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Abstract

This article describes approaches to computing second-order
derivatives with automatic differentiation (AD) based on
the forward mode and the propagation of univariate Tay-
lor series. Performance resulés are given that show the
speedup possible with these techniques relative to existing
approaches. We also describe a new sounrce transformation
AD module for computing second-order derivatives of C and
Fortran codes and the underlying infrastructure used to cre-
ate a language-independent translation tool.

1 introduction

Automatic differentiation {AD) provides an efficient and ac-
curate method to obtain derivatives for use in sensitivity
analysis, parameter identification and optirnization. Cur-
rent tools are targeted primarily at computing first-order
derivatives, namely gradients and Jacobians. Prior to AD,
derivative values were obtained through divided difference
methods, symbolic manipulation or hand-coding, all of which
have drawbacks when compared with AD (see [3] for a dis-
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cussion). Accurate second-order derivatives are even harder
to obtain than first-order omes; it is possible to end up
with no accurate digits in the derivative value when using a
divided-difference scheme.

One can repeatedly apply firsi-order derivative tools to
obtain higher-order derivatives, but this approach is compli-
cated and ignores struciural information about higher-order
derivatives such as symmetry. Additionally, in cases where
a full Hessian, H, is not required, such as with Hessiag-
vector products {H -V} and projected Hessians (V™ H -W)
where V" and W are mairices with many fewer columns than
rows, it is possible to compute the desired values much more
efficiently than with the repeated differentiation approach.

There is no “best” approach to computing Hessians; the
most efficient appreach to computing second-order deriva-
tives depends on the specifics of the code and, to a lesser ex-
tent, the target platform on which the code will be run {4, 8].
In 2ll cases, however, derivative values computed by AD are
computed to machine precision, without the roundoff errors
inherent in divided difference techniques.

AD via source transformation provides great flexibility
in implementing sophisticated algorithms that exploit the
assoctativity of the chain rule of calculus (see [6] for a dis-
cussion). Unfortunately, the development of robust source
transformation tools is a substantial effort, ADIFOR {3]
and ADIC [8], source transformation tools for Fortran and
C respectively, both implement relatively simple algorithms
for propagating derivatives. Most of the development time
so far has concentrated on preducing tools that handle the
full range of the language, rather than on developing more
efficient algorithms to propagate derivatives.

To make it easier o experiment with algorithmic tech-
niques, we have developed AIF, the Antomatic Differenti-
ation Intermediate Form. AIF acts as the glue layer be-
tween a language-specific front-end and a largely language-
independent transformation module that implements AD
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transformations at a high level of abstraction.

We have implemented an AIF-based module for comput-
ing second-order derivatives. The Hessian module, as we call
it, implements several differemt algorithms and selectively
chooses them in a fashion that is determined by the code
presented to it. Bowever, this context-sensitive logic, which
is based on machine-specific performance moedels, is trans-
parent ta the AD front-end. The Hessian module currently
interfaces with ADIFOR and ADIC. First experimental re-
sults show that the resulting codes outperform the recur-
sive application of first-order tools by a factor of two when
computing full, dense Hessians and are able to compute full,
sparse Hessians and partial Hessians al significantly reduced
expense.

Section 2 outlines the two derivaiive propagation strate-
pies that we have explored for Hessians, including cost es-
timates for computing various types of Hesslans. Section 3
shows the performance of the various approaches for a sam-
ple code, and Section 4 describes the infrastructure that was
used to develop the Hessiar augmentation tool. Lastly, we
sumrarize our results and discuss future work.

2 Strategies for Computing Second Derivatives

2.1 Forward Mode Strategies

The standard forward mode of automatic differentiation can
easily be expanded to second order to compute Hessians, For
z = f(r,¥y), we can compute Vz and V2, the gradient and
Hessian of = respectively, as
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This approach is conceptually simple and produces efficient
resulis for small numbers of independent variables. For
n independent variables, gradients are stored in arrays of
length n and Hessians, because of their symmetric natnre,
are stored using the LAPACK [1] packed symmetric scheme,
which reduces the storage requirements from n? to %n{n—l—l).
The cost of computing a full Hessian using the forward mode
is ©(n?) relative to the cost of computing the original func-
tion.

Many algorithms do not need full knowledge of the Hes-
sian but require only a Hessian-vector product, H -V, or a
projected Hessian, ¥ 7 . H .- W, where V and W are matrices
with nv and nw columns, respectively, Rather than com-
puting the full Hessian at a cost of @{n?) followed by one or
two matrix multiplications, we can mulliply Equation (2} on
the left and/or right by ¥7 and W, respectively, to produce
new propagation rules. By modifying the derivative objects
that get propagated, we can perform the required computa-
tions at 2 much lower cost. These costs are suinmarized in
Table 1. In the case of large Hessians and relatively small
values of nv or nuw, the savings can be significant. Addi-
tionally, the coloring technigues that have been applied to
structured Jacobians [2] can be applied to Hessians for a
significant savings.

1The cost of the symmetric and unsymmetrie prajected Heasians

Hessian Type Cost
V27 ()
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Table 1: Summary of Hessian costs using the forward mode
relative to the cost of computing the original function. = is
the naumber of independent variables, ny and ni are the
number of columns of V' and W, respectively.

2.2 Taylor Series Strategies

Az an alternative to the forward mode propagation of gra-
dients and Hessians, we can propagate two-term univariate
Taylor series expansions about each of the nonzero direc-
tions in the Hessian [4]. To compute derivatives at a point
%o in the direction u, we consider f as a scalar function
fl(ze+ tu) of ¢. Its Taylor series, up to second order, is

e LEE
=0 2 912 1=0
= f+fti+ftt32 (3)

where f; and fic arve the first and second Tayler coeflicients.
The uniqueness of the Taylor series implies that for u = e;,
the ¢th basis vector, we obtain
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That is, we computed a scaled version of the fth diagonal
element in the Hessian. Similarly, to compute the (2, 5) off-
diagonal entry in the Hessian, we set @ = ¢; + ;. The

uniqueness of Taylor expansion implies
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If Taylor expansions are also computed for the i and j di-
agonal elements, the off-diagonal Hessian entries can be re-
covered by interpolation. As with the forward mode, simple
rules specify the propagation of the expansions for all arith-
metic and intrinsic operators {10, 13]. To compute a full
gradient of length # and % Hessian entries above the diago-
nal, the cost of the Taylor series mode is ({n+k). If the full
gradient is not needed, this cost can be reduced somewhat.

The Taylor series approach can compute any set of Hes-
sian entries without computing the entire Hessian. This
technique is ideal for sparse Hessians when the sparsity pat-
tern is known in advance and for sitnations where only cer-
tain elements (such as the diagonal entries) are desired. Ad-
ditionally, each Tavlor series expansion is independent. This

(VT . 92f - ¥ and VT . $23f . W) are of the same order, but due
to symmetry, the storage and camputation costs of vT. sz -V are
roughly half of the costs of vT. sz - W




allows very large Hesslans, which can easily overwhelm the
available memory, to be computed in a stripmined fashion by
partitioning the expansion directions and computing them
independently with multiple sweeps through the code in a
fashion that is similay to the siripmining technique described
in [5].

2.3 Preaccumulation

The associativity of the chain rule allows derivative prop-
agation to be performed at arbitrary levels of abstraction.
At the simplest, the forward mode works at the scope of a
single binary operation. By expanding the scope to a higher
level, such as an assignment statement, a loop body or a
subroutine, it 18 possible to decrease the amount of work
necessary to propagate derivatives, as shown in [7, 9].

A preaccumulation technique we employ in our work
computes the gradient and Hessian of the variable on the
left side of the assignment statement in two steps. Assume
that for the statement z = f(z1,22,... 2x), we have Va;
and V3z;,i=1,--- N, the global gradient and Hessian of »;
and that we wish to compute, for z, the global gradient Vz
and Lhe global Hessian V?2.

Step 1: Preaccumnlation of local derivatives
The variables on the right side of the statement are

considered to be independent, and we compute “local”

2 . . 2 . o
derivative objects, .;’;:é and E"—‘ﬁ—;ﬁ’ 5, 7=1,...N, with
respect to the right-hand side variables. This can be

done using either the forward or Taylor series mode.

Step 2: Accumulation of global derivatives
We accumulate the global gradient and Hessian of z.
When using the forward mode for global propagation
of derivatives, this is done as follows:
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The rules for Taylor series expansions can be general-
ized in a similar fashion.

Gradient codes produced by ADIFOR and ADIC cur-
rently employ statement-level preaccumulation for all as-
signment stalements more complicated than a single binary
operation. Experiments with similar “global” preaccumula-
tion strategies for computing Hessians have produced incon-
sistent results across various codes and machines. No global
strategy ontperformed all other strategies on all test codes
and all machines.

Thus, we have developed an adaptive strategy where the
costs of using and not using statement level preaccumulation
are computed and compared when the derivative code is gen-
erated. These costs are estimated based on machine-specific
performance models of the actual propagation code. Thus,
the Hessian module decides which strategy to use based on
the structure of a particular computation. We believe that
such context-sensitive strategles are crucial for future im-
provement of AD tools,

Farward
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Figure 1: Hessian performance of the Shubin Hessian test
code with 20 independent variables.

3 Hessian Performance on a CFD Cade

Hessian code was generated for a steady shock tracking code
provided by Greg Shubin of the Boeing Company [14]. Be-
cause of memory constraints, a 20 x 20 section of the full
190 x 190 Hesslan was computed for each of the 190 de-
pendent variables. The section of the Hessian being studied
exhibits some sparsity, with 72 nonzero entries on ox above
the diagonal.

Hessian codes were generated using four different strate-
gies. Figure 1 shows the ratio of the Hessian computation
time to the function computation time, while Figure 2 shows
the memory requirements of the augmenied Hessian codes
on a Sun UltraSparc 1. The original code Tequired 8.0 x 10~*
seconds of execution time and used 360 kB of memory. The
first strategy, labeled “T'wice ADIFOR”, was generated by
first producing a gradient code with ADIFOR 2.0, and then
running the gradient code through ADIFOR again. The
“Forward” case implements the forward mode on a binary
operation level. The “Adaptive Forward” code uses the for-
ward mode, with preaccumulation at a statement level where
deemed appropriate. The “Sparse Taylor Series” mode uses
the Taylor series mode to compute just the eatries which are
known to be zero.

Clearly, the “Twice ADIFOR”™ scheme can he easily
beaten by exploiting the symmeiry of the Heasian, both in
terms of execution speed and memory usage, as is done in
both the “Forward” and “Adaptive Forward” codes. This
result also shows that the use of an adaptive preaccumu-
lation strategy can outperform the operation-level forward
mode. Improveraents in the strategy used to decide when 1o
use preaccumulation should further increase the efficiency
of the adaptive scheme. Finally, the “Sparse Taylor Series”
code shows that, if the sparsity structure of a problem is
known, it can be exploited for additional savings.

4 Language and Tool Independence with AIF

The algorithms of automatic differentiation are, for the most
part, independent of the langnage to which they are applied.
For example, the Fortran assignment statement

z=2.0+x=*¥
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Figure 2: Hessian memory usage of the Shubin Hessian test
code with 20 independent variables. The original code used
360 kB.

and the more complicated C assignment statement
foo->struct.z = 2.0 + bar->x * qlcl
both can be abstracted to
variabler = constant + variables * vartables

when thinking about the propagation of derivatives.

This simplicity should be reflected in the AD augmenta-
tion modules. To simplify the development of new AD al-
gorithins, we have developed the Automatic Differentiation
Intermediate Form (AIF). AIF tries to capitalize on the work
that has been done in producing robust language front-ends

for automatic differentiation and to simplify AD develop-
mezt by insulating developers from the specifics of the un-
derlying language. Thus, AIF aims to provide a framework
for experimenting with more advanced AD angmentation al-
gorithms and to speed the development of robust tools which
implement these advanced algorithms.

Figure 4: AIF tree produced by the ADIFQOR front-end

A source-transformation approach to AD is iHlustrated
in Figure 3. This is an idealized representation; not all
stages are included in all tools. First, the original source
code is parsed by the language-specific front-end. During
the canonicalization and analysis phase, the front-end then
transforms the code to a semantically eguivalent form more
appropriate for AD. In addition, high-level information is
gathered, such as a determination of which variables need
associated derivative objects {the so-called aciive vaziables).
For details on the canonicalization and analysis phase in AD-
IFOR and ADIC, see [3, 6]. The front-end then collects code




fragments, which may range in size from single assignment
statements to entire subroutines, and passes them {o the
ATF-based augmentation module.

Figure 4 shows the AIF tree corresponding to the sample
Fortran statement above. The first line in each node is the
node type. The second line, if present, contains an attribute,
which could be a variable name, constant value or subroutine
name. Attributes consist of two pieces of information, the
attribute name and its associated value. For simplicity, only
attribute values are shown in the sample trees. Attributes
are also used to temporarily store information about the
tree at various stages, sach as the sparsity of the derivative
objects. This temporary information is only needed by the
Hessian module and is removed before returning the tree to
the front-end. For simplicity, these attributes are not shown
in the sample trees presented here. In addition to the AIF
trees, the front-end also passes a set of bindings to specify
global information, This includes information about the de-
sired augmentation strategy and the maximum number of
independent variables.

Each of the VAR.T nodes represents am active variable.
The VALT nodes act as operators on the VAR.T nodes, refer-
ring to the value of the variable. There are other operators
such as GRAD.T and HESS_T which refer to the gradient and
Hessian of an active variable. The CONST.T node is used
for hteral constants, such as 2.0, and for inactive variables.
Nodes are included for all arithmetic and intrinsic opera-
tions, such as the MUL_T and ADD_T nodes in the sample tree.
At the top of the tree is an ASSGH.T node which indicates
that the tree is an assignment statement. The fizst VART
child is the variable on the left side of the assignment state-
ment. The remainder of the tree represents the expression
on the right side of the statement.

The augmentation medule then modifies theiree to prop-
agate derivative values. The Hessian module uses the SOR-
CERER tree parser generator [11, 12] to analyze and mod-
ify these trees, along with a set of utility routines provided
in the AIF developer library which assist the augmentation
process. For the Hessian module, the angmentation process
includes the following:

Analysis:
Each assignment statement iz analyzed to gather in-
formation such as the sparsity of the local Hessian and
the number of variables on the right side of the state-
ment. This information is then used to estimate the
cost. of alternative approaches to computing Hessians,
and to select the least expensive strategy.

Fragment Decomposition:

Fach statement is broken down into a sequence of
unary and binary operations. Temporary variables are
requested as necessary. Figure 5 shows the tree after
breakup into binary operations. The tree now con-
sists of two assignment statements. The front-end ex-
pects to receive one iree from the angmentation mod-
ule for each tree sent, so we attach a STMTS.T node at
the top of the tree to indicate that the entire tree is
from one original statement. The ! !temp var 0 node
15 a request for a temporary variable, which the front-
end will later instantiate by generating and declaring
a suitably typed temporary variable.

High-level Code Augmentation:
The tree is augmented with templates that specify
the high-level algorithmic operations to be performed,
such as “initialize a local gradient” or “handle a mul-
At this level, no

tiply with two aclive variables.”

assumptions are made of what the output code will
look like; the tree represents the algorithmic oper-
ations necessary to propagate derivatives. Figure 6
shows the tree after the high-level angmentation. The
EESS_FORMUL_A_A_T node is a template for the forward
mode multiplication of two active variables. Similarly,
BESS_FOR_ADD_I_4.T is the addition of an inactive value
(the CONST.T node} and an active variable. In ihis
example, the high-level version is not much differeat
from that in the previous step. For more complicated
augmentation algorithms invelving initialization, in-
terpolation and accumulation of local derivative ob-
Jjects, however, even this high-level representation can
become quite involved.

Tool-specific Instantiation:

The templates added in the previous step are expanded
into actnal AIF trees. Multiple varieties of templaies
can be written to produce, for example, calls to a sub-
routine library or inlined code, or to account for back-
end peculiarities. Figure 7 shows part of the instanti-
ated tree derived from the one in Figure €. The CALL.T
nodes represent subroutine calls to the routine listed
in the NAME.T node, in this case ad_fh faulas, All of
the nodes attached to the LIST.T node are arguments
to the subroutine call. The first two nodes ander the
LIST.T node, the constants !!p and !'q, get instanti-
ated by the front-end with references to the gradient
and Hesstan lengths. The next three items in list of
arguments are the value, gradient and Hessian of the
temporary variable ! f{temp var 0.

The angmentation module then returns the augmented
code fragments to the front-end in AIF trees. It also passes a
set of return bindings which specify, for example, the shape
and size of derivative objects to be associated with active
variables and the type of temporary variables.

The front-end receives the augmented tree and bindings
from the augmentation module, converts them from AIF
to its native representation and glues them back in their
appropriate place. It also declares all of the requested tem-
porary variables and derivative objects and kandles the as-
sociation of active variables and their associated derivative
objects. Figure 8 shows the Fortran produced by ADI-
FOR for the sample statement. Not shown are the pieces
of code that declare the temporary variables and deriva-
tive objects (rvar¢®, adgr_var0 and adh r var0) and the
derivative objects associated with x, y and 2z, such as adg.x
and adh.x.

5 Future Work

The current Hessian tool ts our first attempt at producing an
AD source transformation module in the AIF environment.
We plan to continue this work in three areas.

1. In the area of algorithms, we plan to implement the
preaccumulation of univariate Taylor series vectors, in
hopes of achieving similar speedup as with the forward
mode. We also plan extensions of the Taylor series
mode to arbitrary higher-order derivatives.

2. We plan to refine the timing models used to charac-
terize the performance of the Hessian codes on a par-
ticular machine. This will help to better determine
the conditions beneficial for preaccumnulation, which




i ]

Figure 5: Sample tree after breakup into binary operations. The ! !temp_var 0 node is a request for a temporary variable.

Figure 6: Sample tree after augmentation with high level templates. The HESS FOR MUL 4 4 T and HESS FORADD T A T are
templates representing forward mode muliiplication and addition operations.

Figure 7: The sample tree after template instaniiation with calls to a subroutine library to propagate derivatives. Note that
this is only a small part of the total tree produced. The !'p and ! !q nodes will be instantiated with references to the gradient

and Hessian lengths.

call ad_fh_fwulas(ad_p_, ad_q_, r_var0, adg_r_varQ, ad_pmax_,

+ adh r var0, ad_qmax_, x, adg_x, adg_l1dl_x, adh_x, adh_1d2_x,
+ ¥, adg_y, adg 1dl_y, adh_y, adh_1d2_y)

call ad_fh_faddcs(ad_p_, ad_q., z, adg_z, adg 141_z, adh_z,

+ adh_ 142 z, 2.0, r_var0, adg_r_var®, ad_pmax_.adh_r_var0,

+ ad_qmax_)

Figure 8: Fortran code generated hy ADIFOR




should further improve the performance of the adap-
tive mode strategy. This will also be useful with preac-
cumulation over larger sections of cade, which will be
supported in the future.

. Finally, we plan to integrate the SparsLinC library

to support sparse Hessians where the sparsity pat-
tern is not known ir advance and to produce inlined
code through an additional template expansion stage,
While experiments with inline code generation have
suggested that the code expansion is unaccepiably
large, inline versions of the sections of a code which
most impact the performance should produce a suit-
able compromise between code expansion and execu-
tion speed.

In conclusion, even thoangh AIF is in its infancy, the AIF
approach has proven itself valuable for experimenting with
AD algorithms. All of the language specific issues are re-
moved from the augmentation module, allowing full concen-
tration on the algorithms, and greatly accelerating imple-
mentation of algorithmic improvements like the ones dis-
cussed above.
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