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Abstract 

This article describes approaches to computing second-order 
derivatives with automatic differentiation (AD) based on 
the forward mode and the propagation of univariate Tay- 
lor series. Performance results are given that show the 
speedup possible with these techniques relative to existing 
approaches. We also describe a new source transformation 
AD module for computing second-order derivatives of C and 
Fortran codes and the underlying infrastructure used to cre- 
ate a language-independent translation tool. 

1 Introduction 

Automatic differentiation (AD) provides an efficient and ac- 
curate method to obtain derivatives for use in sensitivity 
analysis, parameter identification and optimization. Cur- 
rent tools are targeted primarily at computing first-order 
derivatives, namely gradients and Jacobians. Prior to AD, 
derivative values were obtained through divided difference 
methods, symbolic manipulation or hand-coding, all of which 
have drawbacks when compared with AD (see [3] for a dis- 
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cussion). Accurate second-order derivatives are even harder 
t o  obtain than first-order ones; it is possible to end up 

with no accurate digits in the derivative value when using a 
divided-difference scheme. 

One can repeatedly apply first-order derivative tools to 
obtain higher-order derivatives, but this approach is compli- 
cated and ignores structural information about higher-order 
derivatives such as symmetry. Additionally, in cases where 
a full Hessian, H ,  is not required, such as with Hessian- 
vector products ( H  + V )  and projected Hessians (VT . H .  W )  
where V and W are matrices with many fewer columns than 
rows, i t  is possible to compute the desired values much more 
efficiently than with the repeated differentiation approach. 

There is no "best" approach to computing Hessians; the 
most efficient approach to computing second-order deriva- 
tives depends on the specifics of the code and, to a lesser ex- 
tent, the target platform on which the code will be run [4, 81. 

In all cases, however, derivative values computed by AD are 
computed to machine precision, without the roundoff errors 
inherent in divided difference techniques. 

AD via source transformation provides great flexibility 
in implementing sophisticated algorithms that exploit the 
associativity of the chain rule of calculus (see [6] for a dis- 
cussion). Unfortunately, the development of robust source 
transformation tools is a substantial effort. ADIFOR [3] 

and ADIC [ 6 ] ,  source transformation tools for Fortran and 
C respectively, both implement relatively simple algorithms 
for propagating derivatives. Most of the development time 
so far has concentrated on producing tools that handle the 
full range of the language, rather than on developing more 
efficient algorithms to propagate derivatives. 

To make it easier to experiment with algorithmic tech- 
niques, we have developed AIF, the Automatic Differenti- 
ation Intermediate Form. AIF acts as the glue layer be- 
tween a language-specific front-end and a largely language- 
independent transformation module that implements AD 
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transformations at a high level of abstraction. 
We have implemented an AIF-based module for comput- 

ing second-order derivatives. The Hessian module, as we call 
it ,  implements several different algorithms and selectively 
chooses them in a fashion that is determined by the code 
presented to it. However, this context-sensitive logic, which 

is based on machine-specific performance models, is trans- 
parent to the AD front-end. The Hessian module currently 
interfaces with ADIFOR and ADIC. First experimental re- 
sults show that the resulting codes outperform the recur- 
sive application of first-order tools by a factor of two when 
computing full, dense Hessians and are able to compute full, 
sparse Hessians and partial Hessians at significantly reduced 
expense. 

Section 2 outlines the two derivative propagation strate- 
gies that we have explored for Hessians, including cost es- 
timates for computing various types of Hessians. Section 3 
shows the performance of the various approaches for a sam- 
ple code, and Section 4 describes the infrastructure that was 
used to develop the Hessian augmentation tool. Lastly, we 
summarize our results and discuss future work. 

2 

2.1 Forward Mode Strategies 

The standard forward mode of automatic differentiation can 
easily be expanded to second order to  compute Hessians. For 
z = f (2, y), we can compute Vz and V2z, the gradient and 
Hessian of z respectively, as 

Strategies for Computing Second Derivatives 

v z  = 

v 2 z  = 

(1) 

(2) 

d Z  az  -vx + -vy 
dX dY 

dX dY 

-v2x dZ + -v2y a z  

+ -(Vx a2 z * VxT) + -(Vy. d2 Z 

+ -(VX. d2 z 

VyT) 
8 2 2  dY2 

dxdy 
VyT + vy . v x  T ) 

This approach is conceptually simple and produces efficient 
results for small numbers of independent variables. For 
n independent variables, gradients are stored in arrays of 
length n and Hessians, because of their symmetric nature, 
are stored using the LAPACK [l] packed symmetric scheme, 
which reduces the storage requirements from n2 to fn (n+ l ) .  
The cost of computing a full Hessian using the forward mode 
is O(n2) relative to the cost of computing the original func- 
tion. 

Many algorithms do not need full knowledge of the Hes- 
sian but require only a Hessian-vector product, H .  V ,  or a 

projected Hessian, VT. H .  W ,  where V and W are matrices 

with nv  and nw columns, respectively. Rather than com- 
puting the full Hessian at  a cost of O(n2)  followed by one or 
two matrix multiplications, we can multiply Equation (2) on 

the left and/or right by VT and W ,  respectively, to produce 
new propagation rules. By modifying the derivative objects 
that get propagated, we can perform the required computa- 
tions at a much lower cost. These costs are summarized in 
Table 1. In the case of large Hessians and relatively small 

values of nv  or nw, the savings can be significant. Addi- 
tionally, the coloring techniques that have been applied to 
structured Jacobians [a] can be applied to Hessians for a 
significant savings. 

'The cost of the symmetric and unsymmetric projected Hessians 

Table 1: Summary of Hessian costs using the forward mode 
relative to the cost of computing the original function. n is 
the number of independent variables, nv and nw are the 
number of columns of V and W ,  respectively. 

2.2 Taylor Series Strategies 

As an alternative to the forward mode propagation of gra- 
dients and Hessians, we can propagate two-term univariate 
Taylor series expansions about each of the nonzero direc- 
tions in the Hessian [4]. To compute derivatives a t  a point 
xo in the direction u, we consider f as a scalar function 
f (xo + tu)  of t. Its Taylor series, up to second order, is 

= f + ftt + f t t t2  (3) 

where ft and ftt are the first and second Taylor coefficients. 
The uniqueness of the Taylor series implies that for u = ei, 
the ith basis vector, we obtain 

(4) 

(5) 

That is, we computed a scaled version of the ith diagonal 
element in the Hessian. Similarly, to compute the (i,j) off- 
diagonal entry in the Hessian, we set u = e; + e j .  The 
uniqueness of Taylor expansion implies 

(7) 

If Taylor expansions are also computed for the i and j di- 
agonal elements, the off-diagonal Hessian entries can be re- 
covered by interpolation. As with the forward mode, simple 
rules specify the propagation of the expansions for all arith- 
metic and intrinsic operators [lo,  131. To compute a full 
gradient of length n and t Hessian entries above the diago- 
nal, the cost of the Taylor series mode is O(n+k).  If the full 
gradient is not needed, this cost can be reduced somewhat. 

The Taylor series approach can compute any set of Hes- 
sian entries without computing the entire Hessian. This 
technique is ideal for sparse Hessians when the sparsity pat- 
tern is known in advance and for situations where only cer- 
tain elements (such as the diagonal entries) are desired. Ad- 
ditionally, each Taylor series expansion is independent. This 

(VT V 2 f .  V and VT . V2f . W )  are of the same order, but due 

to  symmetry, the storage and computation costs of VT . V2f . V are 

roughly half of the costs of V T  . V 2 f .  W .  
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allows very large Hessians, which can easily overwhelm the 
available memory, to be computed in a stripmined fashion by 
partitioning the expansion directions and computing them 
independently with multiple sweeps through the code in a 
fashion that is similar to the stripmining technique described 
in [SI. 

2.3 Preaccumulation 

The associativity of the chain rule allows derivative prop- 
agation to be performed at arbitrary levels of abstraction. 

At the simplest, the forward mode works at the scope of a 
single binary operation. By expanding the scope to  a higher 
level, such as an assignment statement, a loop body or a 
subroutine, it is possible t o  decrease the amount of work 

necessary to propagate derivatives, as shown in [7, 91. 
A preaccumulation technique we employ in our work 

computes the gradient and Hessian of the variable on the 
left side of the assignment statement in two steps. Assume 
that for the statement z = f(x1, x2,. . . XN), we have Vxi 
and V2xz, i = 1,. . . N ,  the global gradient and Hessian of xi 
and that we wish to compute, for z ,  the global gradient Vz 
and the global Hessian V2z. 

Step 1: Preaccumulation of local derivatives 
The variables on the right side of the statement are 
considered to  be independent, and we compute ‘local” 

derivative objects, e and G, z , j  = 1,. . . N ,  with 

respect to the right-hand side variables. This can be 
done using either the forward or Taylor series mode. 

We accumulate the global gradient and Hessian of z. 

When using the forward mode for global propagation 
of derivatives, this is done as follows: 

82.2 ’ . 

Step 2: Accumulation of global derivatives 

N 

vz = %VXi 

i = l  

The rules for Taylor series expansions can be general- 
ized in a similar fashion. 

Gradient codes produced by ADIFOR and ADIC cur- 
rently employ statement-level preaccumulation for all as- 
signment statements more complicated than a single binary 
operation. Experiments with similar “global” preaccumula- 
tion strategies for computing Hessians have produced incon- 
sistent results across various codes and machines. No global 
strategy outperformed all other strategies on all test codes 
and all machines. 

Thus, we have developed an adaptive strategy where the 
costs of using and not using statement level preaccumulation 
are computed and compared when the derivative code is gen- 
erated. These costs are estimated based on machine-specific 
performance models of the actual propagation code. Thus, 
the Hessian module decides which strategy to  use based on 
the structure of a particular computation. We believe that 
such context-sensitive strategies are crucial for future im- 
provement of AD tools. 
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Figure 1: Hessian performance of the Shubin Hessian test 
code with 20 independent variables. 

3 Hessian Performance on a CFD Code 

Hessian code was generated for a steady shock tracking code 
provided by Greg Shubin of the Boeing Company [14]. Be- 
cause of memory constraints, a 20 x 20 section of the full 
190 x 190 Hessian was computed for each of the 190 de- 
pendent variables. The section of the Hessian being studied 
exhibits some sparsity, with 72 nonzero entries on or above 
the diagonal. 

Hessian codes were generated using four different strate- 
gies. Figure 1 shows the ratio of the Hessian computation 
time to the function computation time, while Figure 2 shows 
the memory requirements of the augmented Hessian codes 
on a Sun UltraSparc 1. The original code required 8.0 x 
seconds of execution time and used 360 kB of memory. The 
first strategy, labeled “Twice ADIFOR”, was generated by 
first producing a gradient code with ADIFOR 2.0, and then 
running the gradient code through ADIFOR again. The 
“Forward” case implements the forward mode on a binary 
operation level. The “Adaptive Forward” code uses the for- 
ward mode, with preaccumulation at a statement level where 
deemed appropriate. The ‘Sparse Taylor Series” mode uses 
the Taylor series mode to compute just the entries which are 
known to be zero. 

Clearly, the “Twice ADIFOR” scheme can be easily 
beaten by exploiting the symmetry of the Hessian, both in 
terms of execution speed and memory usage, as is done in 
both the “Forward” and “Adaptive Forward” codes. This 

result also shows that the use of an adaptive preaccumu- 
lation strategy can outperform the operation-level forward 
mode. Improvements in the strategy used to decide when to 
use preaccumulation should further increase the efficiency 
of the adaptive scheme. Finally, the “Sparse Taylor Series” 
code shows that, if the sparsity structure of a problem is 
known, it can be exploited for additional savings. 
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The algorithms of automatic differentiation are, for the most 
part, independent of the language to which they are applied. 
For example, the Fortran assignment statement 

Language and Tool Independence with AIF 

z = 2.0 4. x * y 
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Figure 2: Hessian memory usage of the Shubin Hessian test 
code with 20 independent variables. The original code used 
360 kB. 

and the more complicated C assignment statement 

foo->s t ruc t .z  = 2 .0  + bar->x * qCc] 

both can be abstracted to 

vare'ablel = constant + variable2 * variable3 

when thinking about the propagation of derivatives. 
This simplicity should be reflected in the AD augmenta- 

tion modules. To simplify the development of new AD al- 
gorithms, we have developed the Automatic Differentiation 
Intermediate Form (AIF). AIF tries to capitalize on the work 
that has been done in producing robust language front-ends 
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for automatic differentiation and to simplify AD develop 
ment by insulating developers from the specifics of the un- 
derlying language. Thus, AIF aims to provide a framework 
for experimenting with more advanced AD augmentation al- 
gorithms and to  speed the development of robust tools which 
implement these advanced algorithms. 

Figure 4: AIF tree produced by the ADIFOR front-end 

A source-transformation approach to AD is illustrated 
in Figure 3. This is an idealized representation; not all 
stages are included in all tools. First, the original source 
code is parsed by the language-specific front-end. During 
the canonicalization and analysis phase, the front-end then 
transforms the code to a semantically equivalent form more 
appropriate for AD. In addition, high-level information is 
gathered, such as a determination of which variables need 
associated derivative objects (the so-called active variables). 

For details on the canonicalization and analysis phase in AD- 
IFOR and ADIC, see [3, 61. The front-end then collects code 



fragments, which may range in size from single assignment 
statements to entire subroutines, and passes them to the 
AIF-based augmentation module. 

Figure 4 shows the AIF tree corresponding to the sample 
Fortran statement above. The first line in each node is the 
node type. The second line, if present, contains an attribute, 
which could be a variable name, constant value or subroutine 
name. Attributes consist of two pieces of information, the 
attribute name and its associated value. For simplicity, only 
attribute values are shown in the sample trees. Attributes 
are also used to temporarily store information about the 
tree at various stages, such as the sparsity of the derivative 
objects. This temporary information is only needed by the 
Hessian module and is removed before returning the tree to  
the front-end. For simplicity, these attributes are not shown 
in the sample trees presented here. In addition to  the AIF 
trees, the front-end also passes a set of bindings to specify 
global information. This includes information about the de- 
sired augmentation strategy and the maximum number of 
independent variables. 

Each of the VAR-T nodes represents an active variable. 
The VAL-T nodes act as operators on the VAR-T nodes, refer- 
ring to  the value of the variable. There are other operators 
such as GRAD-T and HESS-T which refer to  the gradient and 
Hessian of an active variable. The CONST-T node is used 
for literal constants, such as 2.0, and for inactive variables. 
Nodes are included for all arithmetic and intrinsic opera- 
tions, such as the MUL-T and ADD-T nodes in the sample tree. 
At the top of the tree is an ASSGN-T node which indicates 
that the tree is an assignment statement. The first VAR-T 
child is the variable on the left side of the assignment state- 
ment. The remainder of the tree represents the expression 
on the right side of the statement. 

The augmentation module then modifies the tree to prop- 
agate derivative values. The Hessian module uses the SOR- 
CERER tree parser generator [ll, 121 to  analyze and mod- 
ify these trees, along with a set of utility routines provided 
in the AIF developer library which assist the augmentation 
process. For the Hessian module, the augmentation process 
includes the following: 

Analysis: 
Each assignment statement is analyzed to gather in- 
formation such as the sparsity of the local Hessian and 
the number of variables on the right side of the state- 
ment. This information is then used to estimate the 
cost of alternative approaches to  computing Hessians, 
and to select the least expensive strategy. 

Each statement is broken down into a sequence of 
unary and binary operations. Temporary variables are 
requested as necessary. Figure 5 shows the tree after 
breakup into binary operations. The tree now con- 
sists of two assignment statements. The front-end ex- 

pects to receive one tree from the augmentation mod- 
ule for each tree sent, so we attach a STMTS-T node at 
the top of the tree to  indicate that the entire tree is 
from one original statement. The ! ! temp-var-0 node 
is a request for a temporary variable, which the front- 
end will later instantiate by generating and declaring 
a suitably typed temporary variable. 

fiagment Decomposition: 

High-level Code Augmentation: 
The tree is augmented with templates that specify 
the high-level algorithmic operations to be performed, 
such as (‘initialize a local gradient” or “handle a mul- 
tiply with two active variables.” At this level, no 

assumptions are made of what the output code will 
look like; the tree represents the algorithmic oper- 
ations necessary to  propagate derivatives. Figure 6 

shows the tree after the high-level augmentation. The 
HESSIORAULAAI node is a template for the forward 
mode multiplication of two active variables. Similarly, 
HESSIOR-ADDIA-T is the addition of an inactive value 
(the CONST-T node) and an active variable. In this 
example, the high-level version is not much different 
from that in the previous step. For more complicated 
augmentation algorithms involving initialization, in- 
terpolation and accumulation of local derivative ob- 
jects, however, even this high-level representation can 
become quite involved. 

Tool-specific Instantiation: 
The templates added in the previous step are expanded 
into actual AIF trees. Multiple varieties of templates 
can be written to  produce, for example, calls to a sub- 
routine library or inlined code, or to account for back- 
end peculiarities. Figure 7 shows part of the instanti- 
ated tree derived from the one in Figure 6. The CALL-T 

nodes represent subroutine calls to the routine listed 
in the NAME-T node, in this case ad-fhfmulas. All of 
the nodes attached to the LIST-T node are arguments 
to the subroutine call. The first two nodes under the 
LIST-T node, the constants ! !p and ! !q, get instanti- 
ated by the front-end with references to the gradient 
and Hessian lengths. The next three items in list of 
arguments are the value, gradient and Hessian of the 
temporary variable ! ! temp-var-0. 

The augmentation module then returns the augmented 
code fragments to the front-end in AIF trees. It also passes a 
set of return bindings which specify, for example, the shape 
and size of derivative objects to  be associated with active 
variables and the type of temporary variables. 

The front-end receives the augmented tree and bindings 
from the augmentation module, converts them from AIF 
to its native representation and glues them back in their 
appropriate place. It also declares all of the requested tem- 
porary variables and derivative objects and handles the as- 
sociation of active variables and their associated derivative 
objects. Figure 8 shows the Fortran produced by ADI- 
FOR for the sample statement. Not shown are the pieces 
of code that declare the temporary variables and deriva- 
tive objects (r-varO, adgi-var0 and adhi-var0)  and the 
derivative objects associated with x, y and z ,  such as a d g x  

and adhx. 

5 Future Work 

The current Hessian tool is our first attempt at producing an 
AD source transformation module in the AIF environment. 
We plan to continue this work in three areas. 

1. In the area of algorithms, we plan to implement the 
preaccumulation of univariate Taylor series vectors, in 

hopes of achieving similar speedup as with the forward 
mode. We also plan extensions of the Taylor series 
mode to arbitrary higher-order derivatives. 

2. We plan to refine the timing models used to charac- 
terize the performance of the Hessian codes on a par- 
ticular machine. This will help to better determine 
the conditions beneficial for preaccumulation, which 

5 



Figure 5 :  Sample tree after breakup into binary operations. The ! ! temp-var-0 node is a request for a temporary variable. 

HESS-FOR-MUt,AA-T HESS-FOR-ADD-1-A,T 

I I 

PI PI 
! ! temp-var-0 

Figure 6: Sample tree after augmentation with high level templates. The H E S S I O R M L A A - T  and HESSJ'ORADD-14-T are 
templates representing forward mode multiplication and addition operations. 

... 

T I  lYliRi] ~ 1 ~ 1  
! ! temp-var-0 ! ! temp-var-0 ! ! temp-var-0 

Figure 7: The sample tree after template instantiation with calls to a subroutine library to  propagate derivatives. Note that 
this is only a small part of the total tree produced. The ! !p and ! !q nodes will be instantiated with references to the gradient 
and Hessian lengths. 

call ad-fh-fmulas(ad-p-, ad-q-, r-var0, adg-r-var0, ad-pmax-, 
+ adh-r-var0, ad-qmax-, x, adg-x, adg-ldl-x, adh-x, adh-ld2-x, 
+ Y, adg-y, adg-ldl-y, adh-y, adh-ld2-y) 

+ ad-qmax-) 

call ad-fh-faddcs(ad-p-, ad-q-, z, adg-z, adg-ldi-z, adh-z, 
+ adh-ld2-z, 2.0, r-var0, adg-r-var0, ad-pmax_,adh-r-varO, 

Figure 8: Fortran code generated by ADIFOR 
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should further improve the performance of the adap- 
tive mode strategy. This will also be useful with preac- 
cumulation over larger sections of code, which will be 
supported in the future. 

3. Finally, we plan to integrate the SparsLinC library 
to support sparse Hessians where the sparsity pat- 
tern is not known in advance and to produce inlined 
code through an additional template expansion stage. 
While experiments with inline code generation have 
suggested that the code expansion is unacceptably 

large, inline versions of the sections of a code which 
most impact the performance should produce a suit- 
able compromise between code expansion and execu- 
tion speed. 

In conclusion, even though AIF is in its infancy, the AIF 
approach has proven itself valuable for experimenting with 
AD algorithms. All of the language-specific issues are re- 
moved from the augmentation module, allowing full concen- 
tration on the algorithms, and greatly accelerating imple- 
mentation of algorithmic improvements like the ones dis- 
cussed above. 
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