
 

 

ALGORITHMS AND METHODOLOGY FOR POST-

MANUFACTURE ADAPTATION TO PROCESS VARIATIONS AND 

INDUCED NOISE IN DEEPLY SCALED CMOS TECHNOLOGIES 

 

 

 

 

 

 

 

 

 

 

A Thesis 

Presented to 

The Academic Faculty 

 

 

 

by 

 

 

 

Maryam Ashouei 

 

 

 

 

In partial fulfillment 

of the Requirement for the Degree 

Doctor of Philosophy in the 

School of Electrical and Computer Engineering 

 

 

 

 

 

 

Georgia Institute of Technology 

 

December 2007 

 



 

 

ALGORITHMS AND METHODOLOGY FOR POST-

MANUFACTURE ADAPTATION TO PROCESS VARIATIONS AND 

INDUCED NOISE IN DEEPLY SCALED CMOS TECHNOLOGIES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by: 

 

Dr. AbhijitChatterjee, Advisor Dr. Linda Milor 

School of Electrical and Computer School of Electrical and Computer 

Engineering Engineering 

Georgia Institute of Technology Georgia Institute of Technology 

 

Dr. Sudhakar Yalamanchili Dr. Adit D. Singh 

School of Electrical and Computer School of Electrical Engineering

 Engineering 

Georgia Institute of Technology Auburn University 

 

Dr. Jeffery A. Davis  

School of Electrical and Computer  

Engineering  

Georgia Institute of Technology  

 

 

 Date Approved: September 24, 2007 

 



 

iii 

ACKNOWLEDGMENTS 
 

I would like to thank my advisor, Prof. Abhijit Chatterjee, for accepting me in his 

research group and for his support and guidance during the course of my research. I could 

not have imagined a better advisor for my PhD. I am also thankful to Prof. Adit Singh. 

His continuous help and insights had a significant impact on the research presented here. 

I also would like to thank my committee members, Dr. Sudhakar Yalamanchili, Dr. Jeff 

Davis, and Dr. Linda Milor for taking the time to serve on my proposal and defense 

committees. 

I would like to acknowledge the help and support of my past and present lab-

mates. I need to especially thank Utku Diril for patiently answering many of my 

questions and helping me even after he graduated from Georgia Tech. 

I would also like to thank Gigasale Research Center (GSRC) and National 

Science Foundation (NSF) for funding this research and providing different venues for 

interacting with industry experts and getting their valuable inputs. 

Finally, I would like to thank the members of the department staff (in particular 

from the administrative, financial, and IT offices) for their extraordinary patience and 

diligence. 

 

 

 

 

 

 



 

iv 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENT .................................................................................................III 

LIST OF TABLES……………….................................................................................... VI 

LIST OF FIGURES. ........................................................................................................VII 

SUMMARY………………………………………… ………………………………….IX 

CHAPTER 1-INTORDUCTION………………………………………………….............1 

1.1 MOTIVATION ........................................................................................................ 1 

1.2 THESIS ORGANIZATION ......................................................................................... 3 

CHAPTER 2-PROCESS VARIATIONS AND ITS IMPACT ON CIRCUIT....................5 

2.1 PROCESS VARIATION ............................................................................................ 5 
2.1.1 Process Variation Effect on Transistor Characteristics ...........................................................8 
2.1.2 Process Variation Impact on Circuit Delay and Leakage Power .............................................8 

2.2 VARIATION-TOLERANT DESIGN .......................................................................... 10 
2.2.1 Post-Manufacture Variation-Tolerant Techniques ................................................................10 
2.2.2 Variation-Tolerant Optimization Techniques ........................................................................14 

2.3 ESTIMATING DELAY AND LEAKAGE VARIATIONS ................................................ 16 
2.3.1 Leakage Power Estimation Techniques.................................................................................17 
2.3.2 Delay Estimation Techniques ................................................................................................19 

CHAPTER 3-LEAKAGE-AWARE PLACEMENT FOR NANO-SCALE CMOS .........21 

3.1 INTER-DIE PROCESS VARIATION MODELS ............................................................ 22 

3.2 VARIATION AWARE LAYOUT............................................................................... 25 

3.3 ESTIMATION OF CORRELATED INTER-DIE LEAKAGE POWER VARIATION .............. 28 
3.3.1 An Enumerating Technique for Correlated Intra-Die Leakage Variation .............................29 
3.3.2 A Quadratic-Time Approximation of Correlated Intra-die Leakage Power Variation ..........31 

3.4 EVALUATION ...................................................................................................... 34 

3.5 CONCLUDING REMARKS ..................................................................................... 42 

CHAPTER 4-POST-MANUFACTURE TUNING FOR NANO-CMOS USING 

RECONFIGURABLE LOGIC ..........................................................................................44 

4.1 SELF-ADAPTATION FRAMEWORK ........................................................................ 45 

4.2 TUNABLE GATES................................................................................................. 47 
4.2.1 Tunable Gates: Design ..........................................................................................................48 
4.2.2 Tunable Gates: Insertion........................................................................................................51 

4.3 IMPLICIT DELAY PREDICTION.............................................................................. 52 

4.4 TUNING STRATEGY ............................................................................................. 57 

4.5 EVALUATION ...................................................................................................... 61 

4.6 CONCLUDING REMARKS ..................................................................................... 68 

CHAPTER 5-TRANSIENT ERRORS: TRENDS AND SOLUTIONS............................70 

5.1 FAULT-TOLERANT TECHNIQUES.......................................................................... 72 

5.2 CONCLUDING REMARKS ..................................................................................... 75 



 

v 

CHAPTER 6-EFFICIENT PROBABILISTIC ERROR CORRECTION .........................76 

6.1 REAL NUMBER CHECKSUM CODES FOR ERROR DETECTION AND CORRECTION ..... 77 
6.1.1 Linear Digital State Variable Systems...................................................................................77 
6.1.2 Concurrent Error Detection ...................................................................................................79 
6.1.3 Proposed Probabilistic Error Compensation..........................................................................83 
6.1.4 State Partitioning and Checksum Design...............................................................................90 

6.2 EVALUATION ...................................................................................................... 93 

6.3 CONCLUDING REMARKS ................................................................................... 105 

CHAPTER 7-CONCLUSIONS.......................................................................................106 

7.1 VARIATION TOLERANT DESIGN ......................................................................... 106 

7.2 TRANSIENT ERROR TOLERANT DESIGN.............................................................. 107 

7.3 FUTURE WORK.................................................................................................. 108 

APPENDIX I-BEST COMPENSATION VECTOR FOR PROBABLISTIC 

COMPENSATION.. ........................................................................................................109 

APPENDIX II-RELATIONSHIP BETWEEN SNR IMPROVEMENT OF THE 

PROBABLISTIC COMPENSATION AND ERROR MAGNITUDE............................111 

REFERENCES…… ........................................................................................................113 



 

vi 

LIST OF TABLES  

Table 1. Technology parameter variations………………………………………………...7 

Table 2. Mean and standard deviation of leakage power using different methods………37 

Table 3. Leakage power improvement using mehod1 at 95 and 99 percentile points…... 39 

Table 4. Overhead on the wire length and delay using method 1 and method 2 (the base 

of comparison is method 3)………………………………………………………………40 

Table 5. Tunable NAND gate delay change in the ON/OFF mode……………………... 50 

Table 6. Leakage overhead of tunable gates…………………………………………….. 51 

Table 7. Impact of tuning techniques on power………………………………………….63 

Table 8. Delay and power improvement using tuning methodology with perfect delay test 

and with IDP…………………………………………………………………………….. 67 

Table 9. Area overhead of reconfiguration module and tunable gates………………….. 68 

Table 10. A 3
rd 

order linear state system…………………………………………………93 

Table 11. Effect of sampling frequency on SNR………………………………………... 99 

Table 12: Different error parameter distributions (T is the duration of the output)…….102 

Table 13. SNR improvement for an order 10 system………………………………….. 104 

Table 14. Delay, area, and power associated with each technique…………………….. 105 



 

vii 

LIST OF FIGURES 

Figure 1. Variation in the ILD thickness across the wafer (left) and across the die (right) 

(Courtesy of [5]) ................................................................................................................. 7 

Figure 2. Leakage and frequency variations (courtesy of [6])............................................ 9 

Figure 3. Performance variation reduction using ABB (courtesy of [6]) ......................... 12 

Figure 4. Within-die process variation (courtesy of Intel Corp.)...................................... 22 

Figure 5. Cluster model..................................................................................................... 24 

Figure 6. Two plausible functions for correlation within a cluster................................... 24 

Figure 7. A binary search based method to distributed the low-Vt gates evenly across the 

die...................................................................................................................................... 27 

Figure 8. Three placements of low-Vt gates (C432 circuit). Left to right: method 1, 2, and 

3......................................................................................................................................... 28 

Figure 9. Best circuit placement using correlated leakage power estimator..................... 29 

Figure 10. Finding correlated leakage power distribution for 2-cluster case ................... 30 

Figure 11. An example of correlation matrix (CL) of two matrices L and h ..................... 33 

Figure 12. Distribution of the leakage power for the three placement methods............... 36 

Figure 13. Cumulative distribution function..................................................................... 38 

Figure 14. Comparison of the estimation technique with Monte Carlo............................ 41 

Figure 15. Error in estimating the mean ........................................................................... 41 

Figure 16. Error in estimating the standard deviation....................................................... 42 

Figure 17. Self-adaptation components ............................................................................ 46 

Figure 18. Structure of tunable gate a) Static CMOS , b) CMOS with reduced fall-time, c) 

CMOS with reduced rise-time .......................................................................................... 49 

Figure 19: Distribution of maximum measured delays of good dies and bad dies........... 54 

Figure 20: Yield loses as a result of applying IDP instead of a perfect delay test for 

different values of Th increasing from (a) to (d)................................................................ 56 



 

viii 

Figure 21: Circuit delay as a function maximum measured delay.................................... 57 

Figure 22. Reconfiguration procedure .............................................................................. 59 

Figure 23. Procedure for assigning control signals of tunable gates ................................ 61 

Figure 24. Delay distributions using different tuning knobs individually ........................ 63 

Figure 25. Delay distribution using the proposed tuning procedure................................. 65 

Figure 26. Leakage distribution using the proposed tuning procedure............................. 66 

Figure 27. Dynamic power distribution using the proposed technique ............................ 66 

Figure 28. Structure of a state variable system ................................................................. 78 

Figure 29. A state variable system with checksum-based error detection........................ 80 

Figure 30. Structure of a linear State variable system with shared operators [courtesy of 

[61]]................................................................................................................................... 81 

Figure 31. Gain Matrix corresponding to the system in Figure 29................................... 82 

Figure 32. Checksum-based probabilistic state correction ............................................... 86 

Figure 33. To find the optimum coding vector (MATLAB fminsearch is used to 

solve the optimization)...................................................................................................... 90 

Figure 34. A heuristic to find the best subsets of states to be monitor using different 

check variables.................................................................................................................. 92 

Figure 35. An implementation of the system in Table 10 with shared operators ............. 94 

Figure 36. The gain matrix corresponding to the implementation in Figure 34 ............... 94 

Figure 37. Error model...................................................................................................... 95 

Figure 38. Noise Power reduction and SNR improvement using optimal coding vector. 96 

Figure 39. SNR as a function of error position................................................................. 97 

Figure 40. Effect of error position on SNR for various error magnitudes ........................ 98 

Figure 41. SNR as a function of burst length.................................................................. 100 

Figure 42. SNR improvement as a function of burst length (using probabilistic checksum-

based compensation)....................................................................................................... 101 

Figure 43. SNR distribution of three different techniques.............................................. 103 



 

ix 

SUMMARY 

In the last two decades, VLSI technology scaling has spurred a rapid growth in 

the semiconductor industry. With CMOS device dimensions falling below 100 nm, 

achieving higher performance and packing more complex functionalities into digital 

integrated circuits have become easier. However, the scaling trend poses new challenges 

to design and process engineers. First, larger process parameter variations in the current 

technologies cause larger spread in the delay and power distribution of circuits and result 

in the parametric yield loss. In addition, ensuring the reliability of deep sub-micron 

(DSM) technologies under soft/transient errors is a significant challenge. These errors 

occur because of the combined effects of the atmospheric radiations and the significantly 

reduced noise margins of scaled technologies. 

This thesis focuses on addressing the issues related to the process variations and 

reliability in deeply scaled CMOS technologies. The objective of this research has been 

to develop circuit-level techniques to address process variations, transient errors, and the 

reliability concern. The proposed techniques can be divided into two parts. The first part 

addresses the process variation concern and proposes techniques to reduce the variation 

effects on power and performance distribution. The second part deals with the transient 

errors and techniques to reduce the effect of transient errors with minimum hardware or 

computational overhead.  

 



 

1 

CHAPTER 1  

INTRODUCTION 

1.1 MOTIVATION 

Technology scaling, following Moore’s law, brought new challenges to process, 

design, and test engineers in DSM era. As transistor dimensions shrink and more 

functionality are packed into an integrated circuit, huge power consumption, considerable 

process parameter variations, and susceptibility to transient errors and noise are some of 

the many challenges facing the industry. The problems at hand need to be addressed at 

different levels of IC production: process level, circuit level, architecture level, physical-

design level, and debug and production test level. The objective of this research is to 

address some of the aforementioned challenges. A goal of this research was to address 

the impact of process variations and to provide circuit-level techniques to mitigate the 

impact. Another concern addressed in this thesis is reliability issues and susceptibility of 

deeply scaled CMOS circuits to transient errors.  

Process variations are significant in the DSM technologies because of processing 

and masking limitations. In current technologies, they can result in up to 20X variation in 

the leakage power and 1.3X variation in the circuit delay. The trend is increasing with 

scaling. Such large variations in circuit performance and leakage power negatively 

impact the manufacturing yield. Therefore, techniques are needed to alleviate the effects 

of such variations. Research on the effects of large process parameter variations can be 

categorized into two groups. The first group aims at estimating the leakage power and 



 

2 

delay distributions of circuits under large process variations. The second group tries to 

mitigate the effects of large process variations by making the circuit more variation-

tolerant. This is done either by applying different circuit optimization techniques such as 

gate sizing, Vdd scaling, and Vt modulation or by applying post-manufacture circuit tuning 

techniques involving the application of forward or reverse body bias to bring the delay 

and leakage power of the circuit within an acceptable range. In this thesis, we propose a 

post-manufacture tuning methodology, which reduces the power and performance 

variations and results in significant parametric yield improvement. We also look at the 

effect of placement strategies on power and performance variation. We show that with 

careful placement, we can achieve considerable reduction in leakage variation with little 

impact on circuit delay. 

In addition, DSM circuits are more vulnerable to noise and soft-error sources than 

before. The reasons for the increase in susceptibility lie in the use of lower supply 

voltage, smaller transistor sizes, and shorter depth of pipeline stages in modern VLSI 

circuits. Traditionally, memory elements and flip flops were the ones susceptible to 

transient errors. It has been projected that the soft-error rate of combinational circuits will 

approach that of unprotected memory elements over the next decade. The effort to deal 

with the reliability issue focuses both on designing soft-error-hardened flip flops and 

sizing combinational circuits optimally to achieve soft-error tolerance. In this research, a 

partial correction technique for minimizing the effect of transient errors is introduced for 

applications that can tolerate some degree of accuracy as long as the system-level quality 

of service (QoS) metrics are satisfied. 



 

3 

The objective of the proposed research is to develop techniques to address the 

delay and leakage variations as well as the reliability issue related to transient errors in 

DSM circuits.  

1.2 THESIS ORGANIZATION 

In this work, the effect of process parameter variation on power and performance 

is addressed. The work also concentrates on reducing the impact of increasing transient 

error on system level performance. 

Chapter 2 provides an overview of process variations, their sources, the trends, 

and their impacts on circuits. The chapter also provides a summary of previous work to 

curb the impact of process variation on circuit level power and performance 

characteristics.  

Chapter 3 introduces placement-based techniques for leakage variability 

optimization in the DSM circuits: These include algorithms for the placement of gates in 

a dual-Vt circuit to mitigate the large leakage variation. The goal is to reduce the leakage 

variation caused by the correlated within-die process variations with little impact on 

circuit delay. In addition, an efficient approach for statistical estimation of the leakage 

power variation caused by correlated within-die process variations is developed. 

Chapter 4 provides a post-manufacture leakage and performance tuning 

methodology for scaled CMOS technologies: Here, specific hardware tuning “knobs” 

(control mechanisms) such as tunable gates that can operate in either low-speed/low-

power mode or high-speed/high-power mode are introduced to deal with the delay and 

leakage variation. These control mechanisms are actuated by tests that implicitly measure 



 

4 

the delay and leakage power dissipation values of embedded logic circuits. A hardware 

framework that can support such self-adaptation is developed and algorithms are 

designed for optimizing the various enabling hardware design parameters. 

Chapter 5 presents an overview of the scaling impact on susceptibility of DSM 

circuitry to soft errors and noise. The chapter also provides a summary of previous work 

on how to alleviate the problem. 

Chapter 6 provides a partial correction technique for minimizing the effect of 

transient errors: Here, the focus is on developing partial correction techniques for 

applications that can tolerate some degree of accuracy as long as the system-level QoS 

metrics are satisfied or degraded within acceptable levels. The proposed technique must 

impose little delay, power, and area overheads and must perform the correction in the real 

time. 

Chapter 7 highlights the main contributions of the thesis and provides directions 

of future work.  



 

5 

CHAPTER 2  

PROCESS VARIATIONS AND ITS IMPACT ON CIRCUIT 

Digital circuits experience two types of variations, namely, environmental 

variations and physical variations [1]-[2]. Environmental variations that occur during the 

operation of a circuit include variations in the supply voltage, temperature, and switching 

activity. A physical variation is due to the processing and masking imperfections and 

affects both transistors and interconnects [1]. The focus of this work is on physical 

variations and that how they affect different transistor characteristics. Next, different 

components of variations are described. The effect of process variations on circuit delay 

and leakage is explained. Then, a survey of techniques to estimate the delay and leakage 

power distributions and techniques to mitigate the variation effects are presented. 

2.1 PROCESS VARIATION 

Stine [3] considers the components for process variations: wafer-to-wafer 

variations, within-wafer variations, and within-die variations. Within-wafer variations, 

also called die-to-die or inter-die variations, affect all devices on a die in the same way 

and are usually modeled as a shift in the circuit device parameters such as Vt. Within-die 

variations, also called intra-die or across-die variations, consist of systematic and random 

variations. While systematic variations are deterministic and generally caused by 

lithography or chemical and mechanical polishing (CMP) [4], random variations such as 

dopant fluctuations are not predictable. Random variations could be correlated, which 



 

6 

affect devices in close proximity of one another in a correlated way or could be 

independent, which affect individual devices on a die. 

The inter-die and intra-die variations of the inter-level dielectric thickness (TILD) 

after oxide decomposition and chemical and mechanical polishing (CMP) are shown in  

Figure 1. It can be seen that while the die-to-die variation is smooth, there is a 

large within-die variation.  

The nominal values and 3δ variations of the effective channel length (Leff), the 

gate oxide thickness (Tox), and the threshold voltage (Vt) for different technology 

generations are shown in Table 1 [2]. The variation is defined as the ratio of 3δ to the 

nominal value. From the table, it is evident that the variability is increasing with 

technology generations. Furthermore, it can be seen that while Tox and Vt observe a 

moderate variation increase, Leff experiences a large variation increase. The within-die 

portion of the process variation is also increasing, for instance, with technology scaling, 

the channel length variation caused by the within-die variation raised from 40% to 65% 

[2].  



 

7 

 

Figure 1. Variation in the ILD thickness across the wafer (left) and across the die (right) 

(Courtesy of [5]) 

Table 1. Technology parameter variations 

Parameter 1997 1999 2002 2005 2006 

Leff (nominal) 250 nm 180 nm 130 nm 100 nm 70 nm 

Leff (3δ) 80 nm 60 nm 45 nm 40 nm 33 nm 

Leff (variation) 32  % 33 % 35 % 40 % 47 % 

Tox (nominal) 5 nm 4.5 nm 4 nm 3.5 nm 3 nm 

Tox (3δ) 0.4 nm 0.36 nm 0.39 nm 0.42 nm 0.48 nm 

Tox (variation) 8 % 8 % 9.8 % 12 % 16 % 

Vt (nominal) 0.5 V 0.45 V 0.4 V 0.35 V 0.3 V 

Vt (3δ) 50 mV 45 mV 40 mV 40 mV 40 mV 

Vt (variation) 10 % 10 % 10 % 11 % 13.3 % 



 

8 

2.1.1 Process Variation Effect on Transistor Characteristics 

Process variations affect a CMOS transistor in terms of its geometric 

characteristics and its material parameters. The geometric variations consist of the Tox 

variation, the result of film thickness variation, and lateral dimension (the channel length 

and device width) variations. The Tox variation is well behaved and generally observed 

from wafer to wafer. Variations in the lateral dimensions are caused by the 

photolithography proximity effect, mask, lens, as well as photo system deviations, and 

plasma etch dependencies [5]. 

The variation in material parameters is most significantly observed in the channel 

doping deviation, which results in the threshold voltage variation [5]. The variation in 

transistor parameters affects its speed and power characteristics and might result in a 

design that does not meet the target specifications in terms of delay and power 

characteristics. 

2.1.2 Process Variation Impact on Circuit Delay and Leakage Power 

Process parameter variations cause a large spread in the delay and leakage 

distributions of circuits. The frequency and standby leakage current (Isb) of different 

microprocessor dies across a manufactured wafer are shown in Figure 2. There is a 30% 

variation in the frequency and a 20X variation in the standby leakage current [6]. Dies 

with a high frequency and high leakage power consumption must be discarded. Dies with 

an acceptable standby leakage are binned based on their frequencies and are priced 

accordingly. The large variation in the standby leakage current is mainly due to variation 



 

9 

in the sub-threshold leakage, which is the main contributor to the leakage current. The 

sub-threshold leakage is expressed as:  

)1( T

DS

T

tgs

V

V

nV

VV

svthsub eeII −=

−

−  
(1) 

 

where Is is a circuit and process-dependent constant, n is the sub-threshold swing 

coefficient, VT is the thermal voltage, and Vt  is the threshold voltage. 

Because of the inverse exponential relationship between the sub-threshold leakage 

and the threshold voltage, a small variation in Vt results in a large variation in the leakage 

current. Also, in the high-performance CMOS design, the leakage power consumption 

can be responsible for 40% or more of the total power consumption of the circuit. To 

address the high leakage consumption, a dual-Vt process is used, where high-Vt gates are 

used along the off-critical circuit paths. 

0.9

1.0

1.1

1.2

1.3

1.4

0 5 10 15 20

Normalized Leakage (Isb)

N
o

rm
a

li
z
e

d
 F

re
q

u
e

n
c

y

0.18 micron
~1000 samples

20X

30%

0.9

1.0

1.1

1.2

1.3

1.4

0 5 10 15 20

Normalized Leakage (Isb)

N
o

rm
a

li
z
e

d
 F

re
q

u
e

n
c

y

0.18 micron
~1000 samples

20X

30%

 

Figure 2. Leakage and frequency variations (courtesy of [6]) 



 

10 

2.2 VARIATION-TOLERANT DESIGN 

Techniques to narrow the leakage and timing distributions can be divided into two 

groups, namely the post-manufacture techniques and the design-level optimization 

techniques. 

2.2.1 Post-Manufacture Variation-Tolerant Techniques 

Adaptive Body Bias 

The use of substrate biasing to modulate the threshold voltages (Vt) is a key post-

manufacture technique to reduce the leakage and performance variation. Vt is a function 

of the source-bulk voltage, as shown below [8]:  

)22|(
0 FSBFTt VVV φφγ −−+−+=  (2) 

where VT0 is the threshold voltage at VSB = 0, VSB is the source-bulk (substrate) voltage, γ 

is the body-effect coefficient, and Fφ is the substrate Fermi potential. 

The substrate is normally grounded. For an NMOS device, a negative bias, called 

reverse body bias (RBB), causes Vt to increase. On the contrary, a positive bias, called 

forward body bias (FBB), reduces Vt. In the case of a PMOS device, the substrate is 

normally tied to Vdd and a voltage lower (higher) than the Vdd is used as RBB (FBB). 

As the leakage power consumption became more pronounced, adaptively 

changing the bias voltage was considered as a promising technique to reduce the sub-

threshold leakage current in the standby mode while maintaining the circuit performance 

in the active mode. The idea is to reduce the circuit leakage while the circuit is idle by 



 

11 

applying an RBB to increase the effective threshold voltage, hence reducing the sub-

threshold leakage. 

Alternatively, an FBB may be applied during the active mode to improve circuit 

performance and withdrawn when the circuit is idle to control the sub-threshold leakage. 

If applying the FBB in the active mode, the process threshold voltage could be higher 

than the targeted one for that technology.  

In recent years, the bias techniques are also utilized to tackle the large process 

variations observed in the circuit power and performance in DSM circuits [6], [9]. It has 

been shown that these techniques can be used to tackle both the die-to-die and within-die 

process variations. The adaptive body bias (ABB), as the name suggests, adaptively 

adjusts the bias value of a die according to the variation observed by the die. This 

mitigates the die-to-die process variation. An RBB is applied to dies that are 

unnecessarily fast to control the leakage. Conversely, slow devices can satisfy the 

performance target using an FBB (Figure 3). As is shown in Figure 3, the ABB reduces 

variations in FMAX by moving the operation frequency of fast dies to the left using an 

RBB and moving the frequency of slow dies to the right using an FBB. As a result, ABB 

narrows the performances distribution of different circuits. In [9], it is shown that using a 

single PMOS/NMOS bias combination per die can reduce the die frequency variation by 

a factor of 7. 



 

12 

 

Figure 3. Performance variation reduction using ABB (courtesy of [6]) 

The ABB technique does not compensate for the within-die process variations 

since it provides a single NMOS/PMOS bias combination for all the blocks in a circuit. In 

[9], an improved ABB, called within-die ABB (WID-ABB) was proposed. This technique 

allows large blocks in a circuit to have their own body bias values, which control the 

delay and leakage within each individual block. The WID-ABB reduces the delay 

variation by a factor of 3 compared to the ABB technique and makes it possible for most 

dies to be accepted in the highest frequency bin. One concern about the WID-ABB is the 

complex bias generation and distribution circuitry. Furthermore, to be able to bias NMOS 

devices in different blocks to different bias values, multiple wells are necessary. In [9], a 

triple-well process was used. Another issue regarding the use of ABB is that the reverse 

body bias loses its effectiveness as the technology scales [10] and the junction tunneling 

leakage starts to become significant by applying an RBB. It is shown in [10] that there is 

an optimum RBB value that is unique for every technology generation. This optimum 

value is decreasing by approximately 2X every technology generation. This will reduce 



 

13 

the effectiveness of the RBB technique on the sub-threshold leakage current by 4X every 

technology generation. 

 

Adaptive Voltage Scaling 

Adjusting the circuit supply voltage, also called adaptive voltage scaling (AVS), 

is a well-studied technique for optimizing the circuit power consumption (mainly the 

active power) under delay constrains ([11], [12]). The most common form of AVS is the 

use of two supply voltages. The authors in [13] have proposed the AVS as a post-

manufacture tuning technique to reduce variability in the circuit delay and power. They 

show that the AVS is as effective as the ABB in reducing performance and power 

variations. Deciding between the two techniques depends on design requirements such as 

the extra design complexity, voltage generation and regulation, and reliability. Moreover, 

it is shown in [13] that applying both the ABB and the AVS do not provide a significant 

improvement in reducing performance variability, while [14] claims otherwise. 

 

Self-Calibrating Dynamic Circuits 

The large leakage consumption of CMOS devices requires larger keeper 

transistors for dynamic logic to be able to hold the logic values between two pre-charge 

intervals. At the same time, the large leakage variation makes the choice of the right 

keeper size a difficult task. If the size is chosen to be too small, many dies do not operate 

reliably. If it is chosen to be too large to compensate for dies with larger leakage, it 

unnecessarily slows down dies with lower leakage. The concept of variable-size keeper, 

which can be programmed based on the die leakage, was proposed in [15]. A leakage 



 

14 

sensor was proposed in [15] that can be used on multiple locations of a die to estimate the 

leakage in different regions of the die. The leakage information, obtained by the sensors, 

can be used to choose the best keeper size among an array of available sizes. The 

variable-size keeper approach, implemented on a 2-read, 2-write ported 128×32b register 

file at 90 nm CMOS, has shown to improve the performance by 10%. The overhead 

associated with this technique is that as the within-die process variation increases, more 

leakage sensors must be integrated on a die to have a good estimate of the leakage for 

different regions. The second concern is the routing overhead necessary for programming 

the variable-size keeper. The third concern is that this approach could be only applied to 

dynamic logic and cannot be generalized to other classes of logic design. 

2.2.2 Variation-Tolerant Optimization Techniques 

The focus of the previous section was on post-fabrication tuning techniques to 

compensate for process variations. This section focuses on circuit optimization 

techniques for designing variation-tolerant VLSI circuits. Typically, different circuit 

parameters such as the threshold voltage, supply voltage, and transistor sizing are used to 

optimize a circuit in terms of its performance and power consumption. There have been 

numerous articles that optimize circuit power consumption given a set of delay 

constraints or vise versa [16]-[20]. In these studies, the convention is to apply a static 

timing analysis using the nominal gate delay. However, because of the excessive 

variations in the DSM technologies, many dies that are optimized using the nominal case 

will fail the timing or power constraints. One solution could be to use the worst-case gate 

delay. This will improve the expected yield at a high power and area cost.  



 

15 

Recently, efforts have concentrated on the power-performance optimization while 

considering process variations. The newly proposed techniques use a statistical timing 

analyzer instead of using a static timing analyzer [21]-[24]. All these techniques focus on 

the gate sizing, with the exception being the technique in [22], which performs the gate 

sizing and dual-Vt assignment. The differences among the techniques are in the 

approximation of the statistical timing analysis and their optimization methods.  

In [21], a Lagrangian-based relaxation is proposed to size different transistors 

considering the inter-die and within-die variations. The objective is to guarantee that the 

delay requirement is met with a certain degree of confidence while keeping the area and 

power within a given set of constrains. The complexity of this method is linear. The 

result shows a 19% area/power savings compared to the worst-case analysis. 

The authors in [22] use a simplified sensitivity-based heuristic technique for dual-

Vt assignment and gate sizing, with the objective of reducing the leakage power. First, 

they find a second-order polynomial relation between the gate delay and the gate channel 

length using SPICE. Similarly, the gate leakage is presented as an exponential function of 

the gate channel length. They also define two statistical sensitivity metrics for each gate. 

One is the sensitivity of a gate to changes in the threshold voltage and the other is the 

sensitivity to changes in the gate size. Using the sensitivity metrics, the algorithm tries to 

find the best gates to have high Vt and the best gates to be sized up such that the leakage 

and its variation are minimized. The worst-case complexity of this approach is O(n
3
). It is 

shown that the leakage power can be reduced by 15-35% compared to the deterministic 

analysis. 



 

16 

In [23], another statistical gate sizing technique is presented with the objective of 

reducing the delay variation. The authors introduced an efficient way of finding the mean 

and variance of the maximum of random variables. This fast statistical parameter 

extraction is used along with a more detailed statistical timing analysis to perform gate 

sizing. This technique can reduce the delay variation by an average of 72% at the cost of 

a 20% increase in design area. 

While [21]-[24] focus on either leakage or delay optimization, the technique in 

[25] performs yield enhancement with simultaneous delay and leakage constrains. This 

technique utilizes a non-linear optimizer, which uses the gradient of yield with respect to 

gate sizes to perform yield optimization. A 40% yield improvement compared to the 

deterministic approach was reported.  

2.3 ESTIMATING DELAY AND LEAKAGE VARIATIONS  

With large variations in the circuit delay and power, it is necessary to have an 

accurate estimate of these metrics at the design stage. Traditionally, the circuit design 

was based on the corner cases. The worst cases for the delay and power were used. But in 

the future technologies, with more process variations, the worst-case design could be too 

pessimistic and result in a very expensive solution. Therefore, efforts have been made to 

estimate the delay and leakage power as accurately as possible by considering both the 

within-die and die-to-die process variations. In this subsection, a survey of such 

techniques is presented and the shortcomings of each technique are discussed briefly.  



 

17 

2.3.1 Leakage Power Estimation Techniques 

Most of the research in the area of leakage power estimation focuses on the 

evaluating the sub-threshold leakage power. These techniques find a mathematical 

representation of leakage power distribution using the well-known relation between the 

sub-threshold leakage power and the device channel length or threshold voltage. Few 

studies aim at estimating all the components of leakage power [44]. This is a major 

shortcoming, as with technology scaling, the tunneling leakage will become more 

significant and can no longer be ignored. 

In [26], the authors present a mathematical model for predicting the sub-threshold 

leakage power considering the within-die threshold voltage variation: 

 

2

2

2

2

22
n

n

p

p

e
k

wI
e

k

wI
I

n

n

o

n

p

p

o

p

leak

λ

δ

λ

δ

+=  
(3) 

 

where wp and wn  are the total PMOS and NMOS device widths in the chip, kp and kn are 

factors that determine the percentage of PMOS and NMOS device widths in the off state, 

and 
o

pI  and 
o

nI are the expected mean sub-threshold leakage current per unit width of 

PMOS and NMOS devices in a particular chip. δp and δn are the standard deviation of the 

channel length variation within a particular chip. λp and λn are constants that relate the 

channel length of PMOS and NMOS devices to their corresponding sub-threshold 

leakages. The leakage calculated using this model is within ±20% of the actual sub-

threshold leakage for more than half of the dies under test. 



 

18 

The authors in [27] only address the sub-threshold leakage current caused by the 

channel length variations. They first find the sub-threshold current as a function of 

channel length in the form of  

)exp()( 2

321 LqLqqLhI +==  (4) 

where q1, q2, and q3    are fitting parameters found through SPICE simulations. These 

parameters change depending on the gate type. Therefore such a function must be found 

for each individual gate used in a circuit. Assuming that the channel length variation has 

a normal distribution, I, as defined in (4), is a lognormal function. The sub-threshold 

leakage current of a circuit is the sum of sub-threshold leakage current of its individual 

gates. Since the sum of lognormal distributions is also lognormal, the full-chip leakage 

current is lognormal. The authors find the mean and standard deviation of the full-chip 

leakage using the corresponding values for each individual gate.  The authors extend this 

work in [28] to include multiple independent process parameter variations, namely, the 

channel length, doping concentration, and oxide thickness. The gate tunneling leakage 

was also estimated in [28]. In [29], the authors extend the work in [28] to include the 

correlated within-die variation. A similar technique is proposed in [30]. These techniques 

cannot be extended to variations with non-normal distributions, which is the case for 

environmental variations.  Another drawback of these techniques is that they cannot be 

used when the process parameter variations are not independent random variables. The 

technique in [31] provides an estimate of the sub-threshold leakage current considering 

the variations in the channel length, temperature, and supply voltage. 



 

19 

2.3.2 Delay Estimation Techniques 

Many statistical timing analysis techniques have been proposed in recent years 

[32]-[37]. In theory, a statistical timing analysis is similar to a static timing analysis 

where the delay of each gate/interconnect has a probability distribution function instead 

of a nominal value. Two statistical operations are needed in the statistical timing analysis: 

adding two probability distributions and finding the maximum of two probability 

distributions. The complexity of the analysis is in computing these two operations. 

Although these operations can be done easily, the problem size grows exponentially with 

the circuit size. One way to reduce the computation time is to find a bound on the 

probability distribution function [33], [34], [36]. For example, [36] uses a methodology 

based on Bayesian networks for computing the exact probability distribution of the circuit 

delay. This method is impractical for large circuits, since its time complexity grows 

exponentially with the circuit maximum clique size. The authors also propose a technique 

to reduce the problem size and get a tight lower bound on the exact distribution.  

Most statistical timing analysis techniques consider the gate or interconnect delay 

as an independent random variable. A technique proposed in [32] takes into account the 

correlated within-die process variation. This technique has a run time of O(n×(Ng+Ni)), 

where n is the number of grid points and Ng and Ni are the number of gates and 

interconnects respectively. Considering the re-convergence fan-out and delay distribution 

makes the simplifications of the addition and maximum operations used in the above 

proposed techniques incorrect. The authors in [33] also consider the correlated within-die 

variation and propose a technique with a linear run time to find a bound on the 



 

20 

probability distribution of the circuit delay. In [37], the authors consider the inter-die, 

intra-die, and intra-gate variations to model the gate delay variation. 



 

21 

CHAPTER 3  

LEAKAGE-AWARE PLACEMENT FOR NANO-SCALE 

CMOS 

In this chapter, the problem of leakage power variation minimization in the 

presence of spatially correlated across-die process variations is addressed. The objective 

is to analyze the effect of the placement of low-Vt gates in a dual-Vt design on the 

statistics of leakage power in the presence of correlated across-die process variations. 

New placement strategies are proposed and compared with a more conventional 

placement method, which optimizes for the total wire length, in terms of their leakage 

power variations. Our proposed technique reduces the total leakage variation by reducing 

the variation of sub-threshold leakage current, which is currently the main component of 

leakage. The effectiveness of the new placement methodology is studied using the Monte 

Carlo simulation. It is shown that with minimal impact on delay, the placement of low-Vt 

gates in a layout can be performed in such a way to maximize the yield for a specified 

leakage power upper bound. For the obtained placement of low-Vt gates, the layout can 

then be optimized for other important criteria such as the wire length. Simulations are 

performed on ISCAS benchmarks and guidelines for distributing the low-Vt gates across 

the die are developed. Our results indicate that an average reduction of 17% and a 

maximum reduction of 31% in the leakage variation can be achieved. We also analyze 

the impact of the placement-based leakage minimization technique on circuit delay and 

wire length.  



 

22 

In the following, first the model of the correlated inter-die process variation 

models is discussed. This is followed by a discussion of the proposed layout procedure to 

maximize yield, focusing primarily on minimizing the leakage power variation. Next, 

simulation results on ISCAS benchmarks are presented. The impact of proposed 

placement technique on wire length and circuit timing is also analyzed. Later, we propose 

an effective technique for estimating the power variation caused by correlated within-die 

process variation. The last section presents conclusions and recommendations. 

3.1  INTER-DIE PROCESS VARIATION MODELS 

As explained in Section 2.1, there are die-to-die process variation and within-die 

process variation. The within-die process variation consists of random independent 

variations and (random and systematic) correlated variations. The correlated variations 

affect neighboring devices on a die in a correlated fashion. The model considered for the 

correlated within-die process variations in this research is called the cluster model. The 

cluster model is inspired by few industrial patterns available for within-die process 

variation (          Figure 4 and [1]). 

 

          Figure 4. Within-die process variation (courtesy of Intel Corp.) 



 

23 

For simplicity, it is assumed that the layout is an nm ×  grid, each cell of which 

can hold exactly one gate. The assumption of placing exactly one gate in each cell of the 

grid causes some discrepancies with the compact physical layout of a circuit containing 

gates of different sizes but does not affect the overall effectiveness of the proposed 

approach. Below, we describe our modeling of within-die correlated variations. 

 

Definition: A cluster is defined to be a set of gates lying within a circle of radius 

r, and the center gate, co.  

 

It should be noted that the circular shape of the cluster model is not essential for 

what is presented here. It is just a simple way of representing correlated within-die 

variation, which indeed can capture the contour shape shown in           Figure 4. The 

notion of a cluster is used to model local process variations across a die in the following 

manner. It is assumed that the process parameters of gates within a cluster are correlated 

and the correlation is specified as a function of the distance, d, of a gate from the center 

of the cluster. Every die may have one or more of these clusters at random locations. For 

each process parameter, there is a random variable, sl, associated with each cluster, where 

1≤l ≤ C and C is the total number of clusters affecting the die. The variables sl are 

statistically independent and have distributions that represents the deviation from the 

expected value of the process parameter of interest in the l
th

 cluster. Let the distance of 

the gate at the (i,j)
th

 location of the layout from the l
th

 cluster center be given by )(, ld ji . 

Two logic gates, one located inside a cluster and one located outside it, are shown in 

Figure 5. 



 

24 

 

Figure 5. Cluster model 

The statistical variable ls  only factors into the leakage/delay characteristics of 

gates inside the l
th

 cluster. The effect of ls  on the gate at the (i,j)
th

 location of the layout is 

given by a function )),(( ),( lji sldf , where f = 0 for all gates with rld ji >)(),(
. In another 

words, )),(( ),( lji sldf  represents the variation in the process parameter of interest of the 

gate at the (i,j)
th

 location caused by the l
th

 cluster. Two different plausible f functions are 

shown in Figure 6. 

 

Figure 6. Two plausible functions for correlation within a cluster 

In the above, the distance between two gates is defined to be the straight-line 

distance between the upper-left corners of their corresponding grid cells. To perform 



 

25 

statistical layout analysis, without loss of accuracy, the inter-die process variation is not 

considered since it affects all devices the same way. Therefore, its effect is independent 

of the placement strategy. In this work, it is assumed that the source of variation is the 

channel length (Leff). Variations in the threshold voltage of transistors caused by the 

channel length variation are taken into account implicitly. In general, there can be more 

than one cluster. If a gate falls into the intersection of two or more clusters, the variations 

in Leff caused by different clusters is superimposed linearly to get the final the Leff  value.  

3.2 VARIATION AWARE LAYOUT 

A common approach to minimizing leakage power dissipation is to reduce the 

sub-threshold leakage power and involves the use of high-Vt gates on the off-critical 

paths. This reduces the leakage as high-Vt devices have considerably less sub-threshold 

leakage than low-Vt devices due to the inverse exponential relationship between the sub-

threshold leakage current and Vt referred to earlier. The goal of traditional dual-Vt 

optimization algorithms [38]-[40] is to use as many high-Vt gates as possible in the 

design without violating the overall circuit timing constraint (high-Vt gates are slower 

than low-Vt gates). In this work, the aim is to reduce the leakage variability in a dual-Vt 

design. We revisit the problem of dual-Vt assignment, while considering correlated 

within-die process variations for leakage optimization. The objective here is to analyze 

the effect of the placement of low-Vt gates in a dual-Vt design on the statistics of leakage 

variation in the presence of correlated within-die process variations. Below, two new 

placement strategies are proposed and compared against a conventional placement 

method, which optimizes for total wire length, in terms of leakage power variation. 



 

26 

Method 1: Before presenting the first proposed placement methodology, first we 

explain the intuition inspiring this method. For the same Leff variation, low-Vt gates 

experience more leakage variation than their high-Vt gate counter-parts. Furthermore, a 

significant portion of intra-die channel length variation is systematic correlated variation 

caused by lens aberration and chemical and mechanical polishing imperfection [4]. 

Therefore, the more low-Vt gates are in a region of a die, the more variation in the (sub-

threshold) leakage power is observed if the region is affected by a cluster of correlated 

within-die process variation. Using this intuition, a new placement method is proposed 

that distributes the low-Vt gates on the die as evenly as possible by maximizing their pair-

wise distance. This ensures that irrespective of where a cluster (defined in Section 3.1) is 

located on the die, the expected number of low-Vt gates affected by the cluster is the same 

across the die.  

The proposed placement algorithm has two phases. During the first phase, the 

location of low-Vt gates on the grid is determined using a binary search procedure to 

maximize the pair-wise distance of low-Vt gates. After finding the relative positions of 

low-Vt gates on the grid, the low-Vt gates are randomly placed on the allowed positions 

and the high-Vt gates are randomly placed on the rest of the grid. The second phase of the 

algorithm utilizes a simulated annealing procedure, a common placement technique used 

in physical design [41], to minimize the longest path wire length. Compare to the 

conventional simulated annealing-based placement, an extra restriction is imposed during 

the second phase of our proposed method. The restriction is that the annealing procedure 

cannot swap a low-Vt gate and a high-Vt gate with each other, i.e., only two low-Vt gates 

or two high-Vt gates can swap their positions in the layout grid. This guarantees that the 



 

27 

pair-wise distance between the low-Vt gates stays invariant during the simulated 

annealing phase. The details of the method are presented in Figure 7. 

 

Figure 7. A binary search based method to distributed the low-Vt gates evenly 

across the die 

Method 2: The second layout strategy places all the low-Vt gates in one area of 

the die as close to each other as possible. The simple intuition behind this method is that 

if a cluster hits the low-Vt area, a large variation of leakage power will be observed. But if 

the variation does not hit the low-Vt gate region, the variation in leakage power is small. 

When the ratio of low-Vt gates to high-Vt  is not high, the probability that the single low-

Vt region is affected is small, and hence most of the dies observe a very small variation in 

their leakage power. 



 

28 

In the experimental result of this chapter, we compare the two proposed 

placement strategies with a conventional placement method, which places gates to 

minimize the total wire length (called method 3 from here on). The distribution of low-Vt 

gates across the layout for circuit c432 using the three placement methods are shown in 

Figure 8.  

 

Figure 8. Three placements of low-Vt gates (C432 circuit). Left to right: method 

1, 2, and 3 

3.3 ESTIMATION OF CORRELATED INTER-DIE LEAKAGE 

POWER VARIATION  

This section presents a method to estimate the distribution of the correlated 

leakage power variation under the cluster model. The technique takes the following 

information as inputs and estimates the leakage power of the circuit using a simple 

counting method. 

� The layout of the circuit  

� The number of clusters and their size  



 

29 

� The deviation in the leakage power of each gate, used in the synthesized circuit, 

for K different values of the process parameter of interests such as channel length. 

(The K different channel length variations are obtained by equally dividing  the range 

of channel length variation to K segments and computing the deviation in the leakage 

power for only one fixed point in each segment) using SPICE. 

Such an estimator can be used to choose the best placement for a given leakage 

and delay limit as shown in Figure 9.The rest of this section describes the technique for 

computing correlated leakage power.  

 

Figure 9. Best circuit placement using correlated leakage power estimator  

3.3.1 An Enumerating Technique for Correlated Intra-Die Leakage 

Variation  

Based on the cluster model, every c points on the grid can be the centers of c co-

existing clusters with the same probability. Let Area((i,j), r) be the cluster area centered 

at the (i,j)
 th

 location. The technique for computing leakage power variation caused by the 

correlated within-die variation for the case of two clusters is shown in Figure 10. In 



 

30 

Figure 10, (i,j) and (k,l) are the centers of two co-existing clusters with variations  ∆l(i, j) 

and ∆l(k, l), respectively.  

In the case of c clusters, there are cmn )( ×  combinations of c co-existing clusters 

and a method similar to the one shown in Figure 10 can be used to find the total power 

variation. The difference is that the intersection of every k clusters, ck ≤≤2  must be 

found. The time complexity of this technique is ))(( c
mnO × , where mn ×  is the grid size 

and c is the number of clusters. Hence the time complexity of the method is exponential 

with the number of clusters. That makes the method inapt for a large number of clusters. 

The following subsection introduces a quadratic-time approximation method for 

estimating the correlated leakage power variation. 

 

Figure 10. Finding correlated leakage power distribution for 2-cluster case 



 

31 

3.3.2 A Quadratic-Time Approximation of Correlated Intra-die Leakage 

Power Variation  

This section explains an approximation method to find the distribution of leakage 

power variation in quadratic time. Before presenting the method, a few simplifications 

utilized in the quadratic time estimation are described below.  

When there is more than one cluster affecting a circuit, their effects in the 

overlapped region of clusters is considered individually. I.e. the channel length of gates 

that fall in the intersection of two or more clusters is not considered to be the 

superposition of the channel length variation caused by each of the intersecting clusters. 

Instead, the variation caused by each cluster is considered separately and the 

corresponding leakage power variation is measured. For instance, if a gate, g, falls in the 

intersection of cluster 1 and cluster 2 with the channel length variation of ∆l1 and ∆l2, 

respectively, then the channel length variation observed by the gate g is ∆lg = f(∆l1, d1) + 

f(∆l2, d2). The leakage power variation observed by g corresponding to the channel length 

variation of ∆lg must be used. Using this simplification, the sum of leakage power 

variations corresponding to the channel length variation f(∆l1, d1) and f(∆l2, d2) is used 

(the function f is explained in Section 3.1). This will introduce some error in the method, 

which depends on the relative size of the clusters and the grid. If the cluster size is small 

compared to the size of the grid, the probability of two clusters intersecting is small.  

The second simplification is to categorize gates based on their leakage power 

consumptions. An average gate can represent gates falling in the same leakage category. 

For instance, in the case of dual-Vt circuits, low-Vt gates can be represented by an average 

low-Vt gate. Similarly, all high-Vt gates can be represented by an average high-Vt gate. 

Using this approximation, the layout information does not need to provide the exact gate 



 

32 

located at any grid point. It is enough to know the leakage category of each gate. This 

simplification frees the method from finding the exact gates falling into any cluster. It is 

sufficient to find how many gates from each category fall into a cluster.  

Lastly, square-shaped clusters with sides of 2r×2r are assumed. Next, the 

approximation method is explained in the context of a dual-Vt circuit. The method is 

general and can be applied to any circuit, and the gates can be categorized into more than 

two categories.  

Let L be a matrix corresponding to the layout of the circuit, with ones in the 

position of low-Vt gates and zeros elsewhere. Conversely, let H be a matrix with ones in 

the position of high-Vt gates and zeros elsewhere. Let h be the correlation kernel, a 2r× 

2r matrix of ones, which represents the cluster of size r (based on the assumption of 

square clusters and equal effect within the cluster). Let 
0jio

h be an nm ×  matrix, which 

has h centered at (i0,j0) and zeros everywhere else. CL is defined as the correlation matrix 

of L and h as follows:  

∑
==

==

×==
njmi

ji

jiLL jiLjihjiCC
,

1,1

00 )],(),([)],([
00

 (5) 

Similarly, CH is defined as the correlation matrix of H and h. The (i,j)
th 

 element of 

CL (CH) is the number of low-Vt (high-Vt) gates within the cluster whose center is the gate 

at the (i,j)
th 

 location. This idea is explained in Figure 11.  



 

33 



















=



















=

















=



















=

2321

3431

3543

2332

0111

0111

0111

0000

111

111

111

0100

1010

0100

1011

2,3 LCh

hL

 

Figure 11. An example of correlation matrix (CL) of two matrices L and h 

Let ∆L be an nm × random matrix, where ∆L (i,j) represents the variation in the 

channel length when the gate in the (i,j)
th 

 location is the center of a cluster. Let ∆Plow 

(∆Phigh) be an m×n matrix, where ∆Plow(i,j) (∆Phigh(i,j)) has the leakage power variation 

of the average low-Vt gate corresponding to the channel length variation ∆L (i,j). The 

matrix ∆P holds samples of the correlated leakage power distribution. The step of 

generating the random matrix of ∆L and finding its corresponding random matrix ∆P can 

be repeated to give a better approximation of the leakage power variation. Below, it is 

explained how the method can be extended for the general case of c clusters. 

∆P = [∆Plow(i,j)×CL(i,j)+ ∆Phigh(i,j)× CH(i,j)], nmji ,,1 ≤≤  (6) 

Let ∆L1, ∆L2, …, ∆Lc be c independent random matrices, where ∆L1(i,j) is the 

channel length variation of the l
th

 cluster when the (i,j)
th 

gate is the center of the l
th

 cluster. 

Also, let ∆P1, ∆P2, …, ∆Pc be the correlated leakage power variations corresponding to 

∆L1, ∆L2, …, ∆Lc respectively. For example, ∆Pl is the variation in leakage power caused 

by the l
th

 cluster and ∆Pl(i,j) is the variation in the leakage power when the (i,j)
th

 gate is 



 

34 

the center of the l
th

 cluster. In the case of c clusters, the ∆P matrix, which holds the 

distribution of correlated leakage power variation, is the sum of c random variables 

∆P1… ∆Pc. 

On the other hand, the probability distribution function of the sum of independent 

random variables is equal to the convolution of the probability distribution function of 

each random variable. Therefore, to compute ∆P, it is sufficient to compute the 

convolution of the distribution of random variables represented by ∆P1… ∆Pc. The 

convolution operation is a quadratic-time operation. Therefore a quadratic-time method 

for estimating the correlated leakage power variation is obtained. 

3.4 EVALUATION 

To evaluate the effectiveness of the proposed methods, ISCAS 85 benchmark 

circuits were synthesized for speed using Synopsys Design Compiler with a library of 2-

input to 4-input NAND and NOR gates and inverters. The synthesized circuits were used 

with SPICE 70 nm models [42] to compute the delay and the leakage power of the 

circuits for the 70 nm technology using a look-up table method similar to [43]. All gates 

had a transistor channel length of 70nm and Vdd of 1 V. a high Vt of 0.3 V and low Vt of 

0.1 are used for high-Vt and low-Vt gates, respectively. The transistor channel length can 

vary within 15% of its expected. The variation in the threshold voltage caused by the 

channel length variation and its effect on the leakage power consumption and the delay 

are considered implicitly through the SPICE look-up table. It should be noted that only 

correlated within-die process variation is considered, since this is the part that is sensitive 

to the placement method. The random within-die variation affects individual gates and is 



 

35 

not responsive to the placement strategy. Also, the leakage power measurement includes 

all components of leakage [44], although the reduction in variability of leakage is 

obtained by reducing the variability of sub-threshold leakage.  

The dual-Vt assignment is obtained using a modified version of the method in 

[39]. In the modified dual-Vt assignment method, initially all the gates have low Vt. Then, 

the timing constraint is relaxed so that only a certain percentage of gates remain at the 

low Vt. In the results presented in this section, the percentage of low-Vt gates is 20% of 

the total number of gates. 

To study the effectiveness of the three placement methods, circuits are first placed 

using one of the methods on an m×n grid, where the number of gates in the circuit is less 

than or equal to m×n and the grid is as close to being as square as possible. Then, the 

Monte Carlo simulation is used to inject clusters in different parts of the circuit. The 

combination of the number of clusters, C, and the clusters size, r, is referred to as a 

configuration (C, r). For small- and medium-size circuits, 2000 Monte Carlo iterations 

are used, while for larger circuits the simulation stopped after 500 iterations.  



 

36 

 

Figure 12. Distribution of the leakage power for the three placement methods 

The probability distribution function (PDF) of the leakage power consumption of 

c1908 for the configuration (1, 4) is shown in Figure 12. The inset plot shows the PDF in 

log scale. The mean values of the leakage power are almost the same for all three 

methods, while their variances are significantly different, with method 1 having the least 

variance and method 2 having the largest variance. Method 1 has reduced the variance by 

31% compared to method 3. Furthermore, the PDF plots do not appear to be normal. The 

Jarque-Bera test for normality has rejected the hypothesis of these PDFs being normal 

with a very high significant level. The non-normality of the leakage power distribution is 

expected. Because of the correlation of channel length variation among gates falling into 

the same cluster, the central limit theorem does not hold anymore. These observations 

were true for different circuits and different configurations, as presented in Table 2. 



 

37 

Table 2. Mean and standard deviation of leakage power using different methods 

Mean Standard deviation Circuit 

Method1 Method2 Method3 Method1 Method2 Method3 

C432 4.1e-5 4.3e-5 4.1e-5 1.8e-5 4.0e-5 2.3e-5 

C499 1.4e-4 1.4e-4 1.4e-4 2.8e-5 5.4e-5 3.8e-5 

C1908 9.8e-5 9.9e-5 9.8e-5 2.4e-5 5.6e-5 3.5e-5 

C2670 1.8e-4 1.8e-4 1.8e-4 2.9e-5 5.7e-5 3.3e-5 

C3540 1.7e-4 1.8e-4 1.7e-4 2.8e-5 6.7e-5 3.0e-5 

C5315 2.8e-4 2.8e-4 2.8e-4 2.8e-5 5.5e-5 3.2e-5 

C7552 3.2e-4 3.1e-4 3.2e-4 2.7e-5 5.8e-5 3.0e-5 

 

Table 2 shows that a maximum of 31% reduction in standard deviation and an 

average of 17% improvement were obtained using method 1 compared to method 3. The 

table also shows that for all circuits, method 1 has the least standard deviation in the 

leakage power and method 2 has the largest standard deviation. Let us explain why we 

are even considering method 2 with such a large standard deviation. Figure 13 shows 

cumulative distribution function of leakage power using the three different placements. 

The figure shows that for power yield up to lower 90%, method 2 has the least leakage 

consumption. But for higher leakage yield, method 2 observes a huge increase in the 

leakage power. Method 1 results in the least leakage power variation and outperforms 

other methods at high values of yield. 



 

38 

 

Figure 13. Cumulative distribution function 

Method 1 and method 3 are compared at different percentile points in Table 3. In 

all but five of the 56 cases, method 1 worked better than method 3. A maximum 

improvement of 31% and an average improvement of 11.9% in power were observed 

over different configurations. Also, it can be seen that the advantage of method 1 is more 

at 99% yield. 

To show that effect of proposed placement on the delay, we first measure the 

increase in wire length for the proposed methods as shown in Table 4. In Table 4, method 

3 is used as the base of comparison. For each gate, the wire going out of that gate was 

measured by always finding the most common sub-wire which can be shared for routing 

different fan out gates. The total wire length is the sum of wires going out of all the gates 

in the circuit. It can be seen from the table that method 1 causes an average increase of 



 

39 

8% and a maximum increase of 12% in the wire length. For all circuits but C7552, 

method 2 decreases the wire length. The average decrease in wire length is 1.4%. Table 4 

also shows the delay increase in circuits employing method 1 and method 2 for their 

placement strategies. To measure the contribution of interconnect to the delay, we use 

lumped wire model similar to [45]. The delay is measured by the assumption that the 

average wire length for the original placement (using method 3) has a capacitance effect 

equal to one inverter. The capacitance of other wires is scaled up up or down as a linear 

function of their relative length to the average wire length in method 3. The average delay 

increase of method 1 and method 2 are 1% and 1.6% respectively. The data shows that 

the negative impact of our proposed placement strategies on the delay is negligible. 

Assuming parasitic capacitance equal to 2 inverters, the average increase in delay is 2% 

and 2.6% for method 1 and method 2 respectively. 

Table 3. Leakage power improvement using mehod1 at 95 and 99 percentile points 

Leakage saving (%) at 95 percentile point Leakage saving (%)  at 99 percentile point 

Configurations (C,r) Configurations (C,r) 

Circuit 

(1,4) (1,8) (2,4) (2,8) (1,4) (1,8) (2,4) (2,8) 

C432 -0.08% 14.8% 12.9% 10.9% 31.4% 22.5% 29.7% 14.2% 

C499 11.7% 11.7% 14.5% 12.1% 25.0% 25.2% 18.5% 11.5% 

C1908 15.0% 22.2% 18.8% 19.1% 30.7% 30.1% 25.2% 26.1% 

C2670 3.4% -5.7% 10.1% 2.2% 12.1% 10.9% 15.0% -0.34% 

C3540 4.2% 11.4% 6.2% 16.4% 2.8% 20.7% 5.6% 14.1% 

C5315 1.1% -3.2% 5.3% 5.0% 8.2% 20.0% 6.4% -11.4% 

C7512 3.3% 1.4% 4.0% 8.7% 8.7% 11.5% 7.1% 7.8% 

 



 

40 

Table 4. Overhead on the wire length and delay using method 1 and method 2 (the base of 

comparison is method 3) 

Method1 Method2 

Circuit Wire length 

increase (%) 

Delay 

increase (%) 

Wire length 

increase (%) 

Delay 

increase (%) 

C432 9.7 <1 -2.3 -1.0 

C499 8.3 -2.6 -3.6 -3.2 

C1908 3.4 1.3 -2.7 2.1 

C2670 6.9 3.7 -1.3 2.2 

C3540 6.2 <1 -1.9 4.8 

C5315 12.0 1.1 -1.5 1.7 

C7552 9.6 2.8 3.6 4.4 

 

Next, the accuracy of the proposed quadratic-time-complexity technique for 

estimating the correlated within-die leakage power variation is evaluated by comparing it 

with the Monte Carlo results. Figure 14 shows the probability distribution function of the 

leakage power of C1908 when only the correlated channel length variation is considered. 

The cluster size is 4.5. The proposed estimation technique for leakage is almost identical 

to the Monte Carlo result in the case of two clusters. In the case of three or more clusters, 

the proposed method is underestimating the leakage power. The difference is because of 

simplifications used, and in particular because the variations of the gates falling into the 

intersection of two or more clusters are not considered to be the superposition of the 

variation of each cluster.  

The error in estimating the mean and standard deviation of power are shown in 

Figure 15 and Figure 16 respectively. The estimation errors of these properties are 

quantified by comparing the results with the Monte Carlo results. The figures show that 

except in the case of small circuits such as c432, the estimation error is small. The larger 

errors for smaller circuits are due to the fewer number of samples from which the 

distribution of leakage power is estimated (the number of samples of the distribution 



 

41 

being a function of function of the grid size). For an nm ×  grid, the number of samples is 

cnm )( ×  for the case of c clusters. In multiple-cluster cases, the error is also due to the 

simplification in dealing with gates in the intersection of multiple clusters. For larger 

circuits, the estimation errors always stay below 10% for all statistical properties.  

  

(a) 2 cluster (b) 3 cluster 

Figure 14. Comparison of the estimation technique with Monte Carlo 

 

Figure 15. Error in estimating the mean 



 

42 

 

Figure 16. Error in estimating the standard deviation 

The leakage estimation technique can be easily extended to the general case in 

which the (i,j)
th

 gate within a cluster l observes the variation f (d(i,j)(l), sl) (a function of 

its distance from the cluster center). The required modification is in constructing the 

correlation kernel matrix, h. In this case, the correlation matrix contains g(f(d(i,j)(l), sl)), 

where g is the function that defines the relationship between the leakage variation and the 

channel length variation, ∆p = g(∆(l)). The function g is defined separately for the low-Vt 

and high-Vt categories through a curve fitting of the K recorded channel length variations 

and the corresponding leakage power variations. 

3.5 CONCLUDING REMARKS 

In this chapter, new approaches to the placement of standard cells in dual-Vt 

circuits were studied with the objective of minimizing the effect of correlated within-die 

variation on leakage power. A placement method, which distributes the low-Vt gates 

across the layout as evenly as possible results in the least variance in leakage power 



 

43 

consumption and outperforms other methods at high yield with respect to leakage power. 

A method which places all low-Vt gates next to one another results in a majority of dies 

(about 90% of them) having low leakage power, but the leakage power of the remaining 

dies (about 10% of them) is very high. Leakage optimal layouts were obtained with a 

minimal impact on circuit delay compared to layouts that place gates on the die to 

minimize wire length and delay. Although we presented our work at gate level placement 

in the context of dual-Vt design, a similar concept can be applied at the module level with 

leaky modules to be placed as far from each other as possible (method1) or clustered in 

one location on the chip (method 2). In designs with multiple clock domains, different 

modules have different speed requirements and to achieve the speed limits, some fast 

modules might be leakier than other slower modules.  

We also presented a new method for estimating distribution of leakage power 

variation, caused by correlated intra-die process variation. The method can accurately and 

efficiently estimate the distribution of leakage power. The accuracy of the proposed 

technique was validated on ISCAS benchmarks and by comparing it with the Monte 

Carlo simulation. It was shown that the method is essentially as accurate as Monte Carlo 

for large circuits. The new estimator can be used as a tool to guide the placement of low-

Vt gates in a dual-Vt circuit to obtain the desired yield and the acceptable leakage limit. 



 

44 

CHAPTER 4  

POST-MANUFACTURE TUNING FOR NANO-CMOS 

USING RECONFIGURABLE LOGIC 

In this chapter, an architectural framework for post-silicon testing and tuning of 

circuits is developed to bring their power and performance characteristics within the 

acceptable ranges. Here, the objective is to have a mean of tuning circuit performance 

after fabrication to adjust for the likely performance variation, caused by ever-increasing 

process parameter variations. For circuits that meeting the timing constraints, tuning is 

used to reduce the power consumption. In the proposed architecture, specific hardware 

tuning “knobs” (control mechanisms) such as tunable gates, supply voltage, or body bias 

can be employed to deal with the delay or leakage variation. These control mechanisms 

are actuated by an approximate test that implicitly measures the delay of embedded logic 

circuits. A hardware framework that can support such self-adaptation is developed and 

algorithms are designed for optimizing the various enabling design parameters. Any 

available post-silicon tuning knobs can be used in conjunction with the proposed self-

adaptation framework. We also propose one of such tuning knobs, called tunable gates. A 

tunable gate is a modified form of CMOS gate that can be programmed to work in a low-

speed/low-power mode or a high-speed/high-power mode. The effectiveness of tunable 

gates is compared with previously introduced tunable knobs, i.e. supply voltage and body 

bias. Also the maximum yield improvement using all three tuning knobs combined is 

evaluated in the context of self-adapting framework. Simulation results show that using 



 

45 

the proposed tunable gates on close-to-critical paths combined with Vdd and body bias 

tuning can improve the delay yield by an average of 40%. The area overheads of the 

proposed technique are also analyzed. 

The rest of the chapter is organized as follows. The next section outlines the self-

adaptation architecture. Then, the concept of tunable gates is introduced. After that the 

implicit delay prediction procedure is sketched. Next, experimental results are presented, 

followed by conclusions and future work.  

4.1 SELF-ADAPTATION FRAMEWORK 

In the following, we discuss the key architectural elements of the proposed self-

adaptation approach. These core elements and their interactions to form a self-adaptation 

framework are shown in Figure 17: 

Tunable gates that can be switched from a low-speed/low-power mode (OFF 

mode) to a high-speed/high-power mode (ON mode) using a control signal (Section 4.2.1 

explains the tunable gates in details). A set of gates with a common control signal (called 

a bank of gates) can be simultaneously switched from OFF to ON. A typical 

reconfigurable design may contain M banks of gates with a total of M control signals, one 

for each bank. The tunable gates must be inserted into the “right” nodes of a design as 

presented in Section 4.2.2. In addition, there may be other mechanisms for modulating 

circuit performance and power dissipation such as reverse or forward body bias. We will 

analyze the yield recovery achievable using each of such mechanism individually and 

together in Section 4.5. 



 

46 

  

Figure 17. Self-adaptation components 

Reconfiguration logic that is implemented using on-chip digital logic assigns the 

control signals to reconfigurable components of the circuit under test/reconfiguration in 

such a way that the circuit timing constraint is met with minimal impact on power 

dissipation. This is done by an iterative implicit delay prediction (IDP) – reconfiguration 

procedure. For each assignment of control signals to the tunable gates, an IDP procedure 

is run to predict with a high probability of correctness whether the circuit meets its 

timing constraint. The evaluation procedure of the reconfiguration logic determines how 

the control signals are set at each step of this iterative procedure to achieve the minimal-

power solution while meeting the circuit timing constraint in a given maximum number 

of iterations. In fact, the reconfiguration logic is at the heart of the self-adaptation 

framework. It evaluates the circuit under test using the IDP and assigns the control signal 

to achieve a new configuration. The detail of this module is explained in Section 4.4. 

An implicit delay prediction that is used to assess with a high accuracy, whether a 

circuit meets its timing constraints is implemented for on-chip prediction. Such a test is 



 

47 

used because it is not possible to run extensive two-pattern delay tests such as [46]-[50] 

at each step of the reconfiguration process for two reasons: (a) such tests are very time 

consuming and require large numbers of test sequences and (b) it is very difficult to 

guarantee full coverage in a delay-fault built-in self test (BIST) setting (we desire an on-

chip delay-fault BIST capability to enable tester-independent self-adaptation). Another 

key factor is that the circuit critical paths change from one step of the iterative process to 

another as the tunable gates are turned ON or OFF. Hence, it is impossible for a given 

delay-fault test set to have a fixed “coverage” for any two random assignments of the M 

control signal values. In practice, the IDP consists of random two-pattern delay-fault tests 

of limited size such that the self-adaptation can be performed within a specified time 

bound. For the IDP, we assume that tests are generated by an LFSR and the results are 

compressed by a MISR [51]. It is assumed that each time the IDP is run, the same 

random test set is applied to the CUT. 

4.2 TUNABLE GATES 

In this section, the concept of tunable CMOS gates is introduced. The tunable 

gates have the capability to operate in two modes: a low- low-speed/low-power mode 

(called the “OFF” mode) and a high-speed/ high-power mode (called the “ON” mode). In 

the following, the problems of design, insertion, and control of tunable gates are 

discussed. 



 

48 

4.2.1 Tunable Gates: Design 

The general architecture of a tunable gate is as follows. It uses the asymmetry in 

the rise time and the fall time of CMOS gates and brings down the one that is dominating 

the gate delay (either rise time or fall time) by placing a parallel path for charging or 

discharging the gate output. If the rise time is exceeding the fall time, a p network 

identical to the p network of the original gate is placed in parallel with the original p 

network, between the supply voltage and the gate output. If the fall time is larger, an n 

network, identical to the n network of the original gate is put in parallel with it, between 

the primary output and the ground. This parallel network is controlled through a footer 

transistor, which is off in the OFF mode and on in the ON mode. The footer is sized up to 

be four times the size of a regular FET so that its effect on the delay of the OFF mode 

case is less pronounced (Figure 18). 

In the ON mode, the footer transistor is on, which makes the two (p or n) 

networks in parallel and therefore reduces the network resistivity and contributes to the 

reduction of rise or fall time. At the same time, having the parallel network increases the 

gate output junction capacitance and negatively impacts both the rise and the fall time. 

Furthermore, the input capacitance of the tunable gate is more than the input capacitance 

of the original gate, because now each input has to drive at least an extra transistor in the 

parallel network in addition to the one(s) it drives in the original gate. The increase in the 

input capacitance makes the driving gate slower. If the reduction in delay resulting from 

decrease in resistivity of charge or discharge path surpasses the increase in the delay 

because of the increase in the gate junction capacitance and the increase in the input 

capacitance, then in the ON mode the tunable gate will make a circuit operate faster than 



 

49 

the original circuit. The achievable speed-up depends on several conditions, including the 

external load capacitance at the gate output and the disparity between the rise time and 

the fall time (which is correlated to the gate fan-in in standard cells). 

 

Figure 18. Structure of tunable gate a) Static CMOS , b) CMOS with reduced 

fall-time, c) CMOS with reduced rise-time 

To analyze the effectiveness of tunable gates, regular NAND2 and NAND4 and 

their corresponding tunable version were implemented using SPICE 70 nm models [42]. 

Table 5 shows the delay characteristics of tunable gates for both NAND2 and NAND4 

(with an nFET parallel branch). The delay is measured over a chain of four NAND gates, 

when there were all regular NAND, as the base of our comparison, and when they were 

converted to tunable gates with the parallel branch on/off.  Positive numbers show a 



 

50 

delay increase and negative numbers show a delay reduction. The table shows that the 

improvement in the fast mode is greater for NAND4. Also our data shows that larger 

external output capacitance makes the delay improvement more in the ON mode and 

results in less delay penalty in the OFF mode. 

Table 5. Tunable NAND gate delay change in the ON/OFF mode 

Delay changes (%) 

NAND2 → tunable 

NAND2 

(OFF mode) 

NAND2 → tunable 

NAND2 

(ON mode) 

NAND4 → tunable 

NAND4 

(OFF mode) 

NAND4 → tunable 

NAND4 

(ON mode) 

+10 -20 +2.5 -29 

 

The extra parallel network will impose extra leakage and dynamic energy. Table 6 

shows the leakage overhead of tunable NAND2 in the ON and OFF mode. The columns 

labeled “Output = 0” are when the output is at stable 0. The table shows that the leakage 

power does not increase when the output is at stable “0”, and increases by 42% and 100% 

when the output is “1” for the case of OFF mode and ON mode respectively.  

Since the dynamic power is a function of operating frequency, similar to the case 

of delay measurement, earlier in this section, we measure the dynamic power over a chain 

of four NAND2 gates and a chain of four tunable NAND2 in the ON and OFF mode. The 

dynamic power increases by 2% and 40% for the case of tunable gates OFF and ON 

respectively. It should be noted that dynamic power is a function of frequency, and that is 

one of the reason for the huge increase in the dynamic power when we switch from static 

NAND2 to tunable NAND2 in ON mode (another reason is increase in junction 

capacitance). The increase in dynamic energy (not a function of frequency) is only about 

12% and is independent of the mode of operation of the tunable gate.  



 

51 

Table 6. Leakage overhead of tunable gates 

Leakage increase (%) 

NAND2 →Tunable NAND2 

(OFF mode) 

NAND2 →Tunable NAND2 

(ON mode) 

Output = 0 Output = 1 Output = 0 Output = 1 

≈0 42 ≈0 100 

4.2.2 Tunable Gates: Insertion 

To insert the tunable gates, paths whose delay is at least 90% of the longest path 

delay are assumed to be critical. A final output, whose arrival time is greater than 90% of 

the longest path delay, is considered to be a critical output. Let O1... Om be the critical 

outputs. Also, assume that there is a limited number of external control signals (M) to turn 

the tunable gates on and off. Below is a simple procedure to choose gates to become 

tunable and divide them into M banks such that they can be controlled via the M available 

control signals. There is a limit on the number of gates allowed to be tunable to keep low 

the area and power overhead. Let N be the maximum number of gates that can be made 

tunable. Intuitively, gates on critical paths with higher fan-in or fan-out are good 

candidates to become tunable. 

 

 

Procedure  

1. Mark  gates on critical paths 

2. For each marked gate g: 

   Find Sgj, the increase in the delay of critical output Oj when g is tunable and goes from 

ON to OFF. 

    If there is an output Oj such that Sgj> threshold  

         g  is candidate for tunability 

                    Sg = ∑j = 1..m Sgj 



 

52 

3. Sort gates by their Sg value 

4. Keep the top N gates with the largest Sg 

5. Divide the N gates into M banks such that the sum of Sg   of gates in a bank is almost equal for 

different banks. 

In the above procedure, Sg is an indicator of achievable speedup if the gate g is 

tunable and operates in the ON mode. Tunable gates are switched from ON mode to OFF 

mode by the reconfigurable control module as shown in Figure 17. 

4.3 IMPLICIT DELAY PREDICTION 

The overall self-adaptation framework is shown in Figure 17. As described in 

Section 4.1, the adaptation is done by the “reconfiguration logic”. It is an iterative 

procedure and consists of two main steps: a delay-evaluation step (to verify whether the 

circuit is meeting the timing constraint or not) and the assignment of control signals 

(reconfiguration). It is not practical to run an accurate delay test procedure with high test 

coverage here, because of the large test time. Also, our objective is to achieve true self-

adaptation and accurate delay testing requires some level of external tester support. To 

tackle this issue, we propose the IDP. In practice, the IDP is a two-phase procedure as 

described below. 

The first phase is a calibration phase, a one-time procedure during which we pick 

N sample ICs (called the calibration set) and find the actual delay of each sample (T) and 

the maximum measurable delay (T’) of the sample in the calibration set  using a small set 

of test vectors, S (practical for self-adaptation). We choose a threshold on T’, called Th, as 

a decision making criteria such that we can achieve a good classification of the 

calibration set if we categorize all dies with T’ < Th as good and all dies with T’ > Th as 

bad.  



 

53 

After such a Th is found, during the second phase, where the actual test 

(prediction) is performed on the circuit under test (CUT), the test set S (the same used 

during the calibration phase) is applied to the circuit at the clock rate Th and the responses 

are recorded in a multiple inputs shift register (MISR) and are compared with the output 

of a good circuit. The comparison results in a go/no-go answer. During this phase, we are 

predicting if the circuit is meeting the speed requirement by testing if the paths that are 

exercised by the test set S have delays less or equal to Th. The test set S can be generated 

using an LFSR seeded with the same seed for the pre-processing calibration phase and 

the IDP- reconfiguration phase.  

During the calibration procedure, T’ can be found using a procedure similar to the 

Fmax procedure as described below. We run S on a sample at a given clock period and if 

the response is correct, the clock period is reduced. S is run again on the sample circuit at 

the reduced clock period and the procedure continues until the circuit fails (i.e. the output 

response is incorrect). The smallest clock period for which the response to test set S is 

correct defines T’. Likewise, the actual circuit delay, T, can be found using the same 

procedure and an exhaustive delay test set. Note that T’ < T due because the test set S 

does not necessarily exercises all the circuit critical paths.  

 

Figure 19 shows the probability distribution of maximum measured delays for 

circuit C1908 of ISCAS suits using a randomly generated test S with thousand vectors. 

Samples used in Figure 19 suffer equally from correlated and random variations  



 

54 

 

Figure 19: Distribution of maximum measured delays of good dies and bad dies 

In Figure 19, the darker histogram corresponds to ICs that meet the original 

timing specifications (under an exhaustive test) and the lighter histogram corresponds to 

ICs that do not. The histograms may overlap. The problem is to find the value of Th (to be 

used during the IDP procedure) such that as many good dies are classified as good and as 

many bad dies are classified as bad and misclassification is minimized. Next, we explain 

the issues related to finding Th. Then, we show how the pattern of process variation 

affects the correlation between the actual delay of the circuit and the maximum measured 

delay.  

Let x1 be the minimum T’ of bad dies and x2 be the maximum T’ of the good die 

as marked in Figure 19. If x2<x1, the two histograms do not overlap. In this case, we set 

Th to be x1. When x2 > x1, then there is an overlapping region. In this case, the choice of 

Th is a trade off between the test escape probability (the probability of a bad die passing 

as good) and the amount of unnecessary reconfiguration performed (the probability of a 



 

55 

good die passing as bad). For example, consider an extreme case when Th is chosen to be 

x1. This forces good dies with maximum measured delay in the range of [x1…x2] to be 

reconfigured (unnecessary reconfiguration). Another extreme case is to pick Th to be x2. 

This will make bad dies whose maximum measured delay falls in the range of [x1…x2] to 

escape the test and be considered as good die. Th can be chosen to be x1 or x2 or anything 

in between depending on the designer’s primary objective. Below, it is shown how the 

choice of Th can affect yield improvement or result in over compensation. Four different 

Th values are chosen and their corresponding yields are compared with the case of perfect 

delay test (Figure 20) for circuit C1908 with embedded tunable gates that can be turned 

ON by the reconfiguration logic. Figure 20 (a) and (d) uses x1 and x2 as Th respectively. 

Figure 20 (b) and (c) use values between x1 and x2 as Th. Figure 20 shows that the yield 

loss increases with an increase in Th. It should be mentioned that unnecessary 

reconfigurations (i.e. when the circuit  meets the timing requirement but still being 

reconfigured because of the imperfection of IDP) are 37%, 33%, 27%, and  5% for 

subplots (a), (b), (c), and (d) respectively.  



 

56 

 

Figure 20: Yield loses as a result of applying IDP instead of a perfect delay test 

for different values of Th increasing from (a) to (d) 

Figure 21 shows the actual circuit delays as a function of maximum measured 

delay using a small test set S for three different process variation patterns, namely only 

die-to-die variation, only random gate-to-gate variation, and both random gate-to-gate 

variation and correlated cross die variation, respectively. It can be seen that when there is 

only die-to-die variation, one could predict the actual delay of the circuit based on the 

measured delay with 100% accuracy. There is no real correlation between the actual 

delay of the circuit and the maximum measured delay when there is only random gate-to-

gate variation. However, when there are both random gate-to-gate and the correlated 

intra- and inter-die process variations, one could predict with a high degree of confidence 

the actual delay of the circuit from the measured delay. The focus of this chapter is on the 

last case where there are both correlated and random within-die process variations. 



 

57 

 

Figure 21: Circuit delay as a function maximum measured delay 

4.4 TUNING STRATEGY 

The proposed tunable gates are useful in reducing the delay and therefore 

improving the timing yield. In practice, there are cases, where due to process variations, 

the power becomes prohibitive and the power limit is violated, resulting in yield loss. In 

this chapter, we use tunable gates along with two previously-known tuning knobs, i.e. the 

supply voltage and body bias to improve the circuit delay and power.  

Here, we first outline our general strategy for adaptation to process variation 

using tunable gates, power supply, and body bias. Then, we provide the concrete 

procedure for doing the adaptation. The tuning procedure can be simply implemented in 

hardware using finite state machines. In Section 4.5, we provide an overhead of 

implementing such a circuitry on-chip.  

The general guideline for our adaptation procedure is as follows: 



 

58 

� We only reduce supply voltage from its nominal value (no supply voltage 

increase) in cases when the timing is met to reduce power consumption. In 

another word, we do not increase the supply voltage as a tuning knob to bring 

the timing in the acceptable range.  The reason is that to date circuits generally 

operate in the maximum supply voltage allowable by reliability measure. 

Therefore, it is impractical for reliability reason to increase the supply voltage. 

� We do not use reverse body bias to reduce the leakage consumption because 

its ineffectiveness diminishes in smaller technologies as studied in [10]. 

� We use forward body bias and turn ON tunable gates to bring the timing in 

the acceptable level. 

� We do not use tunable gates as a way of bringing the supply voltage below 

the nominal values, i.e. the supply voltage only will be brought below the 

nominal values if the manufactured circuit, with no tunable gate ON, meets 

the timing requirement. 

In the experimental result section, when doing the comparison between tunable 

gates, AVS, and ABB, we let the supply voltage go above the nominal operating supply 

voltage and we use reverse body bias. 

The procedure used by the reconfiguration control module is shown in Figure 22. Just 

for the ease of explanation, assume that the first k1 bits of the (reconfiguration) control 

signals represent the value of supply voltage, the next k2 bits represents the bias values, 

and the last k3 bits represent the control values of tunable banks. Let us call the first k1 

bits, group1 control signals, the next k2 bits, group2 control signals, and the next k3 bits 

group3 control signals. 



 

59 

 

 

Figure 22. Reconfiguration procedure 

In the experimental result section, we also study the effectiveness of AVS, ABB, 

and tunable gates individually. For the case of Vdd as the tuning knob, the technique in 

[13] is used. For the case of body bias and tunable gates the techniques in [9] and [52] are 

used respectively. The technique proposed in [52] is sketched below and depicted in 

Figure 23. In step 1 (box labeled 1), all the tunable gates are set initially to the low-

speed/low-power mode. In step 2, the IDP is run and a decision is made on whether the 

circuit meets its timing specification or not. If it meets the timing, then the current 



 

60 

configuration of control signals is “accepted” (step 4). This configuration is held for 

future consideration. If not, then the circuit needs to be “speeded-up” by randomly 

turning “ON” a bank of tunable gates that is currently in the “OFF” mode. The IDP is 

repeated, iteratively turning “ON” tunable gates until the circuit timing constraint is met. 

It is possible that such a process might not converge (e.g. if the circuit is excessively 

slow). In such a case, a viable solution is not possible (this is not shown in the simplified 

graph of Figure 23). The combined loop of steps 2, 3 and 4 is called a reconfiguration 

sequence and results in a sequence of specific banks of tunable gates being turned “ON” 

until the timing specifications are met. The objective of steps 5, 6 and 7 is to see if there 

are other reconfiguration sequences that meet the timing constraints with fewer banks of 

tunable gates turned “ON” from the initial starting configuration (step 1). If such 

sequences exist, then the circuit timing constraints can be met with lower power 

dissipation cost. Hence, in step 5, a “reconfiguration sequence of lower weight” is 

defined to be one that results in fewer banks of tunable gates turned “ON”. This is easily 

determined by counting the number of 1’s in the M control signals. Step 6 keeps track of 

the “best” solution obtained at any step of the procedure and step 7 determines if the 

maximum number of allowed iterations (this determines the time needed to do 

adaptation) has been exceeded. In step 3, the next bank of gates to be turned “ON” is 

picked randomly to make any pair of reconfiguration sequences be as different from each 

other as possible. In this way, in the limited number of adaptation iterations, the solution 

space is sampled uniformly and possible process variations in different layout regions of 

the CUT are covered evenly.  



 

61 

 

Figure 23. Procedure for assigning control signals of tunable gates 

4.5 EVALUATION 

To evaluate the yield improvement achievable by the proposed reconfiguration 

architecture, circuits from the  ISCAS’85 benchmark circuits was synthesized using 

Synopsys Design Compiler with a library of 2-input to 4-input NAND and NOR gates 

and inverters. The synthesized circuits were used with SPICE 70 nm models [42] to 

compute the propagation delay, dynamic, and leakage power using a look-up table. All 

gates had a transistor channel length of 70 nm, VDD of 1V, Vt of 0.2 V. The transistor 

channel length is assumed to vary within 15% of its expected value with equal 



 

62 

contribution from random and correlated variations.  Because of the delay and area 

overhead of tuneable gates, the percentage of gates made tunable is kept between 5-10% 

of gates in a circuit. Candidate gates for tunability are the ones on paths with delays about 

90%-100% of the longest path delay (Tcritical) chosen by the heuristic presented in Section 

4.2.2. The circuit were placed using a simulated annealing procedure with the objective 

of minimizing the total wire length. To model random correlated within-die process 

variation, the grid model similar to [32] is used. A 3×3 grid for modeling within-die 

variation is assumed. While using supply voltage as a tuning knobs, the value of supply 

voltage changes within ±20% of its nominal value with step size of 50mv similar to 

assumption used in [13]. When using the bias value as a tuning knob, we use bias values 

in the range of ±20% of Vdd [13]. In this research, only tunable NAND gates are 

considered because of their high usage in CMOS circuits and the larger area penalty 

associated with a parallel p network required in NOR gates. 

In the first experiment of this section, we evaluate the effectiveness of each of the 

three available tuning knobs individually, both in terms of recovering timing yield and 

their impacts on power (leakage and dynamic). Figure 24 shows the delay distribution 

using “no tuning”, ABB, tunable gates, and AVS. In terms of timing yield recovery, 

ABB, tunable gates, and AVS increase the time yield by 13%, 36%, and 40%, 

respectively. Our study shows that if we allow the bias value to be within ±50% of Vdd, 

ABB will be almost as effective as tuneable gates and indeed increases the timing yield 

by 33%. AVS is the most effective of the techniques for timing yield recovery. The 

impact of the technique on power is summarized in Table 7. In terms of impact on 

leakage power, AVS and tuneable gates increase the mean leakage the same way while 



 

63 

ABB does not increase the mean leakage. If tunable gates were always on, the leakage 

power would increase by another 2-3% for this circuit. This number will increase as 

number of tunable gate increases, which justifies why tunable gates should be turn ON 

only if they are needed. In terms of impact on dynamic power, as expected AVS has the 

largest impact. Using AVS, the average dynamic energy increases by 6.5% respectively.  

 

Figure 24. Delay distributions using different tuning knobs individually 

 

Table 7. Impact of tuning techniques on power 

Tuning 

technique 

Average leakage power 

increase (%) 

Average dynamic 

power increase (%) 

ABB -2.7 -0.3 

Tunable gates 3.2 3.9 

AVS 3.5 6.5 

 



 

64 

Below, we analyze the effectiveness of the technique proposed in Section 4.4, 

where supply voltage, body bias, and tunable gates are all used as post-manufacture 

tuning knobs. In Figure 25, we show the delay distribution for four ISCAS circuits for the 

case of no tuning and when the tuning procedure in Section 4.4 is applied. The leakage 

and dynamic power plot are shown in Figure 26 and Figure 27 respectively. Similar 

results were obtained for other ISCAS circuits but we don’t show them here to keep the 

plots readable. Our experimental data on ISCAS benchmark circuits show that using the 

tuning procedure the standard deviation of delay improves by an average of 80%. The 

mean of delay does not change dramatically. Tuning provides 1.3% mean delay 

reduction. The mean and standard deviation of leakage improves by 7.1% and 51% 

respectively. The mean of dynamic power improves by 4.8% and the standard deviation 

increases by an average of 71%. In these figure a perfect delay test is assumed. Table 8 

shows the delay yield improvement when the proposed tuning procedure is used along 

with a perfect delay technique and along with IDP procedure. The average delay yield 

improvement goes down from 45% to 42% when the perfect delay test is replaced by the 

IDP procedure. The table also shows the power improvement achievable through tuning. 

The power improvement was computed using the maximum power consumption of the 

dies that meet the timing requirement before and after tuning.  An average leakage power 

improvement of 33% and 24% was obtained when the reconfiguration module uses a 

perfect delay test and the IDP procedure respectively. The dynamic power improvement 

of 12% and 6% was obtained when tuned using the perfect delay test and the IDP 

respectively. These results show that IDP could be used instead of an expensive delay test 

method while tuning with little impact on yield improvement or power consumption. 



 

65 

 

Figure 25. Delay distribution using the proposed tuning procedure 



 

66 

 

Figure 26. Leakage distribution using the proposed tuning procedure 

 

Figure 27. Dynamic power distribution using the proposed technique 



 

67 

 

Table 8. Delay and power improvement using tuning methodology with perfect delay test and 

with IDP 

Tuned using perfect delay test Tuned using IDP Circuit 
Delay yield 

improvement (%) 

Leakage 

improvement (%) 

Dynamic 

improvement (%) 

Delay yield 

improvement (%) 

Leakage 

improvement (%) 

Dynamic 

improvement (%) 

C432 49 42 13 45 38 9 

C499 49 33 10 41 25 5 

C1908 43 33 14 38 22 9 

C2670 56 32 12 54 27 7 

C3540 35 22 9 35 8 3 

C5312 45 29 8 41 18 2 

C7552 41 38 15 41 31 9 
 

To evaluate the area overhead of the proposed tuning methodology, the 

reconfiguration module (including the IDP procedure) was implemented in Verilog and 

synthesized using Synopsys Design Compiler and 0.25 µm standard cell library. The 

ISCAS benchmark circuits were also synthesized using Design Compiler. The area 

overhead of the reconfiguration module is shown in Table 9. For small circuit such as 

C432 the area overhead is considerable. But for larger circuit the area overhead is small 

and is negligible for the largest circuit, C7552. The area overhead of tunable gates is also 

shown in Table 9. This overhead includes the overhead of the large footer transistor of 

tunable gates for tuning them ON or OFF. The area overhead of tunable gates depends on 

the percentage of gates made tunable. This information is also presented in Table 9.  For 

implementing the routing of control signals of footer transistors in tunable gates, an 

attractive option is the poly-silicon layer in the layout. Note that there are no switching 

performance constraints on the control signals. These are not signals that switch during 

normal operation. Thus the reconfiguration control grid can be laid out in the poly-silicon 

layer, which is too slow to be used for the functional interconnect. Such a strategy allows 



 

68 

the reconfiguration control signals to be implemented with virtually no adverse impact on 

the availability of the metal layers for use for the functional interconnect.  

Table 9. Area overhead of reconfiguration module and tunable gates 

Circuit 

Area overhead of 

reconfiguration module (%) 

Percentage of 

tunable gates 

Area overhead of 

tunable gates (%) 

Total area 

overhead (%) 

C432 33.5 5.5 8.4 41.9 

C499 10.4 10 15.1 25.5 

C1908 13.1 10 17.5 30.6 

C2670 9.9 4.6 6.5 16.4 

C3540 6.9 5 7.2 14.1 

C7552 0.3 5 7.4 7.7 

 

4.6 CONCLUDING REMARKS 

In this chapter, an architectural framework for post-silicon performance testing 

and tuning to bring the delay and power consumption of a die within the acceptable range 

was developed. Also, a modified form of CMOS gate that can be programmed to work in 

a low-speed or a high-speed mode is presented.  

In the proposed architecture, specific hardware tuning “knobs” (control 

mechanisms) such as tunable gates, supply voltage, or body bias can be employed to deal 

with the delay and power variation. These control mechanisms are actuated by a proposed 

efficient delay test method that implicitly measures the delay of embedded logic circuits. 

A hardware framework that can support such self-test/self-adaptation is developed and 



 

69 

algorithms are designed for optimizing the various enabling design parameters. This work 

covers different area from delay testing to low-level CMOS gate design of tunable gates. 

Simulation results show that using the proposed tunable gates on close-to-critical paths 

combined Vdd and body bias tuning can improve the delay yield by 42%.  



 

70 

 

CHAPTER 5  

TRANSIENT ERRORS: TRENDS AND SOLUTIONS 

Due to technology scaling and the increased susceptibility of deep sub-micron 

(DSM) circuitry to uncertainties originating from noise (reduced noise margins) and soft 

errors (induced by atmospheric neutrons), it will become necessary to design error 

detection and correction capability into future logic designs for reliable computation. In 

the past, data encoding techniques have mostly been used for error detection and 

correction in wired and wireless communications channels. In order to enable reliable 

computing in nanoscale technologies of the future, not only data but also computation 

performed on the data will need to be encoded for real-time error detection and correction 

(i.e. redundant computations will need to be performed). 

The technology scaling increases the vulnerability of a circuit to transient errors 

for several reasons. First, because of the feature size reduction, which reduces the average 

node capacitance, the voltage fluctuation at a node is larger. Second, the supply voltage 

reduction in every technology generation reduces the noise margins and aggravates the 

transient error problem. Third, the increase in the clock frequency raises the chance of an 

error being latched and propagated to a primary output. Moreover, because of shorter 

pipeline stages, the number of gates through which an error propagates (and hence 

attenuates) is smaller. Therefore, the probability of an error being masked in a modern 



 

71 

high-performance digital system is becoming increasingly small compared to earlier 

technologies ([53]and [54]).  

Early on in the silicon era, it became known that the dense memory elements such 

as DRAM or SRAM are susceptible to errors [55]. That is why coding techniques such as 

parity bits are used to design reliable memory banks and to enable reliable memory 

access, but their use in on-chip signal processing has been limited.  In the scaled digital 

circuits, the transient errors in flip flops demand an immediate attention. Furthermore, it 

is expected that the error rate of combinational logics in the scaled technologies to 

escalate by 9 orders of magnitude from 1992 to 2011, when it will equal the error rate of 

unprotected memory elements [53]. Hence, further down the technology road map 

handling combinational logic errors is also essential for the future logic design [55].  

One of the key barriers to widespread use of coding techniques for reliable on-

chip computing is the cost of data and circuit redundancy necessary to implement a 

coding technique with logic error detection and correction. Theoretically, a code of 

distance t+1 is necessary for detecting up to t errors and a code of distance 2t+1 is 

necessary for correcting up to t errors. Various linear codes such as those based on real-

number checksums ([55]-[62]) have been used in the past for real-time error detection in 

applications such as digital filtering, matrix multiplication, convolution, and FFT 

computation. While error detection is accomplished relatively easily across the majority 

of known algorithm-based ([56]-[64]) and communication system coding techniques 

([65]-[67]), error correction is a harder problem and can require significant computation 

for exact error correction. This renders real-time correction without loss of significant 

throughput difficult, if not impossible, to achieve and is especially true for the majority of 



 

72 

DSP applications that involve matrix-vector multiplications and are the core subject of 

the error detection and compensation technique presented in Chapter 6. In this context, it 

is important to point out that in future scaled technologies with high error rates, rapid 

error correction with least impact on throughput will be a critical technology enabling 

factor. Without this capability, technology scaling itself may grind to a halt due to gross 

loss of circuit and system level performance. 

The next section reviews previous work on fault/error-tolerant techniques. 

5.1 FAULT-TOLERANT TECHNIQUES 

Traditionally, fault tolerant techniques were used in applications where an error 

could result in an irreversible consequence. Different forms of redundancy such as the 

hardware, software, time, and/or information redundancy, are the main components of a 

fault tolerant system [68]. The hardware redundancy techniques, utilized in the triple 

module redundancy (TMR), have a high hardware overhead but less effect on system 

performance. The high area and power cost associated with these techniques makes them 

impractical for more general applications. At the same time such a high price is not 

necessary in most cases especially in non real-time systems. Therefore techniques such as 

the time redundancy or partial duplication or software redundancy have been proposed. 

Such techniques have far less hardware overhead but severely impact the system 

performance. The algorithm-based fault-tolerant methods with focus on matrix operations 

and FFT have been proposed in [55] - [60], [63], and [64]. The algorithm-based fault-

tolerant methods aim at minimizing both the hardware and the performance penalty. In all 

techniques mentioned so far, the focus was on eliminating the chance of an error being 



 

73 

observed at the final output of the system, either by masking the error or by detecting it 

and preventing it from being observed at the final output.  

In recent years, with the increase in soft-error rate in the scaled technologies, a 

great deal of research is dedicated to protecting against soft errors. This is done by using 

hardware-level solutions with the aim of reducing the probability of a transient (soft) 

error being observed at the circuit output with minimal impact on the circuit delay, power 

and area. Soft-error resilient techniques could be divided into the ones for flip flops and 

the ones for combinational logics. Techniques in [43] and [69] are two examples of 

recent techniques proposed for making the combinational logics soft-error resilient. In 

[43], a capacitive loading is added to the primary outputs of a circuit. Then, the size, 

supply voltage, and threshold voltage of internal gates are optimized to minimize the 

energy and delay overhead of the added capacitive loads.  The technique in [69] 

dynamically controls the soft-error tolerance. When the particle flux in the environment 

is increased, the technique increases the soft-error tolerance using an adaptive supply 

voltage and threshold voltage modulation and variable capacitance bank.  Techniques in 

[70], [71], and [72] protect system flip flops. In [70], the author proposes to replace each 

latch with two or three latches that are clocked with a fixed phase-delay or their inputs 

arrive after a fixed phase-delay. A simple voting circuitry is needed to pick the correct 

latch value. In [71], the redundancy that exists in the scan flip flops is used along with the 

Muller C-element to protect the flip flops against transient errors. The Muller C-element 

is a two-input one and one-output component that keeps its output value if its two inputs 

do not match. In [72], the authors propose a soft-error immune latch. The new latch 

design keeps its state on three different nodes. When the value is destroyed in one of 



 

74 

these nodes, the other two nodes still hold the right value. This design is not protected 

against the transient errors generated in the combinational blocks.  

Algorithmic noise tolerant (ANT) techniques were proposed in [73]-[76] to 

compensate for the error (noise) introduced into a digital signal processing (DSP) system. 

The errors are assumed to occur because of the supply voltage over-scaling or soft errors. 

They propose a few techniques for making the error less dominant in the output of the 

DSP using less hardware than what is required in more classical fault-tolerant techniques. 

The techniques have a common denominator. They all use a less complex module 

compared to the DSP block to find an estimate of the DSP output. The techniques are as 

follows:  

� Prediction-based ANT [73] : Here, the assumption is that if the DSP filter is 

sufficiently narrowband, then the filter outputs at consecutive time points are highly 

correlated. This technique uses a linear predictor to predict the filter output using 

previous values of the output.  

� Reduced precision redundancy-based ANT [74]: This technique exploits the fact 

that the most significant bits of the output are more critical and must be protected 

from the noise. The technique uses a low precision replica of the original DSP filter. 

If an error occurs in the original high precision filter, the output of low precision 

module will be directed to the output.  

� Error cancellation-based ANT [75]:  This technique uses the fact that in a filter 

with the voltage over-scaling, there is a high correlation between the input of the filter 

and the error at the output. In this technique, an adaptive filter is first trained to 

predict the error in the filter output. After the training phase, the adaptive filter 



 

75 

estimates the error in the filter output and adjusts the output accordingly. This 

technique cannot be used for random transient errors such as soft errors.  

In Chapter 6, we present an error detection and compensation technique, which 

can handle errors in both the combinational logic and the storage elements of a digital 

circuit for a class of linear filtering DSP applications where it is not necessary to maintain 

cycle-to-cycle accurate computation as long as system level signal-to-noise ratio (SNR) 

metrics are satisfied or degraded within acceptable levels. Such an SNR metric may 

impact end-product video or audio quality. The focus is on real-time error compensation 

in on-chip linear DSP computations, formulated as linear state variable systems. Such 

computations can be implemented as ASICs using behavioral synthesis tools (also called 

silicon compilers ([77]-[79]) or via software running on programmable DSPs. In the 

former, the DSP algorithm is implemented via dedicated circuitry, whereas in the latter, 

the same is implemented using software.  

 

5.2 CONCLUDING REMARKS 

This chapter provides an overview of techniques proposed in the literature both 

for fault-tolerance in mission-critical applications and recent techniques to handle high 

rate of soft/transient errors. 



 

76 

 

CHAPTER 6  

EFFICIENT PROBABILISTIC ERROR CORRECTION 

In this chapter, a probabilistic compensation technique for minimizing the effect 

of transient errors is proposed. Here, the focus is to develop a transient error (soft error) 

compensation technique for digital signal processing (DSP) applications in which exact 

error compensation is not always necessary and end-to-end system level performance is 

degraded minimally as long as the impact of the “noise” injected into the system by the 

onset of transient errors is minimized. The proposed technique, referred to as checksum-

based probabilistic compensation, uses real number checksum codes for error detection 

and partial compensation. Traditional coding techniques need a code of distance three 

and relatively complex back-end calculations for perfect error correction. In this chapter, 

it is shown that a distance-two code can be used to perform probabilistic error 

compensation in linear systems with the objective of improving the signal-to-noise ratio 

(SNR) in the presence of random transient errors. The goal is to have a technique with 

small power and area overheads and to be able to perform the compensation in real time 

with negligible latency of compensation. The proposed technique is comprehensive in the 

sense that it can handle errors in the combinational circuits as well as the storage 

elements. Comparison against a system with no error correction shows that up to 13 dB 

SNR improvement is possible. The area, power, and timing overheads of the proposed 

checksum-based probabilistic compensation technique are analyzed. 



 

77 

6.1 REAL NUMBER CHECKSUM CODES FOR ERROR 

DETECTION AND CORRECTION  

In this work, we focus on transient upset induced error (noise) reduction in linear 

digital filters using a checksum-based probabilistic compensation mechanism. A digital 

filter, either FIR or IIR, can be implemented using three kinds of modules: adders, 

multipliers and registers. A filter represented by its transfer function can have many 

different physical realizations. It can be shown that there are infinite realizations of a 

given transfer function. Irrespective of the realization of a filter, linear digital filters can 

be represented in state variable form [80]. In the following, we first discuss this 

representation and then show how checksum codes can be designed, based on this 

representation, to detect and compensate for errors in real-time.   

6.1.1 Linear Digital State Variable Systems 

Linear time-invariant systems can be represented as state variable systems. The 

general form of a state variable system contains a computational block, which takes the 

primary inputs, (u1...um), and the current latched states as input and generates the next 

states as well as the primary outputs, (y1…yw) (Figure 28). The computational block is a 

network of adders and multipliers and feeds the primary outputs and system latches. The 

processing is purely arithmetic and therefore inputs, outputs, and states represent 

numerical values. If s(t) = [s1(t), s2(t), …, sn(t)]
T 

is the state vector and u(t) = [u1(t), u2(t), 

…, un(t)]
T
 is the input vector at time t, then the system can be represented by the 

following equations: 



 

78 

)1()()1(

)1()()1(

+⋅+⋅=+

+⋅+⋅=+

tuDtsCty

tuBtsAts
 (7) 

 

where the A, B, C, and D matrices represent the arithmetic operations performed on the n 

states, m primary inputs, and w primary outputs in the computational block. In general, a 

computational module (i.e. an operator) in the computational block can feed more than 

one state or one output of the system. Such an implementation of the system where the 

computation trees of different states or outputs are not disjoint is referred to as a shared 

implementation [61]. In a shared implementation, an error in an operator may result in 

multiple erroneous states. We discuss the challenges posed by the shared implementation 

of the computational block later in the chapter. 

 

Figure 28. Structure of a state variable system 

An error can affect the operators (adders, multipliers), used in the computational 

block, the system states, or the system outputs. An error in the computational block, 

C
o
m
p
u
ta
tio
n
a
l 

B
lo
c
k
 



 

79 

responsible for computing the state, or an error in the system states will stay in the system 

for multiple clock cycles and can propagate to other states and the primary outputs of the 

system. An error restricted to a primary output does not propagate to other outputs or 

states and disappears after one clock cycle. For this reason, this chapter focuses on 

detecting and correcting errors either in the operators of the computational block that are 

involved in computing the system states or in errors affecting the system data registers 

(flip-flops) directly. A unified approach that can handle both cases is developed. 

6.1.2 Concurrent Error Detection 

In a linear state variable system, real number codes [59] can be implemented to 

encode the state vector, s(t), using one or more check variables. These check variables 

can be used for the error detection and correction [61]. Each row i of the A and B 

matrices is scaled using a real-value weight αi and summed to give the vectors X and Y 

below, respectively. Let the coding vector be the vector having the relevant weighting 

factors, i.e. CV= [α1, α2,…, αn]. X is defined as X=CV.A. Similarly, Y is defined as 

Y=CV.B. A check variable c, corresponding to each coding vector is computed as: c(t+1) 

= X.s(t)+Y.u(t). It is trivial to see that if there is no error in the system, then c(t+1) = 

CV.s(t+1). Hence, an error signal, e, can be computed as: e(t+1) = CV.s(t+1)-c(t+1) and 

is zero in the absence of any error. Figure 29 shows a state variable system with error 

detection capability. 



 

80 

 

Figure 29. A state variable system with checksum-based error detection 

It should be noted that in the presence of multiple erroneous states (caused by an 

erroneous operator shared by two or more states), the error signal might be zero. In [61], 

conditions on the coding vector for preventing such error aliasing based on the concept 

of gain matrix, is presented. A review of this is presented below. 

 

Gain of an Operator: 

The gain of an operator quantifies how an error in the operator affects different 

system states. To find out how an error in an operator Oj affects the i
th 

  state, si, first we 

find all the paths, pi, from the output of Oj to si. For each such path, we define the gain, 

Өi, to be the product of the gains of all the operators on that path. The gain of an adder 

(subractor) is +1 from its “+” input and -1 from its “-” input. The gain of multiplier is the 

B
lo
c
k
 

C
o
m
p
u
ta
tio
n
a
l 



 

81 

multiplication constant. Let gi,j , the total gain from Oj  to si be ∑i=1:P Өi , where P is the 

number of paths existing from the output of Oj  to si. gi,j effectively represents the amount 

by which an error εj at the output of operator Oj  is scaled before being added to the value 

of state si. In other words, an error εj in Oj causes an error gi,j ×εj   in si.  For example for 

the system shown in Figure 30, the gain of path 8, 9, 5, 3, S3 from O8 to S3 is (1/3)(+1)(-

1) =  -1/3 and g3,8 = (1/3)(+1)(-1)+(1/3)(1)(1)(-1) = -2/3 [61].  

 

Figure 30. Structure of a linear State variable system with shared operators 

[courtesy of [61]]. 

Gain of a state: 

Similar to the gain of an operator, one can define the gain of a state as follows. 





=

≠
=

ji

ji
gij

1

0
. 

In other words, the effect of an error in a state, si, is zero for all other states except 

itself. The gain matrix GM is an n × (o+n) matrix where n is the number of states and o is 

Gain of si on sj= 



 

82 

the number of operators involved in computing the system states. Let N= o+n. Each 

column of the gain matrix represents the gain of an operator or a state. Without loss of 

generality, we construct the gain matrix such that the first o columns represent the 

operators gain and the last n columns represent the gain of states. From here on, we refer 

to a potential source of error (either an operator involved or a state) as a module, where 

modulei  i=1…o are the operators and modulei  i=o+1…o+n represents the states. Figure 

31 shows the gain matrix corresponding to the example system of Figure 30. It should be 

noted that since the operator O11 is not involved in computing any of the three states (i.e., 

only involved in computing the output), we do not include it in the gain matrix. 

 

Figure 31. Gain Matrix corresponding to the system in Figure 30 

In [61], it is shown that to guarantee an error being observed on the error signal, 

the coding vector must be chosen such that all elements of the product CV×GM are non-

zero.  

A non-zero value of the error signal indicates an error either in states, s(t+1), in 

the check variable, c(t+1), or in the error signal, e(t+1). One can use two coding vectors 

and their corresponding error signals to determine whether an error is in the system states 

or in the error (checksum) computation circuitry (false alarm) [61]. If two check variables 



 

83 

are used, one can conclude that the error is restricted to the system states iff both error 

signals corresponding to the two check variables are non-zero. In this work, we do not 

use two check variables. Hence there is no way to determine if the error is in the original 

or the checking circuitry. Given that the state computation is more complex and involves 

more arithmetic operations than the check variable or the error signal computation, and 

the fact that in digital systems most soft errors occur in flip flops, the resulting probability 

of a false alarm is low. However, one can always use two check variables (as described 

above and in [61]) to identify false alarms, but at a higher hardware cost. Next, we 

describe the proposed probabilistic checksum-based compensation scheme. 

6.1.3 Proposed Probabilistic Error Compensation 

A single check variable detects an error in the system, but fails to identify the 

erroneous state. In [61], the authors provide a method that can identify the faulty state by 

using two check variables and carefully selecting the coding vector for each check 

variable. This is done in such a way that the ratio of the magnitude of error signals 

corresponding to the two checksums identifies the erroneous state. The amount of 

computation needed to find the faulty state is high enough that it makes the correction 

technique not suitable for real-time application. Furthermore, the technique becomes very 

complicated and difficult to implement for systems with shared hardware 

implementation. Here, we propose a probabilistic checksum-based error compensation to 

compensate for errors in both combinational and the sequential parts of a linear digital 

system to improve the system output quality (noise power or SNR).  



 

84 

6.1.3.1 Probabilistic Compensation: Overview 

From the discussion in the prior section, if an error occurs in the time frame (t, 

t+1), then the vector s(t+1) has the wrong value for some of the system states. Therefore 

the error value e(t+1) computed in the time frame (t+1,t+2) is non-zero. The error signal 

is non-zero only for a single time interval and returns to zero in the next interval. Next, it 

is described how the error signal value is used to probabilistically compensate the system 

states within the time step (t+1,t+2) such that the overall system SNR is improved. 

Before proceeding to describing the technique, a few notations and definitions are 

introduced next.  

Let ygood be the output signal when there is no error and yerr be the outputs when 

there is an error. The output noise is noise = ygood - yerr. The output noise power and the 

output SNR are defined as follows: 

2

1

)(∑
=

=
T

i

inoiseNoisePower  (8) 

)
)var(

)var(
(log10 10

noise

y
SNR

good
=  (9) 

 

where T is the duration of the output signal and noise(i)
2
 is the noise power component at 

time i. In the following, the output noise power is used as a metric to find the best 

compensation vector for the checksum-based probabilistic error correction technique.  

An error occurring during the time interval (t, t+1) results in a deviation EV = [es1 

es2….esn] 
T
 in the state values (i.e. the state si has an error esi), from their correct values 

as given by Equation (10). 

EVtsts gooderr ++=+ )1()1(  (10) 



 

85 

If there is no error correction, the error in the system states at time t+k+1, k 

cycles after its occurrence, assuming no other errors happen in between, can be computed 

as follows: 

)1()1( +++=++ ktsEVAkts good

k

err  (11) 

The error vector k cycles after the error occurrence is A
k
EV. If the system is 

stable, the errors in the states disappear after m cycles, where A
m
→0. The error in the 

output is CA
k
EV, k cycle after an error occurs. 

The goal of probabilistic checksum-based compensation is to compensate for the 

error in the system states in a probabilistic sense, such that the average output noise 

power is minimized. As opposed to deterministic error correction [61], no error diagnosis 

is performed after the error is detected (error diagnosis involves finding the single 

operator with the erroneous output in shared hardware systems). In deterministic error 

correction, after determining the source of the error (using a complex procedure 

involving the use of a look-up table), the error is compensated exactly by feeding back 

e(t+1) with appropriate weights back into the system states in the time frame (t+1, t+2). 

The weights with which e(t+1) is fed back depends on the operator that is determined to 

be erroneous. In probabilistic checksum based compensation, since the erroneous 

operator is never diagnosed, the weights with which e(t+1) is fed back to the system 

states are independent of the operator that is erroneous and determined in such a way 

that the overall system SNR is improved as long as the operator failure statistics is 

known. This significantly reduces the latency of error compensation and makes near real-

time error compensation possible with significant improvement of SNR (described later). 

It should be mentioned that other objective functions such as based on minimizing 

the worst case noise power are possible. The time-frame expansion of the linear state 



 

86 

variable system with the times frames in which error detection (ED) and error 

compensation (EC) are performed is shown in Figure 32. Because of the delay overhead 

associated to the scheme, the clock period must be stretched to accommodate the delays 

associated to ED and EC modules. If the delay penalty is not acceptable, the ED could be 

done in parallel with actual computation (“Compute States & Outputs”) in the time frame 

(t+1, t+2) to hide its delay. The EC, if needed, can be postponed to the cycle after the 

error detection. Although the approach imposes less delay overhead (because the ED runs 

in parallel with the state and output computation), it propagates the incorrect output for 

one cycle, hence increases the output noise.  

 

Figure 32. Checksum-based probabilistic state correction 



 

87 

 For an error, ε, affecting the output of the j
th 

module, the error in the state si is 

ε×gi,j by definition. It can be easily seen that the value of the error signal is as shown in 

Equation (12), where αi is the i
th 

element of the coding vector as described earlier in this 

section. 

εα ×=+ ∑
=

)()1(
1

,

n

i

jii gte  (12) 

where n is the number of states in the system.  

After detecting an error on the error signal, e(t+1), if it was known that the j
th

 

module is the erroneous one, then we can directly compute the error in each state as 

shown in Equation (13), where we substitute ε, the error in the j
th

 module, as a function of 

e(t+1), derived from Equation (12).  

)(

)1(
|

1

,

,

,mod

∑
=

+×
=×=

n

i

jii

ji

jiuleis

g

teg
ge

j

α

ε  
(13) 

We can rewrite Equation (13) as follows, where the filter structure dependent 

parts (gi,j) and coding vector dependant parts (α1… αn)  are clumped together and 

represented as γi,j (i.e. 

)(
1

,

,

,

∑
=

=
n

i

jii

ji

ji

g

g

α

γ ). 

 

)1(| ,mod +×= tee jiuleis j
γ  (14) 

 

Let ∆j be the error in the state vector when the j
th 

module is erroneous.  The 

expanded form ∆j is shown by Equation (15).  



 

88 

)1()1(

.

.

.

2

1

+×=+×



























∆ = tete

nj

j

j

j γ

γ

γ

γ

 (15) 

 

The goal is to find a compensation vector, V, an (n×1) vector, to compensate the 

error in the states (EV) when an error is detected. After compensation, the error in the 

states is EV-V. The error in the states and the output k cycles after the correction are 

A
k
(EV-V) and CA

k
(EV-V) respectively. The goal is to find the compensation vector, V, 

such that the average output noise power (shown in Equation (16) ) is minimized.  

∑∑
= =

−∆=
N

i

m

k

i

k

i VCAwseAverageNoi
1 0

2))((  (16) 

where wi is the probability of the i
th

 module being erroneous. A solution to the 

minimization problem, assuming ∑k=0..mCA
k
≠0, is given by Equation (17)(See Appendix I 

for more details). 

∑
=

∆=
N

i

iiwV
1

 (17) 

Using Equation (15), we can write the compensation vector, V, shown in Equation 

(17), as a function of the error signal as given below. It can be seen from Equation (18) 

that the compensation vector is written as a constant vector (Const_V=[const1…constn]) 

multiplied by the value of the error signal, e(t+1). The vector Const_V is a constant (n×1) 

vector and known prior to system implementation, while e(t+1) is known during the 

system execution. When an error is detected, we simply multiply the value of error signal 

by Const_V and then subtract it from the state value to do compensation.  



 

89 

  

ij

N

i

ij

n

N

i

T

inii

N

i

T

inii

wconstwhere

teconstconst

tew

tewV

,

1

1

1

,,1

1

,,1

)1(]...[

)1()]...[(

)1(]...[

γ

γγ

γγ

×=

+×=

+×=

+=

∑

∑

∑

=

=

=

 (18) 

In subsection 6.1.2, we provided the condition for the coding vector in order to 

detect all errors (i.e. to prevent errors from being concealed). The choice of coding vector 

is also important in the context of error compensation. As shown in Equation (18), the 

compensation vector depends on a Const_V and e(t+1), which both are functions of 

coding vector elements (αi ). Therefore the choice of coding vector affects the noise 

power reduction obtainable using the probabilistic error compensation and hence the 

quality of our compensation technique. Below, we find the coding vector, which results 

in the minimum average noise power when probabilistic compensation is applied.  

The objective is to find the coding vector CV = [α1, α2 ,…,  αn] such that the 

average noise power after compensation is minimized. Recall that the average noise 

power is ∑∑
+

= =

−∆=
on

i

m

k

i

k

i VCAwseAverageNoi
1 0

2))(( , where V is given in Equation (17) and 

∆i=[gi,j]×ε. It should be noted that ∆i is independent of the coding vector values and only 

depends on the filter implementation, which manifests itself in the gain values. On the 

other hand, the compensation vector is a function of αi. We would like to find αi such that 

our objective function of minimizing the average noise power is satisfied. To find αi 

values, we apply a simplex search method on Equation (16), using MATLAB fminsearch 

function ([81] and [82]). The technique is summarized in Figure 33. Since the fminsearch 



 

90 

procedure is a local search, to avoid a local minimum, we repeat the procedure in Figure 

33 with different initial conditions of CV. 

 

Figure 33. To find the optimum coding vector (MATLAB fminsearch is 

used to solve the optimization) 

 

6.1.4 State Partitioning and Checksum Design 

By minimizing the average noise power using Equation (17), it is possible that in 

specific instances where errors occur in only a subset of the total number of operators, the 

injected noise power in the system with compensation is larger than the injected noise 

power in the system without compensation.  Ideally, we desire Equation (19) to be 

satisfied individually for all states and operators (adders and multipliers) in the system. 

NiCAVCA
m

k

i

k
m

k

i

k ...1)())((
0

2

0

2 =∆≤−∆ ∑∑
==

 (19) 

However, it may not possible to satisfy Equation (19) for all operators in the 

system with a single check variable. In other words, the noise power reduction possible 

with the use of a single check variable is limited and can be increased if multiple check 

variables (checksums) are used.  Clearly, such multiple checksums must be computed 



 

91 

across carefully selected subsets of the overall set of system states. To resolve the above 

issues, we provide a heuristic algorithm that partitions the system states, where each 

subset of states, corresponding to a partition, is monitored for errors by a separate check 

variable. The partitioning heuristic aims to satisfy Equation (19) for as many states and 

operators as possible while using Equation (17) to perform error compensation to 

minimize the noise power corresponding to the subset of states in each individual state 

partition. For instance if s1 and s3 are the two states being monitored for error 

detection/correction in a system with four states (s1…s4), then in calculating c(t+1) = 

X.s(t)+Y.u(t), the vectors X and Y have zeros as their second and fourth elements (i.e. in 

positions corresponding to states not being monitored). In this case, the error signal is 

computed as e(t+1) = [α1 0 α3 0].s(t+1)-c(t+1).  

In the following, we explain a heuristic procedure for partitioning the system 

states into different subsets, each of which is monitored by a single check variable. The 

use of a maximum of k check-variables (state subsets) is allowed. The heuristic is 

described in Figure 34. The heuristic procedure first finds k states that generate the 

highest noise power at the output if being erroneous and assigns them to the k check 

variables. The remaining states are assigned to different check variables such that the 

maximal noise power reduction is obtained. In Figure 34, Monitori is the set of all states 

being monitored by the i
th 

checksum. After state partitioning, the checksum of all the 

states in each partition is computed separately and probabilistic compensation is 

performed for each subset. The compensation vector is found based on the subset of 

chosen states, using Equation (17). It should be noted that only operators that are 

involved in computing at least one of the states in the subset “monitored” and only states 



 

92 

that are monitored are considered while computing the compensation vector. 

Furthermore, while using Equation (17), ∆i has zeros in locations corresponding to states 

not being monitored.  The time complexity of the heuristic algorithm is O (k.n
2
). 

 

Figure 34. A heuristic to find the best subsets of states to be monitor using 

different check variables 

The next section presents the evaluation results of the checksum-based 

probabilistic error correction. The technique is compared with another approach called 

state restoration. The state restoration approach simply sets the state latches to their 

previous values whenever an error is detected. State restoration uses the real checksum 



 

93 

code for error detection. The technique requires extra set of registers. State restoration is 

in fact a Prediction-based ANT [73] technique in its simplest form. The only difference is 

that in the prediction-based ANT, the prediction is done on the output (rather than the 

state) and that a comparator is used for error detection (rather than the checksum code). 

6.2 EVALUATION 

The experimental results of this section are generated using the 3
rd 

order linear 

state variable system, shown in Table 10 unless specified otherwise. The linear system, 

the error detection, and the error correction modules were implemented in MATLAB. 

Also, the errors in different operators were emulated by modifying the magnitude of 

states proportional to the gain of the faulty operator for each state. For the checksum-

based probabilistic error compensation, the compensation vector in Equation (17) is used. 

The optimum coding vector was obtained using the optimization shown in Figure 33. The 

input is a sinusoid with a maximum amplitude of 1 and with a frequency of 10 KHz 

sampled at 10 times the Nyquist rate, unless specified otherwise. The simulation time is 

assumed to contain 20 periods of the sine wave. It is assumed that the erroneous 

probability of all modules is the same, i.e.wi=1/N, where N is the number of modules (i.e. 

the total number of states and operators). 

Table 10. A 3
rd 

order linear state system 

A = 

















−−−

1.03.08.0

9.03.03.0

003.0
 

B = [2.6  1.2 1.5]
T 

C= [0.11 0.06 0.08] D = [0.2] 

 



 

94 

An implementation of the system and its corresponding gain matrix are shown in 

Figure 35 and Figure 36. 

 

 

Figure 35. An implementation of the system in Table 10 with shared operators 

 

 

Figure 36. The gain matrix corresponding to the implementation in Figure 35 



 

95 

The injected error is modeled as a function of  four random variables, defined as 

follows: 1) Error magnitude (EM), 2) Burst length (BL), the number of errors in a burst, 

3) Burst-to-burst time (BBT), i.e. the time interval between two bursts of errors, and 4) 

Error-to-error time (EET), the time interval between two consecutive errors in a burst. 

Additionally, the time of occurrence of the first burst is another random variable, called 

error position (see Figure 37). Except when burst errors are being studied, a single error 

(i.e. BL = 1 and BBT = ∞), with EM = 1 is considered. 

 

Figure 37. Error model 

As mentioned in Section 6.1.3, the choice of coding vector affects the SNR 

improvement obtained by using the probabilistic error compensation. In [59], it is shown 

that the choice of coding vector is in fact a trade off between the round-off error, caused 

by increasing the values of coding vector elements, and the code reflectivity reduction, 

caused by smaller coding vector values. Therefore, in this work we assume that there is a 

limited range [xmin, xmax] of acceptable values for coding vector elements. The optimum 

coding vector for the system shown in Table 10, using the optimization formula in Figure 

33 and MATLAB fminsearch simplex-based optimizer, is [5 3 4].  It should be noted that 

if CVopt is an optimum coding vector, then any scaled version of CVopt is still an optimum 

coding vector and will result in the same noise power reduction when used for 



 

96 

probabilistic compensation. Using this characteristic of optimum coding vector, one can 

scale it so that the optimum coding vector values fall in the acceptable range of [xmin, 

xmax].  

The noise power is shown in Figure 38 for different erroneous modules. The 

Figure also shows the noise power when no error compensation is present. The results of 

SNR improvement for different erroneous modules are also shown in Figure 38. For this 

system, the average noise power is reduced by more than 60% over the system with no 

correction and an average SNR improvement of 7.7 dB was obtained. In the remaining of 

this section, we analyze how the checksum-based probabilistic compensation and state 

restoration technique perform under different error statistics, including error position, 

error magnitude, and burst errors.  

 

Figure 38. Noise Power reduction and SNR improvement using the optimal 

coding vector 



 

97 

The effect of error position: 

To analyze the effect of error position, a single error was introduced at all 

possible positions within a single period of the input. All errors were injected in s3, but 

the results hold for other erroneous operators and states. The results are shown in Figure 

39. The checksum-based probabilistic compensation SNR does not depend on the error 

position and provides a constant 6.9 dB improvement over the no correction case. The 

state restoration SNR strongly depends on the error position. At those positions, where 

the states have the least derivative, the state restoration shows its best performance. The 

state restoration method results in 12.1 dB, -0.2 dB, and -5.6 dB SNR improvements 

(over the no correction case) for the best case, average case and worse case respectively. 

 

Figure 39. SNR as a function of error position 

 



 

98 

The effect of error magnitude: 

The SNR values for two different error magnitudes, EM = 1 and EM = 0.5, are 

shown in Figure 40. The plots for the SNR of the state restoration technique are identical 

and overlapping. The figure shows that the improvement of the checksum-based 

probabilistic compensation over the no correction case stays constant regardless of the 

error magnitude. Therefore, one can conclude that for a single error, regardless of the 

error position and error magnitude, checksum-based probabilistic correction results in a 

constant SNR improvement. Appendix II proves that the SNR improvement using 

checksum-based probabilistic compensation is independent of the error magnitude.  

Figure 40. Effect of error position on SNR for various error magnitudes 

The effect of sampling frequency: 

The effect of the sampling frequency on the SNR and SNR improvement of 

different techniques can be seen in Table 11. For this result, the error of magnitude 1 was 

injected in s3. As expected the SNR reduces as the sampling frequency decreases. The 



 

99 

probabilistic correction technique always maintains a fixed SNR improvement of 6.9 dB 

over the no correction case. The SNR improvement of this technique is not affected by 

the sampling frequency. The SNR improvement of the state restoration technique 

strongly depends on the sampling frequency and for lower sampling rates, which are 

more practical, on average it performs worse than the checksum-based probabilistic 

compensation or even worse than no correction. 

Table 11. Effect of sampling frequency on SNR 

State restoration (dB) Sampling frequency No correction 

SNR (dB) 

Probabilistic 

correction SNR (dB) Max Min Average 

4×input frequency 31.9 38.8 17.1 14.1 15.6 

8×input frequency 36.6 43.5 32.5 23.8 27.7 

16×input frequency 40.1 47.0 48.3 32.7 37.8 

32×input frequency 43.3 50.2 63.6 41.6 47.3 

64×input frequency 46.3 53.2 78.7 50.7 56.5 

 

The effect of burst error: 

Figure 41 shows the SNR of different schemes as a function of burst length. A 

single burst is assumed, i.e. BBT = ∞. Also errors occur in consecutive cycles, i.e. EET=1 

and EM=1. For the case of state restoration, only the average SNR is shown. In the top 

graph of Figure 41, all errors are injected in s1. In the bottom graph of Figure 41, all 

errors are injected in s3. The figure shows that the SNR of the state restoration reduces 

drastically as the burst length increases. Although the SNR of the checksum-based 

probabilistic error correction also reduces with the burst length, the reduction is not as 

drastic as in the state restoration and always achieves a positive SNR improvement over 

the no correction case.  



 

100 

 

 

Figure 41. SNR as a function of burst length 

 

Figure 42 shows the SNR improvement of checksum-based probabilistic 

correction over no correction. For the case of errors in s1, having a longer burst improves 

the SNR obtained using checksum-based probabilistic compensation. In this case, the 

SNR improvement initially increases with burst length increase, but stays almost constant 

at 4.6 dB for burst lengths greater than 20. In the case where all errors are in s3, the SNR 

improvement reduces with burst length. 

 



 

101 

 

Figure 42. SNR improvement as a function of burst length (using probabilistic 

checksum-based compensation) 

Whether a larger burst length improves the SNR achievable (i.e. reduces the 

output noise power) using the checksum-based probabilistic compensation depends on 

the filter structure and is a complex phenomenon. Here, we explain why there are cases 

where larger burst lengths improve the SNR of our probabilistic technique using BL = 2. 

Note that if a single error stays in the system, for m cycles before dying out, the noise at 

the output for the no correction case and the probabilistic checksum-based compensation 

are as follows (subscripts nc and pc represent the no correction and checksum-based 

probabilistic correction respectively): 

BL = 1 (single error):  

}0,...0,,...,,,,0,...,0{ 210
ECAECAECAECAnoise

m

nc =  
 

}0,...0),(),...,(),(),(,0,...,0{ 210 VECAVECAVECAVECAnoise m

pc −−−−=  
 

 



 

102 

where |noisenc |= |noisepc| = T, the duration of simulation and noisenc has m non-zero 

elements. 

For the case of BL = 2:  

}0,...0,,)(

,...,)(,)(,)(,,0,...,0{

1

231200

ECAEAAC

EAACEAACEAACEAnoise

mmm

nc

−+

+++=
 

}0,...0),(),)((

),...,)((),)((),)((),(,0,...,0{

1

231200

VECAVEAAC

VEAACVEAACVEAACVEAnoise

mmm

pc

−−+

−+−+−+−=

−
 

One can see that depending on the filter (A, C) and the source of error (E), the 

noise power may or may not decrease with the increase in burst length. For instance, it 

may or may not be the case that C(A
2 

+A) E is greater than C(A
2 

+A) (E-V).  

In the analysis presented up to this point, the effects of error magnitude, burst 

length, and error position were studied individually, while the rest of parameters, which 

define the error characteristics, were constants. For the next experiment, a distribution is 

assumed for each of the random variables on which the error statistic depends, i.e. EM, 

BL, BBT, EET, and error position. For these error statistics (Table 12), a distribution for 

SNR of each scheme was obtained (Figure 43). For this experiment, we used longer 

simulation time so that multiple burst would be possible. The simulation time is assumed 

to contain 100 periods of the sine wave and the error could be in any module with the 

equal probability. The histogram has 1000 data points. The plot shows that on average, 

the SNR improvement is 4.7 dB. We did not include the state restoration plot since the 

technique performs poorly in the presence of burst errors. 

Table 12: Different error parameter distributions (T is the duration of the output) 

EM BL BBT EET Error Position 

Uniform[0.5,1] Uniform[1,10] Uniform[1,400] Uniform[1,3] Uniform[10,200]  



 

103 

 

 

Figure 43. SNR distribution of three different techniques 

Larger systems: 

So far while analyzing the checksum-based probabilistic scheme, the checksum 

variable is used to detect errors on all states. However, it is possible to use the checksum 

variable to detect errors only in a subset of states. This becomes an important issue when 

the system is large and we have a limited budget in terms of area and power to spend on 

the error detection and error compensation circuitry. In this case, it is beneficial to 

monitor the states which are more responsible in bringing down the SNR and monitor 

those states as explained in Section 6.1.3. Here, for a 10
th

-order filter, we use the 

partitioning heuristic to monitor different subsets for different check variables. The 

results are compared against the case where for k available check variable, the first n/k 

states are monitored by the first check variable, the second n/k states are monitored by the 

second check variable, and so on (Table 13).  In this example, for the case of 1 checksum, 



 

104 

the heuristic slightly underperforms compared to the case with no partitioning, but for the 

case of 2 and 3 check variables, it outperforms the partitioning done based on state 

number identification. Regardless of what partitioning method is used, Table 13 shows 

that the significant SNR improvement can be achieved even for large systems. 

Table 13. SNR improvement for an order 10 system 

Partition using heuristic Partition based on state number (id) 

SNR improvement 

(dB) 
SNR improvement (dB) 

# of 

check 

variables 
Partitions 

Max Min Mean 

Partitions 

Max Min Mean 

1 {2 3 4 5 6 8 9} 10.3 0 6.5 {1,2,3,…, 10} 15.0 1.6 6.9 

2 
{1,2, 6,7,8,9,10} 

{3,4,5} 
15.9 2.9 8.7 

{1,2,…,5} 

{6,7,…,10} 
11.2 2.0 7.0 

3 

{4,5,6,7,8,9} 

{ 3} 

{1 2  10} 

18.1 5.3 9.1 

{1,2,3} 

{4,5,6} 

{7,8,9,10} 

12.7 2.6 7.8 

 

Hardware and Power overhead: 

In order to evaluate the power and area overhead of the proposed probabilistic 

checksum based error compensation, we implemented the linear system,and the error 

detection and compensation circuitry in Verilog. We obtained the power and area 

estimation using Synopsys Design Compiler and the 0.25 µm standard cell library. The 

timing, area, and dynamic power consumption of each technique is shown in Table 14. 

The table shows that the checksum-based probabilistic compensation has the least 

overhead compared to the state restoration and TMR. Only 11% delay overhead and less 

than 13% area overhead was imposed in the case of the proposed probabilistic 

compensation compared with no correction case. State restoration has 15% and 1X delay 



 

105 

and area overhead respectively. It should be noted that while the area overhead of TMR is 

the most (as expected), it has very little delay overhead, 1.8%. 

Table 14. Delay, area, and power associated with each technique 

Technique 
Timing 

(ns) 
Area 

Dynamic Power 

(mW) 

No correction 5.5 185,002 56.0 

Checksum-based probabilistic 

compensation 
6.1 208,641 55.0 

State restoration 6.3 376,717 105.8 

TMR 5.6 519600 161.1 

6.3 CONCLUDING REMARKS 

In this chapter, we showed how the checksum-based probabilistic error 

compensation can be used not only to mitigate the error occurring in flip flops but also 

errors in the combinational parts. This is an important problem because down the 

technology road map, transient errors in the combinational part of a system will become 

as important as errors in the sequential part. The proposed technique results in a large 

SNR improvement in a linear digital system. For the 3
rd

 order example system presented 

here up to 13 dB improvements was achieved. More recently, the technique was extended 

to cover the transient errors in non-linear systems using a technique, called time-freeze 

linearization. The details of this technique can be found at [83]. It shows that the 

probabilistic checksum-based compensation is a powerful technique, which can cover 

both linear and non-linear systems and can handle errors in both combinational and 

sequential components. 



 

106 

CHAPTER 7  

CONCLUSIONS 

This chapter summarizes the main contributions of this thesis and provides 

possible directions for future research in this domain. The objective of the performed 

research was to develop circuit-level techniques to address process variations and 

transient errors in scaled CMOS circuits. The proposed techniques can be divided into 

two parts. The first part addresses the issues related to process variations and proposes 

techniques to reduce the variation effects on power and performance variations. The 

second part deals with the transient errors and techniques to reduce the effect of transient 

errors with minimum hardware or computational overhead instead of eliminating them, 

which would require an excessive amount of redundancies. 

7.1 VARIATION TOLERANT DESIGN  

With the increase in process variations in the CMOS technologies, power and 

performance variations become major concerns of circuit designers. Techniques such as 

the use of forward/reverse body bias and voltage scaling are commonly used to bring 

down the delay and power consumption specifications in the acceptable range. Variation-

aware circuit sizing is another technique used in the design stage to have a more 

variation-tolerant design.  

The key goal of this research was to provide techniques for designing more 

variation-tolerant circuits. We proposed to attack the problem both at the design stage and 



 

107 

at the post-fabrication stage. The latter requires the feasibility of having ways of 

specification tuning and a fast and efficient framework that makes the post-silicon tuning 

attractive. The summary of the proposed techniques is as follows: 

• Addressing the huge leakage variation by looking at the effect that the gate 

placement has in leakage distribution. The main idea of this work is the subject of 

Chapter 3.  

• Developing an architectural framework for post-silicon testing and tuning to bring 

the performance of the circuit within the acceptable range. Also, a tunability 

feature was studied. A modified form of CMOS gate that can be programmed to 

work in a low-speed or high-speed modes is presented. The ideas are discussed in 

Chapter 4. 

7.2 TRANSIENT ERROR TOLERANT DESIGN 

Reliability is another major concern for the CMOS technologies beyond 90 nm. 

According to ITRS 2003, “Relaxing the requirement of 100% correctness for devices and 

interconnects may dramatically reduce costs of manufacturing, verification and test.” In 

other words, it is hard to achieve 100% correctness because of an increase in transient 

error rate. Such an increase is assumed to be driven by the aggressive technology scaling 

and is associated with the reduced noise margin, power/ground bounce and radiation-

induced effect or because of permanent failures on internal signal lines that are excited 

intermittently by real-time stimulus. At the same time, the classical fault-tolerant 

techniques are all proven to be too costly to be used in non-critical applications. 

Following this trend and the observation that for many DSP applications, it is not 



 

108 

necessary to maintain a cycle-to-cycle accurate computation as long as the system level 

quality of service metrics are satisfied or degraded within acceptable levels, a real-time 

probabilistic compensation technique for DSP applications was proposed. The objective 

of technique is to improve the quality of service of the DSP application, using very little 

hardware overhead. The work is discussed in Chapter 6. 

7.3 FUTURE WORK 

Several possible future research direction based on this work are summarized 

below.  

� In this research a modified version of CMOS gates was proposed. Such 

modified version can be used to effectively tune the circuit performance after 

manufacturing to compensate for process variation and to increase parametric 

yields. Innovative techniques that enable post-manufacturing tuning will be of 

great interest as yield may be unacceptably low due to process variation. One of 

such novel technique is proposed in [84], which can effectively recover from 

manufacturing defects and process variation.  

� A probabilistic compensation technique was proposed for mitigating the effect 

of transient errors. By using such compensation technique in the baseband 

system, the baseband circuitry can operate at lower supply voltage to allow 

some level of transient errors for certain inputs which exercise the longer paths 

of the circuit while saving power.  

 



 

109 

APPENDIX I 

BEST COMPENSATION VECTOR FOR PROBABLISTIC 

COMPENSATION 

We want to find the compensation vector, V, such that 

∑∑
+

= =

−∆=
on

i

m

k

i

k

i VCAwseAverageNoi
1 0

2
))((  is minimized. Let bk = CA

k .  

[ ]

[ ]

∑

∑ ∑

∑∑ ∑

∑∑∑∑

∑∑

∑∑ ∑

∑∑ ∑

∑∑ ∑

∑∑

+

=

=

+

=

+

==

+

=

+

= =

+

= =

+

= =

+

= = =

+

= = =

+

= = =

+

= =

∆=

=−∆

=−∆

=−∆

=−∆

=−∆×−

=−∆×−=
∂

∂

−∆=

−∆==

on

i

ii

m

k

on

i

iikk

on

i

i

m

k

on

i

iikk

on

i

m

k

kki

on

i

m

k

ikki

on

i

m

k

ikki

on

i

m

k

ik

n

j

ki

on

i

m

k

ik

n

j

ki

on

i

m

k

ik

n

j

i

on

i

m

k

iki

wV

Vwbjb

Vwwbjb

Vbjbwbjbw

Vbjbw

jVjjbjbw

jVjjbjbw
jV

f

jVjjbwVf

VbwseAverageNoiVf

1

0 1

0

10 1

0

1 0

0

1 0

0

1 0

0

1 0 1

0

1 0 1

0

0

1 0

2

1

1 0

2

.

0.)(

0.)(

0.)(.)(

0)).()((

0)))()().((())(2(

0)))()().((())(2(
)(

)))()().((()(

)).(()(

 

Taking the second-order partial derivative shows that Equation (1) is in fact a 

minimum point. 



 

110 

0))(2(
)( 1 0 1

0

2

2

0

2

≥×+=
∂

∂
∑∑ ∑

+

= = =

on

i

m

k

n

j

ki jbw
jV

f
 



 

111 

APPENDIX II 

RELATIONSHIP BETWEEN SNR IMPROVEMENT OF 

THE PROBABLISTIC COMPENSATION AND ERROR 

MAGNITUDE 

 

Below, it is shown mathematically that the SNR improvement of the checksum-

based probabilistic correction over the no correction case is independent of error 

magnitude. In the argument below subscripts nc and pc represent the no correction and 

checksum-based probabilistic correction respectively. 

)
)var(

)var(
(10log10

nc

good

nc
noise

y
SNR =  

 

)
)var(

)var(
(10log10

nc

good

pc
noise

y
SNR =  

 

)var(

)var(
(10log10

pc

nc

ncpcimprove
noise

noise
SNRSNRSNR =−=  

(1) 

 

It can be easily verified that: 

 

}0,...0,,...,,,,0,...,0{ 21
ECAECAECACEnoise

m

nc =  

}0,...0),(),...,(),(),(,0,...,0{ 21 VECAVECAVECAVECnoise m

pc −−−−=  

 

where |noisenc| = |noisepc| = T, the duration of simulation.  



 

112 

When the noise magnitude changes from em1 to em2, the error vector 

E2 = em2/em1×E1. In other words, E2 = constant×E1.  Therefore, using the fact that var 

(ax) = a
2
 × var(x), we have: 

12
|)var()tan(|)var( 2

emncemnc noisetconsnoise ×=  (2) 

Since V = [wi] ×E,  

12
|)var()tan(|)var( 2

empcempc noisetconsnoise ×=  (3) 

From (1), (2), and (3) it can be concluded that the SNRimprov is independent of error 

magnitude.  



 

113 

                                          REFERENCES 

[1]. S. Nassif, “Within-Chip Variability Analysis", Proc. IEDM 1998, pp. 283 – 286. 

[2]. S. Nassif, "Design for Variability in DSM Technologies", Proc. ISQED 2000, pp. 451 – 

455. 

[3]. B. E. Stine, et al., “Analysis and Decomposition of Spatial Variation in Integrated 

Circuit Processes and Devices”, IEEE Trans. on Semiconductor Manufacturing, Vol. 

10, No. 1, Feb. 1997, pp. 24 – 41. 

[4]. M. Orshansky, et. al, “Impact of Systematic Spatial Intra-Chip Gate Length Variability 

on Performance of High Speed Digital Circuits”, Proc. ICCAD 2000, pp. 62 – 67. 

[5]. A. Chandrakasan, et al., Design of High-Performance Microprocessor Circuits, Wiley-

IEEE Press 2000. 

[6]. S. Borkar, et al., “Parameter Variations and Impact on Circuits and Microarchitecture”, 

Proc. DAC 2003, pp. 338 – 342. 

[7]. J. W. Tschanze, et al., “Dynamic Sleep Transistor and Body Bias for Active Leakage 

Power Control of Microprocessors”, IEEE Journal of Solid-State Circuits, Vol. 38, No. 

11, Nov. 2003, pp. 1838 – 1845.  

[8]. J. P. Uyemura, “Introduction to VLSI Circuits and Systems”, John Wiley and Sons 

2002. 

[9]. J. Tschanz, et al., “Adaptive Body Bias for Reducing Impacts of Die-to-Die and Within-

Die Parameter Variations on Microprocessor Frequency and Leakage”, IEEE Journal of 

Solid-State Circuits, Vol. 37, No. 11, Nov. 2002, pp. 1396 – 1402.  

[10]. A. Keshavarzi, et al., “Technology Scaling of Optimum Reverse Body Bias for Standby 

Leakage Power Reduction in CMOS IC’s”, Proc. ISLPED 1999, pp. 252 – 254. 

[11]. T. Kuroda and M. Hamada, “Low-Power CMOS Digital Design with Dual Embedded 

Adaptive Power Supplies”, IEEE Journal of Solid-State Circuits, Vol. 35, April 2000, 

pp. 652 – 655. 

[12]. C. Chen, et al., “On Gate Level Power Optimization Using Dual-Supply Voltages”, 

IEEE Trans. VLSI, Vol. 9, Issue 5, Oct. 2001, pp. 616 – 629. 

[13]. T. Chen and S. Naffziger, “Comparison of Adaptive Body Bias (ABB) and Adaptive 

Supply Voltage (ASV) for Improving Delay and Leakage under the Presence of Process 

Variation”, IEEE Trans. on VLSI, Vol. 11, No. 5, Oct. 2003, pp. 888 – 899. 



 

114 

[14]. J. Tschanz, et al., “Effectiveness of Adaptive Supply Voltage and Body Bias for 

Reducing Impact of Parameter Variations in Low Power and High Performance 

Microprocessors”, Symp. On VLSI Circuits 2002, pp. 826 – 829. 

[15]. C. H. Kim, et al., “A Process Variation Compensating Technique for Sub-90-nm 

Dynamic Circuits”, Symp. on VLSI Circuits 2003, pp. 205 – 206. 

[16]. O. Coudert, “Gate Sizing for Constrained Delay/Power/Area Optimization”, IEEE 

Transactions on VLSI Systems, Vol. 5, Issue 4, Dec. 1997, pp. 465 – 472. 

[17]. J.P. Fishburn, “LATTIS: An Iterative Speedup Heuristic for Mapped Logic”, Proc. 

DAC 1992, pp. 488 – 491. 

[18]. D. S. Chen and M. Sarafzadeh, “An Exact Algorithm for Low Power Library-Specific 

Gate Re-Sizing”, Proc. DAC 1996, pp. 783 – 788. 

[19].  P. Pant, et al., “Dual-Threshold Voltage Assignment with Transistor Sizing for Low 

Power CMOS Circuits”, IEEE Trans. on VLSI Systems, Vol. 9, Issue 2, April 2001, 

pp.390 – 394. 

[20]. Y.S. Dhillon, et al., “Algorithm for Achieving Minimum Energy Consumption in 

CMOS Circuits Using Multiple Supply and Threshold Voltages at the Module Level”, 

Proc. ICCAD 2003, pp. 693 – 700. 

[21]. S. H. Choi, et al., “Novel Sizing Algorithm for Yield Improvement under Process 

Variation in Nanometer Technology”, Proc. DATE 2004, pp. 454 – 459. 

[22]. A. Srivastava, et al., “Statistical Optimization of Leakage Power Considering Process 

Variations Using Dual-Vth and Sizing”, Proc. DAC 2004, pp. 773 – 778. 

[23]. O. Neiroukh and X. Song, “Improving the Process-Variation Tolerance of Digital 

Circuits Using Gate Sizing and Statistical Techniques”, Proc. DATE 2005, pp. 294 – 

299. 

[24]. M. R. Guthaus, et al., “Gate Sizing Using Incremental Parameterized Statistical Timing 

Analysis”, Proc. ICCAD 2005, pp. 1029 – 1036. 

[25]. K. Ghopra, et al., “Parametric Yield Maximization Using Gate Sizing Based on 

Efficient Statistical Power and Delay Gradient Computation”, Proc. ICCAD 2005, pp. 

1023 – 1028. 

[26]. S. Narenda, et al., “Full-Chip Sub-threshold Leakage Power Prediction and Reduction 

Techniques for Sub-0.18-µm CMOS, IEEE Journal of Solid-State Circuits, Volume 39, 

Feb. 2004, pp. 501 – 510. 

[27]. R. Rao, et al., “Statistical Estimation of Leakage Current Considering Inter- and Intra-

Die Process Variation”, Proc. ISLPED 2003, pp. 84 – 89. 



 

115 

[28]. R. Rao, et al., “Parametric Yield Estimation Considering Leakage Variability”, Proc. 

DAC 2004, pp. 442 – 447. 

[29]. A. Srivastava, et al., “Accurate and Efficient Gate-Level Parametric Yield eEstimation 

Considering Correlated Variations in Leakage Power and Performance”, Proc. DAC 

2005, pp. 535 – 540. 

[30]. H. Chang and S. S. Sapatnekar, “Full-Chip Analysis of Leakage Power Under Process 

Variations, Including Spatial Correlations”, Proc. DAC 2005, pp. 523 – 528. 

[31]. S. Zhang, et al., “A Probabilistic Framework to Estimate Full-Chip Sub-threshold 

Leakage Power Distribution Considering Within-Die and Die-to-Die P-T-V 

Variations”, Proc. ISPLED 2004, pp. 156 – 161. 

[32]. H. Chang and S. S. Sapatnekar, “Statistical Timing Analysis Considering Partial 

Correlations Using a Single Pert-Like Traversal”, ICCAD 2003, pp. 621 – 625. 

[33]. A. Agarwal, et al., “Statistical Timing Analysis for Intra-Die Process Variations with 

Spatial Correlations”, ICCAD 2003, pp. 900 – 907. 

[34]. A. Agrawal, et al., “Statistical Timing Analysis Using Bounds and Selective 

Enumeration”, ICCAD 2003, pp. 1243 – 1260. 

[35]. A. Devgan and C. Kashyap, “Block-based Static Timing Analysis with Uncertainty”, 

ICCAD 2003, pp. 607 – 614. 

[36]. S. Bhardwaj, et. al, “τAU: Timing Analysis under Uncertainty”, ICCAD 2003, pp. 615 

– 620. 

[37]. K. Okada, et. al., “A Statistical Gate-Delay Model Considering Intra-Gate Variability”, 

ICCAD 2003, pp. 908 – 913 

[38]. N. Tripathi, et. al., “Optimal Assignment of High Threshold Voltage for Synthesizing 

Dual Threshold CMOS Circuits”, VLSI Design 2001. pp. 227 – 32. 

[39]. L. Wei, et. al., “Design and Optimization of Dual-Threshold Circuits for Low-Voltage 

Low-Power Applications”, IEEE Transactions on Very Large Scale Integration (VLSI) 

Systems, Vol.. 7, 1999, pp. 16 – 24. 

[40]. . Burns, et. al., “Design Optimization of a High-Performance Microprocessor Using 

Combination of Dual-Vt Allocation and Transistor Sizing”, VLSI Circuits Dig. Tech. 

Papers, 2002, pp. 218 – 219. 

[41]. N. Sherwani, Algorithms for VLSI Physical Design Automation, 3
rd

 edition, Kluwer 

Academic Publishers 1999. 

[42]. Y. Cao, et.al., “New Paradigm of Predictive MOSFET and Interconnect Modeling for 

Early Circuit Simulation”, Proc. CICC, 2000, pp. 201 – 204. 



 

116 

[43]. Y. S. Dhillon, et. al., "Soft-Error Tolerance Analysis and Optimization of Nanometer 

Circuits", Proc. DATE 2005, pp. 288 – 293. 

[44]. K. Roy and S. Parasad, Low Power CMOS VLSI: Circuit Design, 1
st
 edition, Wiley-

Interscience 2000. 

[45]. J. Rabaey, et. al., Digital Integrated Circuits, 2
nd

 edition, Prentice Hall 2002. 

[46]. K. T. Cheng, et. al, “Robust Delay-Fault Test Generation and Synthesis for Testability 

under a Standard Scan Design Methodology”, DAC 1991, pp. 80 – 86. 

[47]. P. Agrawal, et. al, “Generating Tests for Delay Faults in Non-Scan”, Design and Test of 

Computes, March 1993, pp. 20 – 28. 

[48]. L. C. Chen, et. al, “High Quality Robust Tests for Path Delay Faults”, VTS 1997, pp. 

88. 

[49]. A. K. Majhi and V. D. Agrawal, “Delay Fault Models and Coverage”, VLSI Design 

Conference 1998, pp. 364 – 369. 

[50]. J. Savir, “Broad-Side Delay Test”, IEEE Tran. on CAD, Aug. 1994, pp. 284 – 290. 

[51]. M. Abramovici, et. al, “Digital Systems Testing and Testable Design”, AT&T 1990. 

[52]. M. Ashouei, et. al., “Probabilistic Self-Adaptation of Nanoscale CMOS Circuits: Yield 

Maximization under Increased Intra-Die Variations”, VLSI Design 2007, pp.  711 – 

716. 

[53]. P. E. Dodd and L. W. Massengill, “Basic Mechanisms and Modeling of Single-Event 

Upset in Digital Microelectronics”, IEEE Trans. on Nuclear Science, Vol. 50, Issue 3, 

June 2003, pp. 583 – 602. 

[54]. P. Shivakumar, et. al., “Modeling the Effect of Technology Trends on the Soft Error 

Rate of Combinational Logic”, Proceeding International Conference on Dependable 

System and Networks 2002, pp. 389 – 398.  

[55]. R. K. Iyer, et. al., “Recent Advances and New Avenues in Hardware-Level Reliability 

Support”, IEEE MICRO, Vol. 25, No. 9, November 2005, pp. 18 – 29. 

[56]. K. H. Huang and J. A. Abraham, “Algorithm-Based Fault Tolerance for Matrix 

Operations”, IEEE Transactions on Computers”, Vol. C-33, Issue 6, June 1984, pp. 518 

– 528. 

[57]. J. Y. Jou and J. A. Abraham, “Fault-Tolerant Matrix Arithmetic and Signal Processing 

on Highly Concurrent Computing Structures”, Proceedings of the IEEE, vol. 74, No. 5, 

May 1986, pp. 732 – 741. 

[58]. J. Y. Jou and J. A. Abraham, “Fault Tolerant FFT Networks”, IEEE Transactions on 

Computers, Vol. 37, No. 5, May 1988, pp. 548 – 561. 



 

117 

[59]. V. S. Nair and J. A. Abraham, “Real-Number Codes for Fault-Tolerant Matrix 

Operations on Processor Arrays”, IEEE Trans. on Computer, Vol.39, Issue 4, April 

1990, pp. 426 – 435. 

[60]. L. N. Reddy and P. Banerjee, “Algorithm-Based Fault Detection for Signal Processing 

Applications”, IEEE Transactions on Computers, Vol. 39, No. 10, October 1990, pp. 

1304 – 1308. 

[61]. A. Chatterjee and M. A. d’Abreu, “The Design of Fault Tolerant Linear Digital State 

Variable System: Theory and Technique”, IEEE Trans. on Computers, Vol. 42, No. 7, 

July 1993, pp. 794 – 808. 

[62]. A. Chatterjee and R. K. Roy, “Concurrent Error Detection in Nonlinear Digital Circuits 

Using Time-Freeze Linearization”, IEEE Transactions on Computers, Vol. 46, No. 11, 

December 1997, pp. 1208 – 1218. 

[63]. F. T. Luk and H. Park, “An Analysis of Algorithm-Based Fault Tolerance Techniques”, 

Journal of Parallel and Distributed Computing, Vol. 5, Issue 2, April 1988, pp. 172 – 

184. 

[64].  G. M. Megson and D. J. Davis, “Algorithmic Fault Tolerance for Matrix Operations on 

Triangular Arrays”, Journal of Parallel Computing, Vol. 10, No. 2, April 1989, pp. 207 

– 219. 

[65]. W. W. Peterson and E. J. Weldon, “Error Correcting Codes”,  MIT Press, Cambridge. 

Mass, 1972. 

[66].  D. G. Hoffman, et al., Coding Theory: The Essentials, Marcel Dekker Inc, N.Y. 1991. 

[67]. R. Blahut, Algebraic Codes for Data Transmission, MIT Press, Cambridge, Mass, 2003. 

[68]. B. W. Johnson, “Design and Analysis of Fault Tolerant Digital System”, Addison-

Wesley 1989. 

[69]. A. U. Diril, et. al., "Design of Adaptive Nanometer Digital Systems for Effective 

Control of Soft Error Tolerance", Proceeding of VTS 2005, pp. 298 – 303. 

[70]. M. Nicolaidis, “Time Redundancy Based Soft Error Tolerance to Rescue Nanometer 

Technologies”, Proceeding of VTS 1999, pp. 86 – 94. 

[71]. S. Mitra, et. al., “Robust System Design Built-In Soft-Error Resilience”, Computer, 

Vol. 38, No. 2, Feb. 2005, pp. 43 – 52. 

[72]. Y. Arima, et. al, “Cosmic-Ray Immune Latch Circuit for 90nm Technology and 

Beyond”, Proc. SSCC 2004, pp. 492 – 493.  

[73]. R. Hedge and N. R. Shanbhag, “Soft Digital Signal Processing”, IEEE Tran. On VLSI, 

Vol. 9, Issue 6, Dec 2001, pp. 813 – 823. 



 

118 

[74]. B. Shim and N. R. Shanbhag, “Reduced Precision Redundancy for Low-Power Digital 

Filtering”, In Proc. of Asilmar Conerence 2001, pp. 148 – 152. 

[75]. N. R. Shanbhag, “Reliable and Energy-Efficient Digital Signal Processing”, DAC 2002, 

pp. 830 – 835.  

[76]. B. Shim and N. R. Shanbhag, “Energy-Efficient Soft Error-Tolerant Digital Signal 

Processing”, IEEE Tran. On VLSI, Vol. 14, No. 4, April 2006, pp. 336 – 348. 

[77]. P. Denyer and D. Renshaw, “VLSI Signal Processing: A Bit-Serial Approach”, 

Addison-Wesley, 1985. 

[78]. R. I. Hartley and J. R. Jasica, “Behavioral to structural transformation in a bit-serial 

silicon compiler”, IEEE Transactions on Computer-Aided Design, Vol. 7, No. 8, 

August 1988,  pp. 877-886. 

[79]. N. Park and A. Parker, “Sehwa: A Software Package for Synthesis of Pipeline from 

Behavioral Specifications”, IEEE Transactions on Computer-Aided Design, Vol. 7, 

Issue 3, March 1988, pp. 356 – 370. 

[80]. G. Zelniker and F. J. Taylor, “Advanced Digital Signal Processing: Theory and 

Applications”, Marcel Dekker, Inc., 1994. 

[81]. J. C. Lagarias, et al., "Convergence Properties of the Nelder-Mead Simplex Method in 

Low Dimensions", SIAM Journal of Optimization, Vol. 9, No. 1, 1998, pp. 112 – 147. 

[82]. http://www.mathworks.com/access/helpdesk/help/techdoc/index.html, fminsearch help 

(August 2007) 

[83]. M. Nissar, et al., “Probabilistic Concurrent Error Compensation in Nonlinear Digital 

Filters Using Linearized Checksums”, to appear in IOLTS 2007, pp. 173 – 182. 

[84]. M. Ashouei, et al., “Reconfiguring CMOS as Pseudo N/PMOS for Defect Tolerance in 

Nano-Scale CMOS”, VLSI Design 2008, submitted. 


