2916

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO. 11,

NOVEMBER 2015

Algorithms and Applications for Community
Detection in Weighted Networks

Zongqing Lu, Member, IEEE, Xiao Sun, Student Member, IEEE, Yonggang Wen, Member, IEEE,
Guohong Cao, Fellow, IEEE, and Thomas La Porta, Fellow, IEEE

Abstract—Community detection is an important issue due to its wide use in designing network protocols such as data forwarding in
Delay Tolerant Networks (DTN) and worm containment in Online Social Networks (OSN). However, most of the existing community
detection algorithms focus on binary networks. Since most networks are naturally weighted such as DTN or OSN, in this article, we
address the problems of community detection in weighted networks, exploit community for data forwarding in DTN and worm
containment in OSN, and demonstrate how community can facilitate these network designs. Specifically, we propose a novel
community detection algorithm, and introduce two metrics: intra-centrality and inter-centrality, to characterize nodes in communities,
based on which we propose an efficient data forwarding algorithm for DTN and a worm containment strategy for OSN. Extensive
trace-driven simulation results show that the proposed community detection algorithm, the data forwarding algorithm, and the worm

containment strategy significantly outperform existing works.

Index Terms—Community detection, data forwarding, worm containment, delay tolerant networks, online social networks

1 INTRODUCTION

COMMUNITY is used to represent a group of nodes in a
network where nodes inside the community have more
internal connections than external connections [2], [3].
Community has been well studied in biology, sociology,
psychology, business, etc, and has been exploited for
designing network protocols such as data forwarding in
Delay Tolerant Networks (DTN) and worm containment in
Online Social Networks (OSN) [4].

In DTN, mobile nodes contact each other opportunisti-
cally. Due to low node density and unpredictable node
mobility, end-to-end connections are hard to maintain.
Alternatively, node mobility is exploited to let mobile nodes
physically carry data as relays, and forward data opportu-
nistically upon contacts. Then, the key problem is how to
select the appropriate relays. Since social relations among
mobile users are more likely to be long-term characteristics
and less volatile than node mobility, forwarding schemes
based on social concepts [5], [6], [7], [4], [8], [9] outperform
traditional approaches [10], [11], where data forwarding is
facilitated with social concepts such as betweenness and
social similarity [5], node centrality [7], social contact
pattern [8], [9], and community [6], [4].

In OSN, especially when the communication is through
wireless networks, mobile devices can be easily infected by
malicious software such as worms or virus. Thus, many

e Z. Lu, X. Sun, G. Cao, and T. La Porta are with the Department of
Computer Science and Engineering, The Pennsylvania State University,
University Park, PA 16802.

E-mail: {zongqing, xxs118, gcao, tIp}@cse.psu.edu.

o Y. G. Wen is with the School of Computer Engineering, Nanyang

Technological University, 639798 Singapore. E-mail: ygwen@ntu.edu.sg.

Manuscript received 13 Mar. 2014; revised 4 Nov. 2014, accepted 8 Nov.
2014. Date of publication 11 Nov. 2014; date of current version 7 Oct. 2015.
Recommended for acceptance by J. Chen.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2014.2370031

researchers design solutions to slow down and contain the
worm propagation. Among them, one important problem is
how to schedule who to get the software patches first when
network bandwidth is a bottleneck. To address this prob-
lem, community concepts are exploited in [12], [4]. In [12],
the bridge nodes between communities are first patched so
that they can be isolated to contain the worm propagation.
In [4], the overlapped nodes between communities are
identified and their neighboring nodes are patched first.

From these two examples, we can see that the commu-
nity structure can be exploited for protocol design. Then,
how to detect communities becomes an important issue.
Community detection has attracted lots of attentions, as
detailed in [3]. However, most of the existing community
detection algorithms focus on binary networks, since some
networks are naturally binary, such as biological networks
where the edge between two nodes either exists or not.
Among these algorithms, CFinder [13] and RAK [14] are the
most popular and efficient ones. CFinder defines a k-clique
community as a union of all k-cliques that can be reached
from each other through a series of adjacent k-cliques,
where two k-cliques are said to be adjacent if they share
k —1 nodes. RAK attaches a unique label with each node
and uses label propagation to detect communities.

However, most networks are weighted such as social
networks, DTN or OSN. To simplify the analysis or
design, these networks can be formulated as binary
networks. For example, best friends are treated the same
as normal friends in OSN. Multiple contacts or single
contact are both counted as having contacts in DTN.
Although binary network can simplify the analysis, some
important information of weighted network may be lost,
and hence affect the network performance. For example,
with binary network in DTN, when choosing a relay, a
node will not be able to differentiate nodes that it has
contacted once or multiple times in the past.

1045-9219 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LU ET AL.: ALGORITHMS AND APPLICATIONS FOR COMMUNITY DETECTION IN WEIGHTED NETWORKS

Recently, there is some research on community detection
in weighted networks, e.g.,, COPRA [15] and Strength [16].
COPRA is based on RAK [14], and hence, similar to RAK, it
hardly converges to a constant state during label propagation
and the detected community is not deterministic. Strength [16]
exploits node strength and belonging degree to detect the
overlapping community structure. However, the perfor-
mance of Strength degrades dramatically as the overlapping
increases. Moreover, none of them has been applied to DTN
or OSN. Although there are some distributed community
detection algorithms [17], it is hard to apply them to DTN
routing. This is because when communities are detected in a
distributed way, for two nodes in the same community, their
detected communities can be totally different.

In this article, we first address the problems of commu-
nity detection in weighted network, and then exploit com-
munity for data forwarding in DTN and worm containment
in OSN to demonstrate how community can facilitate these
network designs. Our detailed contributions are as follows:

e We design a novel community detection algorithm
for weighted networks.

e We introduce two metrics: intra-centrality and inter-
centrality, to characterize nodes in communities,
based on which we propose an efficient data for-
warding algorithm for DTN and a worm contain-
ment strategy for OSN.

e Based on real traces, we study the performance of
the proposed community detection algorithm, the
data forwarding algorithm and the worm contain-
ment strategy, and compare them to existing work.

The rest of this paper is organized as follows. Section 2

presents our community detection algorithm for weighted
networks. Then, we introduce intra-centrality and inter-cen-
trality in Section 3. Section 4 presents our forwarding algo-
rithm for DTN, and worm containment strategy for OSN.
Section 5 evaluates the performance of our proposed
algorithms, and Section 6 concludes the paper.

2 COMMUNITY DETECTION IN
WEIGHTED NETWORKS

2.1 Preliminary

Let G = (V,E) represent a weighted and undirected
network, where V denotes the set of nodes and E denotes
the set of edges. For two nodes u,v € V, the edge between
them is denoted as (u, v) € E, and w,, denotes the weight of
the edge. The network community structure is denoted by
C ={C,Cy,Cs, ...}, where C; € C denotes a community. We
do not require C; N C; =) which means the communities
may be overlapped. For simplicity, we denote C; as C' if
there is no confusion. For a node v € V, k,, N,, are the node
degree and the neighbor set of node u, respectively, where
ku=73 N, Wup- FOr a community C and a node u, the
belonging degree B(u,C) between node v and community C
is defined as

Bu, €) = 2 W

Thus, when all neighbors of a node u are included in com-
munity C, B(u,C) = 1.

2917

In the literature, modularity (@) [18] is the most popular
function to quantify the quality of the detected community
structure in binary networks. It measures the difference
between the actual density of edges within the detected
communities and the density in the communities if the
edges are randomly distributed in the network. Later, New-
man [19] extended the concept of modularity to weighted
network as follows:

1 kuky
Q = % Z 8(’&, U) (Auv - m) 5 (2)

where A is the adjacency matrix (4,, represents the weight
of the edge between node u and v, and if there is no edge
between v and v, A,, = 0), m = %Zuv Wy, (the weights of all
the edges in network), k, and k, are the degrees of node u
and v. 8(u,v) yields one if nodes u and v are in the same
community, zero otherwise.

However, (2) does not take overlapping communities
into consideration, where a node can belong to more than
one community. Thus, we generalize () to measure overlap-
ping communities as follows:

1 kuky
Q - %; 8(pu7 pv) <Auv - m)) (3)
where
p, = arg max B(u, (). 1)
el

C, denotes the community set to which node u is assigned,
and C, is a subset of C. p, denotes the community in C,, to
which node u has the most weight of belonging degree.
Similar to (2), 8(p,, p,) yields one if p, and p, are the same,
zero otherwise. For non-overlapping communities, where
each node is assigned to only one community, i.e., |C,| =1,
p, actually denotes the community to which node u is
assigned, and if v and v are in the same community, 8(p,,
p,) = 1. Thus, (3) is consistent with the definition of modu-
larity for non-overlapping communities in [18], and (3) can
be used to quantify both overlapping and non-overlapping
community structure.

2.2 Conductance Function

We use conductance to identify the community that has
more internal connectivity than external connectivity. Con-
ductance is a natural and widely-adopted notion of commu-
nity goodness [20] and is also known as the normalized cut
metric. The conductance ®(C) of community C € C in net-
work G is defined as

B(C) = cut(C,G\O) 7)
wc

where cut(C, G\C') denotes the weights of the cut edges of C'
and wc denotes the weights of all edges in community C'
including the cut edges. For example, for the community
that consists of nodes b and d (C' = {b, d}) as shown in Fig. 1,
cut (C,G\C) = wap + Waq + Wep + Weqg = 4, W0 = Wap + Wag +
Wep + Weq + wpg = 15, thus ®(C) = £. With lower conduc-
tance, more edge weights are within the community and the

2918

Fig. 1. Community detection in weighted networks.

identified community is better. However, minimizing the
conductance of community structure (the sum of the con-
ductance of individual community) is NP-hard as proved in
[21] by reducing it to the Normalized Cut problem. Thus, we
propose a heuristic algorithm in the next section.

Unlike existing community detection algorithms in
weighted networks, such as COPRA and Strength, our
algorithm explores the property of community (i.e. con-
ductance) and exploits it as the criterion to detect commu-
nity. As a result, our algorithm can detect communities
more accurately and efficiently than existing works (see
Section 5).

2.3 The Community Detection Algorithm

Different from algorithms designed for binary networks, the
edge weight should be taken into consideration in weighted
networks. The intuition behind our algorithm is as follows:

o If the edge weight between two nodes is high enough,
the two nodes should be in the same community.

e If the belonging degree of a node to one community
is high enough to decrease the conductance of the
community, the node should be included in the
community.

Our detection algorithm works as follows. For a given
network G, we first identify two nodes that are connected
by the highest weight edges as a community C and calculate
its conductance ®(C). In the expanding process, nodes adja-
cent to C' (denoted as N¢) are found. We then choose the
node in N¢ with the highest belonging degree to C' and
combine it with C' to form a new community C". If ®(C") <
®(C), the expanding process is continued for community
C'; otherwise, C is designated as a detected community.
Then, the edges within community C (denoted as E¢) is
removed from the edge set, and the whole process is
repeated until the edge set is empty. For completeness, the
pseudo code of the detecting algorithm is shown in
Appendix D, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2014.2370031 available online.

We use an example to illustrate how the expanding
process works. As shown in Fig. 1, assuming edge (h, ¢) has
the highest weight among the remaining edges and
C = {h,i} is identified as a community, the conductance of
C is ®(C) = 4. Then we find all the adjacent nodes to C,
which are f and g. The belonging degree to C of node g and
f are and 3, respectively. Thus, node g is chosen to form
C" ({g, h,i}) together with C. Since ®(C’) is ;; which is less
than ®(C), node g is added into C and hence C' = {g, h,i}.
The expanding process continues for newly formed C.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO. 11,

NOVEMBER 2015

Among the adjacent nodes e and f, f has higher belonging
degree to C' than e. Thus, f is selected to form C" ({f,g,
h,i}). Since ®(C') =1 and P(C’) > ®(C), the expanding
process for C stops and C = {g, h,i} is designated as the
detected community.

Unlike binary network where a threshold is used to
determine a community such as in [4], for weighted
networks we cannot fix the threshold of conductance due
to the heterogeneous distribution of weights. Instead, we
use the conductance of the current community as the cri-
terion to determine whether the community should be
expanded. The threshold value is dynamically changed
as the chosen community varies and it is updated after
each iteration. A neighboring node is eligible to be added
into a community only if the newly formed community
has a lower conductance. This is because larger commu-
nity has more internal connections, and then the conduc-
tance becomes smaller. According to (5), if ®(C) > ®(C"),
we have:

cut(C,G\C) - cut(C,G\C) + Acut
we we + Aw

(6)

cut(C,G\C) _ cut(C,G\C) + k,(1 — 2B(u, C))
we we + ku(l - B(u’ C))

(1)

From (7), we have

we — cut(C,G\C) - 1
2 x we — cut(C,G\C) ~ 2

D(C
D (C

B(u,C) > —

)
T

When B(u, C) is larger than a threshold 6 = 5:38/ node u
will be added into community C.

The detected community may overlap with other
communities, and our algorithm can detect overlapping
communities. This is because we do not require each node
to be exclusively included by one community and the
temporary community can go cross existing communities
during the expanding process. If two communities overlap
and the overlapping nodes that belong to both communities
are more than 50 percent of nodes in either of these two
communities, they need to be merged. As observed in the
experiments, for overlapping communities after community
detection, two communities are either highly overlapped
(overlapping nodes are much more than 50 percent) or
rarely overlapped (overlapping nodes are much less than
50 percent). Thus, 50 percent is chosen as the threshold for
community merging. Moreover, our algorithm can be
applied for dynamic networks by adopting the techniques
proposed in [4] with some changes (e.g., using > ... ®(C)
as the objective function instead of the internal density func-
tion used in [4]).

Fig. 1 shows an example of the detected communities in
weighted network using our detection algorithm, where
three communities are detected and the overlapped part is
also uncovered as shown in the darker shaded region.

To analyze the time complexity of the algorithm, initially
V| nodes are viewed as |V| individual communities.
After the detection process, |C| communities are detected. As
the node with the highest belonging degree is added to the
temporary community at each expanding step, there are at

LU ET AL.: ALGORITHMS AND APPLICATIONS FOR COMMUNITY DETECTION IN WEIGHTED NETWORKS

most |V| — |C| expanding steps. For each expanding step, the
node with the highest belonging degree is searched with time
complexity N¢ * d, where d is the average number of edges
connected with each node. As N¢ is at most as large as |V, the
worst time complexity of our detection algorithm is |V|*.

In addition, we give the approximation ratio of our
algorithm in terms of modularity Q in Appendix A, avail-
able in the online supplemental material.

3 INTRA-CENTRALITY AND INTER-CENTRALITY

Based on the community detection algorithm presented in
the last section, we define two metrics: intra-centrality and
inter-centrality, which can be used for data forwarding in
DTN and worm containment in OSN.

Definition 1. The Intra-centrality of a node is defined as the
number of shortest paths between pairs of nodes in the same
community that go through it.

Let ¢, (C) denote the intra-centrality of node u. Then,

9, (C) =Y AMu,(v—w)), ueC,CEeC,

v,weC

where (v — w) denotes the shortest path between vertex v
and w, and A(u, (v — w)) yields one when node « is on
(v — w), zero otherwise.

The shortest path should not go beyond a community,
which means that all the shortest paths should be within the
community. To find the shortest path, we use weighted
network analysis where the distance between two directly
connected nodes is the reciprocal of the edge weight (for
example, in Fig. 1, the shortest distance between node ¢ and
fisg+ w%f =). Since a node may belong to multiple com-

munities, it may have multiple intra-centrality values, each
corresponding to a community.

Intra-centrality measures the influence of nodes within a
community. Within a community, nodes with higher intra-
centrality are more popular; i.e., they have more connec-
tions with other nodes and contact them more frequently
like hubs.

Definition 2. The Inter-centrality of a node for two communi-
ties is defined as the number of shortest paths between two
nodes in these two communities that go through it.

Let ¢,(C;, C;) denote the Inter-centrality of node u for
communities C; and C;. Then,

$.(Ci.C) = > Mu,(v—w)), uweV.C,CreC,
veC; welj
vw ¢ C;NC;
where the overlapped nodes between two communities are
excluded (v,w ¢ C; N C)). Each node has an inter-centrality
value for each pair of detected communities.
Inter-centrality measures the capability of nodes to
connect two communities. Nodes with higher inter-cen-
trality represent more connections between communities.
That is, the communications between two communities
most likely go through the nodes with higher inter-cen-
trality and hence removing them will more likely isolate
these two communities.

2919

4 COMMUNITY BASED APPLICATIONS

In this section, we introduce two community based applica-
tions: data forwarding in DTN and worm containment in
OSN. We also present the proposed algorithms for data for-
warding and worm containment based on intra-centrality
and inter-centrality.

4.1 Data Forwarding in Delay Tolerant Networks
Recent work (e.g., BubbleRap [6] and AFOCS [4]) has shown
that community based data forwarding algorithms can sig-
nificantly reduce the number of data replications while
maintaining similar data delivery ratio and data delivery
time in DTN. However, as community detections in these
algorithms are based on binary networks, they also have
some weaknesses. For example, BubbleRap may use inaccu-
rate centrality and most traffic between two communities in
AFOCS may not go through the overlapped nodes. Different
from them, our solution is based on our community detec-
tion algorithm designed for weighted networks, where edge
weight between nodes is formulated as their contact fre-
quency in DTN. Based on intra-centrality and inter-central-
ity, we design a better forwarding algorithm.

Our data forwarding algorithm works as follow. Suppose
a node (sender) has a message destined for another
node (receiver). If the sender and the receiver are in the
same community, the sender only forwards the packet to
the node encountered (relay) that has higher intra-centrality
value. If the two nodes are in different communities, the
sender forwards the packet to the relay which satisfies one
of the following conditions:

The relay is in the same community of the receiver.
The relay has higher inter-centrality than the sender
if the belonging degrees of the sender and the relay
to receiver’s community are both zero or non-zero.

e The relay has non-zero belonging degree to the
receiver’s community if the belonging degree of the
sender to that is zero.

The pseudo code and an example of the forwarding algo-
rithm is provided in Appendix D and B, respectively, avail-
able in the online supplemental material.

Different from existing community-based algorithms,
our forwarding algorithm categorizes data forwarding into
forwarding within community and forwarding between
communities. The intuitions behind our forwarding algo-
rithm can be summarized as following;:

e The nodes that are more influential between two
communities (high inter-community) can forward
the message to the community(s) of destination
more quickly.

e The nodes that are more popular within commu-
nity (high intra-community) have more chances to
deliver the message to the destination.

By differentiating data forwarding within community
and between communities based on intra-centrality and
inter-centrality, our forwarding algorithm can achieve high
data delivery ratio with less message overhead. Moreover,
to perform data forwarding in DTN, the proposed algo-
rithm requires that each node knows the values of inter-cen-
trality and intra-centrality. With the common assumption

2920

that community is a social property and has some long-term
characteristics, we can obtain these values based on some
previous history. Once nodes have the values of these two
metrics, they can perform routing in a distributed way.

Moreover, considering the load balancing problem (i.e.
sending too many messages through the same node), accord-
ing to the design of the forwarding algorithm, if most network
traffic is within community (i.e., source and destination are in
the same community), the forwarding algorithm may have
the load balancing problem since the forwarding within com-
munity is carried out by the nodes with higher intra-central-
ity. Depending on the number of nodes with high intra-
centrality and the capability of these nodes, there may or may
not have congestion. However, this is common to most social
based data forwarding algorithms which have been demon-
strated to outperform other algorithms. If most traffic is
between communities, the forwarding algorithm hardly has
the load balancing problem unless most traffic is between a
specific pair of communities since the forwarding between
two communities is fulfilled by the nodes with higher inter-
centrality between these two communities (these nodes are
different for different pair of communities).

4.2 Worm Containment in Online Social Networks
With online social networks such as Facebook and Twitter,
people can always keep in touch with friends and family by
sharing news, photos and videos. Recently, OSN becomes
more and more popular, meanwhile it also becomes a fertile
ground for virus and worm propagation.

Community based worm patching schemes for cellular
networks and OSN have been studied in [12] and [4],
respectively. The intuition behind these schemes is to con-
tain worms within infected community before they spread
out. In [12], separators (i.e., key nodes that separate network
partitions) are patched. Similarly, the neighbors of over-
lapped nodes between two communities are patched in [4].
Both strategies choose the nodes located on the boundary of
communities to be patched first. However, these schemes
do not consider about containing the worm propagation
within community. Without considering how to control
the worms within community, the worms could spread the
whole network quickly. Recently, Han and Srinivasan [22]
proposed to vaccinate influential users identified through
betweenness centrality to control infectious disease. Due to
the similarity between infectious disease control and worm
containment, their solution can also be applied to worm
containment. However, since betweenness centrality meas-
ures global influence, it may not effectively contain worms
within a group of nodes, and thus all the nodes would be
infected eventually.

Different from [12] and [4], our worm containment
strategy is based our community detection algorithm
designed for weighted networks, where the edge weight
between nodes is formulated as their contact (e.g., wall post
in Facebook) frequency in OSN. Moreover, our worm
containment strategy not only considers how to isolate
communities, but also considers how to slow down the
worm spread within a community. In worm propagation,
after a node is infected, the malicious node may infect the
hub node in the community. Then, most nodes in the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO. 11,

NOVEMBER 2015

community are infected quickly. Finally, neighboring com-
munity will be infected by the adjacent nodes. Due to the
characteristics of slow start and exponential propagation
exhibited by worms, by slowing down the worm propaga-
tion at beginning, we will have more opportunities to
contain the worms within the infected communities and
prevent them from spreading to other communities. The
intuitions behind our strategy is as follows:

e Patching nodes with high intra-centrality will slow
down the worm propagation within a community.
Intra-centrality measures the node popularity within
a community. Since nodes with high intra-centrality
can be easily infected and infect others after they are
infected, patching nodes with high intra-centrality is
more effective and efficient.

e Patching nodes with high inter-centrality will slow
down the worm propagation between communi-
ties. Inter-centrality measures the node influence
on the connections between two communities, and
thus patching nodes with high inter-centrality will
isolate communities to prevent the worm propaga-
tion between communities.

When a node receives the patch, it will be immune to the
worm. However, distributing patches to all nodes at the
same time may not always be feasible; e.g., there are band-
width limitations in cellular networks. Thus, we determine
the proper patching order for these nodes based on a patch-
ing score. The higher the patching score is, the sooner the
node will be patched. The patching score is calculated by
combining the normalized intra-centrality (normalized by
the number of pairs of nodes within community) and inter-
centrality (normalized by the number of pairs of nodes
between communities). More specifically, for a node u, the
patching score is calculated as

where B € [0,1], ¥, denotes the patching score, ¢/, denote
the normalized intra-centrality and ¢! denotes the normal-
ized inter-centrality.

For worm containment, the patching process is initial-
ized when the infection rate (i.e., the fraction of infected
nodes over all the nodes) reaches the predefined alarm
threshold «. In [12] and [4], the patching scheme is designed
regardless of o, which means the patching scheme is fixed.
However, that may not be the best strategy. When « is low,
worms propagate mainly within communities since nodes
contact others more frequently within community than
between communities. On the other hand, when « is high,
worms may spread between communities since more nodes
have been infected. Thus, the patching scheme should be
adaptive based on the alarm threshold «.

By tuning g, our patching scheme becomes adaptive, and
can achieve better performance. As discussed above, patch-
ing nodes with high intra-centrality will control the worm
propagation within communities and patching nodes with
high inter-centrality will contain the worm propagation
between communities. When the alarm threshold « is low,
the worms mainly spread within communities; thus, intra-
centrality should have a large weight (8 should be large).

LU ET AL.: ALGORITHMS AND APPLICATIONS FOR COMMUNITY DETECTION IN WEIGHTED NETWORKS 2921
TABLE 1
Parameter Settings in Benchmark
Parameter Value Meaning Parameter Value Meaning
N 1,000, 5,000 No. of nodes M 0.1,0.3 Mixing parameter for edge weights
e 0.1,0.3 Mixing parameter for topology £ 2 Exponent for weight distribution
Kz 50, 100 Maximum node degree 1 2 Minus exponent for degree sequence
k 30, 50 Average node degree T 2 Minus exponent for community size
distribution
Y 0to0.5 Overlapping fraction Om 2 No. of communities of overlapping nodes

On the other hand, when « is high, nodes with high intra-
centrality may have been infected; thus, inter-centrality
should have a large weight (8 should be small).

The pseudo code of computing the patching score is pro-
vided in Appendix D, available in the online supplemental
material. As a node may have multiple inter-centrality and
intra-centrality values, only the largest values are used to cal-
culate the patching scores. By considering both intra-central-
ity and inter-centrality, our worm containment strategy can
slow down worms within communities and between commu-
nities. It is worth to mention that our strategy can also be
applied to other applications such as infectious diseases con-
trol, due to their similarity to worm containment.

5 PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the three
proposed algorithms (i.e.,, community detection, data for-
warding, and worm containment) and compare them to
existing works.

5.1 Community Detection

We compare the performance of our conductance-based
community detection algorithm (denoted as Conductance)
with two algorithms—COPRA [15] and Strength [16], both of
which can detect overlapping communities for weighted net-
work. Since it is hard to verify the detected communities for
real networks, the evaluation of these algorithms is based
mainly on synthetic networks and also on real networks.

We use the synthetic weighted networks generated by
the well-known benchmark proposed in [23]. It provides
power-law distributions of node degree and community
size, and it allows overlaps between communities. There are
many parameters to control the generated network and the
settings of these parameter are shown in Table 1. Note that
nodes may belong to more than one community, which we
call overlapping nodes. y is the fraction of overlapping
nodes over all nodes. The number of communities that over-
lapping nodes belong to is denoted by o,,. In addition, the
benchmark also gives the community structure of the gener-
ated network, which is referred to as the ground truth used
to compare with other algorithms. Compared to [15] that
employed the same benchmark, same values are assigned
to most parameters such as o,,, u, and u,, while more
variations are allowed for other parameters than that of
COPRA to make it more general. For example, the overlap-
ping fraction can be changed from 0 to 0.5 in networks with
1,000 nodes and 5,000 nodes, respectively.

We evaluate these algorithms based on the following
three widely-adopted metrics:

o Normalized Mutual Information (NMI), which has
been proposed in [24] to measure the similarity
between different parts of the network. NMI is nor-
malized, where NMI(X]|Y) € [0,1]. Note that higher
NMI is better. In the evaluation, we compare the
detected communities by each algorithm with
ground truth to obtain NMI.

e Number of communities. A good detection algorithm
should detect roughly the same number of commu-
nities as that generated by the benchmark denoted
as the ground truth.

e Modularity, as discuss in Section 2.1, it is defined as
the fraction of edges within communities minus the
expected value of the same quantity if the edges are
assigned at random.

We evaluate the performance of these algorithms with
these metrics for different parameter settings: ,=un,=0.1,
0.3, N=1,000, 5,000, and y is changed from 0 to 0.5 for each
setting. Fig. 2 shows the experimental results of community
detection by these three algorithms: Conductance, COPRA,
Strength and the ground truth.

Comparisons in terms of NMI. Fig. 2 shows the NMI
between ground truth and each algorithm. Note that
higher NMI is better (the NMI of the ground truth is
always 1 since it compares to itself, and thus it is
omitted). We can see from Fig. 2 that Conductance
has very stable performance with varying overlapping
fraction for all settings and Conductance outperforms other
algorithms except when y = 0. From Fig. 2, we can also
see the performance of Strength degrades dramatically
when the mixing rates increase (from pu, =p; =0.1 to
e =iy = 0.3) and when the overlapping fraction y
increases. The performance of COPRA also decreases sig-
nificantly when y increases. Unlike these two algorithms,
the NMI of Conductance is stable and even increases
slightly with the increase of y.

Comparisons in terms of the number of communities. Fig. 2
also shows the number of communities (in ground truth)
and the number of communities detected by Conductance,
COPRA and Strength. The number of communities detected
by COPRA is always smaller than the ground truth. On the
other hand, Strength always detects more communities
than the ground truth. Moreover, the differences between
ground truth and these two algorithms are getting larger
when the mixing rates and y increase. In contrast, the num-
ber of communities detected by Conductance is almost iden-
tical to the ground truth for all settings.

Comparisons on Modularity. As shown in Fig. 2, similar
with NMI, for both COPRA and Strength, the modularity
dramatically decreases in all settings with the increase of y.

2922 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.11, NOVEMBER 2015
N=1000, p =0.1, p=0.1 N=1000, u =0.3, 1,=0.3 N=5000, u, =0.1, 1=0.1 N=5000, u_=0.3, 1,=0.3
14 1 14
P ¢
0.8 0.81 0.8
_ 06 _ 06 _ 06
= = =
z z z
0.4 0.4 0.4
—<4— COPRA —&— COPRA —<4— COPRA
0.2 —e— Conductance 0.2} —e— Conductance 0.2} —e— Conductance 0.21| —e— Conductance
—A— Strength N —~A— Strength &\A\A—A —A— Strength A\ —A— Strength ﬁ*\A\A
0 0 0 0
0 01 02 03 04 0 0.1 02 03 04 0 01 02 03 04 0 0.1 02 03 04
Overlapping fraction Overlapping fraction Overlapping fraction Overlapping fraction
N=1000, p =0.1, p=0.1 N=1000, u =0.3, 1,=0.3 N=5000, u, =0.1, 1,=0.1 N=5000, u =0.3, 1,=0.3
60 70 200 200 A
” —&— COPRA ” —&— COPRA ” —&— COPRA A\ ” —&— COPRA
2 —©&— Conductance 2 60| —©— Conductance 2 —©&— Conductance 2 —©— Conductance N
B 50| —A— strength € —A— Strength B —A— Strength g —A— Strength
£ —*— Ground Truth > € 50 —¥— Ground Truth \ E 150 | —%— Ground Truth £ 1507| —— Ground Truth
g I & k g 5]
O 4 o o o
kS B 40 k] G
3 3 2 g 3 1004
E Ea E E ¢
z =z z P4
20 20 50
0 01 02 03 04 0 0.1 02 03 04 0 01 02 03 04 0 0.1 02 03 04
Overlapping fraction Overlapping fraction Overlapping fraction Overlapping fraction
N=1000, p =0.1, =0.1 N=1000, u =0.3, 1,=0.3 N=5000, u=0.1, 1;=0.1 N=5000, u_=0.3, 1,=0.3
0.5 0.4 0.5 0.4
0.4 — 04““‘33333 e
! 0.3Z v : 0.34
> > > >
£ 03 k= £ 0.3 =
© © © ©
2 S 02 3 g 02
= o o o
202 9 202 =
= —<4— COPRA = —&— COPRA = —<4— COPRA = —&— COPRA
—©— Conductance 0.1}| —©— Conductance —©— Conductance 0.1}| —©— Conductance
0.11| —A— strength —4A— Strength 0.1 —A— strength M —&A— Strength
A
. —*— Ground Truth \ . —%— Ground Truth \A‘ANA—A o —*— Ground Truth . —%— Ground TruthpA—A__»_ 4
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

Overlapping fraction Overlapping fraction

Overlapping fraction Overlapping fraction

Fig. 2. The quality (in terms of NMI, Number of Communities, Modularity) of the community structure detected by Conductance, COPRA, Strength

and Ground Truth for different parameter settings.

Strength has the worst performance. Conductance and
ground truth have almost identical modularity and the
modularity is highly steady with the overlapping fraction.

In summary, the performance of both COPRA and
Strength decreases with the raise of the overlapping fraction.
That is because the label propagation adopted by COPRA
and the maximal node strength employed by Strength can-
not accurately recognize the overlapped communities; i.e.,
COPRA may identify two overlapped communities as one
community while Strength may identify them as more than
two communities. Although COPRA and Strength may have
better performance in terms of NMI when the overlapping
fraction is small, Conductance always outperforms them sig-
nificantly in terms of the number of communities and mod-
ularity. In addition, the performance of Conductance in term
of NMI even increases with the overlapping fraction.

Thus, we can conclude that Conductance has the ability to
detect both non-overlapping and highly overlapping com-
munities for weighted networks. Under various conditions,
the performance of Conductance is much better than existing
algorithms in synthetic networks.

5.2 Data Forwarding

To evaluate the performance of our data forwarding
algorithm in DTN, experiments are conducted based
on the MIT Reality trace [25], which contains contacts
among users carrying Bluetooth devices. Bluetooth devices

periodically discover peers in the neighborhood and
record their contacts. The detail of the trace is summarized
in Table 2, where edge weight between two nodes repre-
sents the contact frequency.

In our experiment, each node sends 500 messages to other
randomly selected nodes. Messages will be discarded if they
are not successfully delivered within Time-to-live (TTL). We
compare our Intra-centrality and Inter-Centrality based for-
warding algorithm (called 72C) with other four forwarding
strategies: 1) Epidemic [10], 2) BubbleRap [6] which uses k-
clique [13] as the community detection algorithm, 3) AFOCS
[4], and 4) Baseline where the source keeps the message until
it encounters the destination. We evaluate all these
algorithms on two message forwarding modes: forwarding
with message duplication (Figs. 3a, 3b, 3c and 3d) and for-
warding without message duplication (Figs. 3e and 3f). With

TABLE 2

Summary of the MIT Reality Trace
Trace MIT Reality
Network type Bluetooth
No. of nodes 97
No. of interval contacts 114,046
Duration (days) 246
Granularity (seconds) 300
Pairwise contact frequency 0.10

(per day)

LU ET AL.: ALGORITHMS AND APPLICATIONS FOR COMMUNITY DETECTION IN WEIGHTED NETWORKS

40

% Epidemic % Epidemic
x o B o< e
80
. % BubbleRap 30 % BubbleRap
S + AFOCS 8 + AFOCS
2 60 Baseline 225 Baseline
I3 o
& Pl © 20
> - = =
% aory 315
8 =
20 P e 10
+++WW sl
g 4
0 0
0 10 20 30 40 50 0 10 20 30 40 50

TTL (hour)
(a) deliver ratio

TTL (hour)
(b) message replicas

Epidemic
i2c
BubbleRap
AFOCS
Baseline

60

N
+% x o*

*

40

Epidemic

*
" 1’c
201F * BubbleRap ||
e AFOGS
¥

Baseline

Delivery Time (hour)
®
Delivery Ratio (%)

+ B X *

0
0 10 20 30 40 50 0 10 20 30 40
TTL (hour) Message Replica

(c) delivery time (d) relation between delivery ratio

and message replica

©
&

16
ey
o S

@
S
)

n
=]

&

Delivery Ratio (%)
Delivery Time (hour)
o

= * Epidemic * Epidemic
10} % x Pc x Pc
% BubbleRap 4 # BubbleRap|]
5 + AFOCS + AFOCS
Baseline Baseline
0 0
0 10 20 30 40 50 0 10 20 30 40 50

TTL (hour)

(e) delivery ratio without message
duplication

TTL (hour)

(f) delivery time without message
duplication

Fig. 3. Performance of the data forwarding algorithms—Epidemic, I°C,
BubbleRap, AFOCS and Baseline in terms of data delivery ratio, data
delivery time, and message overhead based on the MIT reality trace.

message duplication, the algorithms are compared in term of
data delivery ratio, data delivery time, and message replica.
For forwarding without message duplication, data delivery
ratio and data delivery time are considered. Note that the
same random seeds are used to generate source/destination
pairs for all algorithms in each simulation run. Moreover,
the simulations are repeated 100 times (each with different
seed) and the results are averaged.

Fig. 3 shows the results of data forwarding on the MIT
reality trace, where TTL varies from 1 to 50 hours. As in
Epidemic the message is always forwarded to the node
encountered, Epidemic has the highest delivery ratio and
forwarding cost (message replicas) as shown in Figs. 3a and
3b. On the other hand, Baseline has the lowest delivery ratio
and forwarding cost, since nodes in this algorithm forward
the message only when it reaches the destination. Fig. 3a
shows that the delivery ratio of I?C is higher than that of
BubbleRap, and BubbleRap incurs more message replicas
than I2C, up to 40 percent, as shown in Fig. 3b. AFOCS has
both the second lowest delivery ratio and message replicas.
Epidemic has much lower delivery time than all other algo-
rithms when TTL is larger than 20 hours, 2C, BubbleRap
and Baseline have similar delivery time and AFOCS is the
worst as illustrated by Fig. 3c. Fig. 3d shows the relation
between delivery ratio and message replicas for each algo-
rithm. AFOCS, I*C and BubbleRap span from Baseline to Epi-
demic, with I>C outperforming the other two.

2923
TABLE 3
Facebook Trace Summary

Trace Facebook

No. of nodes 12,123

No. of edges 31,932

Average node degree 21.4

No. of contacts 129,462

Duration (days) 184

Figs. 3e and 3f show the delivery ratio and delivery time
of the data forwarding algorithms without message dupli-
cation. Since there is no dedicated strategy behind Epidemic,
Epidemic is just slightly better than Baseline in terms of deliv-
ery ratio. BubbleRap and AFOCS are equivalent, where Bub-
bleRap is based on global centrality and AFOCS utilizes
overlapped nodes as relay nodes for message forwarding.
I?C is the best one and the performance is up to 50 percent
better than other algorithms, although the delivery time of
I*C is only slightly more than others.

To summarize, there exists a tradeoff between delivery
ratio and message replica. Epidemic and Baseline are the
upper bound and the lower bound of performance and
cost for data forwarding algorithms in DTN, respectively.
All other algorithms (not just the algorithms evaluated)
span between them as illustrated in Fig. 3d, where all
other algorithms sit in the regions between Epidemic and
Baseline. As demonstrated in Fig. 3, I>C achieves a good
balance between performance and cost, and is the most
efficient algorithm. The reason that I>C outperforms Bub-
bleRap and AFOCS is two-fold: I°C is based on the
detected communities in weighted networks while Bub-
bleRap and AFOCS are based on that in binary networks;
I’C is carried out based intra and inter-centrality while
BubbleRap and AFOCS are only based on global centrality
and overlapped nodes, respectively.

5.3 Worm Containment

To evaluate the worm containment strategies, we use the
Facebook trace from [26]. It contains friendship information
and wall posts among Facebook users in the New Orleans
regional network for more than four years. We choose a par-
tial trace which spans half year (from 7/1/2007 to 12/31/
2007). The chosen trace is summarized in Table 3, where the
contact between two nodes is the wall post and edge weight
is the contact frequency. We use the worm propagation
model similar to that in [12], [4], which mimics the behav-
iors of the famous worm Koobface spread out in Facebook.
We assume that the worms are able to explore the friend-
ship information for propagation (such as sending out mes-
sage including malicious links).

At the very beginning, we randomly choose 0.05 per-
cent of nodes as the seed set of worm sources to initiate
the infection process. Worms propagate when infected
nodes contact other nodes with a propagation ratio (0); i.e.,
when a node contacts with an infected node, it has a
possibility of o to be infected. The time taken for the
worm to propagate from one node (user) to its friend is
inversely proportional to the contact frequency between
the two nodes. The patching process is initiated when the

2924

7 7
50 * I'c 50 * I'c

x AFOCS x AFOCS
45 +_Glustering S +_Glustering

&

Infection rate (%)

x Al
+ G

0 20 40 60 8 100 0 20 40 60 80 100 0 20 40 60 00
Fraction of patched nodes over targeted nodes (%) Fraction of patched nodes over targeted nodes (%) Fraction of patched nodes over targeted nodes (%)

(@) a=5% (b) a =10% (©) a=20%
+ Fo * o
45 x AFOCS 45, X AFOCS 451 L
= +_Clustering . +_Clustering o [
£ 40 g Y M e
2 2 2 -
£ 35 c =35
s § s
g g 2
%’ 30, % 30
= = = * fc
25 25 25 x AFOCS
+_Clustering
0 20 40 60 80 100 0 20 40 60 80 10 o 20 40 60 8 100
Fraction of patched nodes over targeted nodes (%) Fraction of patched nodes over targeted nodes (%) Fraction of patched nodes over targeted nodes (%)
d) o =25% (e) o =50% f) o = 75%

Fig. 4. Performance of worm containment algorithms—/%C, AFOCS and
Clustering based on the Facebook trace, where propagation ratio
o = 100% for (a), (b) and (c) and alarm threshold « = 20% for (d), (e), (f).

infection rate reaches the predefined alarm thresholds o
(the infection rate is the fraction of infected nodes over all
nodes). When a node receives a patch, it will be immune
to worms and recovered if it was infected.

We compare I>C based worm containment strategy with
AFOCS [4] and the cluster based scheme [12] denoted as
Clustering. Unlike I>C and Clustering, where the sequence of
nodes to be patched is determined, AFOCS chooses the
neighboring nodes of overlapped nodes between communi-
ties to be patched. Thus, the nodes to be patched, which are
referred to as targeted nodes, selected by AFOCS, are deter-
ministic for a network and the number is 985 for the Face-
book trace. To compare the performance with different
schemes, we choose the same number of targeted nodes for
I?C and Clustering according to patching score and priority,
respectively. The worm propagation is simulated for 30
days after the alarm threshold is reached. Moreover, simula-
tions are repeated at 100 times and the results are averaged.

In some cases, the alarm threshold o might be unknown.
Thus, we first fix = 0.5 for I?C’ and compare it with
AFOCS and Clustering for different propagation ratios and
alarm thresholds (« is used only for performance compari-
son), and then evaluate its effects on I*C.

Figs. 4a, 4b and 4c show the infection rates achieved by
different algorithms for alarm threshold « = 5, 10 and 20%,
respectively, when o =100%, with varying faction of
patched nodes over targeted nodes. For o = 5% (Fig. 4a),
where the patching process is initialized at an early stage,
the infection rates are relatively low after 30 days of worm
propagation. From these figures, we can see late patching
will result in higher infection rate. Among these algorithms,
our worm containment scheme has the lowest infection
rates, which demonstrates that patching nodes with high
patching score can effectively contain the worm propaga-
tion. As the nodes selected by AFOCS and Clustering do not
effectively block worm propagation between communities,
they have higher infection rates. Figs. 4d, 4e and 4f show
the infection rates achieved by different algorithms with dif-
ferent propagation ratio: o = 25, 50 and 75%. As expected, a
lower propagation ratio yields a lower infection rate. How-
ever, the propagation ratio does not affect the relative per-
formance of these schemes; i.e., I*C always performs the
best for different o.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO. 11,

NOVEMBER 2015

26.5

26

Infection rate (%)
n
n 9
(5 [$,]

N
=
0

n
FS

02 04 06 08 i1
p

Fig. 5. Performance of I°C with varying (= 10%)

Although we use fixed B for I°C, it still outperforms
AFOCS and Clustering for all different alarm thresholds and
different propagation ratios as shown in Fig. 4. That is
because AFOCS and Clustering do not consider about con-
taining the worm propagation within community, and thus
the worm can quickly propagate within community and
eventually spread between communities.

Next, we evaluate the effect of g on the performance of
I’C. Fig. 5 shows the infection rate achieved by I>C' when
o =10% and o = 100% with varying B (the results when
a =5, 20 and 40% are provided in Appendix C.1, available
in the online supplemental material). As shown in Fig. 5, we
can find the best g with which I?C' can achieve the lowest
infection rate. Fig. 6 shows the relation between « and g,
where I’°C achieves the best performance by adaptively
adjusting g based on «. As analyzed in Section 4.2, when the
alarm threshold is low (small «), since worms spread
mainly within community, intra-centrality should have a
large weight in determining the patching score (8 is large).
When the alarm threshold is high (large «), worms spread
between communities and thus inter-centrality should have
a large weight in determining the patching score (B is
small). For a real system, g can be selected based on the rela-
tion between o and g shown in Fig. 6.

In summary, our community detection algorithm has
better performance than existing algorithms. Based on the
detected communities and the newly introduced two cen-
trality metrics, I°C algorithms outperform other forwarding
algorithms and worm containment strategies.

More evaluation results including the performance of
detection algorithms in real networks and the performance
of I?’C algorithms based on the communities detected by
these algorithms are provided in Appendix C.2 and C.3,
available in the online supplemental material.

6 CONCLUSIONS

In the paper, we proposed a conductance-based community
detection algorithm for weighted networks and designed an

0.8

< 0.6

0.4

0.2

0.1 0.2 0.3 0.4

Fig. 6. Relation between « and .

LU ET AL.: ALGORITHMS AND APPLICATIONS FOR COMMUNITY DETECTION IN WEIGHTED NETWORKS

efficient data forwarding algorithm for DTN and a worm
containment strategy for OSN based on two metrics—intra-
centrality and inter-centrality. Simulation results on syn-
thetic networks show that our community detection algo-
rithm is much better than other algorithms in terms of NMI,
the number of communities, and modularity. Simulation
results on real DTN traces show that our forwarding
algorithm outperforms other community-based algorithms
in terms of data delivery ratio and data forwarding cost.
Results on real OSN traces show that our worm contain-
ment strategy achieves lower infection rate than other algo-
rithms and it is adaptive to different alarm thresholds.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
whose insightful comments helped us improve the presen-
tation of the paper. A preliminary version [1] of this paper
appeared in IEEE PerCom 2013.

REFERENCES

[1] Z. Lu, Y. Wen, and G. Cao, “Community detection in weighted
networks: Algorithms and applications,” in Proc. IEEE Int. Conf.
Pervasive Comput. Commun., 2013, pp. 179-184.

[2] M. Girvan and M. Newman, “Community structure in social and
biological networks,” Proc. Nat. Acad. Sci., vol. 99, no. 12,
pp- 7821-7826, 2002.

[3] S. Fortunato, “Community detection in graphs,” Phys. Rep.,
vol. 486, no. 3-5, pp. 75-174, 2010.

[4] N. Nguyen, T. Dinh, S. Tokala, and M. Thai, “Overlapping com-
munities in dynamic networks: Their detection and mobile
applications,” in Proc. 17th Annu. Int. Conf. Mobile Comput. Netw.,
2011, pp. 85-96.

[5] E.Daly and M. Haahr, “Social network analysis for routing in dis-
connected delay-tolerant manets,” in Proc. 8th ACM Int. Symp.
Mobile Ad Hoc Netw. Comput., 2007, pp. 32-40.

[6] P.Hui,]J. Crowcroft, and E. Yoneki, “Bubble rap: Social-based for-
warding in delay-tolerant networks,” IEEE Trans. Mobile Comput.,
vol. 10, no. 11, pp. 15761589, Nov. 2011.

[71 W. Gao, Q. Li, B. Zhao, and G. Cao, “Social-aware multicast in dis-
ruption-tolerant networks,” IEEE/ACM Trans. Netw., vol. 20, no. 5,
pp- 1553-1566, Oct. 2012.

[8] W. Gao, G. Cao, T. La Porta, and J. Han, “On exploiting transient
social contact patterns for data forwarding in delay-tolerant
networks,” IEEE Trans. Mobile Comput., vol. 12, no. 1, pp. 151-165,
Jan. 2013.

[9] T.Hossmann, T. Spyropoulos, and F. Legendre, “Know thy neigh-

bor: Towards optimal mapping of contacts to social graphs for dtn

routing,” in Proc. 29th Conf. Inform. Commun., 2010, pp. 866-874.

A. Vahdat and D. Becker, “Epidemic routing for partially con-

nected ad hoc networks,” Duke Univ, Durham, NC, USA, Tech.

Rep. CS-200006, 2000.

Q. Yuan, L. Cardei, and J. Wu, “Predict and relay: An efficient

routing in disruption-tolerant networks,” in Proc, 10th ACM Int.

Symp. Mobile Ad Hoc Netw. Comput., 2009, pp. 95-104.

Z.Zhu, G. Cao, S. Zhu, S. Ranjan, and A. Nucci, “A social network

based patching scheme for worm containment in cellular

networks,” in Proc. IEEE INFOCOM, 2009, pp. 1476-1484.

G. Palla, I. Derényi, 1. Farkas, and T. Vicsek, “Uncovering the

overlapping community structure of complex networks in nature

and society,” Nature, vol. 435, no. 7043, pp. 814-818, 2005.

U. Raghavan, R. Albert, and S. Kumara, “Near linear time

algorithm to detect community structures in large-scale

networks,” Phys. Rev. E, vol. 76, no. 3, p. 036106, 2007.

S. Gregory, “Finding overlapping communities in networks by

label propagation,” New]. Phys., vol. 12, p. 103018, 2010.

D. Chen, M. Shang, Z. Lv, and Y. Fu, “Detecting overlapping com-

munities of weighted networks via a local algorithm,” Physica A:

Statist. Mech. Appl., vol. 389, no. 19, pp. 4177-4187, 2010.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

2925

[17] P.Hui, E. Yoneki, S. Chan, and J. Crowcroft, “Distributed commu-
nity detection in delay tolerant networks,” in Proc. 2nd ACM/IEEE
Int. Workshop Mobility Evolving Internet Arch., 2007, pp. 7:1-7:8.

M. Newman and M. Girvan, “Finding and evaluating communit
structure in networks,” Phys. Rev. E, vol. 69, no. 2, p. 026113, 2004.
M. Newman, “Analysis of weighted networks,” Phys. Rev. E,
vol. 70, no. 5, p. 056131, 2004.

J. Leskovec, K. Lang, and M. Mahoney, “Empirical comparison of
algorithms for network community detection,” in Proc. 19th Int.
Conf. World Wide Web, 2010, pp. 631-640.

J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905,
Aug. 2000.

B. Han and A. Srinivasan, “Your friends have more friends than
you do: identifying influential mobile users through random
walks,” in ACM MobiHoc, 2012, pp. 5-14.

A. Lancichinetti and S. Fortunato, “Benchmarks for testing com-
munity detection algorithms on directed and weighted graphs
with overlapping communities,” Phys. Rev. E, vol. 80, no. 1,
p- 016118, 2009.

A. Lancichinetti, S. Fortunato, and]. Kertész, “Detecting the over-
lapping and hierarchical community structure in complex
networks,” New J. Phys., vol. 11, p. 033015, 2009.

N. Eagle and A. Pentland, “Reality mining: Sensing complex
social systems,” Pers. Ubiquitous Comput., vol. 10, no. 4, pp. 255-
268, 2006.

B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the
evolution of user interaction in facebook,” in Proc. 2nd ACM SIG-
COMM Workshop Soc. Netw., 2009, pp. 37-42.

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Zongging Lu received the BE and ME degrees
from Southeast University, China, and the PhD
degree in computer science from Nanyang Tech-
nological University, Singapore. He is currently
working as a postdoctoral fellow in the Depart-
ment of Computer Science and Engineering at
the Pennsylvania State University. His research
interests include mobile computing, social
networks, opportunistic networks, network pri-
vacy and security. He is a member of the IEEE.

Xiao Sun received the BS degree from Tianjin
University, Tianjin, in 2008, and the ME degree
from the Chinese Academy of Sciences, Beijing,
in 2011. He is currently working toward the PhD
degree in the Department of Computer Science
and Engineering, the Pennsylvania State Univer-
sity, University Park. His research interests
include pervasive computing, mobile computing,
and mobile social networks. He is a student
member of the IEEE.

Yonggang Wen received the PhD degree in
electrical engineering and computer science from
the Massachusetts Institute of Technology (MIT)
in 2008. He is currently an assistant professor
with the School of Computer Engineering at
Nanyang Technological University, Singapore.
Previously, he has worked in Cisco as a senior
software engineer and a system architect for con-
tent networking products. He has also worked as
a research intern at Bell Laboratories, Sycamore
Networks, and served as a technical advisor to
the Chairman at Linear A Networks, Inc. His research interests include
cloud computing, mobile computing, multimedia network, cyber security,
and green ICT. He is a member of the IEEE.

2926

Guohong Cao received the BS degree from
Xian Jiaotong University, China, the MS and the
PhD degrees in computer science from the Ohio
State University in 1997 and 1999, respectively.
Since then, he has been with the Department of
Computer Science and Engineering at the
Pennsylvania State University, where he is cur-
rently a professor. His research interests
include wireless networks and mobile comput-
ing. He has published more than 150 papers in
the areas of wireless sensor networks, wireless
network security, vehicular ad hoc networks, cache management, data
access and dissemination, and distributed fault tolerant computing. He
has served on the editorial board of /EEE Transactions on Mobile
Computing, IEEE Transactions on Wireless Communications, and has
served on the organizing and technical program committees of many
conferences. He was a recipient of the NSF CAREER award in 2001.
He is a Fellow of the IEEE.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO. 11,

NOVEMBER 2015

Thomas La Porta received the BSEE and MSEE
degrees from the Cooper Union, New York, and
the PhD degree in electrical engineering from
Columbia University, New York. He is a distin-
guished professor in the Department of Computer
Science and Engineering, The Pennsylvania
State University (Penn State), where he is also
the director of the Networking and Security
Research Center. Prior to joining Penn State, he
was the director of the Mobile Networking
Research Department, Bell Laboratories (Bell
Labs), where he led various projects in wireless and mobile networking.
He is the founding editor-in-chief of the IEEE Transactions on Mobile
Computing. His research interests include mobility management, signal-
ing and control for wireless networks, mobile data systems, and protocol
design. He has published more than 100 technical papers and is the
holder of 35 patents. He received a Thomas Alva Edison Patent Award.
He is a fellow of the IEEE, the IEEE Computer Society, and Bell Labs.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

