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Preface

For the past several years mathematics majors in the computing track at the University of Pennsylvania
have taken a course in continuous algorithms (numerical analysis) in the junior year, and in discrete algo-
rithms in the senior year. This book has grown out of the senior course as I have been teaching it recently.
It has also been tried out on a large class of computer science and mathematics majors, including seniors
and graduate students, with good results.

Selection by the instructor of topics of interest will be very important, because normally I’ve found
that I can’t cover anywhere near all of this material in a semester. A reasonable choice for a first try might
be to begin with Chapter 2 (recursive algorithms) which contains lots of motivation. Then, as new ideas
are needed in Chapter 2, one might delve into the appropriate sections of Chapter 1 to get the concepts
and techniques well in hand. After Chapter 2, Chapter 4, on number theory, discusses material that is
extremely attractive, and surprisingly pure and applicable at the same time. Chapter 5 would be next, since
the foundations would then all be in place. Finally, material from Chapter 3, which is rather independent
of the rest of the book, but is strongly connected to combinatorial algorithms in general, might be studied
as time permits.

Throughout the book there are opportunities to ask students to write programs and get them running.
These are not mentioned explicitly, with a few exceptions, but will be obvious when encountered. Students
should all have the experience of writing, debugging, and using a program that is nontrivially recursive,
for example. The concept of recursion is subtle and powerful, and is helped a lot by hands-on practice.
Any of the algorithms of Chapter 2 would be suitable for this purpose. The recursive graph algorithms are
particularly recommended since they are usually quite foreign to students’ previous experience and therefore
have great learning value.

In addition to the exercises that appear in this book, then, student assignments might consist of writing
occasional programs, as well as delivering reports in class on assigned readings. The latter might be found
among the references cited in the bibliographies in each chapter.

I am indebted first of all to the students on whom I worked out these ideas, and second to a num-
ber of colleagues for their helpful advice and friendly criticism. Among the latter I will mention Richard
Brualdi, Daniel Kleitman, Albert Nijenhuis, Robert Tarjan and Alan Tucker. For the no-doubt-numerous
shortcomings that remain, I accept full responsibility.

This book was typeset in TEX. To the extent that it’s a delight to look at, thank TEX. For the deficiencies
in its appearance, thank my limitations as a typesetter. It was, however, a pleasure for me to have had the
chance to typeset my own book. My thanks to the Computer Science department of the University of
Pennsylvania, and particularly to Aravind Joshi, for generously allowing me the use of TEX facilities.

Herbert S. Wilf
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Chapter 0: What This Book Is About

0.1 Background
An algorithm is a method for solving a class of problems on a computer. The complexity of an algorithm

is the cost, measured in running time, or storage, or whatever units are relevant, of using the algorithm to
solve one of those problems.

This book is about algorithms and complexity, and so it is about methods for solving problems on
computers and the costs (usually the running time) of using those methods.

Computing takes time. Some problems take a very long time, others can be done quickly. Some problems
seem to take a long time, and then someone discovers a faster way to do them (a ‘faster algorithm’). The
study of the amount of computational effort that is needed in order to perform certain kinds of computations
is the study of computational complexity.

Naturally, we would expect that a computing problem for which millions of bits of input data are
required would probably take longer than another problem that needs only a few items of input. So the time
complexity of a calculation is measured by expressing the running time of the calculation as a function of
some measure of the amount of data that is needed to describe the problem to the computer.

For instance, think about this statement: ‘I just bought a matrix inversion program, and it can invert
an n × n matrix in just 1.2n3 minutes.’ We see here a typical description of the complexity of a certain
algorithm. The running time of the program is being given as a function of the size of the input matrix.

A faster program for the same job might run in 0.8n3 minutes for an n × n matrix. If someone were
to make a really important discovery (see section 2.4), then maybe we could actually lower the exponent,
instead of merely shaving the multiplicative constant. Thus, a program that would invert an n× n matrix
in only 7n2.8 minutes would represent a striking improvement of the state of the art.

For the purposes of this book, a computation that is guaranteed to take at most cn3 time for input of
size n will be thought of as an ‘easy’ computation. One that needs at most n10 time is also easy. If a certain
calculation on an n× n matrix were to require 2n minutes, then that would be a ‘hard’ problem. Naturally
some of the computations that we are calling ‘easy’ may take a very long time to run, but still, from our
present point of view the important distinction to maintain will be the polynomial time guarantee or lack of
it.

The general rule is that if the running time is at most a polynomial function of the amount of input
data, then the calculation is an easy one, otherwise it’s hard.

Many problems in computer science are known to be easy. To convince someone that a problem is easy,
it is enough to describe a fast method for solving that problem. To convince someone that a problem is
hard is hard, because you will have to prove to them that it is impossible to find a fast way of doing the
calculation. It will not be enough to point to a particular algorithm and to lament its slowness. After all,
that algorithm may be slow, but maybe there’s a faster way.

Matrix inversion is easy. The familiar Gaussian elimination method can invert an n×n matrix in time
at most cn3.

To give an example of a hard computational problem we have to go far afield. One interesting one is
called the ‘tiling problem.’ Suppose* we are given infinitely many identical floor tiles, each shaped like a
regular hexagon. Then we can tile the whole plane with them, i.e., we can cover the plane with no empty
spaces left over. This can also be done if the tiles are identical rectangles, but not if they are regular
pentagons.

In Fig. 0.1 we show a tiling of the plane by identical rectangles, and in Fig. 0.2 is a tiling by regular
hexagons.

That raises a number of theoretical and computational questions. One computational question is this.
Suppose we are given a certain polygon, not necessarily regular and not necessarily convex, and suppose we
have infinitely many identical tiles in that shape. Can we or can we not succeed in tiling the whole plane?

That elegant question has been proved* to be computationally unsolvable. In other words, not only do
we not know of any fast way to solve that problem on a computer, it has been proved that there isn’t any

* See, for instance, Martin Gardner’s article in Scientific American, January 1977, pp. 110-121.
* R. Berger, The undecidability of the domino problem, Memoirs Amer. Math. Soc. 66 (1966), Amer.
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Fig. 0.1: Tiling with rectangles

Fig. 0.2: Tiling with hexagons

way to do it, so even looking for an algorithm would be fruitless. That doesn’t mean that the question is
hard for every polygon. Hard problems can have easy instances. What has been proved is that no single
method exists that can guarantee that it will decide this question for every polygon.

The fact that a computational problem is hard doesn’t mean that every instance of it has to be hard. The
problem is hard because we cannot devise an algorithm for which we can give a guarantee of fast performance
for all instances.

Notice that the amount of input data to the computer in this example is quite small. All we need to
input is the shape of the basic polygon. Yet not only is it impossible to devise a fast algorithm for this
problem, it has been proved impossible to devise any algorithm at all that is guaranteed to terminate with
a Yes/No answer after finitely many steps. That’s really hard!

0.2 Hard vs. easy problems
Let’s take a moment more to say in another way exactly what we mean by an ‘easy’ computation vs. a

‘hard’ one.
Think of an algorithm as being a little box that can solve a certain class of computational problems.

Into the box goes a description of a particular problem in that class, and then, after a certain amount of
time, or of computational effort, the answer appears.

A ‘fast’ algorithm is one that carries a guarantee of fast performance. Here are some examples.

Example 1. It is guaranteed that if the input problem is described with B bits of data, then an answer
will be output after at most 6B3 minutes.

Example 2. It is guaranteed that every problem that can be input with B bits of data will be solved in at
most 0.7B15 seconds.

A performance guarantee, like the two above, is sometimes called a ‘worst-case complexity estimate,’
and it’s easy to see why. If we have an algorithm that will, for example, sort any given sequence of numbers
into ascending order of size (see section 2.2) it may find that some sequences are easier to sort than others.

For instance, the sequence 1, 2, 7, 11, 10, 15, 20 is nearly in order already, so our algorithm might, if
it takes advantage of the near-order, sort it very rapidly. Other sequences might be a lot harder for it to
handle, and might therefore take more time.

Math. Soc., Providence, RI
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So in some problems whose input bit string has B bits the algorithm might operate in time 6B, and on
others it might need, say, 10B logB time units, and for still other problem instances of length B bits the
algorithm might need 5B2 time units to get the job done.

Well then, what would the warranty card say? It would have to pick out the worst possibility, otherwise
the guarantee wouldn’t be valid. It would assure a user that if the input problem instance can be described
by B bits, then an answer will appear after at most 5B2 time units. Hence a performance guarantee is
equivalent to an estimation of the worst possible scenario: the longest possible calculation that might ensue
if B bits are input to the program.

Worst-case bounds are the most common kind, but there are other kinds of bounds for running time.
We might give an average case bound instead (see section 5.7). That wouldn’t guarantee performance no
worse than so-and-so; it would state that if the performance is averaged over all possible input bit strings of
B bits, then the average amount of computing time will be so-and-so (as a function of B).

Now let’s talk about the difference between easy and hard computational problems and between fast
and slow algorithms.

A warranty that would not guarantee ‘fast’ performance would contain some function of B that grows

faster than any polynomial. Like eB, for instance, or like 2
√
B , etc. It is the polynomial time vs. not

necessarily polynomial time guarantee that makes the difference between the easy and the hard classes of
problems, or between the fast and the slow algorithms.

It is highly desirable to work with algorithms such that we can give a performance guarantee for their
running time that is at most a polynomial function of the number of bits of input.

An algorithm is slow if, whatever polynomial P we think of, there exist arbitrarily large values of B,
and input data strings of B bits, that cause the algorithm to do more than P (B) units of work.

A computational problem is tractable if there is a fast algorithm that will do all instances of it.
A computational problem is intractable if it can be proved that there is no fast algorithm for it.

Example 3. Here is a familiar computational problem and a method, or algorithm, for solving it. Let’s see
if the method has a polynomial time guarantee or not.

The problem is this. Let n be a given integer. We want to find out if n is prime. The method that we
choose is the following. For each integer m = 2, 3, . . . , b

√
nc we ask if m divides (evenly into) n. If all of the

answers are ‘No,’ then we declare n to be a prime number, else it is composite.
We will now look at the computational complexity of this algorithm. That means that we are going to

find out how much work is involved in doing the test. For a given integer n the work that we have to do can
be measured in units of divisions of a whole number by another whole number. In those units, we obviously
will do about

√
n units of work.

It seems as though this is a tractable problem, because, after all,
√
n is of polynomial growth in n. For

instance, we do less than n units of work, and that’s certainly a polynomial in n, isn’t it? So, according to
our definition of fast and slow algorithms, the distinction was made on the basis of polynomial vs. faster-
than-polynomial growth of the work done with the problem size, and therefore this problem must be easy.
Right? Well no, not really.

Reference to the distinction between fast and slow methods will show that we have to measure the
amount of work done as a function of the number of bits of input to the problem. In this example, n is not
the number of bits of input. For instance, if n = 59, we don’t need 59 bits to describe n, but only 6. In
general, the number of binary digits in the bit string of an integer n is close to log2 n.

So in the problem of this example, testing the primality of a given integer n, the length of the input bit
string B is about log2 n. Seen in this light, the calculation suddenly seems very long. A string consisting of
a mere log2 n 0’s and 1’s has caused our mighty computer to do about

√
n units of work.

If we express the amount of work done as a function of B, we find that the complexity of this calculation
is approximately 2B/2, and that grows much faster than any polynomial function of B.

Therefore, the method that we have just discussed for testing the primality of a given integer is slow.
See chapter 4 for further discussion of this problem. At the present time no one has found a fast way
to test for primality, nor has anyone proved that there isn’t a fast way. Primality testing belongs to the
(well-populated) class of seemingly, but not provably, intractable problems.

In this book we will deal with some easy problems and some seemingly hard ones. It’s the ‘seemingly’
that makes things very interesting. These are problems for which no one has found a fast computer algorithm,

3
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but also, no one has proved the impossibility of doing so. It should be added that the entire area is vigorously
being researched because of the attractiveness and the importance of the many unanswered questions that
remain.

Thus, even though we just don’t know many things that we’d like to know in this field , it isn’t for lack
of trying!

0.3 A preview
Chapter 1 contains some of the mathematical background that will be needed for our study of algorithms.

It is not intended that reading this book or using it as a text in a course must necessarily begin with Chapter
1. It’s probably a better idea to plunge into Chapter 2 directly, and then when particular skills or concepts
are needed, to read the relevant portions of Chapter 1. Otherwise the definitions and ideas that are in that
chapter may seem to be unmotivated, when in fact motivation in great quantity resides in the later chapters
of the book.

Chapter 2 deals with recursive algorithms and the analyses of their complexities.
Chapter 3 is about a problem that seems as though it might be hard, but turns out to be easy, namely the

network flow problem. Thanks to quite recent research, there are fast algorithms for network flow problems,
and they have many important applications.

In Chapter 4 we study algorithms in one of the oldest branches of mathematics, the theory of num-
bers. Remarkably, the connections between this ancient subject and the most modern research in computer
methods are very strong.

In Chapter 5 we will see that there is a large family of problems, including a number of very important
computational questions, that are bound together by a good deal of structural unity. We don’t know if
they’re hard or easy. We do know that we haven’t found a fast way to do them yet, and most people suspect
that they’re hard. We also know that if any one of these problems is hard, then they all are, and if any one
of them is easy, then they all are.

We hope that, having found out something about what people know and what people don’t know, the
reader will have enjoyed the trip through this subject and may be interested in helping to find out a little
more.
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