
88 Int. J. Computational Science and Engineering, Vol. 2, Nos. 1/2, 2006

Copyright © 2006 Inderscience Enterprises Ltd.

Algorithms and analysis of scheduling for loops
with minimum switching

Zili Shao*
Department of Computing, Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong
E-mail: cszlshao@comp.polyu.edu.hk
*Corresponding author

Qingfeng Zhuge, Meilin Liu, Chun Xue
and Edwin H.M. Sha
Department of Computer Science, University of Texas at Dallas,
Richardson, Texas 75083, USA
E-mail: qfzhuge@utdallas.edu E-mail: mxl024100@utdallas.edu
E-mail: cxx016000@utdallas.edu E-mail: edsha@utdallas.edu

Bin Xiao
Department of Computing,
Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong
E-mail: csbxiao@comp.polyu.edu.hk

Abstract: Switching activity and schedule length are the two of the most important factors in
power dissipation. This paper studies the scheduling problem that minimises both schedule length
and switching activities for applications with loops on multiple functional unit architectures. We
show that, to find a schedule that has the minimal switching activities among all minimum
latency schedules with or without resource constraints is NP-complete. Although the minimum
latency scheduling problem is polynomial time solvable if there is no resource constraint or only
one functional unit (FU), the problem becomes NP-complete when switching activities are
considered as the second constraint. An algorithm, Power Reduction Rotation Scheduling
(PRRS), is proposed. The algorithm attempts to minimise both switching activities and schedule
length while performing scheduling and allocation simultaneously. Compared with the list
scheduling, PRRS shows an average of 20.1% reduction in schedule length and 52.2% reduction
in bus switching activities. Our algorithm also shows better performance than the approach that
considers scheduling and allocation in separate phases.

Keywords: switching activity; loop; scheduling; low power.

Reference to this paper should be made as follows: Shao, Z., Zhuge, Q., Liu, M., Xue, C. and
Sha, E.H.M. and Xiao, B. (2006) ‘Algorithms and analysis of scheduling for loops with minimum
switching’, Int. J. Computational Science and Engineering, Vol. 2, Nos. 1/2, pp.88–97.

Biographical notes: Zili Shao received the BE Degree in Electronic Mechanics from University
of Electronic Science and Technology of China, China, 1995. He received the MS and PhD
Degrees from the Department of Computer Science at the University of Texas at Dallas, in 2003
and 2005, respectively. He has been an Assistant Professor in the Department of Computing at
the Hong Kong Polytechnic University since 2005. His research interests include embedded
systems, high-level synthesis, compiler optimisation, hardware/software co-design and computer
security.

Qingfeng Zhuge received her PhD from the Department of Computer Science at the University of
Texas at Dallas. She obtained her BS and MS Degrees in Electronics Engineering from Fudan
University, Shanghai, China. Her research interests include embedded systems, real-time
systems, parallel architectures, optimisation algorithms, high-level synthesis, compilers, and
scheduling.

Meilin Liu received the BS and MS Degree in Electrical Engineering from Hohai University,
Nanjing, China in 1992 and 2000, respectively, and the MS Degree in computer Science from
University of Texas at Dallas, in 2004. She is currently a PhD Candidate of computer science at
University of Texas at Dallas. Her research interests include optimisation of loop execution, loop
transformations, and compiler optimisation for embedded systems.

 Algorithms and analysis of scheduling for loops with minimum switching 89

Chun Xue received the BS Degree in Computer Science and Engineering from University of
Texas at Arlington in May 1997, and MS Degree in computer Science from University of Texas
at Dallas, in Dec 2002. He is currently a computer science PhD candidate at University of Texas
at Dallas. His research interests include performance and memory optimisation for embedded
systems, and software/hardware co-design for parallel systems.

Edwin Hsing-Mean Sha received the BSE Degree in computer science from National Taiwan
University, Taiwan, in 1986, and received MA and PhD Degrees from the Department of
Computer Science, Princeton University, in 1991 and 1992, respectively. Since 2000, he has been
a tenured full Professor in the Department of Computer Science at the University of Texas at
Dallas. He has published more than 200 research papers in refereed conferences and journals.
He has been serving as an editor for many journals, and program committee members and chairs
in numerous conferences. He received NSF CAREER Award and Teaching award in 1998.

Bin Xiao received the BSc and MSc Degrees in Electronics Engineering from Fudan University,
China in 1997 and 2000 respectively, and PhD Degree in computer science from University of
Texas at Dallas, USA, in 2003. Now he is an Assistant Professor in the department of computing
of Hong Kong Polytechnic University. His research interests include computer networks and
routing protocols; peer-to-peer communications; Internet security with a focus on Denial of
Service (DoS) defence; embedded system design; mobile ad hoc networks; and wireless
communication systems.

1 Introduction

In many portable systems, such as wireless communication
and image processing systems, the DSP processor core
consumes a significant amount of power and time in highly
computation intensive applications. In such applications,
loops are the most critical sections. An efficient loop
scheduling scheme can help reduce the power consumption
while still satisfying the time constraint. Switching activities
play a key role in the total power consumption
(Chandrakasan et al., 1992; Stan and Burleson, 1995),
therefore, various techniques have been proposed to reduce
power consumption by reducing switching activities
(Chandrakasan et al., 1992; Tsui et al., 1993; Roy and
Prasad, 1992; Alidina et al., 1994; Hachtel et al., 1994;
Mehendale et al., 1995; Raghunathan and Jha, 1995; Musoll
and Cortadella, 1995a, 1995b; Benini and Micheli, 1995;
Macii et al., 1998; Henning and Chakrabarti, 1998;
Yu et al., 1998; Masselos et al., 2000; Panda and
Dutt, 1999; Sundararajan and Parhi, 2000; Parhi, 2001;
Kruse et al., 2001; Kim et al., 2001; Erdogan and Arslan,
2002; Henning and Chakrabarti; 2002). This paper focuses
on reducing both switching activities and schedule length of
an application on multiple functional unit architectures such
as VLIW (Very Long Instruction Word) processors. In a
multiple functional unit architecture, several instructions
can be executed in parallel. The power consumption in a
clock cycle, Pcycle, can be computed by:

cycle base nst
nst

{ (,)}
i

i

I
I

P P P SP i j= + +∑ (1)

where Pbase is the base power needed to support instruction
execution, nstiIP is the basic power to execute an instruction
Ii on a functional unit, and SP(i, j) is the switching power
caused by switching activities between I nsti (current
instruction) and I nstj (last instruction) executed on the same
functional unit (FU). Let S be a schedule for an application

and L the schedule length of S. Then the energy ES for
Schedule S can be computed by

()
() ()

() ()
cycle base nst

1 1 1nst nst

(,)k
ik k

i i

L L L
k k

S I
k k kI I

E P L P P SP i j
= = =

= = × + +∑ ∑ ∑ ∑ ∑

 (2)
ΣΣP is the summation of basic power consumption for all
instructions of an application. It does not change with
different schedules. L and ΣΣSP(i, j) will change with
different schedules, though. Therefore, in order to minimise
the energy consumption of an application, schedule length
and switching activity both need to be considered in
scheduling.

Low power scheduling to reduce switching activities has
been extensively studied in high level synthesis (HLS) and
compiler optimisation. In HLS, a lot of approaches have
been proposed to minimise switching activities. In Su et al.
(1994), an instruction scheduling technique called cold
scheduling is proposed to reduce the switching activities on
the control path. In Raghunathan and Jha (1995), Kruse et
al. (2001) and Chang and Pedram (1995), a low power
resource allocation approach is proposed to find an
allocation for a fixed schedule in such a way that the total
switching activities can be reduced. In Musoll and
Cortadella (1995a, 1995b), an operand sharing scheduling
technique is proposed to schedule the operation nodes with
the same operands as closely as possible to reduce the
switching activities on the functional units. In Mehendale et
al. (1995), a scheduling algorithm for optimising
coefficients of a FIR filter is proposed to minimise the
switching activities on memory data bus and functional
units. In recent works Masselos et al. (2000) and Choi and
Chatterjee (2001), the power efficient scheduling problem is
formulated as the Travelling Salesman’s Problem (TSP) and
solved by heuristics of TSP. The above techniques are either
based on single FU architecture (Mehendale et al., 1995;

90 Z. Shao, Q. Zhuge, M. Liu, C. Xue, E.H.M. Sha and B. Xiao

Musoll and Cortadella, 1995a, 1995b; Masselos et al., 2000;
Su et al., 1994; Choi and Chatterjee, 2001) or a fixed
schedule (Raghunathan and Jha, 1995; Kruse et al., 2001;
Chang and Pedram, 1995). So optimising schedule length is
not considered in these techniques.

In compiler optimisation, various instruction level
scheduling techniques have been proposed to reduce power
consumption. In Tiwari et al. (1994a, 1994b) and Lee et al.
(1997), several revised list scheduling techniques are
proposed to minimise energy, based on the instruction level
energy models for the specific processors. Using similar
energy models, in Parikh et al. (2000), several energy
oriented instruction scheduling approaches are presented
and compared with performance oriented scheduling. In
Toburen et al. (1998), an instruction scheduling technique is
proposed to limit the number of instructions that can be
scheduled in a given cycle based on some predefined per
cycle energy dissipation threshold. In Lee et al. (2003), a
two phase scheduling approach is proposed to optimise
transition activity in the instruction bus on a VLIW
architecture. These techniques are based on DAG (Directed
Acyclic Graph) Scheduling, in which an application is
modelled as DAG and only the DAG parts of loops are
considered. The loop pipelining techniques (Lam, 1988;
Rau et al., 1992; Huff, 1993; Chao et al., 1997) cannot be
applied to optimise schedule length when loops are
represented as DAGs.

Several low power loop compilation optimisation
techniques have been proposed (Yun and Kim, 2001; Yang
et al., 2002). However, with the focus on reducing power
variations of applications, they cannot be directly applied to
optimise the energy consumption. In HLS, based on operand
sharing approach, a loop pipelining methodology to reduce
both latency and power is first proposed in Yu et al. (1998).
Using a similar approach, a loop pipelining technique is
proposed to first minimise power and then maximise
throughout in Kim et al. (2001). These techniques are based
on operand sharing and cannot be directly used on multiple
functional unit architectures. Therefore, in this paper, we
propose a low power scheduling scheme for multiple
functional unit architectures to reduce both schedule length
and switching activities for an application with loops. The
scheme is constructed based on a general model and can be
applied in either HLS or compiler optimisation.

In the paper, we first analyse the complexity of the low
power loop scheduling problem. We formally prove that the
loop scheduling problem with minimum latency and
minimum switching activities is NP-complete with or
without resource constraints. While the minimum latency
loop scheduling problem is polynomial time solvable if
there is only one FU or no resource constraints, the problem
becomes NP-complete when considering switching
activities as the second constraint.

We then design an algorithm, Power Reduction Rotation
Scheduling (PRRS), to minimise both switching activities
and schedule length for loop applications by performing
scheduling and allocation simultaneously. In the PRRS

algorithm, the schedules are generated by repeatedly
rotating down and reallocating nodes with minimum
schedule length and switching activities based on rotation
scheduling (Chao et al., 1997) and a best schedule is
selected that has the minimal switching activities among all
schedules with the minimal schedule length.

Finally, we conduct experiments on a VLIW simulator
similar to TI C6000 DSP. The experimental results show
significant reduction in switching activities and schedule
length. Compared with the list scheduling, PRRS shows an
average 20.1% reduction in schedule length and 52.2%
reduction in bus switching activities. The experimental
results also show that PRRS has better performance in
switching activities reduction than the algorithm based on
the approach that considers low power allocation with a
fixed schedule (Kruse et al., 2001).

In the next section, we introduce necessary background.
Section 3 presents complexity analysis of our scheduling
problem. The algorithm is discussed in Section 4.
Experimental results and concluding remarks are provided
in Section 5 and 6, respectively.

2 Basic concepts and models

In this section, we introduce some basic concepts which will
be used in the later sections.

2.1 Data flow graph (DFG)

Data flow graph is used to model loops and is defined as
follows. A Data Flow Graph (DFG) G = 〈V, E, OP, d〉 is a
node-weighted and edge-weighted directed graph, where V
is the set of operation nodes, E ⊆ V × V is the edge set that
defines the precedence relations for all nodes in V, OP(u) is
a binary string associated with each node u ∈ V, d(e)
represents the number of delays for an edge e. Nodes in V
can be various operations, such as addition, subtraction,
multiplication, logic operation, etc.

In DFG, OP(u) is a binary string that denotes the state of
the signal associated with node u. It may represent different
values in different optimisation environments. For example,
OP(u) can be used to represent the operand of node u in
optimising switching activities in functional units (Musoll
and Cortadella, 1995a, 1995b), or it can be used to represent
the binary code of node u in optimising switching activities
in instruction buses (Lee et al., 2003).

In our case, a DFG can contain cycles. The intraiteration
precedence relation is represented by the edge without delay
and the interiteration precedence relation is represented by
the edge with delays. The cycle period of a DFG
corresponds to the minimum schedule length of one
iteration of the loop when there are no resource constraints.

An example is shown in Figure 1. The DFG in
Figure 1(b) models the loop in Figure 1(a). In this example
there are two kinds of operations: multiplication and
addition. They are denoted by the rectangle and circle as
shown in Figure 1(b).

 Algorithms and analysis of scheduling for loops with minimum switching 91

Figure 1 A loop and its corresponding DFG

2.2 The static schedule

A static schedule of a cyclic DFG is a repeated pattern of an
execution of the corresponding loop. In our work, a
schedule implies both control step assignment, and
functional unit allocation. A static schedule must obey the
precedence relations of the directed acyclic graph (DAG)
portion of the respective DFG. The DAG is obtained by
removing all edges with delays in the DFG.

Figure 2 shows a static schedule for the DFG in
Figure 1(b) when there are three FUs. The schedule is
obtained by list scheduling. In the schedule, the binary
string in the parenthesis beside each node denotes the states
of the signals associated with nodes. To make it simple, we
assume that all multiplication operation nodes are associated
with the same state of signal, 001 and all addition operation
nodes are with the same state of signal, 110. These
assumptions here are only for demonstration purposes.
In practice, nodes with the same operation may have
different states of signal.

Figure 2 The static schedule for the DFG in Figure 1(b)

We use [i, j] to denote the location of a node in a schedule,
where i is the row (control step) and j is the column (FU).
For example, location [2, 1] in the schedule refers to node B
scheduled at control step 2 and assigned to FU1 in Figure 2.

2.3 Retiming and rotation scheduling

Retiming (Veen and Woeginger, 1998) can be used to
optimise the cycle period of a DFG by evenly distributing
the delays in it. Given a DFG G = 〈V, E, OP, d〉, retiming r
of G is a function from V to integers. For a node u ∈ V, the
value of r(u) is the number of delays drawn from each of its
incoming edges of node u and pushed to all of its outgoing
edges. Let Gr = 〈V, E, OP, dr〉 denote the retimed graph of G
with retiming r, then dr(e) = d(e) + r(u) – r(v) for every edge
e(u → v) ∈ V in Gr.

Rotation Scheduling presented in Chao et al. (1997) is a
scheduling technique used to optimise a loop schedule with
resource constraints. It transforms a schedule to a more
compact one iteratively. In most cases, the minimal
schedule length can be obtained in polynomial time by
rotation scheduling. In each step of rotation, nodes in the
first row of the schedule are rotated down. By doing so, the
nodes in the first row are rescheduled to the earliest possible
available locations. From the retiming point of view, each
node gets retimed once by drawing one delay from each of
the incoming edges of the node and adding one delay to
each of its outgoing edges in the DFG. The new location of
the node in the schedule must also obey the precedence
relation in the new retimed graph. The retimed graphs and
schedules after the first and second rotation are shown in
Figure 3(a) and Figure 3(b) respectively, which is based on
the original schedule in Figure 2. The minimal schedule
length is obtained by the schedule in Figure 3(b).

Figure 3 (a) The retimed graph and the schedule after the first
rotation and (b) The retimed graph and the schedule
after the second rotation

2.4 The power cost model

Switching activity is used as the indicator of the power
consumption in our work. The switching activity of node u
bound to functional unit FUi, called Switch_Node(u, FUi), is
defined as the hamming distance between LAST_OP(FUi)
and OP(u), where OP(u) is the state of signal of u and
LAST_OP(FUi) is the state of signal of the node executed on
FUi before u. The switching activity of a static schedule for
a DFG is defined as the summation of the switching
activities of all nodes bound to FUs. Since the static
schedule is repeatedly executed for the loop, the initial value
of LAST_OP(FUi) is set as OP(u) where u is the last node
executed on FUi in the previous iteration. For example, for
the static schedule shown in Figure 2, the initial value of
LAST_OP(FU1) is 110(OP(G) of G) and the initial value of
LAST_OP(FU2) is 110(OP(C) of C) and the initial value of
LAST_OP(FU3) is 001 (OP(D) of D).

For a static schedule S, Switch_Act(S) is used to denote
its switching activity, where:

92 Z. Shao, Q. Zhuge, M. Liu, C. Xue, E.H.M. Sha and B. Xiao

FU assigned to FU
Switch_Act() Switch_Node(, FU).

i i

i
u

S u=∑ ∑

For example, Switch_Act(S) = 6 for the static schedule
S in Figure 2, where the switching activities are
3 + 3 + 0 + 0 + 0 = 6 on FU1 and 0 on FU3 and FU4.
The switching activity remains 6 for both schedules in
Figure 3(a) and Figure 3(b). Here, in order to make it
simple, we assume that the state on a FU will not change
with an empty slot. It may not be true for some optimisation
problems. For example, when the problem is to optimise
switching activities on an instruction bus, an empty slot will
represent a ‘NOP’ instruction and will cause switching
activities. As shown in Section 4, our algorithm is general
and can be easily extended to deal with all cases.

The problem we intend to solve is defined as follows.
Given a cyclic DFG G = 〈V, E, OP, d〉 that models a loop
and a set of FUs, find a static schedule S of G such that S
has the minimum switching activities in all possible
minimum latency schedules. We call the problem as the
min-latency-switching-activity scheduling problem.

3 Complexity analysis

In this section, we analyse the complexity of the
min-latency-switching-activity scheduling problem. In previous
work such as (Masselos et al., 2000; Choi and Chatterjee,
2001), the power efficient scheduling problem is formulated
as the Travelling Salesman Problem (TSP) and solved by
heuristics of TSP when there is one FU. However, because a
problem can be transformed to TSP, it does not necessarily
mean that it is NP-complete. For example, the problem to
sequence jobs that require common resources on a single
machine (Veen and Woeginger, 1998) can be transformed to
TSP but still is polynomial time solvable. In this section, we
formally prove that the min-latency-switching-activity
scheduling problem is NP-complete with or without the
resource constraints. Note that the minimum latency loop
scheduling problem is polynomial time solvable if there is
only one FU or no resource constraints. We show that it
becomes NP-complete when switching activities are
considered as the second constraint. We categorise the
problem into three cases and give proofs as follows.

3.1 1 < the number of resources < infinite

When the number of resources is greater than one
but not infinite, it is known that the minimum latency
loop scheduling is NP-complete (Garey and Johnson, 1979).
So the min-latency-switching-activity scheduling problem is
also NP-complete.

Theorem 3.1: Let U be the number of resources, where
U > 1 and U < ∞, min-latency-switching-activity scheduling
problem is NP-complete.

Proof 3.1: When U > 1 and U < ∞, the minimum latency
loop scheduling problem is NP-complete (Garey and
Johnson, 1979). Given an instance of the minimum latency

loop scheduling problem, we can assigning all nodes with
the same OP(u) to get an instance of our problem. Thus, we
transform the minimum latency loop scheduling problem to
our problem in polynomial time.

3.2 The number of resources = 1

When the number of resources equals one, it is
known that the minimum latency loop scheduling is trivially
polynomial time solvable. However, this is not the case
when switching activities are considered as the second
constraint.

Theorem 3.2: Let U be the number of resources, when
U = 1, min-latency-switching-activity scheduling problem is
NP-complete.

In order to prove Theorem 3.2, we first define the decision
problem (DP1) of min-latency-switching-activity scheduling
problem when U = 1.

DP1: Given a cyclic DFG G = 〈V, E, OP, d〉, one FU and
two constants D and K, does there exist a static schedule
that has the schedule length at most D and has the switching
activity at most K?

In our proof, we will transform the L1 Geometric
Travelling Salesman Problem (GTSP) to our problem.
GTSP is defined as follows (Garey and Johnson, 1976).

The L1 geometric travelling salesman problem (GTSP):
Given a set S of integer coordinate points in the plane and a
constant L, does there exist a circuit passing through all the
points of S which, with edge length measured by L1, has
total length less than or equal to L?

Proof 3.2: It is obvious DP1 belongs to NP. Assume
S = {[x1, y1], [x2, y2], …, [xn, yn]} is an instance of GTSP.
Construct DFG G = 〈V, E, OP, d〉 as follows.
V = 〈v1, v2, …, vn〉 where vi corresponds to a point [xi, yi] in
S. E = φ. Assume that X = max(xi) and Y = max(yi) for
1 ≤ i ≤ n, then OP(vi) = (X – xi)0’s • xil’s • (Y – yi)0’s • yi1’s
for each vi ∈ V(1 ≤ i ≤ n), where ‘•’ denotes concatenation.
For example, if X = Y = 3, x1 = 2 and y1 = 1, then
OP(v1) = 011 001. Set D = n and K = L. Since GTSP is
NP-complete and the reduction can be done in polynomial
time, DP1 is NP-Complete.

3.3 No resource constraints

When there are no resource constraints, the minimum
latency loop scheduling problem is polynomial time
solvable. Retiming (Leiserson and Saxe, 1991) can be
used to find an optimal solution. However, when
switching activities are considered, the problem becomes
NP-complete.

Theorem 3.3: Let U be the number of resources, when
U = ∞, min-latency-switching-activity scheduling problem
is NP-complete.

The decision problem (DP2) of min-latency-switching-activity
scheduling problem when U = ∞ is similar to DP1 except

 Algorithms and analysis of scheduling for loops with minimum switching 93

that there is one FU in DP1 while no resource constraint in
DP2. The proof of Theorem 3.2 is as follows.

Proof 3.3: It is obvious DP2 belongs to NP. Assume
S = {[x1, y1], [x2, y2], …, [xn, yn]} is an instance of GTSP.
Construct DFG G = 〈V, E, OP, d〉 as follows. V = V(1) ∪ V(2),
where (1) (1) (1) (1)

1 2, ,..., nV v v v= 〈 〉 and (2) (2) (2) (2)
1 2, ,..., nV v v v= 〈 〉 .

The nodes in V(1) correspond to the points in S.
Assume that X = max(xi) and Y = max(yi) for 1 ≤ i ≤ n, then

(1)OP() (2)1 ()0 1 ()0 1i i i i iv X Y s X x s x s Y y s y s′ ′ ′ ′ ′= + + • − • • − •
 for each node (1) (1) (1)iv V i n∈ ≤ ≤ . For example, if
X = Y = 3, x1 = 2 and y1 = 1, then (1)

1OP()v = 11111111 011
001. The nodes in V(2) construct a cycle. Set (1)

1OP()v all 0’s
for 1 ≤ i ≤ n. Add edge (2) (2)

1()i ie v v +→ to E and set
(2) (2)

1(()) 0i id e v v +→ = for 1 ≤ i ≤ (n – 1). Add edge
(2) (2)

1()ne v v→ to E and set (2) (2)
1(()) 1nd e v v→ = .

Set D = n and K = L. Set the initial state of signal of each FU
to all 0’

With the construction of V(2), the assignment of nodes in
V(2) does not introduce switching activities and the
minimum schedule length equals n. The construction of
V(1) makes all nodes in V(1) to be assigned to the same FU
for minimising switching activities. Since the reduction can
be done in polynomial time, DP2 is NP-complete.

4 The PRRS algorithm

In this section, an algorithm, Power Reduction
Rotation Scheduling (PRRS), is designed to solve the
min-latency-switching-activity scheduling problem based on
rotation scheduling. The basic idea is to generate the
schedules by repeatedly rotating down and reallocating
nodes with minimising schedule length and switching
activities based on Rotation Scheduling, and then select a
best schedule that has the minimal switching activities The
PRRS algorithm is shown in Algorithm 4.1.

Theorem 4.1: Power-Reduction-Rotation-Scheduling
(PRRS)

DFG G = 〈V, E, OP, d〉, the retiming r of G, an initial
schedule S of G, the rotation times N

A schedule S and the retiming rk = 1 to N

R ← All nodes in the first row in S;

Delete the first row from S;

Shift S up by 1 control step;

u ∈ R

r(u) ← r(u) + 1;

u ∈ R

T ← All available locations of u from Row 1 to Row L in S
based on the precedence relation in Gr;

E = φ

T ← All available locations of u in Row L + 1 in S;

[a, b] ← The location with the minimum switching activities
among all locations in T;

Put u into [a, b];

Sk ← S; rk ← r;

Select Sj from S1, S2, …, SN such that Sj has the minimum
switching activities among all minimum-latency schedules;

Output Sj and rj;

In this algorithm, we first put all nodes in the first
row of S into set R. Then we delete the first row of S and
shift S up by one control step. Variable L is used to record
the schedule length of S. After that, we retime each node
u ∈ R such that r(u) ← r(u) + 1. Then based on the
precedence relation in the retimed graph Gr, we rotate each
node u ∈ R by putting u into the location with the
minimum switching activities among all available empty
locations in T, where T is the set containing all available
locations of u.

We obtain the best location for a rotated node by the
following strategy. For a location [i, j] ∈ T, we define a
function, Switch_Location(u, [i, j]), to compute the
switching activities if u is assigned to location [i, j]. Assume
that u′ is the node in the first nonempty location
above [i, j] and u″ is the node in the first nonempty
location below [i, j] both in column j of S, then
Switch_Location(u, [i, j]) = HD(OP(u′), OP(u)) + HD(OP(u),
OP(u″)) – HD(OP(u′), OP(u″)), where HD(x, y) represents
the hamming distance of x and y. When computing T, the
available locations from row 1 to row L are considered first.
If there are no available locations in this field, we assign the
node to the locations in row L + 1. Using this strategy, the
schedule length is minimised as a first priority. After all
nodes in R are scheduled, the schedule S and the retiming r
are recorded. PRRS will repeat the above procedure N times,
where N is a user specified amount. A best schedule is
selected from the generated N schedules, which has the
minimum switching activities among all minlatency
schedules.

An example is shown in Figure 4, where the schedules
shown in Figure 2 in Section 2 are rotated. Figure 4(a)
shows the schedule obtained by removing the first row
from the original schedule (Figure 2). There is only one
node A in the rotated node set. Figure 4(b) shows
the rotated node A and the available empty location set T.
The number above the line between A and a location in T is
the number of bit switches if A is put into the location.
The best location, [2, 3], is selected and it is the earliest
location with the minimum switches. So A is put into
location [2, 3] in the new schedule. The schedules
generated by PRRS after the first and second rotation is
shown in Figure 5. The switching activity is 0 for
both schedules while it is 6 for both schedules in
Figure 3 generated by the traditional rotation scheduling.
This shows that our PRRS can significantly reduce

94 Z. Shao, Q. Zhuge, M. Liu, C. Xue, E.H.M. Sha and B. Xiao

switching activities compared to the traditional rotation
scheduling.

Algorithm 4.1 Power-Reduction-Rotation-Scheduling (PRRS)

Require: DFG G = <V, E, OP, d>, the retiming r of G, an
initial schedule S of G, the rotation times N

Ensure: A schedule S and the retiming r

for all k = 1 to N do

R ← All nodes in the first row in S;

Delete the first row from S;

Shift S up by 1 control step;

for all u ∈ R do

r(u) ← r(u) + 1;

end for

for all u ∈ R do

T ← All available locations of u from Row 1 to
Row L in S based on the precedence relation in Gr;

if E = Ø then

T ← All available locations of u in Row L + 1 in
S;

end if

[a, b] ← The location with the minimum switching
activities among all locations in T;

Put u into [a, b];

end for

Sk ← S; rk ← r;

end for

Select Sj from S1, S2, …, SN such that Sj has the minimum
switching activities among all minimum-latency schedules;

Output Sj and rj;

Figure 4 (a) The schedule obtained by removing the first row
from the schedule in Figure 2 and (b) The rotated node
A and the available empty location set T

Figure 5 The schedules generated by PRRS algorithm both with
the switching activity of 0; (a) the schedule after the
first rotation and (b) the schedule after the second
rotation

Let M be the number of functional units and n be the
number of nodes in G. Then the number of nodes in a row in
a schedule is at most M and the total number of empty
locations is at most M × (n – 1). Considering the rotation
times N, the complexity of PRRS algorithm is
O(N × M × M × (n – l) = O(N × M2 × n).

5 Experiments

In this section, we conduct experiments with the PRRS
algorithm on a set of benchmarks including 4-stage lattice
filter, 8-stage lattice filter, differential equation solver,
elliptic filter and voltera filter. The experiments are
performed on a VLIW simulator with architecture similar to
TI C6000 DSP. The optimisation problem for reducing
switching activities on the instruction bus is used in the
experiments and the real binary code of instructions from TI
TMS320C6000 Instruction Set (2000) is used as OP(u) for
each node u.

We compare our results with those from list scheduling,
the traditional rotation algorithm and the low power
allocation approach in Kruse et al. (2001). In the list
scheduling, the priority of a node is set as the longest path
from this node to a leaf node (Micheli, 1994). In the low
power allocation approach, the schedule is fixed and the
allocation is performed to reduce switching activities. We
implement an algorithm, LPAllocation, based on this
approach. LPAllocation uses the schedule generated by
traditional rotation scheduling and performs the allocation
by bipartite matching.

The experiments are performed on a Dell PC with a P4
2.1 G processor and 512 MB memory running Red Hat
Linux 9.0. In the experiments, the running time of PRRS on
each benchmark is less than one minute.

The experimental results for the list scheduling, rotation
scheduling, and our PRRS algorithm, are shown in Table 1
when the number of FUs is 4, 5 and 6, respectively. Column
‘SA’ presents the switching activity of the static schedule
and Column ‘SL’ presents the schedule length obtained
from three different scheduling algorithms: the list
scheduling (Field ‘List’), the traditional rotation scheduling

 Algorithms and analysis of scheduling for loops with minimum switching 95

(Field ‘Rotation’) and our PRRS algorithm (Field ‘PRRS’).
Column ‘SL (%)’ and ‘SA (%)’ under ‘PRRS’ present the
percentage of reduction in schedule length and switching
activities respectively compared to the list scheduling
algorithm. The average reduction is shown in the last row of
the table. PRRS shows an average 20.1% reduction in
schedule length and 52.2% reduction in bus switching
activities compared with the list scheduling.

Table 1 The comparison of bus switching activities and
schedule length for list scheduling, rotation
scheduling and PRRS

List Rotation PRRS

Bench SA SL SA SL SA
SA
(%) SL

SL
(%)

The number of FUs = 4

4-Lattice 68 9 72 7 38 44.1 7 22.2
8-Lattice 108 17 118 11 68 37.0 11 35.3
DEQ 30 5 32 4 14 53.3 4 20.0
Elliptic 136 14 136 14 86 36.8 14 0.0
Voltera 70 12 68 12 38 45.7 12 0.0
The number of FUs = 5
4-Lattice 74 9 80 6 32 56.8 6 33.3
8-Lattice 106 17 112 9 68 35.8 9 47.1
DEQ 30 5 36 4 10 66.7 4 20
Elliptic 136 14 136 14 58 57.4 14 0.0
Voltera 72 12 72 12 26 63.9 12 0.0
The number of FUs = 6
4-Lattice 76 9 68 5 34 55.3 5 44.4
8-Lattice 104 17 116 7 68 34.6 7 58.8
DEQ 30 5 36 4 6 80.0 4 20.0
Elliptic 136 14 136 14 40 70.6 14 0.0
Voltera 66 12 72 12 36 45.5 12 0.0
Average reduction (%) over list 52.2 – 20.1

We conduct experiments to compare the performance of
PRRS with that of LPAllocation, the algorithm based on the
approach in Kruse et al. (2001), The experimental results on
the various benchmarks are shown in Table 2 when the
number of FUs is 4, 5 and 6, respectively. In the table,
‘LPAlloc’ presents algorithm LPAllocation. PRRS shows an
average 20.7% reduction in bus switching activity compared
with LPAllocation.

To demonstrate the influence of the number of FUs,
Table 3 shows the switching activity and schedule length for
8-stage Lattice filter for different scheduling algorithms
when the number of FUs varies from 3 to 12. The
experimental results show that when the number of FUs
increases, the percentage of reduction on switching
activities increases correspondingly.

In summary, from Tables 1–3, we found that the list
scheduling shows inferior performance in both schedule
length and switching activities for applications with loops.

The traditional rotation scheduling can effectively reduce
schedule length but not switching activities. The
LPAllocation algorithm can reduce switching activities for a
fixed schedule. Our PRRS can reduce both schedule length
and switching activities, and it yields greater reduction on
switching activities compared with the LPAllocation
algorithm based on the approach in Kruse et al. (2001).

Table 2 The comparison of bus switching activities for PRRS
and LPAllocation

LPAlloc PRRS
Bench SA SA %

The number of FUs = 4

4-Lattice 50 38 24.0
8-Lattice 94 68 27.7
DEQ 16 14 12.5
Elliptic 86 86 0.0
Voltera 42 38 9.5
The number of FUs = 5
4-Lattice 58 32 44.8
8-Lattice 82 68 17.1
DEQ 16 10 37.5
Elliptic 68 58 14.7
Voltera 40 26 35.0
The number of FUs = 6
4-Lattice 38 34 10.5
8-Lattice 76 68 10.5
DEQ 14 6 57.1
Elliptic 44 40 9.1
Voltera 36 36 0.0
Average reduction (%) 20.7

Table 3 Comparison of switching activities and schedule
length for 8- lattice filter when no of FUs varies
from 3 to 12

List Rotation LPAlloc PRRS

FUs SA SL SA SL SA SL SA SL %

3 106 17 118 14 90 14 86 14 27.1

4 108 17 118 11 94 11 68 11 42.4

5 106 17 112 9 82 9 68 9 39.3

6 104 17 116 7 76 7 68 7 41.4

7 96 17 120 6 58 6 58 6 51.7

8 110 17 120 6 58 6 30 6 75.0

9 110 17 120 5 84 5 38 5 68.3

10 114 17 110 5 66 5 20 5 81.8

11 112 17 120 4 44 4 30 4 75.0

12 102 17 106 4 76 4 26 4 75.5

Average reduction (%) 57.7

96 Z. Shao, Q. Zhuge, M. Liu, C. Xue, E.H.M. Sha and B. Xiao

6 Conclusion

This paper studied low power loop scheduling problem and
attempted to minimise both the schedule length and the
power consumption for applications with loops on
multiple-functional-unit architectures. We showed that to
find a schedule that has the minimal switching activity
among all minimum-latency schedules with or without
resource constraints is NP-complete. An algorithm, Power
Reduction Rotation Scheduling, was proposed. The
algorithm minimises both the switching activity and the
schedule length based on rotation scheduling when
performing the scheduling and allocation simultaneously.
The experimental results show that our algorithm can
greatly reduce switching activities and schedule length
compared to the existing approaches.

Acknowledgements

This work is partially supported by TI University Program,
NSF EIA-0103709, Texas ARP 009741-0028-2001, NSF
CCR-0309461, USA and HK POLYU A-PF86 and COMP
4-Z077, HK.

References
Alidina, M., Monteiro, J., Devadas, S., Ghosh, A. and

Papaefthymiou, M. (1994) ‘Precomputation-based sequential
logic optimization for low power’, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, December,
Vol. 2, No. 4, pp.426–436.

Benini, L. and Micheli, G.D. (1995) ‘State assignment for low
power dissipation’, IEEE J. Solid-State Circuit, March,
Vol. 30, No. 3, pp.258–268.

Chandrakasan, A., Sheng, S. and Brodersen, R. (1992)
‘Low-power cmos digital design’, IEEE Journal of
Solid-State Circuits, April, Vol. 27, No. 4, pp.473–484.

Chang, J. and Pedram, M. (1995) ‘Register allocation and binding
for low power’, in Proc. of the 32nd ACM/IEEE Design
Automation Conference, June, pp.29–35.

Chao, L-F., LaPaugh, A.S. and Sha, E.H-M. (1997)
‘Rotation scheduling: A loop pipelining algorithm’, IEEE
Trans. on Computer-Aided Design, March, Vol. 16, No. 3,
pp.229–239.

Choi, K. and Chatterjee, A. (2001) ‘Efficient instruction-level
optimization methodology for low-power embedded systems’,
in Proc. of the IEEE Int. Symp. on System Synthesis, October,
pp.147–152.

Erdogan, A. and Arslan, T. (2002) ‘On the low power
implementation of fir filtering structures on single multiplier
DSPs’, IEEE Trans. on Circuits and Systems II: Analog and
Digital Signal Processing, March, Vol. 49, No. 3,
pp.223–229.

Garey, M.R. and Johnson, D.S. (1979) Computers and
Intractability: A Guide to the Theory of NP-Completeness,
W.H. Freeman and Company, San Francisco, CA.

Garey, M.R. and Johnson, D.S. (1976) ‘Some NP-complete
geometric problems’, in Proc. of the ACM Symp. on Theory of
Computing, May, pp.10–22.

Hachtel, G.D., Hermida, M., Pardo, A., Poncino, M. and Somenzi,
F. (1994) ‘Re-encoding sequential circuits to reduce power
dissipation’, in the 1994 IEEE/ACM international conference
on Computer-aided design, November, pp.70–73.

Henning, R. and Chakrabarti, C. (1998) ‘Relating data
characteristics to transition activity in high-level static cmos
design’, in 13th International Conference on VLSI Design,
January, pp.38–43.

Henning, R. and Chakrabarti, C. (2002) ‘An approach to switching
activity consideration during high level low power design
space exploration’, IEEE Trans. on Circuits and Systems II:
Analog and Digital Signal Processing, May, Vol. 49, No. 5,
pp.339–351.

Huff, R.A. (1993) ‘Lifetime-sensitive modulo scheduling’, in the
ACM SIGPLAN 1993 conference on Programming language
design and implementation, June, pp.258–267.

Kim, D., Shin, D. and Choi, K. (2001) ‘Low power pipelining of
linear systems: a common operand centric approach’, in Proc.
of the IEEE/ACM Int. Symp. on Low Power Design, August,
pp.225–230.

Kruse, L., Schmidt, E., Jochens, G., Stammermann, A., Schulz, A.,
Macii, E. and Nebel, W. (2001) ‘Estimation of lower and
upper bounds on the power consumption from schedule data
flow graphs’, IEEE Trans. on VLSI Systems, February, Vol. 9,
No. 1, pp.3–14.

Lam, M. (1988) ‘Software pipelining: an effective scheduling
technique for vliw machines’, in the ACM SIGPLAN 1988
conference on Programming Language design and
Implementation, June, pp.318–328.

Lee, C., Lee, J-K. and Hwang, T. (2003) ‘Compiler optimization
on VLIW instruction scheduling for low power’, ACM
Transactions on Design Automation of Electronic Systems,
April, Vol. 8, No. 2, pp.252–268.

Lee, M.T-C., Fujita, M., Tiwari, V. and Malik, S. (1997)
‘Power analysis and minimization techniques for embedded
dsp software’, IEEE Transactions on VLSI Systems, March,
Vol. 5, No. 1, pp.123–135.

Leiserson, C.E. and Saxe, J.B. (1991) ‘Retiming synchronous
circuitry’, Algorithmica, Vol. 6, pp.5–35.

Macii, E., Pedram, M. and Somenzi, F. (1998) ‘High-level power
modeling, estimation and optimization’, IEEE Trans. on
Computer-Aided Design, November, Vol. 17, pp.1061–1079.

Masselos, K., Theoharis, S., Merakos, P.K., Stouraitis, T. and
Goutis, C.E. (2000) ‘Low power synthesis of sum-of-products
computation’, in Proc. of the IEEE/ACM Int. Symp. on Low
Power Electronics and Design, July, pp.234–237.

Mehendale, M., Sherlekar, S. and Venkatesh, G. (1995)
‘Coefficient optimization for low power realization of fir
filters’, in IEEE Workshop on VLSI Signal Processing,
pp.352–361.

Micheli, G.D. (1994) Synthesis and Optimization of Digital
Circuits, McGraw-Hill, New York, NY.

Musoll, E. and Cortadella, J. (1995a) ‘Scheduling and resource
binding for low power’, in Proc. of the IEEE Int. Symp. on
System Synthesis, April, pp.104–109.

Musoll, E. and Cortadella, J. (1995b) ‘High-level synthesis
techniques for reducing the activity of low power’, in Proc. of
the IEEE/ACM Int. Symp. on Low Power Design, April,
pp.99–104.

Panda, P. and Dutt, N. (1999) ‘Low power memory mapping
through reducing address bus activity’, IEEE Trans. on VLSI
Syst., September, Vol. 7, No. 3, pp.309–320.

 Algorithms and analysis of scheduling for loops with minimum switching 97

Parhi, K.K. (2001) ‘Low-power implementation of DSP systems’,
IEEE Trans. on Circuits and Systems, Part-I: Fundamental
Theory and Applications, October, Vol. 48, No. 10,
pp.1214–1224.

Parikh, A., Kandemir, M., Vijaykrishnan, N. and Irwin, M.J.
(2000) ‘Instruction scheduling based on energy and
performance constraints’, in IEEE Computer Society Annual
Workshop on VLSI, April, pp.37–42.

Raghunathan, A. and Jha, N.K. (1995) ‘An ILP formulation for
low power based on minimizing switched capacitance during
data path allocation’, in Proc. of the IEEE Int. Symp. on
Circuits & Systems, May, pp.1069–1073.

Rau, B.R., Schlansker, M.S. and Tirumalai, P.P. (1992) ‘Code
generation schema for modulo scheduled loops’, in The 25th
annual international symposium on Microarchitecture,
December, pp.158–169.

Roy, K. and Prasad, S. (1992) ‘SYCLOP: Synthesis of CMOS
logic for low power applications’, in The 1991 IEEE
International Conference on Computer Design on VLSI in
Computer & Processors, October, pp.464–467.

Stan, M.R. and Burleson, W.P. (1995) ‘Bus-invert coding for
low-power i/o’, IEEE Trans. on VLSI Syst., March, Vol. 3,
No. 1, pp.49–58.

Su, C-L., Tsui, C-Y. and Despain, A.M. (1994) ‘Saving power in
the control path of embedded processors’, IEEE Design &
Test of Computers, Winter, Vol. 11, No. 4, pp.24–30.

Sundararajan, V. and Parhi, K.K. (2000) ‘Synthesis of low power
folded programmable coefficient fir digital filters’, in 2000
IEEE Asia Pacific Design Automation Conference, January,
pp.153–156.

Tiwari, V., Malik, S. and Wolfe, A. (1994a) ‘Compilation
techniques for low energy: An overview’, in the Symposium
on Low Power Electronics, pp.38–39.

Tiwari, V., Malik, S. and Wolfe, A. (1994b) ‘Power analysis of
embedded software: a first step towards software power
minimization’, IEEE Transactions on VLSI Systems,
December, Vol. 2, No. 4, pp.437–445.

TMS320C6000 CPU and Instruction Set Reference Guide (2000)
Texas Instruments, Inc. (literature number SPRU189F).

Toburen, M.C., Conte, T.M. and Reilly, M. (1998) ‘Instruction
scheduling for low power dissipation in high performance
processors’, in The Power Driven Micro-architecture
Workshop in conjunction with the ISCA'98, June.

Tsui, C-Y., Pedram, M. and Despain, A.M. (1993) ‘Technology
decomposition and mapping targeting low power dissipation’,
in The 30th international on Design automation conference,
June, pp.68–73.

Veen, J.V.D. and Woeginger, S.Z.G.J. (1998) ‘Sequencing jobs
that require common resources on a single machine: a
solvable case of the TSP’, Mathematical Programming,
No. 82, pp.235–254.

Yang, H., Gao, G.R. and Leung, C. (2002) ‘On achieving balanced
power consumption in software pipelined loops’, in
International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, pp.210–217.

Yu, T.Z., Chen, F. and Sha, E.H-M. (1998) ‘Loop scheduling
algorithms for power reduction’, in Proc. of the IEEE Int.
Conf. on Acoustics, Speech, and Signal Processing, May,
Vol. 5, pp.3073–3076.

Yun, H-S. and Kim, J. (2001) ‘Power-aware modulo scheduling
for high-performance vliw processors’, in the 2001
International Symposium on Low Power Electronics and
Design, August, pp.40–45.

