
Algorithms And Hardware For

Efficient Image Smoothing

Anup Basu, Department of Statistics

Christopher M. Brown, Depanment of Computer Science

University of Rochester

TR 149

December 1984

Abstract

This work develops some algorithms for efficient implementation of mean and
separable median filters for image noise smoothing. The procedures suggested use
one-dimensional algorithms repeatedly to obtain two-dimensional mean and
separable median in <4 and 4 flog2(n+1)1-2 operations, respectively, for an n x
n square neighborhood (nbhd). A simple generalization of the algorithms to k
dimensions shows that at most 2k and k(2 flog2(n+1)1-1) operations are required
for obtaining the mean and separable median of an n k nbhd. However, parallel
processing can be easily applied to these algorithms. Given only five parallel
processors, less than one operation is required to obtain the sum of an n x n nbhd
in two dimensions, and for n < 31 the maximum number of comparisons required
to obtain the two-dimensional separable median filter of an n x n nbhd is reduced
to less than four. Experimentally we demonstrate that the separable median filter'
performs better than median filter for certain classes of images. A simple hardware
implementation of the above algorithm is also outlined. It is seen that the
complexity of this implementation increases linearly depending on the number of
inputs, unlike sort-based implementations whose complexity increases
exponentially.

1. Introduction

Mean and median type filters are widely used for image noise smoothing and
enhancement [1-5. 7. 8. 11]. Various optimization schemes have been suggested by
several authors [I, 2. 5. 7. 8] for improving the efficiency of these algorithms. This
work discusses some efficient implementations of mean and separable median [8]
filters using a two-pass algorithm and some simple parallel processing techniques
for two-dimensional neighborhoods. It is seen that whereas approximately four
additions are required on the average by the algorithm suggested in Box-Filtering
Techniques [7] to obtain the sum of an n x n square nbhd of a point of a digital
picture, the procedure given here requires at most 4/p additions given p parallel
processors. That is. given only five parallel processors. the number of additions can
be reduced below one. Also the given algorithm does not require any additional
array as used in the previous one.

Several attempts have been made to reduce the time complexity of median
type filters. Huang et al. [5] and P.M. Narendra [8] give algorithms that have O(n)
time complexity for an n x n square nbhd. The current work gives a simple two­
pass O(log 2n) algorithm for obtaining an approximate median filter similar to the
one discussed by Narendra. However. given p parallel processors, the number of
comparisons required is reduced to (4 fIog2(n+l) 1-2) / p. Thus given only five
parallel processors. the number of comparisons is less than four when n < 31. The
algorithm given here can be easily implemented in hardware and an
implementation is described.

The algorithms can be easily extended to k dimensions where at most 2k/p
and k(2 fIog2(n+1)1-i) / P operations are needed for mean and separable
median filters. respectively, using an n k nbhd with p parallel processors.

Section 2 describes the efficient mean filtering algorithm. The efficient
separable median filter is discussed in Section 3. Section 4 compares certain
properties of the separable median filter with those of a true median filter. Some
implementations results are given in Section 5, where a simple hardware
implementation is also outlined.

2. An Efficient and Generalized Mean Filtering Algorithm

2.1. Some One'Dimensional Addition Schemes for a Sequence of Numbers

Suppose there are M numbers x 1•...• su- and it is required to find the sum
of every n consecutive numbers in the sequence where n <M (n assumed to be
negligibly small compared to M); then the following schemes may be used. For n
= 3 to obtain Yi = Xi + xi+1 + Xi+2 and Yi+1 = Xi+1 + Xi+2 + Xi+3, three
additions suffice:

2

Thus. on the average. 1.5 additions are required to find the sum of three
consecutive numbers. To obtain a similar scheme when n = 4. consider xl • ...• Xs
and Yi =Yi + Yi+ 1 + Yi+2 + Yi+3; i = 1, 5. Then Yi'S may be obtained by the
following nine steps:

z2=x3+ x4

This implies that. on the average. 1.8 additions are sufficient to obtain the sum of
every four consecutive numbers. For n > 5. on the average. 2 additions are
necessary for obtaining the sum of n consecutive numbers by the following
relation:

n n

~Xi+j = ~X(i-1}+j - Xi + xi+n

j=l j=l

2.2. An Algorithm for Efficient Two-Dimensional Mean Filtering

To obtain an efficient two-dimensional mean filtering algorithm, we first
observe that the sum of the square neighborhood (nbhd) of size (2n+ 1) around
the point xi} of a matrix X of dimension \1 x N is (ignoring boundary effects):

n n n n
Sij = ~ ~ xi+k.j+! = ~ Ci,j+! = ~ Ri+k,j (2.2.1)

k=-n !=-n . !=-n k=-n

where

3

n
Ci,j+! = ~ Xi+k .i-! (2.2.2)

k=-n

and
n

Ri+k,j = ~ Xi+k,j+! (2.2.3)
!=-n

Now, Ru's and Cij's are nothing but the sum of consecutive numbers, and hence
the algorithms in the previous section can be used for computing them. Given all
Rij's or all Cij's, Sij'S can be expressed as sums of consecutive numbers which are
Rij's or Cij's, as shown in Equation 2.2.1.

Thus. given a two-dimensional array containing the pixel values of a digital
picture and a similar output array for storing the smoothed image, the procedure
for filtering will simply be to obtain all Cij's or all Rij's first and store them in the
output array. and then use the Cij's or Ri/s to obtain Sij 's, which may be stored
back in the output array, since the Rij's or Cij's are required only temporarily.

To obtain the number of additions required to implement this algorithm, first
observe that to obtain Rij' 1.5, 1.8, or 2 additions are required. depending on
whether the size of the square nbhd is 3 x 3, 4 x 4, or n x n (n > 5), respectively.
To obtain an Sij given Rij 's, a similar number of additions are required. But each
Sij requires (2n + 1) Rij 's, and also each Rij except the ones around the
boundaries are used for computing (2n+ 1) Sij values. Thus, on the average, the
total number of additions required to obtain an Sij equals the number of
additions required to obtain an Rij plus the number of additions required to
compute an Sij given Rij 's, This implies that 3, 3.6, and 4 additions are required
to obtain the sum of a 3 x 3, 4 x 4, and n x n (n > 5) square nbhd, respectively.

It may be observed that the total number of computations is reduced if Rij 's
are obtained in the intermediate step when the number of rows is greater than the
number of columns in the matrix representing the digital picture: otherwise Cij's
are computed.

The average number of additions required to obtain the sum of an n x n
square nbhd (n > 5) for an M x N-dimensional matrix is given by:

4 + 2(n-l) / { maximum (M ,N) - n+ 1 }

+ {(n-3)(M+N-n+2H /{(M-n+l)(N-n+lH (2.2.4)

if Rij or Cij are used appropriately in the intermediate step as mentioned above.
The second term in 2.2.4 is minimized by the proper choice of terms to be
computed in the intermediate step. It can be seen that the above expression is ~

4 when n/N and n/M are negligibly small.

4

2.3. A Generalization of the Efficient Mean Filtering Algorithm to Three and
Higher Dimensions

Consider the problem of obtaining the sum of each (2n+ l)k nbhd of an array
P given an additional array S for storing the sums, both arrays being k­
dimensional of dimension N 1 X N 2 X .. , X Nk- This problem can be solved
as a simple extension of the two-dimensional algorithm observing that here (k-1)
intermediate levels of computations are required before the required sums are
finally obtained. The procedure is as follows:

1) Arrange N 1, ... , Nk in non-decreasing order of magnitude, i.e., obtain
11, ..·,h such that NIl <N12 < .,. <Nt..

2) Obtain the partial sums with respect to the Ilh dimension, storing the sums in
the array S, say, in which the sums are to be stored.

3) Repeat the procedure of obtaining partial sums on the I~h, "" lih dimensions
of S, each time storing the sums back into S.

Lemma 2.3.1:

To compute the sum of each n k nbhd of an array P, given an additional
array S for storing the sums (both arrays P, S being k-dimensional of dimensions
N 1 X N 2 X ... X Nk), the average number of additions required by the above
algorithm is:

1) k for n = 2,

2) 1.5k for n = 3,

3) 1.8k for n = 4, and

4) 2k for n > 5,

provided n/Nk is negligibly smal1 for i = 1, ..., k.

Proof:

By induction.

2.4. An Efficient Weighted Mean Filtering Algorithm

For the, weighted mean filter considered here, the weights depend on the
(city block) distance of a pixel (picture element) from the pixel being smoothed.

5

._----_ .._­

• .!:'
r1.YlC oJ.

------- --- r8.0.iv.::: ~:

...,"'. '(1.,+, r).... v. ,1 ..

c- lcol

Figure 1: Ring of Radius k Around Point (i, j)

The variables and parameters in weighted mean filtering may be defined as the set
{P, S. M, N, n, Woo •..• wn }. This means that the image P has to be smoothed
using a square nbhd of size (2n+ 1) x (2n+1) by weighted mean filtering with
weights wOo wI, .•. , The ring of radius k around the point (i, j) has weight wk'wn.
k = 0, 1, ..., n (Figure 1). The smoothed image is to be stored in S, where both P
and S have dimensions M x N. So the following equations can be obtained:

n
WMEAN {P, n , (i, I). WOo ... , wn } = ~ Wk SRk {P, (i, i)}

k=O

n
= ~ (Wk-wk+l) SQNSUM {P, k, (i, j)} (2.4.1)

k=O

where SR k {P, (i, j)} = sum of the ring of radius k around point (i, j) of P
i+k

= ~ {P(/. i-k) + Ptl, i+k)}
I=i-k

j+k-l
+ ~ {P(i- k, l) + ra-«, I)} (2.4.2)

l=j-k+l

SQNSUM {P, k, (i, j)} = sum of square nbhd of radius k around point (i, j) of P
i+n j+n

= ~ ~ P(k, l) (2.4.3)
k=i-n 1= j-n

and Wn+l = 0.

Thus the algorithm for weighted mean filtering initializes S to (w 1 - w2)P,
and then adds (wk - wk+ 1) SQNSUM {P, k, (i, j)} to S(i, j) varying k from 1 to n

6

for all valid (i, j) values. S cannot be used for computing SQNSUMs as in the
previous algorithms, since the current value in S(i, j) needs to be stored and
incremented by a weighted factor of the nbhd sums that are computed, so a
separate array needs to be kept and an algorithm similar to the one discussed by
McDonnell [4] has to be used.

The values Wil = Wi - wi+ 1 need to be obtained only once, and hence their
computation does not contribute to the number of additions required on the
average for each point. For each point being smoothed the SQNSUMs are
obtained for one 3 x 3 nbhd and (n-1) k x k (k >5) nbhds, so the total number of
additions per point is 3 + 4(n-1) = (4n-1). Thus the above procedure needs (4n­
1) additions and (n + 1) multiplications instead of (2n+ 1)2 additions and (2n+ 1)2
multiplications.

2.5.	 A Parallel Algorithm for Efficient Mean Filtering

Consider the algorithm discussed in Section 2.2. Here the {Rij. j varying} can
be computed in parallel for i = 1, ..., M. Subsequently, {SIj' i varying} can be
computed in parallel for different j's Uvarying over the valid range of values of j).
from the RIj's. Otherwise {Cli , i varying} for j = 1, N and subsequently {SIj'
j varying} for varying i, can be computed in parallel. Thus, if there are L parallel
processors Z L Z 2.... , Z t and if RIj's and then SIj's are to be obtained for a given
digital picture P of resolution M x N. the following procedure may be adapted
(exchange rows and columns if M <N):

1)	 Use processor Z, to process row (i + kL) of P (i = 1, L; k = 0, k,
where i + LKi < M and i + L(Ki + 1)) M) to obtain Rii's. storing them in
S, as in the algorithm in Section 2.2. .

2)	 Use processor Zj to process column U+ kL+ n) of S U = 1, ..., L: k = 0.... ,
kj • where j + LKj + n < N-n and j + L(KJ + 1) + n) N-n, assuming
filtering is done using a (2n+ 1) x (2n + 1) nbhd) to obtain the final sums,
SIj's, as in the algorithm in Section 2.2 (Figure 2).

(Here an extra one-dimensional array.which for convinience may be
appended to the array storing the smoothed image.is needed for implementation
using parallel processors in order that the values to be subtracted are not
overwritten by the currently computed values. When filtering using a single
processor the need for extra storage can be avoided by carefully using the rows or
columns around the boundary that cannot be filtered using the normal nbhd.)

•••

--

7

ror:(l+~:L) .1
"1P •• · oJ(ori ~in::.l
" ron(L+lcL)

L:2,ge)

IZl J

Z:t I
I

......
... ...

col.
(l+l:1&+n)

it

(int 3 r,:,,:ec.:'i rt e

vrLue s

stcr~c. in S)

col.
•~L+~:L+:;')

~~

Z~ I~
-

•

S

(""·':)0-1-:'~ ec.--....:. ..,
im2.[e)

Figure 2: Parallel Algorithm for Mean Filtering

a Digital Picture P of Resolution M x N (M >N)

The above algorithm can be generalized to k dimensions for k > 2. The
number of processors need not be less than the dimensions of the picture, as
discussed in Section 3.4. Given L parallel processors, the average number of
additions required by the above algorithm to find the sum of each nk nbhd of a
k-dimensional array is given by:

1) k/L if n = 2,

2) 1.5k/L if n = 3,

3) 1.8k/L if n = 4, and

4) 2k/L ifn > 5

under the assumptions of the previous sections.

8

In particular, for a two-dimensional nbhd, given only five parallel processors,
the average number of additions required for obtaining the sum of an n x n
square nbhd (n > 5) is less than or equal to 0.8. Thus, given sufficiently many
parallel processors, the average number of additions required for obtaining a two­
dimensional mean filter can be made as small as required. This is true for higher
dimensions as well.

3. An Efficient Median Type Filtering Algorithm

3.1.	 Some One-Dimensional Sorting Procedures for a Sequence of Numbers

Related to the addition problem of Section 2.1, is the problem of sorting
every n consecutive numbers of a given sequence of numbers xl, ... , xM, where n
<M. For n = 3, the procedure is as follows:

1)	 For sorting xl, x2, x3 and x2, x3' x4, first compare X2' x3 and store the
sorted pair. Then merge the sorted pair with X I and X 4 to obtain the sorted
triplets (Xl, x2, x3) and (X2, x3' X4), respectively.

2)	 Repeat the procedure in (1) for Xi, Xi+I' Xi+2 and Xi+I, xi+2, xi+3 for i = 2,
..., M-3.

For comparing X 2, X 3, one comparison is needed, and merging X 1 with sorted
x2, x3 takes at most two comparisons. Thus for sorting (xl, x2, x3) and
(x 2, X 3, X 4)' at most five comparisons are required, which implies that on the
average 2.5 comparisons are sufficient for sorting every triplet in a given sequence
of numbers.

In general, to sort every n consecutive numbers (n > 4) of a sequence
xl, ... , xM (n considered to be negligibly small compared to M), the procedure is
simply to sort xl, ''', x n by some sorting scheme and then derive every subsequent
sorted n-tuplet by deleting one element and inserting one element into the
previous sorted list using binary search. That is, if {xi • ... , Xi+n-Il are already
sorted, then {Xi+ 1, "', xi+n } can be obtained by deleting xi and inserting Xi+1l
into the previous sorted list. If n is negligible compared to M, the maximum
number of comparisons needed is 2 r log»» +1)1-1, on the average. The -1
arises because at most r log2(n+1)1-1 comparisons are required to delete an
element in a sorted list when it is known that the element to be deleted is in the
list.

3.2.	 An Efficient Separable Median Filtering Algorithm

An approximation to the median filter is the separable median filter (SM F)
discussed by Narendra [8]. The main purpose of the approximation is to increase
the efficiency of median type filters. An algorithm based on histogram updation
technique was suggested by Huang et al [5]; both these algorithms have O(n) time
complexity. The algorithm suggested here reduces the time complexity to

9

O(log2n) by maintaining a sorted array of size n and inserting a value and
deleting a value from it using binary search.

The SMF algorithm splits up a square nbhd into separable segments, which
are nothing but the rows or columns of the nbhd, computes the median of each of
the segments, and finally the median of the medians. In order to obtain an efficient
implementation of SMF, an algorithm similar to the one discussed in Section 2.2 is
considered. The algorithm consists of two passes. In the first pass the medians of
all the partial columns (or rows) are computed and stored in the array provided
for storing the smoothed image. In the second pass the medians computed in the
first pass are used to obtain the medians of all the partial rows (or columns,
respectively), giving us the SMF of the original image. Note that usually the
results obtained by performing the operations row-wise first and then column-wise
vary from the results obtained by reversing the operations of each pass, unlike the
invariant performance of the mean filtering algorithm. However, the general
properties of the SMF (discussed in Section 4) are retained in either case.

Notationally, the algorithm may be represented as follows:

Sij::: Median{Ci,j+I: I::: -n, ..., n}	 (3.2.1)

and

Ci. j+ /::: Median{xi+k,j+l; k ::: -n, n}	 (3.2.2)

where X is the original image, S the smoothed image, and a square nbhd of size
(2n+ 1) is used for filtering. ln the above example, the processing is done
column-wise first and then row-wise. If the algorithm in Section 3.1 is used to
obtain the CU's from the XU's in the first pass and then again to obtain the SU's
from the CU's in the second pass, by arguing as in Section 2.2, it can be easily
verified that the maximum number of comparisons required, on the average, to
obtain an s., is 4r Iog2(n+1)1-2.

3.3. A Generalization of the Efficient Separable Median Filtering Algorithm to
Higher Dimensions

The separable median filter of a k-dimensional nbhd can be recursively
defined as follows:

1)	 The separable median of a one-dimensional nbhd is the median of the nbhd.

2)	 The separable median of a k-dimensional nbhd (k > 2), nk. is the median of
the n separable medians of the n (k-Ij-dimensional nbhds which form the n k

nbhd.

[Without loss of generality, it may be assumed that a (k-1)-dimensional nbhd
contained in a k-dimensional nbhd is obtained by fixing the last index of the k­
dimensional nbhd and varying the rest.]

10

Symbolically the above definition can be rewritten as:

SM{A i : i= 1,ooo,n}= Median{A i : i= 1,ooo,n}

SM {A iI' 000, ik :i1 = 1, 00', n , 000, ik = 1, 000, n }

=Median{SM{A i 1, 000, ik : il = L '0', n , 000, ik-I

= 1, 000, n}, ik = L ... , n} (3.3.1)

where SM denotes the separable median.

As in Section 2.3, it can be easily verified that the maximum number of
comparisons required on the average for obtaining the separable median filter of a
k-dimensional array using an n k nbhd is 2k r log2(n+ 1)1- k ° The k-dimensional
SMF can be obtained by repeatedly applying the algorithm in Section 3.1 to
obtain the SMs for all one-dimensional nbhds, then the SMs for all two­
dimensional nbhds, and so on, until the SMF of the k-dimensional array is
obtained.

3.4. A Parallel Algorithm for Efficient SMF

The implementation of the SMF using parallel processing can be viewed
quite similarly to the algorithm given for efficient mean filtering using parallel
processors. Given L parallel processors, the average maximum number of
comparisons required to obtain the two-dimensional SMF is
(4 r log2(n+1)1- 2) / L (Table I). The number of processors used is not limited
by the dimensions of the picture. For example, for an N x N size image, given 2L
parallel processors, where 2L) N but 2L < 2l\i, we can consider L processors
smoothing the first NI2 columns and the remaining L processors smoothing the
last NI2 columns (assuming N even) in the first pass, and similarly in the second
pass.

II

Table I: Maximum Number of Comparisons Needed by Efficient Separable
Median Filter (ESMF) with Parallel Processing

No. Of Comparisons No. Of Comparisons No. Of Comparisons
Nbhd. Size With 1 Processor With 10 Processors With 100 Processors

3x3 5 0.5 0.05

7x7 10 1.0 0.10

15x15 14 1.4 0.14

3lx31 18 1.8 0.18

63x63 22 2.2 0.22

4. Properties or the Efficient Separable Median Filter (ESMF)

4.1. Noise Reduction by ESMF

For an n x n nbhd the variance of Gaussian and uniform noise. with noise
a2, after being filtered by a two-dimensional median filter, are given by
(respectively):

'TT a2 and 3 a2 (4.1.1)
2(n 2+2) (n 2+2)

For ESMF the corresponding approximate figures as given in [8] are (respectively):

22n [(n;1)!]4 3 22f1 [(n;l)!]4
'TT a 2and- a 2 (4.1.2)
8 (n !)2 (n +2) 4 (n !)1 (n +2)

Since the above expression is rather complicated. we derive a simplification of it.
(It may be noted that for small n the variances are quite close.) A convenient
approximation to factorials is given by Stirling's approximation [9]:

n ! = -/27Tn nil e- Il (4.1.3)

Using the above approximation, we obtain

12

22n [(n- l)!]4 2

_------:-_2__ = 2'TT s: (l - .1)2n

2(n!)2(n+2) n n

but lim (l - .l)n = e- 1
n -+00 n

Thus, asymptotically,

22n[(~)!]4
2'TT (4.1.4)

= -2
(n!)2 (n+2) n

Thus for large n, the values in (4.1.2) reduce to (respectively):
2

'TT 2 3'TT 2-- a and -- a (4.1.5)
4n 2 2n2

From (4.1.1) and (4.1.5), it can be seen that asymptotically the variance of the
noise after separable median filtering is only 'TT/2 times the noise variance after
median filtering, and for both the reduction of noise variance is inversely
proportional to the number of points in the nbhd.

4.2. Edge Preservation by ESlVIF

The ESMF retains the detailed structure of many corners or vertices in an
image much better than the ordinary median filter. The following example
illustrates this. Consider the corner shown in Fig. 3.

20 20 10

20 20 10

10 10 10

Figure 3: A sharp corner in the image

Suppose the corner in Fig. 3 is being smoothed with a 3 x 3 window. The normal
median filtering and even threshold median filters [11] replace the central gray
level value 20 by the value 10. though this destroys the vertices of the rectangles in
the filtered image. Note that the value of the separable median is 20 and not 10.
Thus ESMF preserves the vertices of rectangular shapes, which form an important
component in many images. It may be observed that median filters can destroy a
k x k nbhd around the vertex of a rectangle by filtering with a (2n+ 1) x (2n + 1)

13

nbhd, where k is the largest integer satisfying:

(n+k)2 <2n 2+ 2n + 1

=> k = l- n + v'2n(n+l)J

where l x J denotes the largest integer < x. In fact, points outside the k x k
window mentioned above for which the filtering window has more points from
outside the rectangle than from inside are also likely to be destroyed by median
filtering. Table II below shows the number of points around a rectangular vertex
that may be destroyed by median filtering using an n x n window:

Table II

No. Of Points Around Rectangular Vertices That
Window Size May Be Destroyed By Median Filtering

3x3 1

5x5 3

7x7 5

9x9 8

llxll 12

13x13 17

No point is disturbed by ESMF in any of the above cases, provided the length of
the smaller side of a rectangle is not less than nl2 for an nxn window. It is
assumed of course that that the sides of the rectangular shapes are somewhat
parallel to the sides of the image. Thus it is clear that the ESMF discussed here
not only reduces the time complexity of the filter to O(log2 n) for an n x n nbhd,
but also preserves certain significant image information far better than ordinary
median filter. Also, the noise reduction by ESMF is of the same order as that of
median filter except for a factor of ,"/2 as shown in the earlier section. The
performance of the ESMF is compared with median filter for some actual images

••••••••••••••••
••••••••••••••••

••••••••••••••••

14

in Section 5 where a hardware implementation is also briefly outlined.

5. Results and Implementation

5.1. Results

Fig. 4 illustrates the results obtained by applying median and separable
median filters with 3 x 3, 5 x 5, 7 x 7, and 9 x 9 nbhds on a generated picture
which resembles the side of a building at night illuminated by the lights in the
rooms. It is seen that the median filter performs worse as the nbhd size increases,
whereas separable median filtering does not affect any details of the picture for n
< 7. It may be observed that if an M x N rectangle undergoes ESMF, then no
details are destroyed as long as n < minimum (M, N) when filtering using a
(2n+ 1) x (2n + 1) square nbhd. Thus when a 3 x 3 square nbhd is used, the only
edges that may be affected by ESMF are lines with different gray level values on
either side.

(a)

(6) (c.)

................ ••••••••••••••• . ..

11'1',11111", ••
 •••••••••••••••
If' I f I I I 1ft" I I...............
 " I I I " , ; i I I I I

, ; I • I I! J I f ill I I •••••••••••••••
...............
 illlllllllll •••••••••••••••
...............

•••••••••••••••

(d) (e)

................

...............

'11111111111111

Figure 4: Comparison of Median and ESMF Filters

Original image (a), and pairs after median filtering and

ESMF ofnbhd. sizes 3 x 3, 5 x 5,7 x 7,9 x 9 (b, c. d, e)

15

5.2.	 Implementation

A hardware implementation of ESMF for nbhd size < N x N can be realized
using the following basic units (Fig. 5):

1)	 A shift register (SR) which can contain up to N pixel values (N words) and
has a word-oriented shift operation. This register can be accessed as an array
(SR(I), I = 1, ..., N) and the shift operation can be performed both towards
left and right on a left truncated part of it. That is, there are basic operations
SHIFrLEFT(I) which moves the contents of the (1+ l)th word to the fth

word for J = I, ..., N-1 and 0 to the Nth word, I may vary between 1 and N.
SHIFrRIGHT(I) is similarly defined.

2)	 A circuit BX for performing binary search on an array of n elements sorted in
a descending order (first n elements of SR). Given X, BX(X) returns the
index where the match occurs or returns [where SR(I-1) > X > SR(I)
(define SR(O) = max value of pixel).

With these components inserting a value X into SR reduces to:

[=	 BX(X); SHIFTRIGHT(I); SR(l) = X;

And deleting a value is equivalent to:

SHIFfLEFT(BX(X»:

where X is known to belong to SR.

To obtain the medians in a particular pass the procedure initializes the
register SR by n insert operations and then performs one delete and one insert
operation for every successive point.

The actual circuit for BX does not require any binary search, but uses \l
comparators connected in parallel. The comparator C, takes the contents of SR(i)
as one of the inputs and X (the number whose position is to be determined) as the
other input, and outputs 1 if SR(i) >X and 0 otherwise. Unlike the procedure
discussed in [8], the circuit shown in the diagram below does not require any
sorting network pipeline with comparators; also it needs a smaller number of
comparators. Also the complexity of the circuit increases only linearly depending
on the number of inputs, unlike sort-based hardware whose complexity increases
exponentially.

16

Shift Co;nbi:'1rtori 'C.l

Re .·:i st er Selector
SR

0 Co
'nl "B

-.

1 C1 ..
•

•

•

1") •

•

•

T).... V

C n 1'1

Po e i t i on of
,-)X - :c.:. ..J _L ..

....

.. ~

x

Figure 5: Circuit for Searching a Sorted Array

17

The Combinatorial Selector first looks for the pattern 10 in the input string,
which is a bit string of 1's followed by D's. Note that an extra bit 1 is input to the
selector to detect the first 0 in the input string when all bits are zeros, For the
problem considered here the input string can never be all one bits, The occurance
of the pattern 10 may be detected by combining every two consecutive inputs, and
the output of the selector is determined by the position where this combination
occurs. Note that the above combination can occur in one position only.

For digital implementation in real-time hardware (video rates, for example)
an intermediate array is required to store the row medians before they are
subsequently processed. With additional storage the line scanned serial input and
the intermediate row medians can be processed simultaneously (Fig 6). This
hardware structure can achieve higher speed compared to sort-based designs. Also
the speed is almost constant independent of the number of inputs if the delay due
to fan-in limitations of the gates in the selector is ignored. The number of
comparators required by the hardware discussed here increases only linearly
depending on the number of inputs and is compared with the number of
comparators required by sort-based implementation of S.M,F. in Table Ill. The
number of comparators required by sorter networks is obtained from Knuth[13].
for n >16 the asymptotic case [B,p. 229] is used. Thus the algorithm discussed
here not only has 0(1og2 n) computational complexity for an n x n nbhd.
compared to O(n) algorithms [5,8] discussed earlier, but also has a simpler real
time implementation.

Fil-'cer

~r~vious Se~rch
....----------.., B;- ;.: C(

Figure 6: Real Time E.S,M.F.

18

Table III: Comparison Of No. Of Comparators Required By
Real Time Son-based S.M.F. and E.S.M.F.

No. of comparators used No. of comparators used
Nbhd. Size by son-based S.M.F. by real time E.S.M.F.

3X3 6 6

5X5 18 10

9x9 50 18

3lx31 270 62

63x63 860 126

19

6. Acknowledgements

The preparation of this paper was supported in part by the National Science
Foundation under Grant MCS-8302038. The authors would also like to
acknowledge the support of Peggy Meeker in preparing this document.

20

7. References

[1]	 Ataman, E., V.K. Aatre, and K.M. Wong, "A fast method for real time median
filtering," IEEE Transactions ASSP 28, 415-420, 1980.

[2]	 Chaudhuri, B.B., "Efficient algorithm for image enhancement," Proc., IEEE
130, E, 3, 95-97, May 1983.

[3]	 Eliason, E.M. and L.A. Soderblom, "An array processing system for lunar
geochemical and geophysical data," Proc., 8th Lunar Science Conference,
1163-1170, 1977.

[4]	 Gonzalez, R.C and P. Wintz. Digital Image Processing. Cambridge, MA:
Addison-Wesley, 1977.

[5]	 Huang. T.S. et al., "A fast two-dimensional median filtering algorithm," IEEE
Transactions ASSP-2?, 13-18, February 1979.

[6]	 Kuck, OJ. The Structure of Computers and Computations (Vol. 1, pp. 135-55,
259-63). Wiley, 1978.

[7] McDonnell, MJ., "Box-filtering techniques," CGIP 17, 65-70, 1981.

[8]	 Narendra, P.M., "A separable median filter for image noise smoothing," IEEE
Transactions PAMI 3,1,1981.

[9] Rao, CR. Linear Statistical Inference (2nd edition) (p. 59). Wiley, 1973.

[10]	 Rosenfeld, A. and A.C Kak. Digital Picture Processing. New York:
Academic Press, 1976.

[11]	 Scollar, I. et al., "Image enhancement using the median and interquartile
distance," CVGIP 25,2,236-251, February 1984.

[12]	 Tukey, J.W. Exploratory Data Analysis (Ch. 7, pp. 205-236). Reading, MA:
Addison-Wesley, 1976.·

[13]	 Knuth, D.E. The Art Of Computer Programming. vol. 3.(pp. 220-246). New
York.Addison-Wesley ,1973.

