi-

cation outcome. We then study the change in the influence

of features as we increase f . Figure 3a, shows that the

influence of Gender increases almost linearly with f . Recall

that Marital Status was the most influential feature for this

classifier without any added discrimination. As f increases,

the importance of Marital Status decreases as expected, since

the number of individuals for whom Marital Status is pivotal

decreases.

C. Personalized Transparency Reports

To illustrate the utility of personalized transparency reports,

we study the classification of individuals who received poten-

tially unexpected outcomes. For the personalized transparency

reports, we use decision forests.

The influence measure that we employ is the Shapley value,

with the underlying cooperative game defined over the local

influence Q. In more detail, v(S) = ιQA(S), with QA being

E[c(·) = 1 | X = x]; that is, the marginal contribution of

i ∈ N to S is given by mi(S) = E[c(X−S) = 1 | X =
x]− E[c(X−S∪{i}) = 1 | X = x].

We emphasize that some features may have a negative

Shapley value; this should be interpreted as follows: a feature

with a high positive Shapley value often increases the certainty

that the classification outcome is 1, whereas a feature whose

Shapley value is negative is one that increases the certainty

that the classification outcome would be zero.

Mr. X: The first example is of an individual from the

adult dataset, who we refer to as Mr. X, and is described in

Figure 4a. He is is deemed to be a low income individual, by

an income classifier learned from the data. This result may be

surprising to him: he reports high capital gains ($14k), and

only 2.1% of people with capital gains higher than $10k are

reported as low income. In fact, he might be led to believe that

his classification may be a result of his ethnicity or country

of origin. Examining his transparency report in Figure 4b,

however, we find that the the most influential features that led
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logistic kernel svm decision tree random forest
adult arrests adult arrests adult arrests adult arrests

MI A 0.045 0.049 0.046 0.047 0.043 0.054 0.044 0.053
MI B 0.043 0.050 0.044 0.053 0.042 0.051 0.043 0.052

Jaccard A 0.501 0.619 0.500 0.612 0.501 0.614 0.501 0.620
Jaccard B 0.500 0.611 0.501 0.615 0.500 0.614 0.501 0.617

corr A 0.218 0.265 0.220 0.247 0.213 0.262 0.218 0.262
corr B 0.215 0.253 0.218 0.260 0.215 0.257 0.215 0.259
disp A 0.286 0.298 0.377 0.033 0.302 0.335 0.315 0.223
disp B 0.295 0.301 0.312 0.096 0.377 0.228 0.302 0.129
QII A 0.036 0.135 0.044 0.149 0.023 0.116 0.012 0.109
QII B 0 0 0 0 0 0 0 0

TABLE II: Comparison of QII with associative measures. For 4 different classifiers, we compute metrics such as Mutual

Information (MI), Jaccard Index (JI), Pearson Correlation (corr), Group Disparity (disp) and Average QII between Gender and

the outcome of the learned classifier. Each metric is computed in two situations: (A) when Gender is provided as an input to

the classifier, and (B) when Gender is not provided as an input to the classifier.

to his negative classification were Marital Status, Relationship

and Education.
Mr. Y: The second example, to whom we refer as Mr. Y

(Figure 5), has even higher capital gains than Mr. X. Mr. Y is

a 27 year old, with only Preschool education, and is engaged

in fishing. Examination of the transparency report reveals that

the most influential factor for negative classification for Mr.

Y is his Occupation. Interestingly, his low level of education

is not considered very important by this classifier.
Mr. Z: The third example, who we refer to as Mr. Z

(Figure 6) is from the arrests dataset. History of drug use

and smoking are both strong indicators of arrests. However,

Mr. X received positive classification by this classifier even

without any history of drug use or smoking. On examining

his classifier, it appears that race, age and gender were most

influential in determining his outcome. In other words, the

classifier that we train for this dataset (a decision forest) has

picked up on the correlations between race (Black), and age

(born in 1984) to infer that this individual is likely to engage in

criminal activity. Indeed, our interventional approach indicates

that this is not a mere correlation effect: race is actively being

used by this classifier to determine outcomes. Of course, in

this instance, we have explicitly offered the race parameter

to our classifier as a viable feature. However, our influence

measure is able to pick up on this fact, and alert us of

the problematic behavior of the underlying classifier. More

generally, this example illustrates a concern with the black

box use of machine learning which can lead to unfavorable

outcomes for individuals.

D. Differential Privacy

Most QII measures considered in this paper have very low

sensitivity, and therefore can be made differentially private

with negligible loss in utility. However, recall that the sensi-

tivity of influence measure on group disparity ιYdisp depends on

the size of the protected group in the dataset D as follows:

ιYdisp = 2max

(
1

|D \ Y| ,
1

|D ∩ Y|
)

For sufficiently small minority groups, a large amount of

noise might be required to ensure differential privacy, leading

to a loss in utility of the QII measure. To estimate the loss

in utility, we set a noise of 0.005 as the threshold of noise

at which the measure is no longer useful, and then compute

fraction of times noise crosses that threshold when Laplacian

noise is added at ε = 1. The results of this experiment are as

follows:

Y Count Loss in Utility

Race: White 27816 2.97× 10−14

Race: Black 3124 5.41× 10−14

Race: Asian-Pac-Islander 1039 6.14× 10−05

Race: Amer-Indian-Eskimo 311 0.08
Race: Other 271 0.13
Gender: Male 21790 3.3× 10−47

Gender: Female 10771 3.3× 10−47

We note that for most reasonably sized groups, the loss in

utility is negligible. However, the Asian-Pac-Islander, and the

Amer-Indian-Eskimo racial groups are underrepresented in this

dataset. For these groups, the QII on Group Disparity estimate

needs to be very noisy to protect privacy.

E. Performance

We report runtimes of our prototype for generating trans-

parency reports on the adult dataset. Recall from Section VI

that we approximate QII measures by computing sums over

samples of the dataset. According to the Hoeffding bound to

derive an (ε, δ) estimate of a QII measure, at ε = 0.01, and

n = 37000 samples, δ = 2 exp(−nε2) < 0.05 is an upper

bound on the probability of the output being off by ε. Table III

shows the runtimes of four different QII computations, for

37000 samples each. The runtimes of all algorithms except

for kernel SVM are fast enough to allow real-time feedback

for machine learning application developers. Evaluating QII

metrics for Kernel SVMs is much slower than the other metrics

because each call to the SVM classifier is very computationally

intensive due to a large number of distance computations that

it entails. We expect that these runtimes can be optimized

significantly. We present them as proof of tractability.
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(b) QII of inputs on Outcomes for the arrests dataset
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(d) Influence on Group Disparity by Race in the arrests dataset

Fig. 2: QII measures for the adult and arrests datasets

logistic kernel-svm decision-tree decision-forest
QII on Group Disparity 0.56 234.93 0.57 0.73

Average QII 0.85 322.82 0.77 1.12
QII on Individual Outcomes (Shapley) 6.85 2522.3 7.78 9.30
QII on Individual Outcomes (Banzhaf) 6.77 2413.3 7.64 10.34

TABLE III: Runtimes in seconds for transparency report computation

VIII. DISCUSSION

A. Probabilistic Interpretation of Power Indices

In order to quantitatively measure the influence of data

inputs on classification outcomes, we propose causal inter-

ventions on sets of features; as we argue in Section III,

the aggregate marginal influence of i for different subsets

of features is a natural quantity representing its influence. In

order to aggregate the various influences i has on the outcome,

it is natural to define some probability distribution over (or

equivalently, a weighted sum of) subsets of N \ {i}, where

Pr[S] represents the probability of measuring the marginal

contribution of i to S; Pr[S] yields a value
∑

S⊆N\{i}mi(S).

For the Banzhaf index, we have Pr[S] = 1
2n−1 , the Shapley

value has Pr[S] = k!(n−k−1)!
n! (here, |S| = k), and the Deegan-

Packel Index selects minimal winning coalitions uniformly at

random. These choices of values for Pr[S] are based on some

natural assumptions on the way that players (features) interact,

but they are by no means exhaustive. One can define other

sampling methods that are more appropriate for the model

at hand; for example, it is entirely possible that the only

interventions that are possible in a certain setting are of size

≤ k + 1, it is reasonable to aggregate the marginal influence
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Fig. 3: The effect of discrimination on QII.

of i over sets of size ≤ k, i.e.

Pr[S] =

{
1

(n−1
|S| )

if |S| ≤ k

0 otherwise.

The key point here is that one must define some aggregation

method, and that choice reflects some normative approach on

how (and which) marginal contributions are considered. The

Shapley and Banzhaf indices do have some highly desirable

properties, but they are, first and foremost, a-priori measures

of influence. That is, they do not factor in any assumptions on

what interventions are possible or desirable.

One natural candidate for a probability distribution over S
is some natural extension of the prior distribution over the

dataset; for example, if all features are binary, one can identify

a set with a feature vector (namely by identifying each S ⊆ N
with its indicator vector), and set Pr[S] = π(S) for all S ⊆ N .

Age 23
Workclass Private
Education 11th
Education-Num 7
Marital Status Never-married
Occupation Craft-repair
Relationship Own-child
Race Asian-Pac-Islander
Gender Male
Capital Gain 14344
Capital Loss 0
Hours per week 40
Country Vietnam

(a) Mr. X’s profile
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(b) Transparency report for Mr. X’s negative classification

Fig. 4: Mr. X

If features are not binary, then there is no canonical way to

transition from the data prior to a prior over subsets of features.

B. Fairness

Due to the widespread and black box use of machine

learning in aiding decision making, there is a legitimate

concern of algorithms introducing and perpetuating social

harms such as racial discrimination [28], [6]. As a result,

the algorithmic foundations of fairness in personal informa-

tion processing systems have received significant attention

recently [29], [30], [31], [12], [32]. While many of of the

algorithmic approaches [29], [31], [32] have focused on group

parity as a metric for achieving fairness in classification,

Dwork et al. [12] argue that group parity is insufficient as

a basis for fairness, and propose a similarity-based approach

which prescribes that similar individuals should receive similar

classification outcomes. However, this approach requires a

similarity metric for individuals which is often subjective and

difficult to construct.

QII does not suggest any normative definition of fairness.

Instead, we view QII as a diagnostic tool to aid fine-grained

fairness determinations. In fact, QII can be used in the spirit

of the similarity based definition of [12]. By comparing the

personalized privacy reports of individuals who are perceived
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Age 27
Workclass Private
Education Preschool
Education-Num 1
Marital Status Married-civ-spouse
Occupation Farming-fishing
Relationship Other-relative
Race White
Gender Male
Capital Gain 41310
Capital Loss 0
Hours per week 24
Country Mexico

(a) Mr. Y’s profile
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(b) Transparency report for Mr. Y’s negative classification

Fig. 5: Mr. Y.

to be similar but received different classification outcomes,

and identifying the inputs which were used by the classifier to

provide different outcomes. Additionally, when group parity

is used as a criteria for fairness, QII can identify the features

that lead to group disparity, thereby identifying features being

used by a classifier as a proxy for sensitive attributes.

The determination of whether using certain proxies for

sensitive attributes is discriminatory is often a task-specific

normative judgment. For example, using standardized test

scores (e.g., SAT scores) for admissions decisions is by and

large accepted, although SAT scores may be a proxy for

several protected attributes. In fact, several universities have

recently announced that they will not use SAT scores for

admissions citing this reason [33], [34]. Our goal is not

to provide such normative judgments. Rather we seek to

provide fine-grained transparency into input usage (e.g., what’s

the extent to which SAT scores influence decisions), which

is useful to make determinations of discrimination from a

specific normative position.

Finally, we note that an interesting question is whether

providing a sensitive attribute as an input to a classifier is

fundamentally discriminatory behavior, even if QII can show

that the sensitive input has no significant impact on the

Birth Year 1984
Drug History None
Smoking History None
Census Region West
Race Black
Gender Male

(a) Mr. Z’s profile
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(b) Transparency report for Mr. Z’s positive classification

Fig. 6: Mr. Z.

outcome. Our view is that this is a policy question and different

legal frameworks might take different viewpoints on it. At a

technical level, from the standpoint of information use, the

two situations are identical: the sensitive input is not really

used although it is supplied. However, the very fact that it

was supplied might be indicative of an intent to discriminate

even if that intended goal was not achieved. No matter what

the policy decision is on this question, QII remains a useful

diagnostic tool for discrimination because of the presence of

proxy variables as described earlier.

IX. RELATED WORK

A. Quantitative Causal Measures

Causal models and probabilistic interventions have been

used in a few other settings. While the form of the inter-

ventions in some of these settings may be very similar, our

generalization to account for different quantities of interests

enables us to reason about a large class of transparency

queries for data analytics systems ranging from classification

outcomes of individuals to disparity among groups. Further,

the notion of marginal contribution which we use to compute

responsibility does not appear in this line of prior work.

Janzing et al. [35] use interventions to assess the causal

importance of relations between variables in causal graphs;

in order to assess the causal effect of a relation between two

variables, X → Y (assuming that both take on specific values

X = x and Y = y), a new causal model is constructed, where

the value of X is replaced with a prior over the possible values

of X . The influence of the causal relation is defined as the KL-
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Divergence of the joint distribution of all the variables in the

two causal models with and without the value of X replaced.

The approach of the intervening with a random value from the

prior is similar to our approach of constructing X−S .

Independently, there has been considerable work in the

machine learning community to define importance metrics for

variables, mainly for the purpose of feature selection (see [36]

for a comprehensive overview). One important metric is called

Permutation Importance [37], which measures the importance

of a feature towards classification by randomly permuting

the values of the feature and then computing the difference

of classification accuracies before and after the permutation.

Replacing a feature with a random permutation can be viewed

as a sampling the feature independently from the prior.

There exists extensive literature on establishing causal re-

lations, as opposed to quantifying them. Prominently, Pearl’s

work [38] provides a mathematical foundation for causal rea-

soning and inference. In [39], Tian and Pearl discuss measures

of causal strength for individual binary inputs and outputs in a

probabilistic setting. Another thread of work by Halpern and

Pearl discusses actual causation [40], which is extended in [41]

to derive a measure of responsibility as degree of causality.

In [41], Chockler and Halpern define the responsibility of a

variable X to an outcome as the amount of change required

in order to make X the counterfactual cause. As we discuss

in Appendix A-B, the Deegan-Packel index is strongly related

to causal responsibility.

B. Quantitative Information Flow

One can think of our results as a causal alternative to

quantitative information flow. Quantitative information flow is

a broad class of metrics that quantify the information leaked

by a process by comparing the information contained before

and after observing the outcome of the process. Quantitative

Information Flow traces its information-theoretic roots to the

work of Shannon [42] and Rényi [43]. Recent works have

proposed measures for quantifying the security of information

by measuring the amount of information leaked from inputs to

outputs by certain variables; we point the reader to [44] for an

overview, and to [45] for an exposition on information theory.

Quantitative Information Flow is concerned with information

leaks and therefore needs to account for correlations between

inputs that may lead to leakage. The dual problem of trans-

parency, on the other hand, requires us to destroy correlations

while analyzing the outcomes of a system to identify the causal

paths for information leakage.

C. Interpretable Machine Learning

An orthogonal approach to adding interpretability to ma-

chine learning is to constrain the choice of models to those that

are interpretable by design. This can either proceed through

regularization techniques such as Lasso [46] that attempt

to pick a small subset of the most important features, or

by using models that structurally match human reasoning

such as Bayesian Rule Lists [47], Supersparse Linear Integer

Models [48], or Probabilistic Scaling [49]. Since the choice

of models in this approach is restricted, a loss in predictive

accuracy is a concern, and therefore, the central focus in

this line of work is the minimization of the loss in accuracy

while maintaining interpretability. On the other hand, our

approach to interpretability is forensic. We add interpretability

to machine learning models after they have been learnt. As a

result, our approach does not constrain the choice of models

that can be used.

D. Experimentation on Web Services

There is an emerging body of work on systematic experi-

mentation to enhance transparency into Web services such as

targeted advertising [50], [51], [52], [53], [54]. The setting in

this line of work is different since they have restricted access

to the analytics systems through publicly available interfaces.

As a result they only have partial control of inputs, partial

observability of outputs, and little or no knowledge of input

distributions. The intended use of these experiments is to

enable external oversight into Web services without any coop-

eration. Our framework is more appropriate for a transparency

mechanism where an entity proactively publishes transparency

reports for individuals and groups. Our framework is also

appropriate for use as an internal or external oversight tool

with access to mechanisms with control and knowledge of

input distributions, thereby forming a basis for testing.

E. Game-Theoretic Influence Measures

Recent years have seen game-theoretic influence measures

used in various settings. Datta et al. [55] also define a measure

for quantifying feature influence in classification tasks. Their

measure does not account for the prior on the data, nor does

it use interventions that break correlations between sets of

features. In the terminology of this paper, the quantity of

interest used by [55] is the ability of changing the outcome by

changing the state of a feature. This work greatly extends and

generalizes the concepts presented in [55], by both accounting

for interventions on sets, and by generalizing the notion of

influence to include a wide range of system behaviors, such

as group disparity, group outcomes and individual outcomes.

Game theoretic measures have been used by various re-

search disciplines to measure influence. Indeed, such measures

are relevant whenever one is interested in measuring the

marginal contribution of variables, and when sets of variables

are able to cause some measurable effect. Lindelauf et al. [56]

and Michalak et al. [57] use game theoretic influence measures

on graph-based games in order to identify key members of

terrorist networks. Del Pozo et al. [58] and Michalak et al. [59]

use similar ideas for identifying important members of large

social networks, providing scalable algorithms for influence

computation. Bork et al. [60] use the Shapley value to assign

importance to protein interactions in large, complex biological

interaction networks; Keinan et al. [61] employ the Shapley

value in order to measure causal effects in neurophysical

models. The novelty in our use of the game theoretic power

indices lies in the conception of a cooperative game via a

valuation function ι(S), defined by an randomized intervention
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on inputs S. Such an intervention breaks correlations and

allows us to compute marginal causal influences on a wide

range of system behaviors.

X. CONCLUSION & FUTURE WORK

In this paper, we present QII, a general family of metrics

for quantifying the influence of inputs in systems that process

personal information. In particular, QII lends insights into the

behavior of opaque machine learning algorithms by allowing

us to answer a wide class of transparency queries ranging

from influence on individual causal outcomes to influence

on disparate impact. To achieve this, QII breaks correlations

between inputs to allow causal reasoning, and computes the

marginal influence of inputs in situations where inputs cannot

affect outcomes alone. Also, we demonstrate that QII can

be efficiently approximated, and can be made differentially

private with negligible noise addition in many cases.

An immediate next step in this line of work is to explore

adoption strategies in the many areas that use personal infor-

mation to aid decision making. Areas such as healthcare [3],

predictive policing [1], education [4], and defense [5] all have

a particularly acute need for transparency in their decision

making. It is likely that specific applications will guide us in

our choice of a QII metric that is appropriate for that scenario,

which includes a choice for our game-theoretic power index.

We have not considered situations where inputs do not

have well understood semantics. Such situations arise often in

settings such as image or speech recognition, and automated

video surveillance. With the proliferation of immense process-

ing power, complex machine learning models such as deep

neural networks have become ubiquitous in these domains.

Defining transparency and developing analysis techniques in

such settings is important future work.
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APPENDIX A

ALTERNATIVE GAME-THEORETIC INFLUENCE MEASURES

In what follows, we describe two alternatives to the Shapley

value used in this work. The Shapley value makes intuitive

sense in our setting, as we argue in Section III-B. However,

other measures may be appropriate for certain input data

generation processes. In what follows we revisit the Banzhaf

index, briefly discussed in Section III-A, and introduce the

readers to the Deegan-Packel index, a game-theoretic influ-

ence measure with deep connections to a formal theory of

responsibilty and blame [41].

A. The Banzhaf Index

Recall that the Banzhaf index, denoted βi(N, v) is defined

as follows:

βi(N, v) =
1

2n−1

∑
S⊆N\{i}

mi(S).

The Banzhaf index can be thought of as follows: each

j ∈ N \ {i} will join a work effort with probability 1
2

(or, equivalently, each S ⊆ N \ {i} has an equal chance

of forming); if i joins as well, then its expected marginal

contribution to the set formed is exactly the Banzhaf index.

Note the marked difference between the probabilistic models:

under the Shapley value, we sample permutations uniformly

at random, whereas under the regime of the Banzhaf index,

we sample sets uniformly at random. The different sampling

protocols reflect different normative assumptions. For one,

the Banzhaf index is not guaranteed to be efficient; that is,∑
i∈N βi(N, v) is not necessarily equal to v(N), whereas it

is always the case that
∑n

i=1 ϕi(N, v) = v(N). Moreover, the

Banzhaf index is more biased towards measuring the marginal

contribution of i to sets of size n
2 ±O(

√
n); this is because the

expected size of a randomly selected set follows a binomial

distribution B(n, 1
2 ). On the other hand, the Shapley value is

equally likely to measure the marginal contribution of i to sets

of any size k ∈ {0, . . . , k}, as i is equally likely to be in any

one position in a randomly selected permutation σ (and, in

particular, the the set of i’s predecessors in σ is equally likely

to have any size k ∈ {0, . . . , n− 1}).
Going back to the QII setting, the difference in sampling

procedure is not merely an interesting anecdote: it is a sig-

nificant modeling choice. Intuitively, the Banzhaf index is

more appropriate if we assume that large sets of features

would have a significant influence on outcomes, whereas the

Shapley value is more appropriate if we assume that even

small sets of features might cause significant effects on the

outcome. Indeed, as we mention in Section VIII, aggregating

the marginal influence of i over sets is a significant modeling

choice; while using the measures proposed here is perfectly

reasonable in many settings, other aggregation methods may

be applicable in others.

Unlike the Shapley value, the Banzhaf index is not guar-

anteed to be efficient (although it does satisfy the symmetry

and dummy properties). Indeed, [62] shows that replacing

the efficiency axiom with an alternative axiom, uniquely

characterizes the Banzhaf index; the axiom, called 2-efficiency,

prescribes the behavior of an influence measure when two

players merge. First, let us define a merged game; given a

game 〈N, v〉, and two players i, j ∈ N , we write T = {i, j}.
We define the game v̄ on N \T ∪{t̄} as follows: for every set

S ⊆ N \{i, j}, v̄(S) = v(S), and v̄(S ∪{t̄}) = v(S ∪{i, j}),
note that the added player t̄ represents the two players i and

j who are now acting as one. The 2-Efficiency axiom states

that influence should be invariant under merges.

Definition 14 (2-Efficiency (2-EFF)). Given two players i, j ∈
N , let v̄ be the game resulting from the merge of i and j into

a single player t̄; an influence measure φ satisfies 2-Efficiency

if φi(N, v) + φj(N, v) = φt̄(N \ {i, j} ∪ {t̄}, v̄).
Theorem 15 ([62]). The Banzhaf index is the only function
to satisfy (Sym), (D), (Mono) and (2-EFF).

In our context, 2-Efficiency can be interpreted as follows:

suppose that we artificially treat two features i and j as

one, keeping all other parameters fixed; in this setting, 2-

efficiency means that the influence of merged features equals

the influence they had as separate entities.

B. The Deegan-Packel Index

Finally, we discuss the Deegan-Packel index [18]. While

the Shapley value and Banzhaf index are well-defined for any

coalitional game, the Deegan-Packel index is only defined for

simple games. A cooperative game is said to be simple if

v(S) ∈ {0, 1} for all S ⊆ N . In our setting, an influence

measure would correspond to a simple game if it is binary

(e.g. it measures some threshold behavior, or corresponds to

a binary classifier). The binary requirement is rather strong;

however, we wish to draw the reader’s attention to the Deegan-

Packel index, as it has an interesting connection to causal
responsibility [41], a variant of the classic Pearl-Halpern

causality model [40], which aims to measure the degree to

which a single variable causes an outcome.

Given a simple game v : 2N → {0, 1}, let M(v) be the set

of minimal winning coalitions; that is, for every S ∈ M(v),
v(S) = 1, and v(T ) = 0 for every strict subset of S. The

Deegan-Packel index assigns a value of

δi(N, v) =
1

|M(v)|
∑

S∈M(v):i∈S

1

|S| .

The intuition behind the Deegan-Packel index is as follows:

players will not form coalitions any larger than what they

absolutely have to in order to win, so it does not make sense

to measure their effect on non-minimal winning coalitions.

Furthermore, when a minimal winning coalition is formed,

the benefits from its formation are divided equally among its

members; in particular, small coalitions confer a greater benefit

for those forming them than large ones. The Deegan-Packel

index measures the expected payment one receives, assuming

that every minimal winning coalition is equally likely to form.

Interestingly, the Deegan-Packel index corresponds nicely to

the notion of responsibility and blame described in [41].
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Suppose that we have a set of variables X1, . . . , Xn set to

x1, . . . , xn, and some binary effect f(x1, . . . , xn) (written

as f(x)) occurs (say, f(x) = 1). To establish a causal

relation between the setting of Xi to xi and f(x) = 1,

[40] require that there is some set S ⊆ N \ {i} and some

values (yj)j∈S∪{i} such that f(x−S∪{i}, (yj)j∈S∪{i}) = 0,

but f(x−S , (yj)j∈S) = 1. In words, an intervention on the

values of both S and i may cause a change in the value of

f , but performing the same intervention just on the variables

in S would not cause such a change. This definition is at the

heart of the marginal contribution approach to interventions

that we describe in Section III-A. [41] define the responsibility

of i for an outcome as 1
k+1 , where k is the size of the

smallest set S for which the causality definition holds with

respect to i. The Deegan-Packel index can thus be thought of

as measuring a similar notion: instead of taking the overall

minimal number of changes necessary in order to make i a

direct, counterfactual cause, we observe all minimal sets that

do so. Taking the average responsibility of i (referred to as

blame in [41]) according to this variant, we obtain the Deegan-

Packel index.

Example 16. Let us examine the following setup, based on

Example 3.3 in [41]. There are n = 2k + 1 voters (n is an

odd number) who must choose between two candidates, Mr.

B and Mr. G ([41] describe the setting with n = 11). All

voters elected Mr. B, resulting in an n-0 win. It is natural to

ask: how responsible was voter i for the victory of Mr. B?

According to [41], the degree of responsibility of each voter

is 1
k+1 . It will require that i and k additional voters change

their vote in order for the outcome to change. Modeling this

setup as a cooperative game is quite natural: the voters are the

players N = {1, . . . , n}; for every subset S ⊆ N we have

v(S) =

{
1 if |S| ≥ k + 1

0 otherwise.

That is, v(S) = 1 if and only if the set S can change the

outcome of the election. The minimal winning coalitions here

are the subsets of N of size k + 1, thus the Deegan-Packel

index of player i is

δi(N, v) =
1

|M(v)|
∑

S∈M(v):i∈S

1

|S|

=
1(
n

k+1

)(n
k

)
1

k + 1
=

1

n− k
=

1

k + 1

We note that if one assumes that all voters are equally likely

to prefer Mr. B over Mr. G, then the blame of voter i would

be computed in the exact manner as the Deegan-Packel index.
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