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Abstract
 

This work develops some algorithms for efficient implementation of mean and 
separable median filters for image noise smoothing. The procedures suggested use 
one-dimensional algorithms repeatedly to obtain two-dimensional mean and 
separable median in <4 and 4 flog2(n+1)1-2 operations, respectively, for an n x 
n square neighborhood (nbhd). A simple generalization of the algorithms to k 
dimensions shows that at most 2k and k(2 flog2(n+1)1-1) operations are required 
for obtaining the mean and separable median of an n k nbhd. However, parallel 
processing can be easily applied to these algorithms. Given only five parallel 
processors, less than one operation is required to obtain the sum of an n x n nbhd 
in two dimensions, and for n < 31 the maximum number of comparisons required 
to obtain the two-dimensional separable median filter of an n x n nbhd is reduced 
to less than four. Experimentally we demonstrate that the separable median filter' 
performs better than median filter for certain classes of images. A simple hardware 
implementation of the above algorithm is also outlined. It is seen that the 
complexity of this implementation increases linearly depending on the number of 
inputs, unlike sort-based implementations whose complexity increases 
exponentially. 





1. Introduction 

Mean and median type filters are widely used for image noise smoothing and 
enhancement [1-5. 7. 8. 11]. Various optimization schemes have been suggested by 
several authors [I, 2. 5. 7. 8] for improving the efficiency of these algorithms. This 
work discusses some efficient implementations of mean and separable median [8] 
filters using a two-pass algorithm and some simple parallel processing techniques 
for two-dimensional neighborhoods. It is seen that whereas approximately four 
additions are required on the average by the algorithm suggested in Box-Filtering 
Techniques [7] to obtain the sum of an n x n square nbhd of a point of a digital 
picture, the procedure given here requires at most 4/p additions given p parallel 
processors. That is. given only five parallel processors. the number of additions can 
be reduced below one. Also the given algorithm does not require any additional 
array as used in the previous one. 

Several attempts have been made to reduce the time complexity of median 
type filters. Huang et al. [5] and P.M. Narendra [8] give algorithms that have O(n) 
time complexity for an n x n square nbhd. The current work gives a simple two­
pass O(log 2n) algorithm for obtaining an approximate median filter similar to the 
one discussed by Narendra. However. given p parallel processors, the number of 
comparisons required is reduced to (4 fIog2(n+l) 1-2) / p. Thus given only five 
parallel processors. the number of comparisons is less than four when n < 31. The 
algorithm given here can be easily implemented in hardware and an 
implementation is described. 

The algorithms can be easily extended to k dimensions where at most 2k/p 
and k(2 fIog2(n+1)1-i) / P operations are needed for mean and separable 
median filters. respectively, using an n k nbhd with p parallel processors. 

Section 2 describes the efficient mean filtering algorithm. The efficient 
separable median filter is discussed in Section 3. Section 4 compares certain 
properties of the separable median filter with those of a true median filter. Some 
implementations results are given in Section 5, where a simple hardware 
implementation is also outlined. 

2. An Efficient and Generalized Mean Filtering Algorithm 

2.1. Some One'Dimensional Addition Schemes for a Sequence of Numbers 

Suppose there are M numbers x 1•...• su- and it is required to find the sum 
of every n consecutive numbers in the sequence where n <M (n assumed to be 
negligibly small compared to M); then the following schemes may be used. For n 
= 3 to obtain Yi = Xi + xi+1 + Xi+2 and Yi+1 = Xi+1 + Xi+2 + Xi+3, three 
additions suffice: 
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Thus. on the average. 1.5 additions are required to find the sum of three 
consecutive numbers. To obtain a similar scheme when n = 4. consider xl • ...• Xs 
and Yi =Yi + Yi+ 1 + Yi+2 + Yi+3; i = 1, .... 5. Then Yi'S may be obtained by the 
following nine steps: 

z2=x3+ x4 

This implies that. on the average. 1.8 additions are sufficient to obtain the sum of 
every four consecutive numbers. For n > 5. on the average. 2 additions are 
necessary for obtaining the sum of n consecutive numbers by the following 
relation: 

n n
 
~Xi+j = ~X(i-1}+j - Xi + xi+n
 
j=l j=l 

2.2. An Algorithm for Efficient Two-Dimensional Mean Filtering 

To obtain an efficient two-dimensional mean filtering algorithm, we first 
observe that the sum of the square neighborhood (nbhd) of size (2n+ 1) around 
the point xi} of a matrix X of dimension \1 x N is (ignoring boundary effects): 

n n n n 
Sij = ~ ~ xi+k.j+! = ~ Ci,j+! = ~ Ri+k,j (2.2.1)

k=-n !=-n . !=-n k=-n 

where 
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n 
Ci,j+! = ~ Xi+k .i-! (2.2.2) 

k=-n 

and 
n 

Ri+k,j = ~ Xi+k,j+! (2.2.3) 
!=-n 

Now, Ru's and Cij's are nothing but the sum of consecutive numbers, and hence 
the algorithms in the previous section can be used for computing them. Given all 
Rij's or all Cij's, Sij'S can be expressed as sums of consecutive numbers which are 
Rij's or Cij's, as shown in Equation 2.2.1. 

Thus. given a two-dimensional array containing the pixel values of a digital 
picture and a similar output array for storing the smoothed image, the procedure 
for filtering will simply be to obtain all Cij's or all Rij's first and store them in the 
output array. and then use the Cij's or Ri/s to obtain Sij 's, which may be stored 
back in the output array, since the Rij's or Cij's are required only temporarily. 

To obtain the number of additions required to implement this algorithm, first 
observe that to obtain Rij' 1.5, 1.8, or 2 additions are required. depending on 
whether the size of the square nbhd is 3 x 3, 4 x 4, or n x n (n > 5), respectively. 
To obtain an Sij given Rij 's, a similar number of additions are required. But each 
Sij requires (2n + 1) Rij 's, and also each Rij except the ones around the 
boundaries are used for computing (2n+ 1) Sij values. Thus, on the average, the 
total number of additions required to obtain an Sij equals the number of 
additions required to obtain an Rij plus the number of additions required to 
compute an Sij given Rij 's, This implies that 3, 3.6, and 4 additions are required 
to obtain the sum of a 3 x 3, 4 x 4, and n x n (n > 5) square nbhd, respectively. 

It may be observed that the total number of computations is reduced if Rij 's 
are obtained in the intermediate step when the number of rows is greater than the 
number of columns in the matrix representing the digital picture: otherwise Cij's 
are computed. 

The average number of additions required to obtain the sum of an n x n 
square nbhd (n > 5) for an M x N-dimensional matrix is given by: 

4 + 2(n-l) / { maximum (M ,N) - n+ 1 } 

+ {(n-3)(M+N-n+2H /{(M-n+l)(N-n+lH (2.2.4) 

if Rij or Cij are used appropriately in the intermediate step as mentioned above. 
The second term in 2.2.4 is minimized by the proper choice of terms to be 
computed in the intermediate step. It can be seen that the above expression is ~ 

4 when n/N and n/M are negligibly small. 
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2.3. A Generalization of the Efficient Mean Filtering Algorithm to Three and 
Higher Dimensions 

Consider the problem of obtaining the sum of each (2n+ l)k nbhd of an array 
P given an additional array S for storing the sums, both arrays being k­
dimensional of dimension N 1 X N 2 X .. , X Nk- This problem can be solved 
as a simple extension of the two-dimensional algorithm observing that here (k-1) 
intermediate levels of computations are required before the required sums are 
finally obtained. The procedure is as follows: 

1) Arrange N 1, ... , Nk in non-decreasing order of magnitude, i.e., obtain 
11, ..·,h such that NIl <N12 < .,. <Nt.. 

2) Obtain the partial sums with respect to the Ilh dimension, storing the sums in 
the array S, say, in which the sums are to be stored. 

3) Repeat the procedure of obtaining partial sums on the I~h, "" lih dimensions 
of S, each time storing the sums back into S. 

Lemma 2.3.1: 

To compute the sum of each n k nbhd of an array P, given an additional 
array S for storing the sums (both arrays P, S being k-dimensional of dimensions 
N 1 X N 2 X ... X Nk), the average number of additions required by the above 
algorithm is: 

1) k for n = 2,
 

2) 1.5k for n = 3,
 

3) 1.8k for n = 4, and
 

4) 2k for n > 5,
 

provided n/Nk is negligibly smal1 for i = 1, ..., k.
 

Proof:
 

By induction. 

2.4. An Efficient Weighted Mean Filtering Algorithm 

For the, weighted mean filter considered here, the weights depend on the 
(city block) distance of a pixel (picture element) from the pixel being smoothed. 
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Figure 1: Ring of Radius k Around Point (i, j) 

The variables and parameters in weighted mean filtering may be defined as the set 
{P, S. M, N, n, Woo •..• wn }. This means that the image P has to be smoothed 
using a square nbhd of size (2n+ 1) x (2n+1) by weighted mean filtering with 
weights wOo wI, .•. , The ring of radius k around the point (i, j) has weight wk'wn. 
k = 0, 1, ..., n (Figure 1). The smoothed image is to be stored in S, where both P 
and S have dimensions M x N. So the following equations can be obtained: 

n 
WMEAN {P, n , (i, I). WOo ... , wn } = ~ Wk SRk {P, (i, i)} 

k=O 

n 
= ~ (Wk-wk+l) SQNSUM {P, k, (i, j)} (2.4.1) 

k=O 

where SR k {P, (i, j)} = sum of the ring of radius k around point (i, j) of P 
i+k 

= ~ {P(/. i-k) + Ptl, i+k)} 
I=i-k 

j+k-l 
+ ~ {P(i- k, l) + ra-«, I)} (2.4.2) 

l=j-k+l 

SQNSUM {P, k, (i, j)} = sum of square nbhd of radius k around point (i, j) of P 
i+n j+n 

= ~ ~ P(k, l) (2.4.3) 
k=i-n 1= j-n 

and Wn+l = 0. 

Thus the algorithm for weighted mean filtering initializes S to (w 1 - w2)P, 
and then adds (wk - wk+ 1) SQNSUM {P, k, (i, j)} to S(i, j) varying k from 1 to n 



6 

for all valid (i, j) values. S cannot be used for computing SQNSUMs as in the 
previous algorithms, since the current value in S(i, j) needs to be stored and 
incremented by a weighted factor of the nbhd sums that are computed, so a 
separate array needs to be kept and an algorithm similar to the one discussed by 
McDonnell [4] has to be used. 

The values Wil = Wi - wi+ 1 need to be obtained only once, and hence their 
computation does not contribute to the number of additions required on the 
average for each point. For each point being smoothed the SQNSUMs are 
obtained for one 3 x 3 nbhd and (n-1) k x k (k >5) nbhds, so the total number of 
additions per point is 3 + 4(n-1) = (4n-1). Thus the above procedure needs (4n­
1) additions and (n + 1) multiplications instead of (2n+ 1)2 additions and (2n+ 1)2 
multiplications. 

2.5.	 A Parallel Algorithm for Efficient Mean Filtering 

Consider the algorithm discussed in Section 2.2. Here the {Rij. j varying} can 
be computed in parallel for i = 1, ..., M. Subsequently, {SIj' i varying} can be 
computed in parallel for different j's Uvarying over the valid range of values of j). 
from the RIj's. Otherwise {Cli , i varying} for j = 1, .... N and subsequently {SIj' 
j varying} for varying i, can be computed in parallel. Thus, if there are L parallel 
processors Z L Z 2.... , Z t and if RIj's and then SIj's are to be obtained for a given 
digital picture P of resolution M x N. the following procedure may be adapted 
(exchange rows and columns if M <N): 

1)	 Use processor Z, to process row (i + kL) of P (i = 1, .... L; k = 0, .... k, 
where i + LKi < M and i + L(Ki + 1) ) M) to obtain Rii's. storing them in 
S, as in the algorithm in Section 2.2. . 

2)	 Use processor Zj to process column U+ kL+ n) of S U = 1, ..., L: k = 0.... , 
kj • where j + LKj + n < N-n and j + L(KJ + 1) + n ) N-n, assuming 
filtering is done using a (2n+ 1) x (2n + 1) nbhd) to obtain the final sums, 
SIj's, as in the algorithm in Section 2.2 (Figure 2). 

(Here an extra one-dimensional array.which for convinience may be 
appended to the array storing the smoothed image.is needed for implementation 
using parallel processors in order that the values to be subtracted are not 
overwritten by the currently computed values. When filtering using a single 
processor the need for extra storage can be avoided by carefully using the rows or 
columns around the boundary that cannot be filtered using the normal nbhd.) 
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Figure 2: Parallel Algorithm for Mean Filtering
 
a Digital Picture P of Resolution M x N (M >N)
 

The above algorithm can be generalized to k dimensions for k > 2. The 
number of processors need not be less than the dimensions of the picture, as 
discussed in Section 3.4. Given L parallel processors, the average number of 
additions required by the above algorithm to find the sum of each nk nbhd of a 
k-dimensional array is given by: 

1) k/L if n = 2,
 

2) 1.5k/L if n = 3,
 

3) 1.8k/L if n = 4, and
 

4) 2k/L ifn > 5
 

under the assumptions of the previous sections.
 



8 

In particular, for a two-dimensional nbhd, given only five parallel processors, 
the average number of additions required for obtaining the sum of an n x n 
square nbhd (n > 5) is less than or equal to 0.8. Thus, given sufficiently many 
parallel processors, the average number of additions required for obtaining a two­
dimensional mean filter can be made as small as required. This is true for higher 
dimensions as well. 

3. An Efficient Median Type Filtering Algorithm 

3.1.	 Some One-Dimensional Sorting Procedures for a Sequence of Numbers 

Related to the addition problem of Section 2.1, is the problem of sorting 
every n consecutive numbers of a given sequence of numbers xl, ... , xM, where n 
<M. For n = 3, the procedure is as follows: 

1)	 For sorting xl, x2, x3 and x2, x3' x4, first compare X2' x3 and store the 
sorted pair. Then merge the sorted pair with X I and X 4 to obtain the sorted 
triplets (Xl, x2, x3) and (X2, x3' X4), respectively. 

2)	 Repeat the procedure in (1) for Xi, Xi+I' Xi+2 and Xi+I, xi+2, xi+3 for i = 2, 
..., M-3. 

For comparing X 2, X 3, one comparison is needed, and merging X 1 with sorted 
x2, x3 takes at most two comparisons. Thus for sorting (xl, x2, x3) and 
(x 2, X 3, X 4)' at most five comparisons are required, which implies that on the 
average 2.5 comparisons are sufficient for sorting every triplet in a given sequence 
of numbers. 

In general, to sort every n consecutive numbers (n > 4) of a sequence 
xl, ... , xM (n considered to be negligibly small compared to M), the procedure is 
simply to sort xl, ''', x n by some sorting scheme and then derive every subsequent 
sorted n-tuplet by deleting one element and inserting one element into the 
previous sorted list using binary search. That is, if {xi • ... , Xi+n-Il are already 
sorted, then {Xi+ 1, "', xi+n } can be obtained by deleting xi and inserting Xi+1l 
into the previous sorted list. If n is negligible compared to M, the maximum 
number of comparisons needed is 2 r log»» +1)1-1, on the average. The -1 
arises because at most r log2(n+1)1-1 comparisons are required to delete an 
element in a sorted list when it is known that the element to be deleted is in the 
list. 

3.2.	 An Efficient Separable Median Filtering Algorithm 

An approximation to the median filter is the separable median filter (SM F) 
discussed by Narendra [8]. The main purpose of the approximation is to increase 
the efficiency of median type filters. An algorithm based on histogram updation 
technique was suggested by Huang et al [5]; both these algorithms have O(n) time 
complexity. The algorithm suggested here reduces the time complexity to 
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O(log2n) by maintaining a sorted array of size n and inserting a value and 
deleting a value from it using binary search. 

The SMF algorithm splits up a square nbhd into separable segments, which 
are nothing but the rows or columns of the nbhd, computes the median of each of 
the segments, and finally the median of the medians. In order to obtain an efficient 
implementation of SMF, an algorithm similar to the one discussed in Section 2.2 is 
considered. The algorithm consists of two passes. In the first pass the medians of 
all the partial columns (or rows) are computed and stored in the array provided 
for storing the smoothed image. In the second pass the medians computed in the 
first pass are used to obtain the medians of all the partial rows (or columns, 
respectively), giving us the SMF of the original image. Note that usually the 
results obtained by performing the operations row-wise first and then column-wise 
vary from the results obtained by reversing the operations of each pass, unlike the 
invariant performance of the mean filtering algorithm. However, the general 
properties of the SMF (discussed in Section 4) are retained in either case. 

Notationally, the algorithm may be represented as follows: 

Sij::: Median{Ci,j+I: I::: -n, ..., n}	 (3.2.1) 

and 

Ci. j+ /::: Median{xi+k,j+l; k ::: -n, .... n}	 (3.2.2) 

where X is the original image, S the smoothed image, and a square nbhd of size 
(2n+ 1) is used for filtering. ln the above example, the processing is done 
column-wise first and then row-wise. If the algorithm in Section 3.1 is used to 
obtain the CU's from the XU's in the first pass and then again to obtain the SU's 
from the CU's in the second pass, by arguing as in Section 2.2, it can be easily 
verified that the maximum number of comparisons required, on the average, to 
obtain an s., is 4r Iog2(n+1)1-2. 

3.3. A Generalization of the Efficient Separable Median Filtering Algorithm to 
Higher Dimensions 

The separable median filter of a k-dimensional nbhd can be recursively 
defined as follows: 

1)	 The separable median of a one-dimensional nbhd is the median of the nbhd. 

2)	 The separable median of a k-dimensional nbhd (k > 2), nk. is the median of 
the n separable medians of the n (k-Ij-dimensional nbhds which form the n k 

nbhd. 

[Without loss of generality, it may be assumed that a (k-1)-dimensional nbhd 
contained in a k-dimensional nbhd is obtained by fixing the last index of the k­
dimensional nbhd and varying the rest.] 
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Symbolically the above definition can be rewritten as: 

SM{A i : i= 1,ooo,n}= Median{A i : i= 1,ooo,n} 

SM {A iI' 000, ik :i1 = 1, 00', n , 000, ik = 1, 000, n } 

=Median{SM{A i 1, 000, ik : il = L '0', n , 000, ik-I 

= 1, 000, n}, ik = L ... , n} (3.3.1) 

where SM denotes the separable median. 

As in Section 2.3, it can be easily verified that the maximum number of 
comparisons required on the average for obtaining the separable median filter of a 
k-dimensional array using an n k nbhd is 2k r log2(n+ 1)1- k ° The k-dimensional 
SMF can be obtained by repeatedly applying the algorithm in Section 3.1 to 
obtain the SMs for all one-dimensional nbhds, then the SMs for all two­
dimensional nbhds, and so on, until the SMF of the k-dimensional array is 
obtained. 

3.4. A Parallel Algorithm for Efficient SMF 

The implementation of the SMF using parallel processing can be viewed 
quite similarly to the algorithm given for efficient mean filtering using parallel 
processors. Given L parallel processors, the average maximum number of 
comparisons required to obtain the two-dimensional SMF is 
(4 r log2(n+1)1- 2) / L (Table I). The number of processors used is not limited 
by the dimensions of the picture. For example, for an N x N size image, given 2L 
parallel processors, where 2L ) N but 2L < 2l\i, we can consider L processors 
smoothing the first NI2 columns and the remaining L processors smoothing the 
last NI2 columns (assuming N even) in the first pass, and similarly in the second 
pass. 
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Table I: Maximum Number of Comparisons Needed by Efficient Separable 
Median Filter (ESMF) with Parallel Processing 

No. Of Comparisons No. Of Comparisons No. Of Comparisons 
Nbhd. Size With 1 Processor With 10 Processors With 100 Processors 

3x3 5 0.5 0.05 

7x7 10 1.0 0.10 

15x15 14 1.4 0.14 

3lx31 18 1.8 0.18 

63x63 22 2.2 0.22 

4. Properties or the Efficient Separable Median Filter (ESMF) 

4.1. Noise Reduction by ESMF 

For an n x n nbhd the variance of Gaussian and uniform noise. with noise 
a2, after being filtered by a two-dimensional median filter, are given by 
(respectively): 

'TT a2 and 3 a2 (4.1.1)
2(n 2+2) (n 2+2) 

For ESMF the corresponding approximate figures as given in [8] are (respectively): 

22n [( n;1 )!]4 3 22f1 [( n;l )!]4 
'TT a 2and- a 2 (4.1.2) 
8 (n !)2 (n +2) 4 (n !)1 (n +2) 

Since the above expression is rather complicated. we derive a simplification of it. 
(It may be noted that for small n the variances are quite close.) A convenient 
approximation to factorials is given by Stirling's approximation [9]: 

n ! = -/27Tn nil e- Il (4.1.3) 

Using the above approximation, we obtain 
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22n [( n- l )!]4 2
 
_------:-_2__ = 2'TT s: (l - .1 )2n


2(n!)2(n+2) n n 

but lim (l - .l)n = e- 1 
n -+00 n 

Thus, asymptotically, 

22n[(~)!]4 
2'TT (4.1.4)

= -2 
(n!)2 (n+2) n 

Thus for large n, the values in (4.1.2) reduce to (respectively): 
2

'TT 2 3'TT 2-- a and -- a (4.1.5)
4n 2 2n2 

From (4.1.1) and (4.1.5), it can be seen that asymptotically the variance of the 
noise after separable median filtering is only 'TT/2 times the noise variance after 
median filtering, and for both the reduction of noise variance is inversely 
proportional to the number of points in the nbhd. 

4.2. Edge Preservation by ESlVIF 

The ESMF retains the detailed structure of many corners or vertices in an 
image much better than the ordinary median filter. The following example 
illustrates this. Consider the corner shown in Fig. 3. 

20 20 10 

20 20 10 

10 10 10 

Figure 3: A sharp corner in the image 

Suppose the corner in Fig. 3 is being smoothed with a 3 x 3 window. The normal 
median filtering and even threshold median filters [11] replace the central gray 
level value 20 by the value 10. though this destroys the vertices of the rectangles in 
the filtered image. Note that the value of the separable median is 20 and not 10. 
Thus ESMF preserves the vertices of rectangular shapes, which form an important 
component in many images. It may be observed that median filters can destroy a 
k x k nbhd around the vertex of a rectangle by filtering with a (2n+ 1) x (2n + 1) 
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nbhd, where k is the largest integer satisfying: 

(n+k)2 <2n 2+ 2n + 1 

=> k = l- n + v'2n(n+l)J 

where l x J denotes the largest integer < x. In fact, points outside the k x k 
window mentioned above for which the filtering window has more points from 
outside the rectangle than from inside are also likely to be destroyed by median 
filtering. Table II below shows the number of points around a rectangular vertex 
that may be destroyed by median filtering using an n x n window: 

Table II 

No. Of Points Around Rectangular Vertices That 
Window Size May Be Destroyed By Median Filtering 

3x3 1 

5x5 3 

7x7 5 

9x9 8 

llxll 12 

13x13 17 

No point is disturbed by ESMF in any of the above cases, provided the length of 
the smaller side of a rectangle is not less than nl2 for an nxn window. It is 
assumed of course that that the sides of the rectangular shapes are somewhat 
parallel to the sides of the image. Thus it is clear that the ESMF discussed here 
not only reduces the time complexity of the filter to O(log2 n) for an n x n nbhd, 
but also preserves certain significant image information far better than ordinary 
median filter. Also, the noise reduction by ESMF is of the same order as that of 
median filter except for a factor of ,"/2 as shown in the earlier section. The 
performance of the ESMF is compared with median filter for some actual images 
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in Section 5 where a hardware implementation is also briefly outlined. 

5. Results and Implementation 

5.1. Results 

Fig. 4 illustrates the results obtained by applying median and separable 
median filters with 3 x 3, 5 x 5, 7 x 7, and 9 x 9 nbhds on a generated picture 
which resembles the side of a building at night illuminated by the lights in the 
rooms. It is seen that the median filter performs worse as the nbhd size increases, 
whereas separable median filtering does not affect any details of the picture for n 
< 7. It may be observed that if an M x N rectangle undergoes ESMF, then no 
details are destroyed as long as n < minimum (M, N) when filtering using a 
(2n+ 1) x (2n + 1) square nbhd. Thus when a 3 x 3 square nbhd is used, the only 
edges that may be affected by ESMF are lines with different gray level values on 
either side. 

(a) 

(6) ( c.) 

................ ••••••••••••••• . ..
 
11'1',11111", •• ...............
 ••••••••••••••• ...............
If' I f I I I 1ft" I I...............
 " I I I " , ; i I I I I

, ; I • I I! J I f ill I I ............... ••••••••••••••• ...............
...............
 illlllllllll ••••••••••••••• ...............
...............
 
••••••••••••••• ...............
 

(d) (e) 

................
 
...............
 
'11111111111111 

Figure 4: Comparison of Median and ESMF Filters
 
Original image (a), and pairs after median filtering and
 

ESMF ofnbhd. sizes 3 x 3, 5 x 5,7 x 7,9 x 9 (b, c. d, e)
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5.2.	 Implementation 

A hardware implementation of ESMF for nbhd size < N x N can be realized 
using the following basic units (Fig. 5): 

1)	 A shift register (SR) which can contain up to N pixel values (N words) and 
has a word-oriented shift operation. This register can be accessed as an array 
(SR(I), I = 1, ..., N) and the shift operation can be performed both towards 
left and right on a left truncated part of it. That is, there are basic operations 
SHIFrLEFT(I) which moves the contents of the (1+ l)th word to the fth 

word for J = I, ..., N-1 and 0 to the Nth word, I may vary between 1 and N. 
SHIFrRIGHT(I) is similarly defined. 

2)	 A circuit BX for performing binary search on an array of n elements sorted in 
a descending order (first n elements of SR). Given X, BX(X) returns the 
index where the match occurs or returns [ where SR(I-1) > X > SR(I) 
(define SR(O) = max value of pixel). 

With these components inserting a value X into SR reduces to: 

[ =	 BX(X); SHIFTRIGHT(I); SR(l) = X; 

And deleting a value is equivalent to: 

SHIFfLEFT(BX(X»: 

where X is known to belong to SR. 

To obtain the medians in a particular pass the procedure initializes the 
register SR by n insert operations and then performs one delete and one insert 
operation for every successive point. 

The actual circuit for BX does not require any binary search, but uses \l 
comparators connected in parallel. The comparator C, takes the contents of SR(i) 
as one of the inputs and X (the number whose position is to be determined) as the 
other input, and outputs 1 if SR(i) >X and 0 otherwise. Unlike the procedure 
discussed in [8], the circuit shown in the diagram below does not require any 
sorting network pipeline with comparators; also it needs a smaller number of 
comparators. Also the complexity of the circuit increases only linearly depending 
on the number of inputs, unlike sort-based hardware whose complexity increases 
exponentially. 
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Figure 5: Circuit for Searching a Sorted Array 
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The Combinatorial Selector first looks for the pattern 10 in the input string, 
which is a bit string of 1's followed by D's. Note that an extra bit 1 is input to the 
selector to detect the first 0 in the input string when all bits are zeros, For the 
problem considered here the input string can never be all one bits, The occurance 
of the pattern 10 may be detected by combining every two consecutive inputs, and 
the output of the selector is determined by the position where this combination 
occurs. Note that the above combination can occur in one position only. 

For digital implementation in real-time hardware (video rates, for example) 
an intermediate array is required to store the row medians before they are 
subsequently processed. With additional storage the line scanned serial input and 
the intermediate row medians can be processed simultaneously (Fig 6). This 
hardware structure can achieve higher speed compared to sort-based designs. Also 
the speed is almost constant independent of the number of inputs if the delay due 
to fan-in limitations of the gates in the selector is ignored. The number of 
comparators required by the hardware discussed here increases only linearly 
depending on the number of inputs and is compared with the number of 
comparators required by sort-based implementation of S.M,F. in Table Ill. The 
number of comparators required by sorter networks is obtained from Knuth[13]. 
for n >16 the asymptotic case [B,p. 229] is used. Thus the algorithm discussed 
here not only has 0(1og2 n) computational complexity for an n x n nbhd. 
compared to O(n) algorithms [5,8] discussed earlier, but also has a simpler real 
time implementation. 

Fil-'cer 

~r~vious Se~rch 
....----------.., B;- ;.: C( 

Figure 6: Real Time E.S,M.F. 
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Table III: Comparison Of No. Of Comparators Required By 
Real Time Son-based S.M.F. and E.S.M.F. 

No. of comparators used No. of comparators used 
Nbhd. Size by son-based S.M.F. by real time E.S.M.F. 

3X3 6 6 

5X5 18 10 

9x9 50 18 

3lx31 270 62 

63x63 860 126 
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