
mathematics

Article

Algorithms and Data Structures for Sparse
Polynomial Arithmetic

Mohammadali Asadi, Alexander Brandt * , Robert H. C. Moir and Marc Moreno Maza

Department of Computer Science, University of Western Ontario, London, ON N6A 5B7, Canada;
masadi4@uwo.ca (M.A.); rmoir3@uwo.ca (R.H.C.M.); moreno@csd.uwo.ca (M.M.M.)
* Correspondence: abrandt5@uwo.ca

Received: 1 February 2019; Accepted: 12 May 2019; Published: 17 May 2019
����������
�������

Abstract: We provide a comprehensive presentation of algorithms, data structures, and implementation
techniques for high-performance sparse multivariate polynomial arithmetic over the integers and
rational numbers as implemented in the freely available Basic Polynomial Algebra Subprograms
(BPAS) library. We report on an algorithm for sparse pseudo-division, based on the algorithms
for division with remainder, multiplication, and addition, which are also examined herein.
The pseudo-division and division with remainder operations are extended to multi-divisor
pseudo-division and normal form algorithms, respectively, where the divisor set is assumed to form
a triangular set. Our operations make use of two data structures for sparse distributed polynomials
and sparse recursively viewed polynomials, with a keen focus on locality and memory usage for
optimized performance on modern memory hierarchies. Experimentation shows that these new
implementations compare favorably against competing implementations, performing between a
factor of 3 better (for multiplication over the integers) to more than 4 orders of magnitude better
(for pseudo-division with respect to a triangular set).

Keywords: sparse polynomials; polynomial arithmetic; normal form; pseudo-division;
pseudo-remainder; sparse data structures

1. Introduction

Technological advances in computer hardware have allowed scientists to greatly expand the
size and complexity of problems tackled by scientific computing. Only in the last decade have
sparse polynomial arithmetic operations (Polynomial arithmetic operations here refers to addition,
subtraction, multiplication, division with remainder, and pseudo-division) and data structures come
under focus again in support of large problems which cannot be efficiently represented densely.
Sparse polynomial representations was an active research topic many decades ago out of necessity;
computing resources, particularly memory, were very limited. Computer algebra systems of the
time (which handled multivariate polynomials) all made use of sparse representations, including
ALTRAN [1], MACSYMA [2], and REDUCE [3]. More recent work can be categorized into two streams,
the first dealing primarily with algebraic complexity [4,5] and the second focusing on implementation
techniques [6,7]. Recent research on implementation techniques has been motivated by the efficient
use of memory. Due to reasons such as the processor–memory gap ([8] Section 2.1) and the memory
wall [9], program performance has become limited by the speed of memory. We consider these issues
foremost in our algorithms, data structures, and implementations. An early version of this work
appeared as [10].

Sparse polynomials, for example, arise in the world of polynomial system solving—a critical
problem in nearly every scientific discipline. Polynomial systems generally come from real-life
applications, consisting of multivariate polynomials with rational number coefficients. Core routines

Mathematics 2019, 7, 441; doi:10.3390/math7050441 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-1294-9710
https://orcid.org/0000-0001-6673-0565
http://dx.doi.org/10.3390/math7050441
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/7/5/441?type=check_update&version=2

Mathematics 2019, 7, 441 2 of 29

for determining solutions to polynomial systems (e.g., Gröbner bases, homotopy methods, or triangular
decompositions) have driven a large body of work in computer algebra. Algorithms, data structures,
and implementation techniques for polynomial and matrix data types have seen particular attention.
We are motivated in our work on sparse polynomials by obtaining efficient implementations of
triangular decomposition algorithms based on the theory of regular chains [11].

Our aim for the work presented in this paper is to provide highly optimized sparse multivariate
polynomial arithmetic operations as a foundation for implementing high-level algorithms requiring
such operations, including triangular decomposition. The implementations presented herein are
freely available in the BPAS library [12] at www.bpaslib.org. The BPAS library is highly focused
on performance, concerning itself not only with execution time but also memory usage and cache
complexity [13]. The library is mainly written in the C language, for high-performance, with a
simplified C++ interface for end-user usability and object-oriented programming. The BPAS library
also makes use of parallelization (e.g., via the CILK extension [14]) for added performance on multi-core
architectures, such as in dense polynomial arithmetic [15,16] and arithmetic for big prime fields based
on Fast Fourier Transform (FFT) [17]. Despite these previous achievements, the work presented here
is in active development and not yet been parallelized.

Indeed, parallelizing sparse arithmetic is an interesting problem and is much more difficult than
parallelizing dense arithmetic. Many recent works have attempted to parallelize sparse polynomial
arithmetic. Sub-linear parallel speed-up is obtained for the relatively more simple schemes of Monagan
and Pearce [18,19] or Biscani [20], while Gastineau and Laskar [7,21] have obtained near-linear parallel
speed-up but have a much more intricate parallelization scheme. Other works are quite limited:
the implementation of Popescu and Garcia [22] is limited to floating point coefficients while the work
of Ewart et al. [23] is limited to only 4 variables. We hope to tackle parallelization of sparse arithmetic
in the future, however, we strongly believe that one should obtain an optimized serial implementation
before attempting a parallel one.

Contributions and Paper Organization

Contained herein is a comprehensive treatment of the algorithms and data structures we have
established for high-performance sparse multivariate polynomial arithmetic in the BPAS library.
We present in Section 2 the well-known sparse addition and multiplication algorithms from [24] to
provide the necessary background for discussing division with remainder (Section 3), an extension
of the exact division also presented in [24]. In Section 4 we have extended division with remainder
into a new algorithm for sparse pseudo-division. Our presentation of both division with remainder
and pseudo-division has two levels: one which is abstract and independent of the supporting data
structures (Algorithms 3 and 5); and one taking advantage of heap data structures (Algorithms 4
and 6). Section 5 extends division with remainder and pseudo-division to algorithms for computing
normal forms and pseudo-division with respect to a triangular set; the former was first seen in [25]
and here we extend it to the case of pseudo-division. All new algorithms are proved formally.

In support of all these arithmetic operations we have created a so-called alternating array
representation for distributed sparse polynomials which focuses greatly on data locality and
memory usage. When a recursive view of a polynomial (i.e., a representation as a univariate
polynomial with multivariate polynomial coefficients) is needed, we have devised a succinct
recursive representation which maintains the optimized distributed representation for the polynomial
coefficients and whose conversion to and from the distributed sparse representation is highly efficient.
Both representations are explained in detail in Section 6. The efficiency of our algorithms and
implementations are highlighted beginning in Section 7, with implementation-specific optimizations,
and then Section 8, which gathers our experimental results. We obtain speed-ups between a factor of
3 (for multiplication over the integers) and a factor of 18,141 (for pseudo-division with respect to a
triangular set).

www.bpaslib.org

Mathematics 2019, 7, 441 3 of 29

2. Background

2.1. Notation and Nomenclature

Throughout this paper we use the notation R to denote a ring (commutative with identity),
D to denote an integral domain, and K to denote a field. Our treatment of sparse polynomial
arithmetic requires both a distributed and recursive view of polynomials, depending on which
operation is considered. For a distributed polynomial a ∈ R[x1, . . . , xv], a ring R, and variable
ordering x1 < x2 < · · · < xv, we use the notation

a =
na

∑
i=1

Ai =
na

∑
i=1

aiXαi ,

where na is the number of (non-zero) terms, 0 6= ai ∈ R, and αi is an exponent vector for the variables
X = (x1, . . . , xv). A term of a is represented by Ai = aiXαi . We use a lexicographical term order
and assume that the terms are ordered decreasingly, thus lc(a) = a1 is the leading coefficient of a and
lt(a) = a1Xα1 = A1 is the leading term of a. If a is not constant the greatest variable appearing in a
(denoted mvar(a)) is the main variable of a. The maximum sum of the elements of αi is the total degree
(denoted tdeg(a)). The maximum exponent of the variable xi is the degree with respect to xi (denoted
deg(a, xi)). Given a term Ai of a, coef(Ai) = ai is the coefficient, expn(Ai) = αi is the exponent vector,
and deg(Ai, xj) is the component of αi corresponding to xj. We also note the use of a simplified syntax
for comparing monomials based on the term ordering; we denote Xαi > Xαj as αi > αj.

To obtain a recursive view of a non-constant polynomial a ∈ R[x1, . . . , xv], we view a as
a univariate polynomial in R̃[xj], with xj called the main variable (denoted mvar(a)) and where
R̃ = R[x1, . . . , xj−1, xj+1, . . . , xv]. Usually, xj is chosen to be xv and we have a ∈ R[x1, . . . , xv−1][xv].
Given a term Ai of a ∈ R̃[xj], coef(Ai) ∈ R[x1, . . . , xj−1, xj+1, . . . , xv] is the coefficient and expn(Ai) =

deg(Ai, xj) = deg(Ai) is the degree. Given a ∈ R̃[xj], an exponent e picks out the term Ai of a such that
deg(Ai) = e, so we define in this case coef(a, xj, e) := coef(Ai). Viewed specifically in the recursive
way R̃[xj], the leading coefficient of a is an element of R̃ called the initial of a (denoted init(a)) while
the degree of a in the main variable xj is called the main degree (denoted mdeg(a)), or simply degree
where the univariate view is understood by context.

2.2. Addition and Multiplication

Adding (or subtracting) two polynomials involves three operations: joining the terms of the
two summands; combining terms with identical exponents (possibly with cancellation); and sorting
of the terms in the sum. A naïve approach computes the sum a + b term-by-term, adding a term
of the addend (b) to the augend (a), and sorting the result at each step, in a manner similar to
insertion sort. (This sorting of the result is a crucial step in any sparse operation. Certain optimizations
and tricks can be used in the algorithms when it is known that the operands are in some sorted order,
say in a canonical form. For example, obtaining the leading term and degree is much simpler, and,
as is shown throughout this paper, arithmetic operations can exploit this sorting.) This method is
inefficient and does not take advantage of the fact that both a and b are already ordered. We follow
the observation of Johnson [24] that this can be accomplished efficiently in terms of operations and
space by performing a single step of merge sort on the two summands, taking full advantage of
initial sorting of the two summands. One slight difference from a typical merge sort step is that like
terms (terms with identical exponent vectors) are combined as they are encountered. This scheme
results in the sum (or difference) being automatically sorted and all like terms being combined.
The algorithm is very straightforward for anyone familiar with merge sort. The details of the algorithm
are presented in ([24], p. 65). However, for completeness we present the algorithm here using our
notation (Algorithm 1).

Mathematics 2019, 7, 441 4 of 29

Algorithm 1 ADDPOLYNOMIALS (a,b)

a, b ∈ R[x1, . . . , xv], a = ∑na
i=1 ai Xαi , b = ∑

nb
j=1 bj X

βj ;
return c = a + b = ∑nc

k=1 ck Xγk ∈ R[x1, . . . , xv]

1: (i, j, k) := 1
2: while i ≤ na and j ≤ nb do
3: if αi < β j then
4: ck := bj ; γk := β j

5: j := j + 1
6: else if αi > β j then
7: ck := ai ; γk := αi
8: i := i + 1
9: else

10: ck := ai + bj ; γk := αi

11: i := i + 1; j := j + 1
12: if ck = 0 then
13: continue #Do not increment k
14: k := k + 1
15: end
16: while i ≤ na do
17: ck := ai ; γk := αi
18: i := i + 1; k := k + 1
19: while j ≤ nb do
20: ck := bj ; γk := β j

21: j := j + 1; k := k + 1

22: return c = ∑k−1
`=1 c`Xγ`

Multiplication of two polynomials follows the same general idea of addition: Make use of the
fact that the multiplier and multiplicand are already sorted. Under our sparse representation of
polynomials multiplication requires production of the product terms, combining terms with equal
exponents, and then sorting the product terms. A naïve method computes the product a · b (where a
has na terms and b has nb terms) by distributing each term of the multiplier (a) over the multiplicand
(b) and combining like terms:

c = a · b = (a1Xα1 · b) + (a2Xα2 · b) + · · · .

This is inefficient because all nanb terms are generated, whether or not like terms are later
combined, and then all nanb terms must be sorted, and like terms combined. Again, following
Johnson [24], we can improve algorithmic efficiency by generating terms in sorted order.

We can make good use of the sparse data structure for

a =
na

∑
i=1

aiXαi , and b =
nb

∑
j=1

bjX
β j ,

based on the observation that for given αi and β j, it is always the case that Xαi+1+β j and Xαi+β j+1 are
less than Xαi+β j in the term order. Since we always have Xαi+β j > Xαi+β j+1 , it is possible to generate
product terms in order by merging na “streams” of terms computed by multiplying a single term of a
distributed over b,

a · b =

(a1 · b1) Xα1+β1 + (a1 · b2) Xα1+β2 + (a1 · b3) Xα1+β3 + . . .

(a2 · b1) Xα2+β1 + (a2 · b2) Xα2+β2 + (a2 · b3) Xα2+β3 + . . .
...

(ana · b1) Xαna+β1 + (ana · b2) Xαna+β2 + (ana · b3) Xαna+β3 + . . .

and then choosing the maximum term from the “heads” of the streams. We can consider this as an
na-way merge where at each step, we select the maximum term from among the heads of the streams,
making it the next product term, removing it from the stream in the process. The new head of the
stream where a term is removed will then be the term to its right.

Mathematics 2019, 7, 441 5 of 29

This sub-problem of selecting the maximum term among na different terms can be solved
efficiently by making use of a priority queue data structure, which can be implemented as a heap (see
Section 6.3 for implementation details). The virtue of using a heap was noticed by Johnson [24], but the
description of his algorithm was left very abstract and did not make explicit use of a priority queue.

In Algorithm 2 we give our heap-based multiplication algorithm. This algorithm makes use of
a few specialized functions to interface with the heap and the heads of streams contained therein.
We provide here a simplified yet complete interface consisting of four functions. (Please note that
algorithms for insertion and removal from a heap are standard and provided in any good reference on
data structures and algorithms (see, e.g., [26]).) heapInitialize(a, B1) initializes the heap by initiating
na streams, where the head of the i-th stream is Ai · B1. Each of these heads are inserted into the heap.
heapInsert(Ai, Bj) adds the product of the terms Ai and Bj to the heap. It is important to note, however,
that the heap does not need to store the actual product terms but can store instead only the indices of
the two factors, with their product only being computed when elements are removed from the heap.
(This strategy is actually required in the case of pseudo-division (Section 7.4) where the streams
themselves are updated over the course of the algorithm.) The exponent vector of the monomial must
be computed on insertion, though, since this determines the insertion location (priority) in the heap.
heapPeek() returns the exponent vector γ of the top element in the heap and the stream index s
from which the product term was formed, i.e., s such that the top element comes from the stream
As · B. Please note that nothing is removed from the heap by heapPeek(). heapExtract() removes
the top element of the heap, providing the product term. If the heap is empty heapPeek() will return
γ = (−1, 0, . . . , 0), which is, by design, less than any exponent of any polynomial term because the
first element is −1. We therefore abuse notation and write γ = −1 for an empty heap.

Algorithm 2 HEAPMULTIPLYPOLYNOMIALS(a,b)

a, b ∈ R[x1, . . . , xv], a = ∑na
i=1 ai Xαi , b = ∑

nb
j=1 bj X

βj ;
return c = a · b = ∑nc

k=1 ck Xγk ∈ R[x1, . . . , xv]

1: if na = 0 or nb = 0 then
2: return 0
3: k := 1; C1 := 0
4: s = 1; γ := α1 + β1 # Maximum possible value of γ
5: heapInitialize(a, B1)
6: for i = 1 to na do
7: fi := 1 # Indices of the current head of each stream

8: while γ > −1 do # γ = −1 when the heap is exhausted
9: if γ 6= expn(Ck) and coef(Ck) 6= 0 then

10: k := k + 1
11: Ck := 0
12: Ck := Ck + heapExtract()
13: fs := fs + 1
14: if fs ≤ nb then
15: heapInsert(As , B fs)

16: (γ, s) := heapPeek() # Get degree and stream index of the top of the heap

17: end
18: if Ck = 0 then k := k− 1
19: return c = ∑k

`=1 C` = ∑k
`=1 c`Xγ`

We note that while this algorithm seems simple in pseudo-code, its implementation, especially
with respect to the heap, requires many subtle optimizations to achieve good performance.
The discussions of such improvements are left to Section 7. Nonetheless the algorithm presented here
is complete and correct.

Proposition 1. Algorithm 2 terminates and is correct.

Proof. Let a, b ∈ R[x1, . . . , xv]. If either na = 0 or nb = 0 then a = 0 or b = 0, in which case c = 0
and we are done. Otherwise, c 6= 0 and we initialize the heap with na pairs (Ai, B1), i = 1, . . . , na,
we initialize the stream element indices fi to 1, and we set C1 = 0. We initially set γ = α1 + β1,
the maximum possible for polynomials a and b, and a guaranteed term of the product. This also serves

Mathematics 2019, 7, 441 6 of 29

to enter the loop for the first time. Since C1 was initially set to 0, Ck = 0, so the first condition on line 9
is met, but not the second, so we move to line 12. Lines 12 through 15 extract the top of the heap, add it
to Ck (giving C1 = A1B1), and insert the next element of the first stream into the heap. This value of
C1 is correct. Since we add the top element of each stream to the heap, the remaining elements to be
added to the heap are all less than at least one element in the heap. The next heapPeek() sets γ to one
of α2 + β1 or α1 + β2 (or −1 if na = nb = 1), and sets s accordingly. Subsequent passes through the
loop must do one of the following: (1) if Ck 6= 0 and there exists another term with exponent expn(Ck),
add it to Ck; (2) if Ck = 0, add to Ck the next greatest element (since for sparse polynomials we store
only non-zero terms); or (3) when Ck 6= 0 and the next term has lower degree (γk > γ), increase k and
then begin building the next Ck term. Cases (1) and (2) are both handled by line 12, since the condition
on line 9 fails in both cases, respectively because γ = expn(Ck) or because Ck = 0. Case (3) is handled
by lines 9–12, since γ 6= expn(Ck) and Ck 6= 0 by assumption. Hence, the behavior is correct. The loop
terminates because there are only nb elements in each stream, and lines 14–15 only add an element to
the heap if there is a new element to add, while every iteration of the loop always removes an element
from the heap at line 12.

3. Division with Remainder

3.1. Naïve Division with Remainder

We now consider the problem of multivariate division with remainder, where the input
polynomials are a, b ∈ D[x1, . . . , xv], with b 6= 0 being the divisor and a the dividend. While this
operation is well-defined for a, b ∈ D[x1, . . . , xv] for an arbitrary integral domain D, provided that lc(b)
is a divisor of the content of both a and b, we rather assume, for simplicity, that the polynomials a and
b are over a field. We can therefore specify this operation as having the inputs a, b ∈ K[x1, . . . , xv],
and outputs q, r ∈ K[x1, . . . , xv], where q and r satisfy (We note due to its relevance for the algorithms
presented in Section 5 that {b} is a Gröbner basis of the ideal it generates and the stated condition here
on the remainder r is equivalent to the condition that r is reduced with respect to the Gröbner basis
{b} (see [27] for further discussion of Gröbner bases and ideals)):

a = qb + r, where r = 0 or lt(b) does not divide any term in r.

In an effort to achieve performance, we continue to be motivated by the idea of producing terms
of the result (quotient and remainder) in sorted order. However, this is much trickier in the case of
division in comparison to multiplication. We must compute terms of both the quotient and remainder
in order, while simultaneously producing terms of the product qb in order. We must also produce
these product terms while q is being generated term-by-term throughout the algorithm. This is not so
simple, especially in implementation.

In the general “long division” of polynomials (see Section 2.4 of [28]) one repeatedly obtains the
product of a newly computed quotient term and the divisor, and then updates the dividend with
the difference between it and this product. Of course, this is computationally wasteful and not ideal,
since at each step of this long division one needs only the leading term of this updated dividend to
compute the next quotient term. Thus, before concerning ourselves with a heap-based algorithm,
we consider a computationally efficient division algorithm which does not perform this continued
updating of the dividend. This algorithm, which is a special case of the algorithm in Theorem 3 of
Section 2.3 in [27] , is presented as Algorithm 3.

Mathematics 2019, 7, 441 7 of 29

Algorithm 3 DIVIDEPOLYNOMIALS(a,b)
a, b ∈ K[x1, . . . , xv], b 6= 0; return q, r ∈ K[x1, . . . , xv] such that a = qb + r where r = 0 or lt(b) does not divide any term in r (r is reduced with
respect to the Gröbner basis {b}).

1: q := 0; r := 0
2: while (r̃ := lt(a− qb− r)) 6= 0 do
3: if lt(b) | r̃ then
4: q := q + r̃/lt(b)
5: else
6: r := r + r̃
7: end
8: return (q, r)

In this algorithm, the quotient and remainder, q and r, are computed term-by-term by computing
r̃ = lt(a− qb− r) at each step. This works for division by deciding whether r̃ should belong to the
remainder or the quotient at each step. If lt(b) | r̃ then we perform this division and obtain a new
quotient term. Otherwise, we obtain a new remainder term. In either case, this r̃ was the leading term
of the expression a− qb− r and now either belongs to q or r. Therefore, in the next step, the old r̃
which was added to either q or r will now cancel itself out, resulting in a new leading term of the
expression a− qb− r. This new leading term is non-increasing (in the sense of its monomial) relative
to the preceding r̃ and thus terms of the quotient and remainder are produced in order.

Proposition 2. Algorithm 3 terminates and is correct. ([27], pp. 61–63)

3.2. Heap-Based Division with Remainder

It is clear from Algorithm 3 that multivariate division reduces to polynomial multiplication
(through the product qb) and polynomial subtraction. What is not obvious is the efficient computation
of the term r̃ = lt(a− qb− r). Nonetheless, we can again use heap-based multiplication to keep track
of the product qb. The principal difference from multiplication, where all terms of both factors are
known from the input, is that the terms of q are computed as the algorithm proceeds. This idea of
using a heap to monitor q · b follows that of Johnson [24] for his exact univariate division. We extend
his algorithm to multivariate division with remainder.

In terms of the wording of the multiplication algorithm, we set q to the multiplier and b to the
multiplicand, distributing q over b, so the streams are formed from a single term of q, while the stream
moves along b. By having q in this position it becomes relatively easy to add new streams into the
computation as new terms of q are computed. Using the notations of our heap-division algorithm
(Algorithm 4), the crucial difference between heap-based multiplication and heap-based division is
that each stream does not start with Q`B1. Rather, the stream begins at Q`B2 since the product term
Q`B1 is cancelled out by construction.

The management of the heap to compute the product qb uses several of the functions described for
Algorithm 2. Specifically heapPeek(), heapInsert(·, ·), and heapExtract(). However, heapExtract()
is modified slightly from its definition in multiplication. For division it combines removal of the top
heap element and insertion of the next element of the stream (if there is a next) from which the top
element originated. In this algorithm we use δ to denote the exponent of the top term in the heap of
q · b. Similar to multiplication, we abuse notation and let δ = −1 if the heap is empty.

Finally, having settled the details of the product qb, what remains is to efficiently compute the
leading term of a− qb− r. This is handled by a case discussion between the maximum term (in the
sense of the term order) of a which has yet to be cancelled out and the maximum term of the product
qb which has yet to be used to cancel out something. Then, by construction, when a newly generated
term goes to the remainder it exactly cancels out one term of a− qb. This case discussion is evident in
lines 4, 7, and 10 of Algorithm 4, while Proposition 3 formally proves the correctness of this approach.

Mathematics 2019, 7, 441 8 of 29

Algorithm 4 HEAPDIVIDEPOLYNOMIALS(a,b)

a, b ∈ K[x1, . . . , xv], a = ∑na
i=1 ai Xαi = ∑na

i=1 Ai , b 6= 0 = ∑
nb
j=1 bj X

βj = ∑
nb
j=1 Bj ; return q, r ∈ K[x1, . . . , xv] such that a = qb + r where r = 0 or B1

does not divide any term in r (r is reduced with respect to the Gröbner basis {b}).

1: (q, r, l) := 0
2: k := 1
3: while (δ := heapPeek()) > −1 or k ≤ na do
4: if δ < αk then
5: r̃ := Ak
6: k := k + 1
7: else if δ = αk then
8: r̃ := Ak − heapExtract()
9: k := k + 1

10: else
11: r̃ := −heapExtract()

12: if B1 | r̃ then
13: ` := `+ 1
14: Q` := r̃/B1
15: q := q + Q`

16: heapInsert(Q` , B2)
17: else
18: r := r + r̃
19: end
20: return (q, r)

Proposition 3. Algorithm 4 terminates and is correct.

Proof. Let K be a field and a, b ∈ K[x1, . . . , xv] with tdeg(b) > 0. If b ∈ K then this degenerate case is
simply a scalar multiplication by b−1

1 and proceeds as in Proposition 2. Then r = 0 and we are done.
Otherwise, tdeg(b) > 0 and we begin by initializing q, r = 0, k = 1 (index into a), ` = 0 (index into q),
and δ = −1 (heap empty condition) since the heap is initially empty. The key change from Algorithm 3
to obtain Algorithm 4 is to use terms of qb obtained from the heap to compute r̃ = lt(a − qb − r).
There are then three cases to track: (1) r̃ is an uncancelled term of a; (2) r̃ is a term from (a− r)− (qb),
i.e., the degree of the greatest uncancelled term of a is the same as the degree of the leading term of
qb; and (3) r̃ is a term of −qb with the property that the rest of the terms of a− r are smaller in the
term order. Let akXαk = Ak be the greatest uncancelled term of a. The three cases then correspond to
conditions on the ordering of δ and αk. The term r̃ is an uncancelled term of a (Case 1) either if the
heap is empty (meaning either that no terms of q have yet been computed or all terms of qb have been
removed), or if δ > −1 but δ < αk. In either of these two situations δ < αk holds and r̃ is chosen to
be Ak. The term r̃ is a term from the difference (a− r)− (qb) (Case 2) if both Ak and the top term in the
heap have the same exponent vector (δ = αk). Lastly, r̃ is a term of−qb (Case 3) whenever δ > αk holds.
Algorithm 4 uses the above observation to compute r̃ by adding conditional statements to compare
the components of δ and αk. Terms are only removed from the heap when δ ≥ αk holds, and thus we
“consume” a term of qb. Simultaneously, when a term is removed from the heap, the next term from
the given stream, if it exists, is added to the heap (by the definition of heapExtract()). The updating
of q and r with the new leading term r̃ is almost the same as Algorithm 3, with the exception that
when we update the quotient, we also initialize a new stream with Q` in the multiplication of q · b.
This stream is initialized with a head of Q`B2 because Q`B1, by construction, cancels a unique term of
the expression a− qb− r. In all three cases, either the quotient is updated, or the remainder is updated.
It follows from the case discussion of δ and αk that the leading term of a− qb− r is non-increasing for
each loop iteration and the algorithm therefore terminates by Proposition 2. Correctness is implied by
the condition that r̃ = 0 at the end of the algorithm together with the fact that all terms of r satisfy the
condition lt(b) - Rk.

Mathematics 2019, 7, 441 9 of 29

4. Pseudo-Division

4.1. Naïve Pseudo-Division

The pseudo-division algorithm is essentially a univariate operation. Accordingly, we denote
polynomials and terms in this section as being elements of D̃[x1, . . . , xv−1][xv] = D[x] for an arbitrary
integral domain D̃. It is important to note that while the algorithms and discussion in this section
are specified for univariate polynomials they are, in general, multivariate polynomials, and thus the
coefficients of these univariate polynomials are in general themselves multivariate polynomials.

Pseudo-division is essentially a fraction-free division: instead of dividing a by h = lc(b) (once
for each term of the quotient q), a is multiplied by h to ensure that the polynomial division can
occur without being concerned with divisibility limitations of the ground ring. The outputs of a
pseudo-division operation are the pseudo-quotient q and pseudo-remainder r satisfying

h`a = qb + r, deg(r) < deg(b), (1)

where ` satisfies the inequality 0 ≤ ` ≤ deg(a) − deg(b) + 1. When ` < deg(a) − deg(b) + 1 the
pseudo-division operation is called lazy or sparse.

Under this definition, the simple multivariate division algorithm (Algorithm 3) can be readily
modified for pseudo-division by accounting for the required factors of h. This enters in two places:
(i) each time a term of a is used, we must multiply the current term Ak of a by h`, where ` is the number
of quotient terms computed so far, and (ii) each time a quotient term is computed we must multiply all
the previous quotient terms by h to ensure that h`a = qb + r will be satisfied. Algorithm 5 presents
this basic pseudo-division algorithm modified from the simple multivariate division algorithm.

Algorithm 5 PSEUDODIVIDEPOLYNOMIALS(a,b)
a, b ∈ D[x], b 6= 0, h = lc(b); return q, r ∈ D[x] and ` ∈ N such that h`a = qb + r, with deg(r) < deg(b).

1: (q, r, `) := 0
2: h := lc(b); β = deg(b)
3: while (r̃ := lt(h`a− qb− r)) 6= 0 do
4: if xβ | r̃ then
5: q := hq + r̃/xβ

6: ` := `+ 1
7: else
8: r := r + r̃
9: end

10: return (q, r, `)

It is important to note that because pseudo-division is univariate, all of the quotient terms are
computed before any remainder terms are computed. This is because we can always carry out a
pseudo-division step, and produce a new quotient term, provided that deg(b) ≤ deg(lt(h`a− qb− r)),
where r = 0. When deg(b) > deg(lt(h`a− qb− r)) then the quotient is done being computed and
we have r = h`a− qb, satisfying the conditions (1) of a pseudo-remainder. The following proposition
proves the correctness of our pseudo-division algorithm.

Proposition 4. Algorithm 5 terminates and is correct.

Proof. Let D be an integral domain and let a, b ∈ D[x] with β = deg(b) > 0. If deg(b) = 0, b = h
and the divisibility test on line 4 always passes, all generated terms go to the quotient, and we get a
remainder of 0 throughout the algorithm. Essentially this is a meaningless operation. q becomes hna−1a
and the formula (1) holds with r = 0 and the convention that deg(0) = −∞. We proceed assuming
deg(b) > 0. We initialize q, r, ` = 0. It is enough to show that for each loop iteration, the degree
of r̃ strictly decreases. Since the degree of r̃ is finite, r̃ is zero after finitely many iterations. We use
superscripts to denote the values of the variables of Algorithm 5 on the i-th iteration. We have two
possibilities for each i, depending on whether or not xβ | r̃(i) holds: (1) Q` = r̃(i)/xβ, Q` being a new

Mathematics 2019, 7, 441 10 of 29

quotient term; or (2) Rk = r̃(i), Rk being a new remainder term. In Case 1 we update only the quotient
term so r(i+1) = r(i); in Case 2 we update only the remainder term so q(i+1) = q(i).

Suppose, then, that r̃(i) has just been used to compute a term of q or r, and we now look to
compute r̃(i+1). Depending on whether or not xβ | r̃(i) we have:
Case 1: xβ | lt(h`a− q(i)b− r(i)) and Q` = r̃(i)/xβ. Here, because we are still computing quotient
terms, r(i+1) = r(i) = 0. Thus,

r̃(i+1) = lt(h`+1a− q(i+1)b− r(i+1)) = lt(h`+1a− ([hq(i) + Q`]b))

= lt(h`+1a− (hq(i)b + Q`b))

= lt(h`+1a− [hq(i)b + (hr̃(i) − hr̃(i)) + Q`b])

= lt(h`+1a− [hq(i)b + hr̃(i) + Q`(b− hxβ)])

= lt(h[h`a− q(i)b− r̃(i)]−Q`(b− B1))

= lt
(
(h[h`a− q(i)b− r(i) − r̃(i)])−Q`(b− B1)

)
< lt(r̃(i)) = r̃(i).

In the second last line, where r(i) = 0 appears, notice that since r̃(i) = lt(h`a− q(i)b− r(i)) and
h ∈ D, we can ignore h for the purposes of choosing a term with highest degree and we have therefore
that lt(h`a− q(i)b− r(i) − r̃(i)) < lt(r̃(i)). Also, the expression Q`(b− B1) has leading term Q`B2 which
is strictly less than r̃(i) = Q`xβ, by the ordering of the terms of b. Hence r̃(i+1) is strictly less than r̃(i).
Case 2: xβ - lt(h`a− q(i)b− r(i)) and Rk = r̃(i)

r̃(i+1) = lt(h`a− q(i+1)b− r(i+1)) = lt(h`a− q(i)b− (r(i) + Rk))

= lt((h`a− q(i)b− r(i))− r̃(i))

< lt(r̃(i)) = r̃(i).

Similar to Case 1, r̃(i) = lt(h`a− q(i)b− r(i)), thus the difference between (h`a− q(i)b− r(i)) and
r̃(i) must have a leading term strictly less than r̃(i). The loop therefore terminates. The correctness
is implied by the condition that r̃ = 0 at the end of the loop. The condition deg(r) < deg(b) is
met because the terms are only added to the remainder when xβ - r̃ holds, i.e., when it is always
the case that deg(h`a− qb) < deg(b). ` ≤ deg(a)− deg(b) + 1 holds because ` is only incremented
when a new quotient term is produced (i.e., xβ | r̃) and the maximum number of quotient terms is
deg(a)− deg(b) + 1.

4.2. Heap-Based Pseudo-Division

Optimization of Algorithm 5 using a heap proceeds in much the same way as for division. The only
additional concern to handle to reach Algorithm 6 is how to account for factors of h in the computation
of lt(h`a− qb− r). Handling this requires adding the same number of factors of h to Ak that have
been added to the quotient up to a given iteration, that is, h`. The number ` is incremented when the
previous quotient terms are multiplied by h prior to adding a new quotient term. Other than this,
the changes to Algorithm 5 to reach Algorithm 6 follow exactly the analogous changes to Algorithm 3
to reach Algorithm 4. These observations therefore yield the following algorithm and proposition.

Mathematics 2019, 7, 441 11 of 29

Algorithm 6 HEAPPSEUDODIVIDEPOLYNOMIALS(a,b)

a, b ∈ D[x], a = ∑na
i=1 ai xαi = ∑na

i=1 Ai , 0 6= b = ∑
nb
j=1 bj x

βj = ∑
nb
j=1 Bj , h = lc(b);

return q, r ∈ D[x] and ` ∈ N such that h`a = qb + r, with deg(r) < deg(b).

1: (q, r, l) := 0
2: h := lc(b); β := deg(b)
3: k := 1
4: while (δ := heapPeek()) > −1 or k ≤ na do
5: if δ < αk then
6: r̃ := h`Ak
7: k := k + 1
8: else if δ = αk then
9: r̃ := h`Ak − heapExtract()

10: k := k + 1
11: else
12: r̃ := −heapExtract()

13: if xβ | r̃ then
14: q := hq
15: ` := `+ 1
16: Q` := r̃/xβ

17: q := q + Q`

18: heapInsert(Q` , B2)
19: else
20: r := r + r̃
21: end
22: return (q, r, `)

Proposition 5. Algorithm 6 terminates and is correct.

Proof. Let D be an integral domain and a, b ∈ D[x] with deg(b) > 0. If b ∈ D then this degenerate
case proceeds as in Proposition 4. Then r = 0 with deg(r) = −∞ < 0 = deg(b) and we
are done. Observe that there are two main conditionals (lines 5–12 and 13–20) in the while loop.
Given Proposition 4, it is enough to show that the first conditional computes lt(h`a − qb − r) and
the second uses r̃ to add terms to either q or r, depending on whether or not xβ | r̃. We initialize
q, r = 0, k = 1 (index into a), ` = 0 (index into q), δ = −1 (heap empty condition) since the heap is
initially empty. The central change to Algorithm 5 to reach Algorithm 6 is to take terms of qb from
the heap to compute r̃ = lt(h`a− qb− r). Three cases must then be tracked: (1) r̃ is a term of h`a that
has not yet been cancelled; (2) r̃ is a term from (h`a− r)− (qb); and (3) r̃ is a term of −qb such that all
remaining terms of h`a− r have smaller degree. Notice that all the terms of q are computed before
the terms of r since this is essentially univariate division with respect to the monomials. Therefore,
we can ignore r in the sub-expression h`a − r. Thus, computing lt(h`a − qb − r) in order simply
requires computing terms of (h`a− qb) in order. These three cases for computing r̃ are handled by
the first conditional. Let akXαk = Ak be the greatest uncancelled term of a. In Case 1, the heap is
either empty (indicating that no terms of q have been computed yet or all terms of qb have been
extracted) or deg(qb) = δ > −1 but δ < αk. In either situation δ < αk holds and r̃ is chosen to be Ak.
The term r̃ is a term from the difference (h`a− qb) (Case 2) if both Ak and the top term of the heap
have the same degree (δ = αk) and r̃ is chosen to be the difference of h`Ak and the greatest uncancelled
term of qb. Lastly, r̃ is a term of −qb (Case 3) in any other situation, i.e., δ > αk. Thus, the first
conditional computes lt(h`a− qb− r), provided that the second conditional correctly adds terms to q
and r. The second conditional adds terms to the quotient when xβ | lt(h`a− qb) holds. Since each
new quotient term adds another factor of h, we must first multiply all previous quotient terms by h.
We then construct the new quotient term to cancel lt(h`a− qb) by setting Q`+1 = lt(h`a− qb)/xβ, as
in Algorithm 5. Since Q`B1 cancels a term of (h`a− qb) by construction, then line 18 initializing a
new stream with Q`B2 is also correct. If, on the other hand, xβ - lt(h`a− qb), all remaining r̃ terms are
remainder terms, which are correctly added by line 20.

While the algorithmic shift between heap-based multivariate division (Algorithm 4) and
heap-based pseudo-division (Algorithm 6) is very straight forward, the change of coefficient domain
from simple numerical coefficients to full multivariate polynomials (when D is a polynomial ring)

Mathematics 2019, 7, 441 12 of 29

leads to many implementation challenges. This affects lines 6, 9 and 14 of Algorithm 6 in particular
because they can involve multiplication of multivariate polynomials. These issues are discussed in
Section 7.4.

5. Multi-Divisor Division and Pseudo-Division

One natural application of multivariate division with remainder is the computation of the normal
form with respect to a Gröbner basis, which is a kind of multi-divisor division. Let K be a field and
B = {b1, . . . , bk} be a Gröbner basis with bj ∈ K[x1, . . . , xv] for 1 ≤ i ≤ k. Then we can compute the
normal form r of a polynomial a ∈ K[x1, . . . , xv] (together with the quotients qj) with respect to B
by Algorithm 21.11 from [28], yielding a = q1t1 + · · ·+ qktk + r, where r is reduced with respect to
B. This naïve normal form algorithm makes repeated calls to a multivariate division with remainder
algorithm, thus we can take advantage of our optimized heap-based division (Algorithm 4).

We can offer algorithmic improvements in some cases where the set of divisors forms a triangular
set, i.e., where the main variables of tj ∈ {t1, . . . , tk} are pairwise different. Note that a triangular
set T = {t1, . . . , tk}, with tj ∈ K[x1, . . . , xv] and mvar(tk) > · · · > mvar(t1), is called normalized if,
for every polynomial of T, every variable appearing in its initial is free, i.e., is not the main variable
of another polynomial of T. In the case where a normalized triangular set is also zero-dimensional
(i.e., k = v) so that being normalized implies that init(ti) ∈ K holds, the triangular set T is actually a
Gröbner basis for the ideal it generates.

For such zero-dimensional normalized (also known as Lazard) triangular sets it is possible to
use a recursive algorithm (Algorithm 7) which is taken from [25]. Since the algorithm is recursive
we appropriately use the recursive representation of the polynomials. If v = 1, the desired result is
obtained by simply applying normal division with remainder. Otherwise the coefficients of a with
respect to xv = mvar(tv) are polynomials belonging to K[x1, . . . , xv−1] because T is a triangular set.
The coefficients of a are reduced with respect to the set {t1, t2, . . . , tv−1} by means of a recursive call,
yielding a polynomial r. At this point, r is divided by tv by applying the division algorithm. Since this
operation can lead to an increase in degree of for the variables less than xv, the coefficients of r are
reduced with respect to {t1, . . . , tv−1} by means of a second recursive call.

Algorithm 7 TRIANGULARSETNORMALFORM (a,T)
Given a ∈ K[x1, . . . , xv], T = {t1, . . . , tv} ⊂ K[x1, . . . , xv], with x1 = mvar(t1) < · · · < xv = mvar(tv) and init(t1), . . . , init(tv) ∈ K, returns
q = {q1, . . . , qv} ⊂ K[x1, . . . , xv] and r ∈ K[x1, . . . , xv] such that a = q1t1 + · · ·+ qvtv + r, with r is reduced (in the Gröbner bas) with respect to
the Lazard triangular set T.

1: if v = 1 then
2: (q1, r) := HEAPDIVIDEPOLYNOMIALS(a, t1)
3: else
4: for i = 0 to deg(a, xv) do

5: (q(i) := {q(i)1 , . . . , q(i)v−1}, r(i)) := TRIANGULARSETNORMALFORM(coef(a, xv , i), {t1, . . . , tv−1})
6: end for
7: q := 0
8: r := ∑

i
r(i)xv

i

9: for j = 1 to v− 1 do

10: qj := qj + ∑
i

q(i)j xv
i

11: end for
12: (q̃, r) := HEAPDIVIDEPOLYNOMIALS(r, tv); qv := qv + q̃
13: for i = 0 to deg(r, xv) do

14: (q(i) := {q(i)1 , . . . , q(i)v−1}, r(i)) := TRIANGULARSETNORMALFORM(coef(r, xv , i), {t1, . . . , tv−1})
15: end for
16: execute Lines 8–11
17: end if
18: return (q, r)

Proposition 6. Algorithm 7 terminates and is correct [25].

This approach can be extended to pseudo-division of a polynomial by a triangular set, an operation
that is important in triangular decomposition algorithms, in the case that the triangular set

Mathematics 2019, 7, 441 13 of 29

is normalized. The pseudo-remainder r and pseudo-quotients qj of a polynomial a ∈ K[x1, . . . , xv]

pseudo-divided by a triangular set T = {t1, . . . , tk}must satisfy

ha = q1t1 + · · ·+ qktk + r, deg(r, mvar(tj)) < deg(tj, mvar(tj)) for 1 ≤ j ≤ k, (2)

where h is a product of powers of the initials (leading coefficients in the univariate sense) of the
polynomials of T. If this condition is satisfied then r is said to be reduced with respect to T, again using
the convention that deg(r) = −∞ if r = 0.

The pseudo-remainder r can be computed naïvely in k iterations where each iteration
performs a single pseudo-division step with respect to each main variable in decreasing order
mvar(tk), mvar(tk−1), . . . , mvar(t1). The remainder is initially set to a and is updated during
each iteration. This naïve algorithm is inefficient for two reasons. First, since each pseudo-division
step can increase the degree of lower variables in the order, if a is not already reduced with respect
to T, the intermediate pseudo-remainders can experience significant coefficient swell. Second, it is
inefficient in terms of data locality because each pseudo-division step requires performing operations
on data distributed throughout the polynomial.

A less naïve approach is a recursive algorithm that replaces each of the k pseudo-division steps in
the naïve algorithm with a recursive call, amounting to k iterations where multiple pseudo-division
operations are performed at each step. This algorithm deals with the first inefficiency issue of coefficient
swell, but still runs into the issue with data locality. To perform this operation more efficiently
we conceive a recursive algorithm (Algorithm 8) based on the recursive normal form algorithm
(Algorithm 7). Using a recursive call for each coefficient of the input polynomial a ensures that we
work only on data stored locally, handling the second inefficiency of the naïve algorithm.

Algorithm 8 TRIANGULARSETPSEUDODIVIDE (a,T)
Given a, t1, . . . , tk ∈ K[x1, . . . , xv], T = {t1, . . . , tk}, with mvar(t1) < · · · < mvar(tk) and init(tj) /∈ {mvar(ti) | ti ∈ T} for 1 ≤ j ≤ k, returns
q = {q1, . . . , qk} ⊂ K[x1, . . . , xv] and r, h ∈ K[x1, . . . , xv] such that ha = q1t1 + · · ·+ qktk + r, where r is reduced with respect to T.

1: if k = 1 then
2: (q1, r, e) := HEAPPSEUDODIVIDEPOLYNOMIALS(a, t1); h = init(t1)e

3: else
4: xm := mvar(tk)
5: for i = 0 to deg(a, xm) do

6: (q(i) := {q(i)1 , . . . , q(i)k−1}, r(i) , h(i)) := TRIANGULARSETPSEUDODIVIDE(coef(a, xm , i), {t1, . . . , tk−1})
7: end for
8: q = 0
9: h1 := lcm(h(i)), 0 ≤ i ≤ deg(a, xm)

10: r := ∑
i
(h1/h(i)) r(i)xi

m

11: for j = 1 to k− 1 do

12: qj := qj + ∑
i
(h1/h(i)) q(i)j xi

m

13: end for
14: if mvar(r) = xm then
15: (q̃, r, ẽ) := HEAPPSEUDODIVIDEPOLYNOMIALS(r, tk)

16: h̃ = init(tk)
ẽ

17: for j = 1 to k− 1 do
18: qj := qj h̃
19: end for
20: qk := q̃
21: for i = 0 to deg(r, xm) do

22: (q(i) := {q(i)1 , . . . , q(i)k−1}, r(i) , h(i)) := TRIANGULARSETPSEUDODIVIDE(coef(r, xm , i), {t1, . . . , tk−1})
23: end for
24: h2 := lcm(h(i)), 0 ≤ i ≤ deg(r, xm)
25: for j = 1 to k do
26: qj := qjh2

27: end for
28: execute Lines 9–13 with h2 replacing h1

29: h := h1 h̃h2
30: else
31: h := h1; qk = 0
32: end if
33: end if
34: return (q, r, h)

Mathematics 2019, 7, 441 14 of 29

Proposition 7. Algorithm 8 terminates and is correct.

Proof. The central difference between this algorithm and Algorithm 7 is the change from division to
pseudo-division. By Proposition 5 the computed pseudo-remainders are reduced with respect to their
divisor. The fact that the loops of recursive calls are all for a triangular set with one fewer variables
ensures that the total number of recursive calls is finite, and the algorithm terminates. If k = 1, then
Proposition 5 proves correctness of this algorithm, so assume that k > 1.

We must first show that lines 4–13 correctly reduce a with respect to the polynomials

{t1, . . . , tk−1}. Let ci = coef(a, xm, i), so a = ∑
deg(a,xm)
i=0 cixi

m. Assuming the correctness of the

algorithm, the result of these recursive calls are q(i)j , r(i) and h(i) such that h(i)ci = ∑k−1
j=1 q(i)j tj + r(i),

where deg(r(i), mvar(tj)) < deg(tj, mvar(tj)) and h(i) = ∏k−1
j=1 init(tj)

ej for some non-negative integers

ej. It follows that ci =
(

∑k−1
j=1 q(i)j tj + r(i)

)
/h(i). We seek a minimal h1 such that h1a = ∑i h1cixi

m =

∑i(h1/h(i))
(

∑k−1
j=1 q(i)j tj + r(i)

)
xi

m is denominator-free, which is easily seen to be lcm(h(i)). This then

satisfies the required relation of the form (2), with h1 in place of h, by taking qj = ∑i(h1/h(i))q(i)j tjxi
m

and r = ∑i(h1/h(i))r(i)j xi
m. This follows from the conditions deg(r(i), mvar(tj)) < deg(tj, mvar(tj))

since h1 contains none of the main variables of {t1, . . . , tk−1} because T is normalized.
If at this point mvar(r) 6= xm, then no further reduction needs to be done and the algorithm

finishes with the correct result by returning (q1, . . . , qk−1, 0, r, h1). This is handled by the else clause
on lines 30 and 31 of the conditional on lines 14–32. If, on the other hand, mvar(r) = xm, we must
reduce r with respect to tk. Proposition 5 proves that after executing line 15, deg(r, mvar(tk)) <

deg(tk, mvar(tk)), and together with lines 16–20 implies that with the updated pseudo-quotients

h̃h1a =
k

∑
j=1

qjtj + r. (3)

Since the pseudo-division step at line 15 may increase the degrees of the variables of r less
than xm in the variable ordering, we must issue a second set of recursive calls to ensure that (2) is
satisfied. Again, given the correctness of the algorithm, it follows that the result of the recursive calls

on lines 21–23 taking as input r = ∑
deg(r,xm)
i=0 cixi

m, with ci = coef(r, xm, i), are q(i)j , r(i) and h(i) such that

h(i)ci = ∑k−1
j=1 q(i)j tj + r(i), where deg(r(i), mvar(tj)) < deg(tj, mvar(tj)). Combining these results as

before and taking h2 = lcm(h(i)) it follows that

h2r =
k−1

∑
j=1

q̃jtj + r̃ (4)

satisfies a reduction condition of the form (2) with q̃ = ∑i(h2/h(i))q(i)j tjxi
m and r̃ = ∑i(h2/h(i))r(i)j xi

m,

again because T is normalized. Multiplying (3) by h2 and using Equation (4) yields h2h̃h1a =

∑k
j=1 h2qjtj + h2r = ∑k

j=1 h2qjtj +∑k−1
j=1 q̃jtj + r̃ = ∑k−1

j=1 (h2qj + q̃j)tj + h2qktk + r̃, which gives the correct
conditions for updating the pseudo-quotients on lines 25–27, with the q̃j and r̃ computed at line 28.
Now r̃ is reduced with respect to xm because r is and with respect to mvar(t1), . . . , mvar(tk−1) because
of the above argument, so that the correct overall multiplier is h = h2h̃h1, set on line 29. The algorithm
is therefore correct.

6. Data Structures

Polynomial arithmetic is fundamental to so many algorithms that it should naturally be optimized
as much as possible. Although algorithm choice is important for this, so too is making use of
appropriate data structures. When programming for modern computer architectures we must be

Mathematics 2019, 7, 441 15 of 29

concerned with the processor–memory gap: the exponentially increasing difference between processor
speeds and memory-access time. We combat this gap with judicial memory usage and management.
In particular, the principle of locality and cache complexity describe how to obtain performance by
maximizing memory accesses that make best use of modern memory hierarchies (i.e., data locality).
Basically, this means that the same memory address should be accessed frequently or, at the very
least, accesses should be adjacent to those most recently accessed. Our implementation adheres to this
principle through the use of memory-efficient data structures with optimal data locality. We see later
(in Section 7) that our algorithms have implementation-specific optimizations to exploit this locality
and minimize cache complexity.

This section begins by reviewing our memory-efficient data structures for both sparse distributed
(Section 6.1) polynomials and sparse recursive polynomials (Section 6.2). The latter is interesting as
the data structure is still flat and distributed but allows for the polynomial to be viewed recursively.
Then, we discuss the implementation of our heap data structure (Section 6.3) which is specialized and
optimized for use in polynomial multiplication.

6.1. A Sparse Distributed Polynomial Data Structure

The most simple and common scheme for sparsely representing a polynomial is a linked list,
or some similar variation of data blocks linked together by pointers [6,29,30]. This representation allows
for very easy manipulation of terms using simple pointer manipulation. However, the indirection
created by pointers can lead to poor locality while the pointers themselves must occupy memory,
resulting in memory wasted to encode the structure rather than the data itself. More efficient sparse
data structures have been explored by Gastineau and Laskar [29], where burst tries store monomials
in the TRIP computer algebra system, and Monagan and Peace [30], where the so-called POLY data
structure for MAPLE closely stores monomials in a dense array. In both cases, the multi-precision
coefficients corresponding to those monomials are stored in a secondary structure and accessed by
either indices stored alongside the monomials (in the case of TRIP) or pointers (in the case of MAPLE).

Our distributed polynomial representation stores both coefficients and monomials side-by-side
in the same array. This representation, aptly named an alternating array, improves upon data locality;
the coefficient and monomial which together make a single polynomial term are optimally local
with respect to each other. This decision is motivated by the fact that in arithmetic, coefficients
are accessed alongside their associated monomials (say to perform a multiplication or combine
like terms). In practice, this array structure is augmented by a simple C-struct holding three items: the
number of terms; the number of variables; and a pointer to the actual array. This seemingly simple
structure abstracts away some complexities in both the coefficients and monomials. We begin with
the coefficients.

Due to the nature of arbitrary-precision coefficients, in our case either integers or rational
numbers (We actually have two nearly identical yet distinct alternating array implementations.
One implementation holds integer coefficients while the other holds rational number coefficients),
we cannot say they are fully stored in the array. We make use of the GNU Multiple Precision Arithmetic
(GMP) Library [31] for our coefficients. The implementation of arbitrary-precision numbers in this
library is broken into two distinct parts, which we will call the head and the tree. The head contains
metadata about the tree, as well as a pointer to the tree, while the tree itself is what holds the
numerical data. By the design of the GMP library users only ever interact with the head. Thus,
our alternating array representation holds the heads of the GMP numbers directly in the array
rather than pointers or indices to some other structure, which in turn would hold the heads of
the GMP numbers. Figure 1 depicts an arbitrary polynomial of n terms stored in an alternating array,
highlighting the GMP tree structure.

Mathematics 2019, 7, 441 16 of 29

a1 α1 a2 α2 · · · an αn

Term 1 Term 2 Term n

t1 t2 tn

Figure 1. An alternating array representation of n terms showing GMP trees as t1, t2, . . . , tn, GMP
heads as a1, a2, . . . , an, and monomials as α1, α2, . . . , αn. One head and tree together make a single
arbitrary-precision number.

The alternating array diagram in Figure 1 may be misleading at first glance, since it appears
that pointers are still being used; however, these pointers are completely internal to GMP and are
unavoidable. Hence, where other structures use indices ([29], Figure 2) or pointers ([6], Figure 3)
to a separate array of GMP coefficients, that coefficient array also further contains these pointers
to GMP trees. Our implementation thus removes one level of indirection compared to these other
schemes. We do note, however, that the data structure described in [6,30] includes an additional feature
which automatically makes use of machine-precision integers stored directly in the data structure,
rather than GMP integers, if coefficients are small enough.

Next, we discuss the implementation of monomials. Under a fixed variable ordering it
becomes unnecessary to store the variables themselves with the monomial, and so we only store
the exponent vector. This greatly reduces the required memory for a monomial. However, even more
memory is saved via exponent packing. Using bit-masks and bit-shifts, multiple partial degrees, each
taking a small non-negative value, can easily be stored in a single machine word (usually 64 bits).
This fact should be obvious by looking at the binary representation of a non-negative integer on a
computer. Integers are stored in some fixed size, typically 32 or 64 bits, and, when positive or unsigned,
have many leading 0 bits. For example, 5 as a 32-bit integer is 0b00000000000000000000000000000101.
By using a predetermined number of bits for each partial degree in an exponent vector, it becomes
easy to partition the 64 bits to hold many integers. Our alternating array thus holds a single machine
word directly in the array for packing each exponent vector.

Exponent packing has been in use at least since the 60s in ALTRAN [1], but also in more recent
works such as [4,32]. Our implementation differs from others in that exponents are packed unevenly,
i.e., each exponent is given a different number of bits in which to be encoded. This is motivated
by two factors. First, 64 bits is rarely evenly divided among the number of variables, meaning
some bits could be wasted. Second, throughout the process of operations such as pseudo-division
or triangular decomposition the degrees of lower-ordered variables often increase more drastically
than higher-ordered variables, and so we give more bits to the lower-ordered variables. This can
allow for large computations to progress further without failing or having to revert to an unpacked
exponent vector. One final highlight on exponent packing (first emphasized in [32]) is that monomial
comparisons and monomial multiplications respectively reduce to a single machine-integer comparison
and a single machine-integer addition. This result drastically reduces the time to complete monomial
comparisons, and thus sort monomials, a huge part of sparse polynomial arithmetic.

6.2. A Sparse Polynomial Data Structure for Viewing Polynomials Recursively

We take this section to describe our recursive polynomial data structure. That is not to say that
the data structure itself is recursive, rather the polynomial is viewed recursively, as a univariate
polynomial with multivariate polynomial coefficients. In general, polynomials are stored using the
distributed representation; however, some operations, such as pseudo-division, require a specifically
univariate view of the polynomial. Thus, we have created an in-place, very fast conversion between
the distributed and recursive representations, amounting to minimal overhead in both memory usage

Mathematics 2019, 7, 441 17 of 29

and time. As a result, we can use the same distributed representation everywhere, only converting as
required. This recursive representation is shown in Figure 2.

3 x1x2
2x3

3 6 x1x2
2x2

3 4 x1x2x2
3 7 x1

3 x1x2
2 6 x1x2

2 4 x1x2 7 x1

3 1 2 2 0 1

m
Distributed

Recursive

Figure 2. A distributed polynomial representation and its corresponding recursive polynomial
representation, showing the additional secondary array. The secondary array alternates between:
(1) degree of the main variable, (2) size of the coefficient polynomial, and (3) a pointer to the coefficient
polynomial, which is simply an offset into the original distributed polynomial.

To view a polynomial recursively we begin by (conceptually) partitioning its terms into blocks
based on the degree of the main (highest-ordered) variable. Since our polynomials are stored using
a lexicographical term order, the terms of the polynomial are already sorted based on the degree of
the main variable. Moreover, terms within the same block are already stored in lexicographical order
with respect to the remaining variables. Therefore, each block will act as a multivariate polynomial
coefficient of the univariate polynomial in the main variable. The partitioning is done in-place, without
any memory movement, simply by maintaining an offset into the alternating array which signifies the
beginning of a particular coefficient, in the recursive sense.

We create a secondary auxiliary array which holds these offsets, the number of terms in each
polynomial coefficient, and the degree of the main variable. Simultaneously, the degree of the main
variable in the original alternating array is set to 0. The degree of the main variable then does not
pollute the polynomial coefficient arithmetic. This secondary array results in minimal overhead,
particularly because its size is proportional to only the number of unique values of the degree of the
main variable. Figure 2 highlights this secondary array as part of the recursive structure.

6.3. Heaps Optimized for Polynomial Multiplication

The largest effort required of our sparse multiplication algorithm (and thus also that of our
division and pseudo-division algorithms) is to sort the terms of the product. Our algorithm makes
use of a heap to do this sorting (much like heap sort), and thus arithmetic performance is largely
dependent in the performance of the heap. Briefly, a heap is a data structure for efficiently obtaining
the maximum (or minimum) from a continually updating collection of elements. This is achieved by
using a binary tree, which stores key-value pairs, with a special heap property—children are always less
than their parents in the tree. A more complete discussion of heaps can be found in ([26], Section 2.4).

The optimizations used in our heap implementation focus on two aspects, minimizing the working
memory of the heap and minimizing the number of comparisons. The need for the latter should be
obvious, while the need for the former is more subtle. Due to the encoding of a heap as a binary tree,
parent nodes and child nodes are not adjacent to each other in memory; the heap must essentially
perform random memory accesses across all its elements. In the sense of locality and cache usage, this
is not ideal, yet unavoidable. Therefore, we look to minimize the size of the heap in hopes that it will
entirely fit in cache and allow for quick access to all its elements.

The first optimization is due to [33] which reduces the number of comparisons required to remove
the maximum element of the heap by a factor of two. The usual implementation of a heap removes
the root node, swapping a leaf node into the hole, and then filtering it downward to re-establish the
heap property. This requires two comparisons per level to determine which path to travel down.
Instead, one can continuously promote the larger of the hole’s two children until the hole is a leaf node.
This requires only one comparison per level.

Mathematics 2019, 7, 441 18 of 29

The second optimization called chaining reduces both the required number of comparisons and
the amount of working memory for the heap. This technique is common in the implementation of hash
tables for conflict resolution ([26], Chapter 3). Whenever a “conflict” occurs (when two elements are
found to be equal) they form a chain, or linked list. Each node’s key remains in the heap, but the values
are now linked lists. Elements found to be equal simply add their value to the chain rather than insert
a new element. This minimizes the number of elements in the heap but also allows extracting an entire
chain, and therefore many elements, at the cost of removing a single element. This heap organization
is presented in Figure 3.

In the context of polynomial multiplication, the exponent vector of the product term is the
key while the value is a linked list of coefficients of the product. For our multiplication algorithm
(Algorithm 2) we must also know from which stream a particular product term originated, and so
should also store the stream index. However, to minimize the space required for the heap, while also
storing the stream index (i.e., the multiplier term’s index), we do not store the product term’s coefficient
at all and instead store the indices of the multiplier and multiplicand terms which together would
produce a particular product term’s coefficient. We do not need the coefficient of the product term
to do the sorting, and so storing indices is more efficient. Moreover, delaying the multiplication of
coefficients has benefits for locality. With chaining, removing the maximum element actually removes
an entire chain of like terms, then the coefficient multiplication and addition of like terms can be
done simultaneously.

Similar heap optimizations, including chaining, have been used in [6]. In contrast with our
implementation, chaining in [32] used pointers to multiplier and multiplicand terms rather than
indices. Integer indices (32 bits) are twice as efficient in memory usage as pointers on 64-bit machines,
improving the overall memory and cache usage of the heap (and multiplication in general).

αi + β j

αi+1 + β j

. . .

i j

i + 1 j

i− 1 j + 2

Heap Elements Element Chains

Figure 3. A heap of product terms, showing element chaining and index-based storing of coefficients.
In this case, terms Ai+1 · Bj and Ai−1 · Bj+2 have equal monomials and are chained together.

7. Implementation

As discussed in the previous section, our data structures are memory-efficient with exceptional
data locality. Now, in this section, we describe the implementation-specific optimizations of our
algorithms, such as memory management techniques and efficient use of our data structures.
These implementations exploit the locality of the data structures to minimize cache complexity and
improve performance. Formal cache complexity estimates of these algorithms are presented in [34];
we exclude them here and instead focus on motivations and techniques for reducing cache complexity
in general.

We begin in Section 7.1 describing how to exploit our data structure for an optimized “in-place”
addition (or subtraction) operation. Next, we discuss our implementations of multiplication
(Section 7.2), division with remainder (Section 7.3), and pseudo-division (Section 7.4), all based
on our heap data structure described above (Section 6.3). Lastly, we examine the application of these
operations in our implementation of normal form and pseudo-division by a triangular set (Section 7.5).

Mathematics 2019, 7, 441 19 of 29

7.1. In-Place Addition and Subtraction

An “in-place” algorithm suggests that the result is stored back into the same data structure as one
of operands (or the only operand). This strategy is often motivated by either limited available memory
resources or working with data that is too large to consider making a complete copy for the result.
For our purposes, we are concerned with neither of these since our polynomial representations use
relatively small amounts of memory. Hence, in-place operations are only of interest if they can
improve running time. Generally speaking, in-place algorithms require more operations and more
movement of data than out-of-place alternatives, making them most useful when the data set being
sorted is so large that a copy cannot be afforded. For example, in-place merge sort has been a topic
of discussion for decades, however, these implementations run 25–200% slower than an out-of-place
implementation [35–37].

Due to the similarities between merge sort and polynomial addition (subtraction) it would seem
unlikely that an in-place scheme would lead to performance benefits. However, our in-place addition
becomes increasingly faster than out-of-place addition as coefficient sizes increase. This in-place
addition scheme is not technically in-place, but it does exploit the structure of GMP numbers
(as shown in Figure 1) for in-place coefficient arithmetic. In-place addition builds the resulting
polynomial out-of-place but reuses the GMP trees of one of the operand polynomials. Rather than
allocating a new GMP number—and thus a new GMP tree—in the resulting polynomial, we simply
copy the head of one GMP number (and the pointer to its existing tree) into the new polynomial’s
alternating array, performing the coefficient arithmetic in-place. This saves on memory allocation
and memory copying, and benefits from the improved performance of GMP when using in-place
arithmetic ([31], Section 3.11).

These surprising results are highlighted in Figure 4 where out-of-place addition and its in-place
counterpart are compared for various polynomial sizes with varying coefficient sizes. In-place addition
has a speed-up factor of up to 3 for the coefficient sizes tested, with continued improvements as
coefficient sizes grow larger. In-place arithmetic is put to use in pseudo-division to reduce the
cost of polynomial coefficient arithmetic and improve the performance of pseudo-division itself.
See Section 7.4 for this discussion.

103 104 105 106 107
10−4

10−3

10−2

10−1

100

101

Number of Terms (n)

R
un

ni
ng

Ti
m

e
(s

)

Q[x1, x2, x3] Addition
In-place vs Out-of-place

Out, 256
Out, 64
Out, 8

In, 256
In, 64
In, 8

Figure 4. Comparing in-place and out-of-place polynomial addition. Random rational number
polynomials in 3 variables are added together for various numbers of terms and for various
coefficient sizes. The number of bits needed to encode the coefficients of the operands are shown in the
legend. Notice this is a log-log plot.

Mathematics 2019, 7, 441 20 of 29

7.2. Multiplication

The algorithm for polynomial multiplication (Algorithm 2) translates to code quite directly.
However, we note some important implementation details to obtain better performance. Apart from
the optimizations within the heap itself there are some implementation details concerning how the
heap is used within multiplication to improve performance.

The first optimization makes use of the fact that multiplication is a commutative operation.
Since the number of elements in the heap is equal to the number of streams, which is in turn equal
to the number of terms in the multiplier (the factor a in a · b), then we choose the multiplier to be the
smaller operand, minimizing the size of the heap. The second optimization deals with the initialization
of the heap. Due to the fact that for two terms Ai and Bj, Ai · Bj is always greater than Ai+1 · Bj in the
term order, then at the beginning of the multiplication algorithm it is only necessary to insert the term
Ai+1 · B1 after the term Ai · B1 has been removed from the heap.

A final optimization for multiplication deals with memory management. In particular,
we know that for operands with na and nb terms each, the maximum size of the product is na · nb.
Therefore, we can pre-allocate this maximal size of the product (and similarly pre-allocate a maximal
size na for the heap) before we begin computation. This eliminates any need for reallocation or memory
movement, which can cause slowdowns. However, in the case where na · nb is a very large number, say,
exceeding 100 million, then we begin by only allocating 100 million terms for the product, doubling
the allocation as needed in order amortize the cost of reallocation. Of course, any memory allocated in
excess is freed at the end of the algorithm.

7.3. Division with Remainder

Polynomial division is essentially a direct application of polynomial multiplication. Again, we use
heaps, with all the optimizations previously discussed, to produce the terms of the quotient-divisor
product efficiently and in order. However, one important difference between division and
multiplication is that the one of the operands of the quotient-divisor product, the quotient,
is simultaneously being produced and consumed throughout the algorithm. Thus, we cannot
pre-allocate space for the product or heap since the size of the quotient is unknown. Instead, we again
follow a doubling of allocation strategy for the quotient and remainder to amortize the cost of
reallocation. Moreover, we reallocate the space for the heap whenever we reallocate q since we
know that the heap’s maximum size will be equal to the number of terms in q. The added benefit of
this is that the heap is guaranteed to have enough space to store all elements and does not need to
check for overflow on each insert.

7.4. Pseudo-Division

As seen in Section 4.1 the algorithms for division (Algorithms 3 and 4) can easily be
adapted to pseudo-division (Algorithms 5 and 6) by multiplying the dividend and quotient
by the divisor’s initial. However, the implementation between these two algorithms is
very different. In essence, pseudo-division is a univariate operation, viewing the input multivariate
polynomials recursively. That is, the dividend and divisor are seen as univariate polynomials
over some arbitrary (polynomial) integral domain. Therefore, coefficients can be, and indeed are,
entire polynomials themselves. Coefficient arithmetic becomes non-trivial. Moreover, the normal
distributed polynomial representation would be inefficient to traverse and manipulate in this recursive
way. Therefore, we use the recursive polynomial representation described in Section 6.1 with minimal
overhead for conversion.

One of the largest performance concerns in this recursive view is the non-trivial
coefficient arithmetic. As coefficients are now full polynomials there is more overhead in manipulating
them and performing arithmetic. One important implementation detail is to perform the addition
(and subtraction) of like terms in-place. Such combinations occur when computing the leading

Mathematics 2019, 7, 441 21 of 29

term of h`a− qb and when combining like terms in the quotient-divisor product. In-place addition,
as described in Section 7.1, performs exceedingly better than out-of-place addition as the size of
numerical coefficients grows, which occurs drastically during pseudo-division.

Similarly, the update of the quotient by multiplying by the initial of the divisor requires
a multiplication of full polynomials. If we wish to save on memory movement we should
perform this multiplication in-place as well. However, in our recursive representation (Figure 2),
coefficient polynomials are tightly packed in a continuous array. To modify them in-place would
require shifting all the following coefficients down the array to make room for the strictly large product
polynomial. To avoid this unnecessary memory movement we modify the recursive data structure
exclusively for the quotient polynomial; we break the continuous array of coefficients into many arrays,
one for each coefficient. This allows them to grow without displacing the following coefficients. At the
end of the algorithm, once the quotient has finished being produced, we collect and compact all of
these disjoint polynomials into a single, packed array. In contrast, the remainder is never updated once
its terms are produced, nor does it need to be viewed recursively, thus it is stored directly in the normal
distributed representation, avoiding the unnecessary conversion out of the recursive representation.

7.5. Multi-Divisor (Pseudo-)Division

The performance of our normal form and multi-divisor pseudo-division algorithms primarily
relies on the performance of the basic operations of division and pseudo-division, respectively.
Hence, our normal form and multi-divisor pseudo-division algorithms gain significant performance
benefits from the optimization of these lower-level operations. We only note two particular
implementation details for these multi-divisor algorithms.

Firstly, the algorithms for normal form (Algorithm 7) and triangular set pseudo-division
(Algorithm 8) use distributed and recursive polynomial representations, respectively, to manipulate
operand polynomials appropriately for their operations. Secondly, we use in-place techniques,
following the scheme of in-place addition (Section 7.1) to reduce the effects of GMP arithmetic and
memory movement. Due to the recursive nature of these algorithms we can use a pre-allocation of
memory as a destination to store both the final remainder and the remainder in each recursive call,
continually reusing GMP coefficients.

8. Experimentation and Discussion

As we have seen in the previous two sections, our implementation has focused well on locality
and memory usage in interest of obtaining performance. Indeed, as a result of the processor–memory
gap this is highly important on modern architectures. The experimentation and benchmarks provided
in this section substantiate our efforts where we will compare similar heap-based arithmetic algorithms
provided in MAPLE [38].

Let us begin with a discussion on the quantification of sparsity with respect to polynomials.
For univariate polynomials, sparsity can easily be defined as the maximum degree difference between
any two successive non-zero terms. However, in the multivariate case, and in particular using
lex ordering, there are infinitely many polynomial terms between x1 and x2, in the form of xi

1.
For multivariate polynomial, sparsity is less easily defined. Inspired by Kronecker substitution ([28],
Section 8.4) we propose the following sparsity measure for multivariate polynomials adapted from
the univariate case. Let f ∈ R[x1, . . . , xv] be non-zero and define r = max(deg(f , xi), 1 ≤ i ≤ v) + 1.
Then, every exponent vector e := (e1, . . . , ev) of a term of f can be viewed as an integer in a radix-r
representation, e1 + e2r + · · ·+ evrv−1. Viewing any two successive polynomial terms in f , say Fi and
Fi+1, as integers in this radix-r representation, say ci and ci+1, we call the sparsity of f the smallest
integer which is larger than the maximum value of ci − ci+1, for 1 ≤ i < n f .

Our experimentation uses randomly generated sparse polynomials whose generation is
parameterized by several variables: the number of variables v, the number of terms n, the number of
bits used to encode any coefficient (denoted coefficient bound), and a sparsity value s used to compute

Mathematics 2019, 7, 441 22 of 29

the radix r = b v
√

s · nc for use in generating exponent vectors as just defined. Our arithmetic algorithms,
and code for generating random test instances, are openly available in the BPAS library [12].

We compare our arithmetic implementations against MAPLE for both integer polynomials and
rational number polynomials. Thanks to the work by Monagan and Pearce [6,18,19,32] in recent
years MAPLE has become the leader in integer polynomial arithmetic. Benchmarks there clearly
show that their implementation outperforms many others including that of TRIP [39], MAGMA [40],
SINGULAR [41], and PARI/GP [42]. Moreover, other common libraries like FLINT [43] and
NTL [44] provide only univariate polynomials, so to compare our multivariate implementation
against theirs would be unfair. Hence, we compare against MAPLE with its leading high-performance
implementation. In particular, MAPLE 2017 with kernelopts(numcpus = 1) (which forces MAPLE to
run serially.) Of course, the parallel arithmetic of MAPLE described in [18,19], which has been shown
to achieve up to 17x parallel speed-up, could out-perform our serial implementation in some cases,
such as multiplication and division over Z. However, to be fair, we compare serial against serial.

Our benchmarks were collected on a machine running Ubuntu 14.04 using an Intel Xeon X560
processor (Intel, Santa Clara, CA, USA) at 2.67 GHz with 32 KB L1 data cache, 256 KB L2 cache,
and 12288 KB L3 cache, with 12× 4 GB of DDR3 RAM at 1333 MHz. In all the following timings we
present the median time among 3 trials using 3 different sets of randomly generated input polynomials.

8.1. Multiplication and Division with Remainder

We compare multiplication and division with remainder against MAPLE for both polynomials
over the rational numbers and the integers. For multiplication we call expand in MAPLE and for
division with remainder we call Groebner:-NormalForm. Normal form is a more general algorithm
for many divisors but reduces to division with remainder in the case of a single divisor. This operation
appears to be the only documented algorithm for computing division with remainder in MAPLE.
The optimized integer polynomial exact division of [6] appears in MAPLE as the divide operation.
It would be unfair to use our division with remainder algorithm to compute exact divisions to compare
against [6] directly (although, some examples of such are shown in Section 8.4). However, internally,
Groebner:-NormalForm clears contents to work, at least temporarily, with integer polynomials for
calls to divide and expand for division and multiplication operations, respectively, each of which is
indeed optimized (Contents are cleared from (rational number) polynomials, to result in an integer
polynomial, either via the basis computation or directly in the call to the underlying normal form
function Groebner:-Buchberger:-nfprocs).

We begin by comparing our multiplication and division with remainder algorithms for
polynomials over the rationals. MAPLE does not have an optimized data structure for polynomials
with rational number coefficients [30], so this benchmark is meant to highlight the necessity of
memory-efficient data structures for algorithmic performance. The plot in Figure 5a shows the
performance of multiplication over Q for polynomials in 5 variables of varying sparsity and number
of terms. The parameters specified determine how both the multiplier and multiplicand where
randomly generated. The plot in Figure 5b shows the performance of division with remainder over Q
for polynomials in 5 variables of varying sparsity and number of terms. For this division, we construct
two polynomials f and g using the parameters specified and then perform the division (f · g + f)/g.
The disparity in running times between BPAS and MAPLE is very apparent, with multiple orders
of magnitude separating the two. We see speed-ups of 333 for multiplication and 731 for division
with remainder.

The same set of experiments were performed again for integer polynomials. Figure 6a,b shows
multiplication and division with remainder, respectively, for polynomials over Z. In this case, MAPLE

features a more optimized data structure for polynomials over Z and performs relatively much better.
However, BPAS still outperforms MAPLE with a speed-up factor of up to 3 for multiplication and 67
for division with remainder. The speed-up factors continue to grow as sparsity increases. This growth
can be attributed to the fact that as sparsity increases, the number of like terms produced during

Mathematics 2019, 7, 441 23 of 29

a multiplication decreases. Hence, there is less coefficient arithmetic and many more terms in the
product, highlighting the effects of better locality and memory management.

200 400 600 800

10−2

10−1

100

101

102

Number of Terms (n)

R
un

ni
ng

Ti
m

e
(s

)

Q[x1, x2, x3, x4, x5] Multiplication
Running Time vs. Number of Terms

Maple, 200 BPAS, 200

Maple, 100 BPAS, 100

Maple, 50 BPAS, 50

(a) Multiplication.

200 400 600 800

10−2

10−1

100

101

102

103

Number of Terms (n)
R

un
ni

ng
Ti

m
e

(s
)

Q[x1, x2, x3, x4, x5] Division with Remainder
Running Time vs. Number of Terms

Maple, 200 BPAS, 200

Maple, 100 BPAS, 100

Maple, 50 BPAS, 50

(b) Division with remainder. (f g + f)/g is performed.

Figure 5. Comparing multiplication and division with remainder over Q. Polynomials are in 5 variables
and the coefficient bound is 128. The sparsity varies as noted in the legend.

2000 4000 6000 8000
0

10

20

30

40

50

Number of Terms (n)

R
un

ni
ng

Ti
m

e
(s

)

Z[x1, x2, x3, x4, x5] Multiplication
Running Time vs. Number of Terms

Maple, 200 BPAS, 200

Maple, 100 BPAS, 100

Maple, 50 BPAS, 50

(a) Multiplication.

200 400 600 800
10−4

10−3

10−2

10−1

100

101

Number of Terms (n)

R
un

ni
ng

Ti
m

e
(s

)

Z[x1, x2, x3, x4, x5] Division with Remainder
Running Time vs. Number of Terms

Maple, 200 BPAS, 200

Maple, 100 BPAS, 100

Maple, 50 BPAS, 50

(b) Division with remainder. (f g + f)/g is performed.

Figure 6. Comparing multiplication and division with remainder over Z. Polynomials are in 5 variables
and the coefficient bound is 128. The sparsity varies as noted in the legend.

8.2. Pseudo-Division

We next compare the implementations of pseudo-division over Z. We perform the pseudo-division
of (f · g + f) by g for randomly generated f and g. However, since pseudo-division is essentially
univariate, the randomly generated polynomials go through a secondary cleaning phase where the
degree of the main variable is spread out evenly such that each polynomial coefficient, in the recursive
sense, is the same size. This stabilizes the running time for randomly generated polynomials with
the same number of terms. Figure 7b shows the running time of non-lazy pseudo-division, that is,
` is forced to be deg(a)− deg(b) + 1 in the pseudo-division equation h`a = qb + r. Figure 7a shows a
lazy pseudo-division, where ` is only as large as is needed to perform the pseudo-division. For lazy
pseudo-division we see a speed-up factor of up to 2 while for non-lazy pseudo-division we see a

Mathematics 2019, 7, 441 24 of 29

speed-up factor of up to 178. A non-lazy pseudo-division’s running time is usually dominated by
coefficient polynomial arithmetic and performs much slower than the lazy version. Moreover, the gap
between BPAS and MAPLE is much greater for non-lazy pseudo-division; increasing sparsity became a
big problem in MAPLE, taking several hours to perform a single pseudo-division. Again, an increase
in sparsity creates an increase in the number of terms in a polynomial product. Therefore, with our
efficient memory management and use of data structures, increasing sparsity has little effect on our
performance, in contrast to that of MAPLE. In MAPLE we call prem and sprem for non-lazy and lazy
pseudo-division, respectively.

200 400 600 800
0

10

20

30

40

Number of Terms (n)

R
un

ni
ng

Ti
m

e
(s

)

Z[x1, x2, x3, x4, x5] Lazy Pseudo-Division
Running Time vs. Number of Terms

Maple, 200 BPAS, 200

Maple, 100 BPAS, 100

Maple, 50 BPAS, 50

(a) Lazy pseudo-division of f g + f by g.

0 50 100 150
10−4

10−2

100

102

104

Number of Terms (n)

R
un

ni
ng

Ti
m

e
(s

)

Z[x1, x2, x3, x4, x5] Pseudo-Division
Running Time vs. Number of Terms

Maple, 200 BPAS, 200

Maple, 100 BPAS, 100

Maple, 50 BPAS, 50

(b) Non-lazy pseudo-division of f g + f by g.

Figure 7. Comparing lazy and non-lazy pseudo-division over Z. Polynomials are in 5 variables and
the coefficient bound is 128. The sparsity varies as noted in the legend.

8.3. Multi-Divisor Division and Pseudo-Division

For comparing multi-divisor division (normal form) and pseudo-division with respect to
a triangular set, we require more structure to our operands. For these experiments we use a
zero-dimensional normalized (Lazard) triangular set. For our benchmarks we use polynomials
with 5 variables, say x1, x2, x3, x4, x5, and thus a triangular set of size 5 (T = {t1, t2, t3, t4, t5}).
The polynomials in the divisor set and dividend (a) are always fully dense and have the following
degree pattern. For some positive integer ∆ we let deg(a, x1) = 2∆, deg(a, xi) = lg(∆), deg(a, x1)−
deg(t1, x1) = ∆ and deg(a, xi) − deg(ti, xi) = 1 for 1 < i ≤ 5. There is a large gap in the lowest
variable, but a small gap in the remaining variables, a common structure of which the recursive
algorithms can take advantage. For both polynomials over Q (Figure 8a,b) and over Z (Figure 9a,b) we
compare the naïve and recursive algorithms for both normal form and pseudo-division by a triangular
set against MAPLE. For normal form we call MAPLE’s Groebner:-NormalForm with respect to the rem
while for triangular set pseudo-division we implement Algorithm 8 in MAPLE using prem. Since prem
is a non-lazy pseudo-division, we similarly perform non-lazy pseudo-division in our implementations
for a fair comparison. In general, the normal form results are relatively close, particularly in comparison
to the differences between timings for pseudo-division. Our pseudo-division implementation sees
several orders of magnitude speed-up against MAPLE thanks to our recursive scheme and optimized
single-divisor pseudo-division.

Mathematics 2019, 7, 441 25 of 29

2 4 6 8 10 12

100

101

102

∆

R
un

ni
ng

Ti
m

e
(s

)

Q[x1, x2, x3, x4, x5] Multi-Divisor Normal Form
Running Time vs. ∆

MAPLE

BPAS Naïve

BPAS Recursive

(a) Normal form.

2 4 6 8 10

100

101

102

103

∆

R
un

ni
ng

Ti
m

e
(s

)

Q[x1, x2, x3, x4, x5] Multi-Divisor Pseudo-Division
Running Time vs. ∆

MAPLE

BPAS Naïve

BPAS Recursive

(b) Triangular set pseudo-division.

Figure 8. Comparing normal form and triangular set pseudo-division over Q. For each, the naïve
algorithm, the recursive algorithm, and the algorithm within MAPLE are compared. Polynomials are in
5 variables and the coefficient bound is 128.

0 20 40 60 80 100
0

2

4

6

8

10

12

∆

R
un

ni
ng

Ti
m

e
(s

)

Z[x1, x2, x3, x4, x5] Multi-Divisor Normal Form
Running Time vs. ∆

MAPLE

BPAS Naïve

BPAS Recursive

(a) Normal form.

2 4 6 8 10

10−2

10−1

100

101

102

103

∆

R
un

ni
ng

Ti
m

e
(s

)

Z[x1, x2, x3, x4, x5] Multi-Divisor Pseudo-Division
Running Time vs. ∆

MAPLE

BPAS Naïve

BPAS Recursive

(b) Triangular set pseudo-division.

Figure 9. Comparing normal form and triangular set pseudo-division over Z. For each, the naïve
algorithm, the recursive algorithm, and the algorithm within MAPLE are compared. Polynomials are in
5 variables and the coefficient bound is 128.

8.4. Structured Problems

To further test our implementations on structured examples, rather than random, we look at
two problems proposed by Monagan and Pearce in [6,45] and a classic third problem. First is the
sparse 10 variable problem. In this problem f1 = (∑9

i=1 (xixi+1 + xi) + x10x1 + x10 + 1)d and g1 =

(∑10
i=1
(

x2
i + xi

)
+ 1)d. The multiplication h1 = f1 · g1 and the division q1 = h1/ f1 are performed.

Second is the very sparse 5 variable problem. In this problem f2 = (1 + x1 + x2
2 + x3

3 + x5
4 + x7

5)
d and

g2 = (1 + x7
1 + x5

2 + x3
3 + x2

4 + x5)
d. The multiplication h2 = f2 · g2 and the division q2 = h2/ f2

are performed. Lastly, a classic problem in polynomial factorization and division, f3 = xd − 1 and
g3 = x− 1, performing f3/g3. Let us call this the dense quotient problem. The sparsity of the dividend
is at a maximum, but the quotient produced is completely dense.

Mathematics 2019, 7, 441 26 of 29

In these problems the coefficients are strictly machine-word sized, i.e., less than 64-bits.
We concede that MAPLE uses more advanced techniques for coefficient arithmetic, using machine-word
integers and arithmetic, if possible. This contrasts with our implementation which uses only
arbitrary-precision integers. It is expected then for MAPLE to out-perform BPAS on these examples
with machine-integer coefficients. However, this is only the case for the first two problems. To focus
exclusively on the polynomial algorithms and not the integer arithmetic, we repeat the first two
problems with arbitrary-precision coefficients, each term in f1, g1, f2, g2 is given a random positive
integer coefficient using a coefficient bound. Table 1 shows the execution time and memory used (for all
inputs and outputs) for these problems for various values of d. Multiplication again shows speed-up
of a factor between 1.2 and 21.6, becoming increasingly better with increasing sparsity and number
of terms. Division here is exact and, in comparison to division with remainder, MAPLE performs
much better, likely thanks to their so-called divisor heap [32]. Only as sparsity increases does BPAS
out-perform MAPLE. In all multi-precision cases, however, memory usage in BPAS is significantly
better, being less than half that of MAPLE.

Table 1. Comparing multiplication and division on the three structured problems.

Operation d Coef. Bound
BPAS MAPLE

Time (s) Memory (MiB) Time (s) Memory (MiB)

Multiplication 4 1 4.28 172.11 1.78 79.31
h1 = f1 · g1 4 64 8.22 353.27 9.58 810.23

5 64 155.51 2481.37 221.71 5569.25

Division 4 64 7.84 353.29 6.465 816.03
q1 = h1/ f1 5 64 154.08 2509.42 124.37 5583.50

Multiplication 12 1 3.61 702.14 2.835 439.21
h2 = f2 · g2 12 32 7.62 1878.96 52.80 4026.29

15 32 51.61 8605.52 1114.23 18,941.05

Division 12 32 8.09 1919.28 10.35 4033.57
q2 = h2/ f2 15 32 57.09 8627.16 58.906 18,660.94

Division 1,000,000 1 0.18 38.59 1.505 164.54
q3 = f3/g3 10,000,000 1 1.87 522.65 23.63 1102.21

9. Conclusions and Future Work

In this paper, we have described algorithms and data structures for the high-performance
sparse polynomial arithmetic as implemented in the freely available BPAS library. We have
considered polynomials both over the integers and the rationals, where others have ignored the
rationals; arithmetic over the rationals is important for areas such as Gröbner bases and polynomial
system solving. The operations of multiplication, and division, have been extended from [24] to also
include division with remainder and a new algorithm for sparse pseudo-division. We employ these
fundamental algorithms for use in the mid-level algorithms of normal form and pseudo-division
with respect to a triangular set. Our experimentation against MAPLE highlights how the proper
treatment of locality and data structures can result huge improvements in memory usage and
running time. We achieve orders of magnitude speed-up (for arithmetic over the rationals and non-lazy
pseudo-division over the integers) or up to a factor of 67 (for other operations over the integers).

In the future we hope to apply these techniques for locality and arithmetic optimization to obtain
efficient computations with regular chains and triangular decompositions. Following the design goals
of the BPAS library we plan to apply parallelization to both the arithmetic operations presented in this
paper and to upcoming work on triangular decompositions.

Mathematics 2019, 7, 441 27 of 29

Author Contributions: Conceptualization, A.B. and M.M.M.; software, M.A. and A.B.; formal analysis, R.H.C.M.;
investigation, M.A. and A.B.; writing—original draft preparation, M.A., A.B., R.H.C.M., M.M.M.; supervision,
M.M.M.; project administration, M.M.M.; funding acquisition, M.M.M.

Funding: This research was funded by IBM Canada Ltd (CAS project 880) and Natural Sciences and Engineering
Research Council of Canada (NSERC) CRD grant CRDPJ500717-16.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hall, A.D., Jr. The ALTRAN system for rational function manipulation-a survey. In Proceedings of the Second
ACM Symposium on Symbolic and Algebraic Manipulation, Los Angeles, CA, USA, 23–25 March 1971;
ACM: New York, NY, USA, 1971; pp. 153–157.

2. Martin, W.A.; Fateman, R.J. The MACSYMA system. In Proceedings of the Second ACM Symposium on
Symbolic and Algebraic Manipulation, Los Angeles, CA, USA, 23–25 March 1971; ACM: New York, NY,
USA, 1971; pp. 59–75.

3. Hearn, A.C. REDUCE: A user-oriented interactive system for algebraic simplification. In Symposium on
Interactive Systems for Experimental Applied Mathematics, Proceedings of the Association for Computing Machinery
Inc. Symposium, Washington, DC, USA, 1 August 1967; ACM: New York, NY, USA, 1967; pp. 79–90.

4. Van der Hoeven, J.; Lecerf, G. On the bit-complexity of sparse polynomial and series multiplication.
J. Symb. Comput. 2013, 50, 227–254, doi:10.1016/j.jsc.2012.06.004. [CrossRef]

5. Arnold, A.; Roche, D.S. Output-Sensitive Algorithms for Sumset and Sparse Polynomial Multiplication.
In Proceedings of the ISSAC 2015, Bath, UK, 6–9 July 2015; pp. 29–36. [CrossRef]

6. Monagan, M.B.; Pearce, R. Sparse polynomial division using a heap. J. Symb. Comput. 2011, 46, 807–822.
[CrossRef]

7. Gastineau, M.; Laskar, J. Highly Scalable Multiplication for Distributed Sparse Multivariate Polynomials on
Many-Core Systems. In Proceedings of the CASC, Berlin, Germany, 9–13 September 2013; pp. 100–115.

8. Hennessy, J.L.; Patterson, D.A. Computer Architecture: A Quantitative Approach, 4th ed.; Morgan Kaufmann:
San Francisco, CA, USA, 2007.

9. Wulf, W.A.; McKee, S.A. Hitting the memory wall: Implications of the obvious. ACM SIGARCH Comput.
Archit. News 1995, 23, 20–24. [CrossRef]

10. Asadi, M.; Brandt, A.; Moir, R.H.C.; Moreno Maza, M. Sparse Polynomial Arithmetic with the BPAS Library.
In Proceedings of the Computer Algebra in Scientific Computing—20th International Workshop (CASC 2018),
Lille, France, 17–21 September 2018; pp. 32–50. [CrossRef]

11. Chen, C.; Moreno Maza, M. Algorithms for computing triangular decomposition of polynomial systems.
J. Symb. Comput. 2012, 47, 610–642. [CrossRef]

12. Asadi, M.; Brandt, A.; Chen, C.; Covanov, S.; Mansouri, F.; Mohajerani, D.; Moir, R.H.C.; Moreno Maza, M.;
Wang, L.X.; Xie, N.; et al. Basic Polynomial Algebra Subprograms (BPAS). 2018. Available online:
http://www.bpaslib.org (accessed on 16 May 2019).

13. Frigo, M.; Leiserson, C.E.; Prokop, H.; Ramachandran, S. Cache-Oblivious Algorithms. ACM Trans.
Algorithms 2012, 8, 4. [CrossRef]

14. Leiserson, C.E. Cilk. In Encyclopedia of Parallel Computing; Springer: Boston, MA, USA, 2011; pp. 273–288.
[CrossRef]

15. Moreno Maza, M.; Xie, Y. Balanced Dense Polynomial Multiplication on Multi-Cores. Int. J. Found.
Comput. Sci. 2011, 22, 1035–1055. [CrossRef]

16. Chen, C.; Covanov, S.; Mansouri, F.; Moreno Maza, M.; Xie, N.; Xie, Y. Parallel Integer Polynomial
Multiplication. arXiv 2016, arXiv:1612.05778.

17. Covanov, S.; Mohajerani, D.; Moreno Maza, M.; Wang, L.X. Big Prime Field FFT on Multi-core Processors.
In Proceedings of the ISSAC, Beijing, China, 15–18 July 2019; ACM: New York, NY, USA, 2019.

18. Monagan, M.B.; Pearce, R. Parallel sparse polynomial multiplication using heaps. In Proceedings of the
ISSAC, Seoul, Korea, 29–31 July 2009; pp. 263–270.

https://doi.org/10.1016/j.jsc.2012.06.004
http://dx.doi.org/10.1016/j.jsc.2012.06.004
http://dx.doi.org/10.1145/2755996.2756653
http://dx.doi.org/10.1016/j.jsc.2010.08.014
http://dx.doi.org/10.1145/216585.216588
http://dx.doi.org/10.1007/978-3-319-99639-4_3
http://dx.doi.org/10.1016/j.jsc.2011.12.023
http://www.bpaslib.org
http://dx.doi.org/10.1145/2071379.2071383
http://dx.doi.org/10.1007/978-0-387-09766-4_289
http://dx.doi.org/10.1142/S0129054111008556

Mathematics 2019, 7, 441 28 of 29

19. Monagan, M.; Pearce, R. Parallel sparse polynomial division using heaps. In Proceedings of the PASCO,
Grenoble, France, 21–23 July 2010; ACM: New York, NY, USA, 2010; pp. 105–111.

20. Biscani, F. Parallel sparse polynomial multiplication on modern hardware architectures. In Proceedings of the
37th International Symposium on Symbolic and Algebraic Computation, Grenoble, France, 22–25 July 2012;
ACM: New York, NY, USA, 2012; pp. 83–90.

21. Gastineau, M.; Laskar, J. Parallel sparse multivariate polynomial division. In Proceedings of the PASCO
2015, Bath, UK, 10–12 July 2015; pp. 25–33. [CrossRef]

22. Popescu, D.A.; Garcia, R.T. Multivariate polynomial multiplication on gpu. Procedia Comput. Sci. 2016,
80, 154–165. [CrossRef]

23. Ewart, T.; Hehn, A.; Troyer, M. VLI–A Library for High Precision Integer and Polynomial Arithmetic.
In Proceedings of the International Supercomputing Conference, Leipzig, Germany, 16–20 June 2013;
Springer: Berlin/Heidelberg, Germany, 2013; pp. 267–278.

24. Johnson, S.C. Sparse polynomial arithmetic. ACM SIGSAM Bull. 1974, 8, 63–71. [CrossRef]
25. Li, X.; Moreno Maza, M.; Schost, É. Fast arithmetic for triangular sets: From theory to practice.

J. Symb. Comput. 2009, 44, 891–907. [CrossRef]
26. Sedgewick, R.; Wayne, K. Algorithms, 4th ed.; Addison-Wesley: Boston, MA, USA, 2011.
27. Cox, D.A.; Little, J.; O’shea, D. Ideals, Varieties, and Algorithms, 2 ed.; Springer: New York, NY, USA, 1997.
28. Von zur Gathen, J.; Gerhard, J. Modern Computer Algebra, 2 ed.; Cambridge University Press: New York, NY,

USA, 2003.
29. Gastineau, M.; Laskar, J. Development of TRIP: Fast Sparse Multivariate Polynomial Multiplication Using

Burst Tries. In Proceedings of the Computational Science—ICCS 2006, 6th International Conference, Reading,
UK, 28–31 May 2006; Part II, pp. 446–453. [CrossRef]

30. Monagan, M.; Pearce, R. The design of Maple’s sum-of-products and POLY data structures for representing
mathematical objects. ACM Commun. Comput. Algebra 2015, 48, 166–186. [CrossRef]

31. Granlund, T.; others. GNU MP 6.0 Multiple Precision Arithmetic Library; Samurai Media Limited:
Surrey, UK, 2015.

32. Monagan, M.; Pearce, R. Polynomial division using dynamic arrays, heaps, and packed exponent
vectors. In Proceedings of the CASC 2007, Bonn, Germany, 16–20 September 2007; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 295–315.

33. Gonnet, G.H.; Munro, J.I. Heaps on heaps. SIAM J. Comput. 1986, 15, 964–971. [CrossRef]
34. Brandt, A. High Performance Sparse Multivariate Polynomials: Fundamental Data Structures and

Algorithms. Master’s Thesis, The University of Western Ontario, London, ON, Canada, 2018.
35. Huang, B.C.; Langston, M.A. Practical in-place merging. Commun. ACM 1988, 31, 348–352. [CrossRef]
36. Katajainen, J.; Pasanen, T.; Teuhola, J. Practical in-place mergesort. Nord. J. Comput. 1996, 3, 27–40.
37. Dalkilic, M.E.; Acar, E.; Tokatli, G. A simple shuffle-based stable in-place merge algorithm.

Procedia Comput. Sci. 2011, 3, 1049–1054. [CrossRef]
38. Waterloo Maple Inc. MAPLE 2017—The Essential Tool for Mathematics; Waterloo Maple Inc.: Waterloo, ON,

Canada, 2017.
39. Gastineau, M.; Laskar, J. TRIP: A Computer Algebra System Dedicated to Celestial Mechanics and

Perturbation Series. ACM Commun. Comput. Algebra 2011, 44, 194–197. [CrossRef]
40. Bosma, W.; Cannon, J.; Playoust, C. The Magma algebra system. I. The user language. J. Symb. Comput. 1997,

24, 235–265. [CrossRef]
41. Decker, W.; Greuel, G.M.; Pfister, G.; Schönemann, H. SINGULAR 4-1-1—A Computer Algebra System

for Polynomial Computations. 2018 Available online: http://www.singular.uni-kl.de (accessed on
15 March 2019).

42. The PARI Group, Univ. Bordeaux. PARI/GP Version 2.3.3. 2008. Available online: http://pari.math.u-
bordeaux.fr/ (accessed on 15 March 2019).

43. Hart, W.; Johansson, F.; Pancratz, S. FLINT: Fast Library for Number Theory. V. 2.4.3. Available online:
http://flintlib.org (accessed on 15 March 2019).

http://dx.doi.org/10.1145/2790282.2790285
http://dx.doi.org/10.1016/j.procs.2016.05.306
http://dx.doi.org/10.1145/1086837.1086847
http://dx.doi.org/10.1016/j.jsc.2008.04.019
http://dx.doi.org/10.1007/11758525_60
http://dx.doi.org/10.1145/2733693.2733720
http://dx.doi.org/10.1137/0215068
http://dx.doi.org/10.1145/42392.42403
http://dx.doi.org/10.1016/j.procs.2010.12.172
http://dx.doi.org/10.1145/1940475.1940518
http://dx.doi.org/10.1006/jsco.1996.0125
http://www.singular.uni-kl.de
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
http://flintlib.org

Mathematics 2019, 7, 441 29 of 29

44. Shoup, V. NTL: A Library for Doing Number Theory. Available online: www.shoup.net/ntl/ (accessed on
15 March 2019).

45. Monagan, M.B.; Pearce, R. Sparse polynomial multiplication and division in Maple 14. ACM Commun.
Comput. Algebra 2010, 44, 205–209. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

www.shoup.net/ntl/
http://dx.doi.org/10.1145/1940475.1940521
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Notation and Nomenclature
	Addition and Multiplication

	Division with Remainder
	Naïve Division with Remainder
	Heap-Based Division with Remainder

	Pseudo-Division
	Naïve Pseudo-Division
	Heap-Based Pseudo-Division

	Multi-Divisor Division and Pseudo-Division
	Data Structures
	A Sparse Distributed Polynomial Data Structure
	A Sparse Polynomial Data Structure for Viewing Polynomials Recursively
	Heaps Optimized for Polynomial Multiplication

	Implementation
	In-Place Addition and Subtraction
	Multiplication
	Division with Remainder
	Pseudo-Division
	Multi-Divisor (Pseudo-)Division

	Experimentation and Discussion
	Multiplication and Division with Remainder
	Pseudo-Division
	Multi-Divisor Division and Pseudo-Division
	Structured Problems

	References

