
RESEARCH ARTICLE Open Access

Algorithms, data structures, and numerics for
likelihood-based phylogenetic inference of huge
trees
Fernando Izquierdo-Carrasco1*, Stephen A Smith1,2 and Alexandros Stamatakis1*

Abstract

Background: The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing

technologies, poses new challenges for large-scale maximum likelihood-based phylogenetic analyses on trees with

more than 30,000 taxa and several genes. The three main computational challenges are: numerical stability, the

scalability of search algorithms, and the high memory requirements for computing the likelihood.

Results: We introduce methods for solving these three key problems and provide respective proof-of-concept

implementations in RAxML. The mechanisms presented here are not RAxML-specific and can thus be applied to

any likelihood-based (Bayesian or maximum likelihood) tree inference program. We develop a new search strategy

that can reduce the time required for tree inferences by more than 50% while yielding equally good trees (in the

statistical sense) for well-chosen starting trees. We present an adaptation of the Subtree Equality Vector technique

for phylogenomic datasets with missing data (already available in RAxML v728) that can reduce execution times

and memory requirements by up to 50%. Finally, we discuss issues pertaining to the numerical stability of the Γ

model of rate heterogeneity on very large trees and argue in favor of rate heterogeneity models that use a single

rate or rate category for each site to resolve these problems.

Conclusions: We address three major issues pertaining to large scale tree reconstruction under maximum

likelihood and propose respective solutions. Respective proof-of-concept/production-level implementations of our

ideas are made available as open-source code.

Background
The rapid accumulation of molecular sequence data that

is driven by novel wet-lab sequencing techniques such

as pyrosequencing [1] and collaborative whole-genome

sequencing projects such as the 10 K vertebrate genome

project http://www.genome10k.org/ pose unprecedented

challenges with respect to the scalability and numerical

stability of phylogenetic inference programs. Datasets

are continuously growing with respect to the number of

base-pairs and/or the number of taxa. For likelihood-

based [2] (Bayesian and Maximum Likelihood) codes

with their extremely high computational requirements

in terms of memory and floating point operations,

improving scalability for large datasets is particularly

challenging. Here, we focus on algorithm design,

improvement of numerical stability, and technical solu-

tions for accelerating the likelihood function and redu-

cing the memory requirements on phylogenomic

datasets with missing data that contain more than

10,000 taxa. The concepts we introduce are generic, that

is, they can be applied to other likelihood-based pro-

grams such as IQPNNI [3], GARLI [4], PHYML 3.0 [5],

FastTree 2.0 [6], MrBayes [7], PhyloBayes [8], and

BEAST [9] or to libraries for computing the phyloge-

netic likelihood such as BEAGLE http://code.google.

com/p/beagle-lib/.

The largest published maximum likelihood tree to

date contained approximately 13,000 taxa [10]. FastTree

2 has been used to infer approximate maximum likeli-

hood trees of approximately 200,000 taxa [6], and the

* Correspondence: Fernando.Izquierdo@h-its.org; Alexandros.Stamatakis@h-

its.org
1The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for

Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg,

Germany

Full list of author information is available at the end of the article

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470

http://www.biomedcentral.com/1471-2105/12/470

© 2011 Izquierdo-Carrasco et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://www.genome10k.org/
http://code.google.com/p/beagle-lib/
http://code.google.com/p/beagle-lib/
mailto:Fernando.Izquierdo@h-its.org
mailto:Alexandros.Stamatakis@h-its.org
mailto:Alexandros.Stamatakis@h-its.org
http://creativecommons.org/licenses/by/2.0

largest published tree using parsimony contained

approximately 73,000 taxa [11]. With novel alignment

assembly methods such as, for instance, PHLAWD [12],

increasing data availability, and collaborative projects for

reconstructing huge trees (e.g., the iPlant plant tree of

life grand challenge project http://www.iplantcollabora-

tive.org/challenge/iplant-tree-life) there exists a need to

infer even larger trees exceeding 100,000 taxa. RAxML

version 7.2.8 alpha (available at http://wwwkramer.in.

tum.de/exelixis/software.html) already incorporates

some of the mechanisms presented here. It has been

successfully deployed –without crashing– to infer biolo-

gically reasonable Maximum Likelihood (ML [2]) trees

on phylogenomic datasets with 10-20 genes for 38,000,

56,000, and 116,000 taxa.

Methods
In the following we discuss three different topics: (i) the

design of a new search algorithm for large datasets, (ii)

an appropriately adapted re-implementation of the Sub-

tree Equality Vector (SEVs [13]) technique in RAxML,

and (iii) numerical issues that arise with the widely used

Γ model of rate heterogeneity [14].

PhyNav Revisited: Constraining the tree search to a

backbone tree

PhyNav (Phylogenetic Navigator [15]) first introduced

the idea to reduce the dimension of the tree (and poten-

tially also the memory footprint of the tree) on which

the search is conducted, by identifying subtrees of clo-

sely related taxa whose root may be represented by a

single virtual tip. The rationale is that in large align-

ments there may exist many taxa that are closely related

to each other which can therefore be clustered together

into a single virtual tip (which we also denote as super-

taxon). By clustering taxa into virtual tips, the dimen-

sion of the tree can be reduced allowing for a tree

search on the backbone tree that is induced by the vir-

tual tips.

Given a hypothetical perfectly balanced tree, a reduc-

tion of 50% could correspond to collapsing each pair of

taxa into a single virtual tip. Thus, for each pair of tips,

there would be one less inner node to operate on, and

the total number of inner nodes would have been

halved.

We henceforth denote such a reduction of the tree

dimension as reduction factor and denote the reduced

unrooted tree that is induced by the virtual tips as back-

bone tree.

Once an appropriate backbone tree has been com-

puted (see below), a SPR-based (Subtree Pruning Re-

Grafting) search, or any other heuristic search strategy

using, for instance, NNI (Nearest Neighbor Inter-

change) or TBR (Tree Bisection Reconnection) moves,

can be restricted to operate within this backbone tree.

In other words, the virtual tips are interpreted as tips

in the backbone tree on which we conduct the tree

search. In our RAxML proof-of-concept implementa-

tion that deploys SPR moves, only subtrees that form

part of the backbone tree are pruned and will exclu-

sively be re-inserted into branches that lie within the

backbone.

Despite restricting the tree search to the backbone, in

our setup, we always compute the log likelihood score

of the comprehensive tree during the backbone tree

search. The log likelihood score of the comprehensive

tree can be easily computed, because virtual tips are

ancestral probability vectors that summarize the signal

of the (excluded) real tips situated below the respective

virtual tip. Note that, memory requirements for storing

the ancestral probability vector representing a virtual tip

are significantly higher than for storing a terminal

taxon. For terminal taxa, it suffices to store the molecu-

lar sequence as an array of single bytes and to use a

lookup table for obtaining the corresponding tip prob-

ability vector (see [16] for details).

One way to implement a PhyNav-like method com-

prises the following computational steps: Initially, gener-

ate a reasonable starting tree, using, for instance,

parsimony. Then, determine an appropriate backbone

tree and optimize branch lengths and model parameters

on this comprehensive tree under ML. Thereafter, deter-

mine and mark the ancestral probability vectors that will

become virtual tips in the backbone. Finally, conduct a

tree search on the backbone tree.

To also achieve a memory footprint reduction (not

implemented), one can write a multiple sequence align-

ment for the backbone to file that will partially consist

of nucleotide sequences and partially of ancestral prob-

ability vectors representing virtual tips. This reduced

alignment can then be parsed together with the back-

bone tree for conducting a tree search. By deploying

PhyNav-like algorithms, one can save memory, if inner

nodes (ancestral probability vectors) are excluded from

the backbone, since ancestral probability vectors largely

dominate the memory requirements of likelihood-based

programs (see [16] for details).

In terms of algorithm design, the issue that predomi-

nantly affects performance is the computation of the

backbone tree, that is: How do we determine “good” vir-

tual tips?

Building the Backbone

To build a backbone, we assume that a reasonable (i.e.,

non-random) fully resolved comprehensive tree T com-

prising all taxa (e.g., obtained via parsimony using TNT

[11] or RAxML) is provided as input. This comprehen-

sive n-taxon tree has n tips and n-2 ancestral (inner)

nodes.

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470

http://www.biomedcentral.com/1471-2105/12/470

Page 2 of 14

http://www.iplantcollaborative.org/challenge/iplant-tree-life
http://www.iplantcollaborative.org/challenge/iplant-tree-life
http://wwwkramer.in.tum.de/exelixis/software.html
http://wwwkramer.in.tum.de/exelixis/software.html

The second parameter for the backbone tree algorithm

is the desired tree size reduction factor R, where 0.0 <R

< 1.0. This parameter denotes to which fraction of n the

backbone tree shall be reduced in size. Ideally, the back-

bone tree will then comprise n·R-2 ancestral nodes and

n·R backbone tips. Backbone tips may either be virtual

tips (ancestral nodes) or real tips. Evidently, choosing

very low values of R may significantly impact the quality

of the inference, specially if very short branch lengths

are present. According to our experience (see results

section), using R > 0.25 is a safe lower bound.

Our backbone construction algorithm executes two

main computational steps that are described in more

detail below. Initially, we assign the n tips to n·R clus-

ters, that is, c = ⌈n·R⌉, where c is the total number of

clusters obtained. For each tip we store a cluster identi-

fier that denotes to which cluster the tip has been

assigned. Thereafter, we traverse the tree and use the

cluster identifiers to label all ancestral nodes as residing

inside, outside or on the boundary of the backbone.

Tip clustering There are plenty of possible approaches

to cluster tips. First, the available topology itself (for

example, the optimized parsimony starting tree) can be

used directly as a hierachical tree (hierachical cluster-

ing). Another alternative may be to compute parsimony

scores of subtrees, and then cluster together according

to a threshold. Here, we only present an approach based

on computing a distance matrix and applying average-

linkage hierarchical clustering [17]. Our assesment indi-

cated this approach yields significantly better results

than the others.

In standard hierarchical clustering, the first step con-

sists of calculating a distance matrix that contains the

pair-wise distances between all items (tips) to be clus-

tered. However, given a comprehensive tree T with ML

estimates of branch lengths, we can directly obtain this

distance matrix from the tree by calculating the pair-

wise patristic distances. The patristic distance between

two taxa is the sum of branch lengths on the path in

the tree connecting the two taxa. Thus, the distance

matrix is symmetric. The space requirements for storing

such a patristic distance matrix are in O(n2) which can

become prohibitive for large alignments with n ≥ 30,

000 tips. We observe that, the pair-wise patristic dis-

tances between most tips will be very large and hence

these tips will be assigned to different clusters anyway.

Therefore, to save memory, one can decompose this

process into computing several smaller, partial distance

matrices, since the comprehensive starting tree already

induces a hierarchical clustering structure. If we subdi-

vide the problem into computing p partial pair-wise dis-

tance matrices, and each partial matrix defines

c =
∑k

i=0 ci = ⌈n · R⌉, so that the total number of clusters,

we need to ensure that desired clusters still corresponds

to the specified reduction factor R. To achieve this, we

do not fix the number of partial matrices k a priori.

Instead, we define a threshold value m that represents

an upper bound for the number of tips contained in

each partial matrix. Let n be the total number of taxa, ni
the number of tips in a partial matrix, where ni ≤ m and

n =
∑k

i=0 ni. From each partial matrix, we extract an

amount of clusters proportional to its size, that is,

ci ∝ c × ni

n .

This is implemented as follows: First, we find a set of

subtrees such that (i) each subtree has as many tips as

possible and at most m tree tips and (ii) each tree tip is

included in exactly one subtree, that is, all tree tips are

included in one subtree and no tip forms part of more

than one subtree.

For each such subtree i, we then build a (partial)

patristic distance matrix for all ni subtree tips. There-

after, we cluster them, by generating a hierarchical clus-

ter tree. This hierarchical tree may be cut at different

levels to generate a varying number of subtree tip

groups. We choose to cut the the tree such that it gen-

erates ci clusters of subtree tips. If required, the number

of desired clusters ci will have been iteratively adjusted

beforehand (for further details see below) for each par-

tial matrix i to ensure that c =
∑k

i=0 ci.

For example, consider a 40, 000-taxon tree, a reduc-

tion factor of 0.5 (corresponding to 20, 000 clusters),

and a partial matrix threshold of 32, 000 taxa. In this

example, we may obtain distance matrices of 10, 000

and 30, 000 taxa respectively. Then we will need to

extract 15, 000 clusters from the 30, 000 taxa distance

matrix and 5, 000 clusters from the 10, 000 taxa dis-

tance matrix.

To be able to apply this method and compute partial

patristic distance matrices, we need to devise an algo-

rithm that selects subtrees from the comprehensive phy-

logeny such that they contain at most m taxa. We start

by selecting the innermost node of the tree (see below).

Consider that, each inner node i of an unrooted binary

tree T can be regarded as a trifurcation that defines

three subtrees Ti, a, Ti, b and Ti, c. We define subtree

length stl(Ti) as the sum of all branch lengths in subtree

Ti. Thus, stl(Ti, a) + stl(Ti, b) + stl(Ti, c) = stl(T) holds

for any inner node i, where T is the comprehensive tree.

In our current default implementation, we select the

innermost node j that maximizes stl(T) - max{stl(Tj, a),

stl(Tj, b), stl(Tj, c)}. An alternative criterion for selecting

the innermost node is to determine the node that mini-

mizes the variance of the three outgoing subtree lengths.

Other possible criteria, that are not based on subtree

length may be defined, for instance, as finding the node

that minimizes the variance of the node-to-tip distance

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470

http://www.biomedcentral.com/1471-2105/12/470

Page 3 of 14

or finding the node with the highest minimum node-to-

tip distance. The node-to-tip distance is defined as the

sum of branch lengths on the path in the tree leading

from an ancestral node to a tip.

We conducted an empirical assessment (based on our

collection of large real-world trees) of these alternative

approaches for determining the innermost node of a

tree. The outcome (results in additional file 1) was that

the respective innermost nodes (as identified by the

above criteria) are either identical or close neighbors,

that is, located in the same region of the tree.

Backbone construction Once we have determined the

innermost node, we conduct a depth-first tree traversal

starting at this node and descend into each of the three

subtrees. The depth-first traversal terminates, when a

subtree root is encountered that comprises ≤ m tips. All

subtree roots that contain ≤ m tips are stored in a list

for further processing. Thus, when the depth-first tra-

versal has been completed, this list of k subtree roots

can be used to generate the k partial patristic distance

matrices of maximum size O(m2). In our implementa-

tion, we set m := 1024. This a suitable value, since only

a few seconds are required for processing partial dis-

tance matrices.

For each subtree root (i.e., each partial patristic dis-

tance matrix), we determine how many clusters should

approximately be extracted, via c̄i :=
⌊

1
2

+ c · ni

n

⌋

, where i

is the cluster (subtree) number, ni is the number of tips

in the respective cluster/subtree, c = n·R is the total

number of desired clusters, and c̄i is the number of clus-

ters for subtree i. In general, c �=
∑k

i=0 c̄i. The overhead,

or deficit for that matter, of clusters, that is given by

�c = c −
∑k

i=0 ci, is then proportionally distributed

across all remaining partial matrices. This process is

repeated iteratively until no overhead (or deficit)

remains. In each iteration, we reassign ci :=
⌈

c̄i + �c · c̄i

c

⌉

until c =
∑k

i=0 ci for every i.

Then, for each subtree i = 1...k we proceed as follows:

For all tips in subtree i, calculate the patristic dis-

tances to all other tips in this subtree and save them in

the respective distance matrix.

Apply pairwise average clustering to generate a hier-

archical tree of joins from the distance matrix.

Cut the tree, such that exactly ci clusters are

generated.

Add those clusters to a global list of clusters. Maintain

a list that keeps track to which cluster a tip belongs.

When all subtrees have been processed, we have a list

of c clusters. Note that, each cluster contains x tips,

where 1 ≤ x ≤ m and that each tip is assigned to exactly

one cluster. The step to build the backbone from the

clusters is not trivial. We use labels (inside,

boundary and outside) to identify which nodes

belong to the backbone and which ones do not.

The backbone tree is defined by nodes marked as

inside and boundary. Once the clusters have been

computed, we build the backbone as follows: Initially,

we label each inner node in the tree as inside, tip

nodes which belong to clusters of size one as bound-

ary, and all remaining terminal nodes as outside. In

addition, we maintain a list for storing the cluster iden-

tifiers of ancestral nodes that will not form part of the

backbone.

Once this is done, we update/adapt the backbone

assignment for ancestral nodes: The nodes of the com-

prehensive tree that represent the k subtree roots will

remain inside the backbone. On each of the k subtree

roots, we initiate a post-order traversal to relabel the

ancestral nodes, if required, according the following rule

set:

If the two child nodes are labeled as inside or

boundary, the ancestral node remains labeled as

inside.

If one child is labeled as inside or boundary and

the other child as outside, the ancestral node is rela-

beled as inside and the outside child node is rela-

beled as boundary.

If both children are labeled as outside, we need to

check to which cluster they belong. If they belong to the

same cluster, the parent node is labeled as outside

and the shared cluster identifier of the child nodes is

propagated to the parent node. If the two children do

not belong to the same cluster, the parent node is

labeled as inside and both children are relabeled as

boundary.

When the post-order traversal is about to be com-

pleted, we arrive at the subtree root i again, which was

originally labelled as inside. At this point, we check

whether the adjacent backbone node of the subtree root

i has been labeled as outside. Whenever this is the

case (see Figure 1 for an example), the adjacent back-

bone node is relabeled as boundary for consistency.

Given a set of tips that form part of the same cluster,

it may occur that these tips also form a monophyletic

group. In this case, during the postorder traversal, all

ancestral nodes will be grouped together under the

same cluster identifier and the common ancestral node

will become a backbone boundary (virtual tip). How-

ever, if the tips in a cluster are not monophyletic (see

for instance, in Figure 2), the application of the above

rules requires some additional boundary relabelling.

Based on the prolegomena, a single cluster may thus

induce more than a single virtual tip. As a consequence,

the number of virtual tips may actually be higher than

the number of clusters. In turn, the reduction of tree

size that can be achieved will be smaller than specified

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470

http://www.biomedcentral.com/1471-2105/12/470

Page 4 of 14

by R. The impact and frequency of occurrence of this

phenomenon (non-monophyletic clusters) depends on

the shape of the tree and the branch lengths. In Table 1,

we outline this effect for trees with 37,831 and 55,593

taxa. We computed the average number of virtual tips

generated by our algorithm on 10 distinct trees per

dataset and reduction factors of 0.25 and 0.5

respectively.

Tree Searches on the Backbone

We have implemented the above algorithm in a dedi-

cated RAxML version that is available for download at

http://wwwkramer.in.tum.de/exelixis/software/Backbone-

Search.zip. Initially, RAxML will generate a comprehen-

sive randomized stepwise addition order parsimony tree,

or read in a user specified tree via -t. Then it will opti-

mize ML model parameters–including branch lengths–

on the comprehensive tree. Thereafter, it will execute

the backbone algorithm as described above. The tree

searches on the backbone are based on the standard

RAxML hill-climbing algorithm. Lazy SPR moves are

only conducted within the backbone. After each cycle of

SPR moves (see [18] for details), the backbone tree will

be re-computed based on the currently best tree. Also,

the branch lengths of the entire tree (including those

branches not forming part of the backbone) will be re-

optimized once after each SPR cycle.

Subtree Equality Vectors Re-Visited

We introduced and implemented the concept of Subtree

Equality Vectors (SEVs) to accelerate likelihood compu-

tations by reducing the number of required floating

point operations in 2002 [19]. Conceptually similar

approaches were presented in 2004 [20] and 2010 [21].

The underlying idea is based on the following observa-

tion: Given two identical alignment sites i and j that

evolve under the same evolutionary model (GTR para-

meters, a shape parameter of the Γ function, etc.) and

for which a joint branch length has been estimated,

their per-site log likelihoods LnL(i) and LnL(j) will be

identical. Hence, to save computations, one can com-

press the identical sites into a single site pattern and

assign a respective site pattern count (weight) to this

site pattern. Thus, for two identical sites i and j, we can

compute the per-site log likelihood as 2·LnL(i). This

Figure 1 Consistency of labels at the backbone boundaries. At first (left) an initial backbone exists (thick branches), all inner nodes are

labelled as inside (I) and each tip node has a cluster id. After completion of the post-order traversal (right), each inner node has been relabelled

accordingly, if required. Here, cluster 2 is monophyletic, hence the cluster id was inherited propagated back to the initial backbone node. This

produced a branch (edge) with an inside and an outside node; therefore the outside(O) node is relabelled (arrow) as boundary(B) node.

Figure 2 Increase of in backbone tips due to topology conflicts. At first (left) an initial backbone exists (thick branches), all inner nodes are

labelled as inside (I) and each tip node has a cluster id. Upon completion of the post-order traversal (right), each inner node has been

relabelled accordingly. Here, cluster 2 is not monophyletic. Hence, an additional virtual tip is created, that is, cluster 2 generates 2 boundary tips.

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470

http://www.biomedcentral.com/1471-2105/12/470

Page 5 of 14

http://wwwkramer.in.tum.de/exelixis/software/BackboneSearch.zip
http://wwwkramer.in.tum.de/exelixis/software/BackboneSearch.zip

global compression of alignments (executed prior to

conducting likelihood computations) is implemented in

all current likelihood-based codes.

This basic idea of site compression can be extended to

the subtree level, by using SEVs for instance, to save

additional computations. Consider the equation [2] for

computing the ancestral probability vector entry for

observing nucleotide A at site i of a parent node node

p, with two child nodes l and r given the respective

branch lengths bl and br and transition probability

matrices P(bl) and P(br):

�L
(p)
A (i) = (

T
∑

S=A

PAS(bl)�L
(l)
S (i))(

T
∑

S=A

PAS(br)�L
(r)
S (i)) (1)

We observe that, if the site patterns in the subtree

(and hence sub-alignment) rooted at p at sites i and j

are identical, and if the transition probability matrices P

(bl) and P(br) are identical at sites i and j (implying

identical branch lengths and model parameters at sites i

and j), then L
(p)
S (i) = L

(p)
S (j) for all states S (e.g., A, C,

G, T). Thus, we can avoid re-computing all ancestral

states for site j if we have already computed the ances-

tral states for site i.

The key technical challenge with this approach is that

it requires a large amount of bookkeeping, to keep track

of identical subtree site patterns (for details see [19]).

Moreover, SEVs require additional data structures and a

case switch in the innermost loop of the likelihood func-

tion that iterates over the sites of the ancestral probabil-

ity vectors, which may lead to cache misses and

incorrectly predicted conditional jumps by the processor

hardware. Because of these observations we had aban-

doned this approach completely in RAxML.

However, the advent of gappy phylogenomic align-

ments, that is alignments that contain a large amount of

structured (non-randomly distributed across the align-

ment) missing data regions per gene for the taxa under

study, motivated us to re-assess SEVs in a simpler and

thus more efficient setting.

Gaps and undetermined characters are mathematically

equivalent in the standard ML framework. Since struc-

tured patches of missing data dominate current phyloge-

nomic datasets (typically the amount of missing data

ranges between 50% to 90%), we only track subtree site

patterns that entirely consist of gaps/undetermined

characters (e.g., we are only interested in subtree sites of

the from: —— in a subtree of size 4). Thereby, we avoid

the more complex task (see [20] and [21]) of tracking

all identical subtree site patterns (e.g., detecting all sites

of the form: ACCT in a subtree of size 4). This restric-

tion simplifies the required bookkeeping procedure and

data structure significantly, because we only need to

know whether a subtree site consists entirely of gaps or

not. Thus, given an alignment with n sites, it suffices to

enhance the data structures for storing tips and inner

nodes by a simple bit vector with n bits. If all-gap sites

are represented by 1 and non-gap sites by 0, we simply

need to execute a bit-wise AND on the respective bit

vectors of the child nodes l and r in conjunction with

the tree traversal for computing the likelihood to deter-

mine the all-gap sites at the ancestral node p (see Figure

3). We can then use this bit vector at p to determine if

we need to compute something at a site i or not.

We have implemented this method for DNA and pro-

tein data under the Γ model of rate heterogeneity in

RAxML v728 (alpha) available at http://wwwkramer.in.

tum.de/exelixis/software.html. Evidently, the efficiency

of this approach depends on the proportion of gaps/

missing data and the distribution of gaps in the input

alignment. Since areas of missing data are typically well-

structured in current phylogenomic datasets, this

approach is expected to work well with this kind of

input data. To facilitate the deployment of the SEV-

based version of the likelihood function, we have inte-

grated an automatic performance test that decides

whether to use the SEV-based or the standard likelihood

implementation. When the starting tree has been com-

puted or parsed by RAxML, the program will execute a

full tree traversal (re-compute all ancestral probability

vectors) for the standard and the SEV-based likelihood

function implementation and measure the respective

execution times. If the execution time of the SEV-based

approach is 20% smaller than that of the standard

implementation, RAxML will automatically use the

SEV-based implementation for all subsequent likelihood

computations. The threshold of 20% is based on empiri-

cal observations. While SEVs can speed-up ancestral

probability vector computations, SEVs slightly slow

down the branch length optimization and likelihood

computation (at the root) functions because of the

memory accesses to the bit vectors.

Saving Memory with SEVs

SEVs as implemented here, can also be deployed to

reduce memory requirements. As mentioned above, if,

at an ancestral node p we encounter an all-gap site, we

completely omit its computation. In order to accomplish

this, we need to maintain only one additional ancestral

Table 1 Average number of computed backbone tips

over 10 distinct trees

Average number of computed backbone tips

Reduction Factor R 37831 (expected) 55593 (expected)

0.25 12668.0 (9457.75) 19366.7 (13898.25)

0.50 22340.0 (18915.5) 33501.5 (27796.5)

The average number of backbone tips is higher than the expected number

n·R

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470

http://www.biomedcentral.com/1471-2105/12/470

Page 6 of 14

http://wwwkramer.in.tum.de/exelixis/software.html
http://wwwkramer.in.tum.de/exelixis/software.html

probability vector site, that contains the signal for all-

gap sites. Consider an ancestral probability vector where

50% of the entries in the all-gap site bit-vector are set to

1, that is, where we only need to compute 50% of the

ancestral probability vector entries with respect to the

total alignment length.

We can observe that, in addition to saving 50% of the

computations required for this ancestral probability vec-

tor, we can also save 50% of the memory space required

for storing the ancestral probability vector (see Figure

4). Thus, the memory requirements for each ancestral

node can be determined on-the-fly as we traverse the

tree, by subtracting the number of entries that are set to

1 in the bit vector from the input alignment length.

Remember that, the bit vectors we deploy are always as

long as the input alignment.

The key technical problem that arises is that, the

required ancestral probability vector lengths at inner

nodes will change dynamically when the tree topology

changes or even when the tree is just re-rooted. Given a

rooting of the tree, one may think of this as ancestral

probability vectors becoming longer while one

approaches the root of the tree. At present we have

implemented this by dynamically freeing and allocating

memory (using free() and malloc()) at each ances-

tral node. The reallocation only takes place when the

all-gap bit-vector count (number of bits set to 1) corre-

sponding to the required ancestral probability vector

does not equal the all-gap bit-vector count of the cur-

rent ancestral probability vector at an ancestral node.

Note that, the concepts presented here can also be

applied to phylogenomic datasets with joint branch

length estimates across partitions, while the conceptually

different ideas presented in [22] can only be applied to

partitioned phylogenomic datasets with per-partition

branch length estimates.

Numerical Problems of the Γ Model of Rate

Heterogeneity

Numerical scaling of the entries in the ancestral (inner)

probability vectors during likelihood computations on

trees, for avoiding numerical underflow has become a

standard technique that is implemented in most likeli-

hood-based programs (PHYML, Mr-Bayes, GARLI,

RAxML, BEAST, etc.). For an overview of numerical

scaling techniques, please refer to [16]. A numerical pro-

blem that arises for very large trees with more than

approximately 50,000 taxa in RAxML (and probably all

other likelihood-based programs as well) is associated

with the widely used [23] Γ model of rate heterogeneity

[14].

For the Γ model, a discrete approximation (typically

using 4 discrete rates) is used to approximate the inte-

gral of the likelihood over the Γ curve at each site. That

is, instead of computing the ancestral probabilities L(A),

L(C), L(G), L(T) for the 4 nucleotides A, C, G, T at a

specific site of an ancestral node in the tree (see Equa-

tion 1), one needs to compute those probabilities for all

Figure 3 Using Subtree Equality Vectors to save computations for all-gap alignment sites in subtrees.

Figure 4 Using Subtree Equality Vectors to save computations

and memory for all-gap alignment sites in subtrees.

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470

http://www.biomedcentral.com/1471-2105/12/470

Page 7 of 14

4 discrete Γ rates r0, r1, r2, r3. Thus, every site of an

ancestral probability vector comprises 16 values:

L(A)r0
, L(C)r0

, L(G)r0
, L(T)r0

, ...

..., L(A)r3
, L(C)r3

, L(G)r3
, L(T)r3

.
(2)

The numerical problem that arises with the Γ model

on very large trees is that those 16 values need to be

jointly scaled numerically (all 16 values are multiplied

by a large number) to avoid numerical underflow (see

below).

Scaling of the probability vector entries may be con-

ducted as follows: At a specific site c of an ancestral

probability vector for DNA data �L we scale the entries

if, for instance,

L(A)r0
(c) < ε ∧ L(C)r0

(c) < ε, ...

..., L(G)r3
(c) < ε ∧ L(T)r3

(c) < ε
(3)

where ε can be set to ε := 1/2256 under double preci-

sion arithmetics. Thus, we decide to scale up all ances-

tral probability vector entries at a site c, when all

unscaled entries for all discrete rates are smaller than

some pre-defined ε.

Other options for scaling exist. For instance, one cal-

culates a scaling factor such that the largest of the 16

ancestral probability values at a site is scaled to 1.0. One

can also conduct this type of scaling at every ancestral

probability vector without checking that all values are

smaller than some ε. We also experimented with such

alternative implementations for numerical scaling in

RAxML, but were not able to solve the general scaling

problem for the Γ model of rate heterogeneity (see

below). With alternative scaling implementations, the

fundamental numerical problem occurred again for

slightly larger tree sizes.

If according to Equation 3 a probability vector column

c at vector �L needs to be scaled, we simply multiply all

entries

−→
LAr0

(c),
−→
LCr0

(c), ...,
−→
LGr3

(c),
−→
LT r3

(c) (4)

by 2256.

In order to correct (undo) the scaling multiplications

(accumulated during a tree traversal) at the virtual root,

we need to keep track of the total number of scaling

operations conducted per column. For this, we use inte-

ger vectors �U that maintain the scaling events and cor-

respond to the respective probability vectors at inner

nodes. As we traverse the tree to compute an ancestral

vector �L(k) from two child vectors �L(i) and �L(j) the scaling

vector is initially updated as follows

�U(k)(c) := �U(i)(c) + �U(j)(c). Then, if an entry of �L(k) needs

to be scaled at position c we increment

�U(k)(c) := �U(k)(c) + 1. The scaling vectors at the tips of

the tree are not allocated, but implicitly initialized with

0.

At the virtual root, given �L(i), �L(j) and the correspond-

ing scaling vectors �U(i), �U(j), we can compute the likeli-

hood under the Γ model as follows:

l(c) = ε
U(i)(c)+U(j)(c)(1

4
· Qr0

+ 1
4

· Qr1
+ 1

4
· Qr2

+ 1
4

· Qr3
) (5)

where, for instance,

Qr0
:= (

Tr0
∑

R=Ar0

(πR
�L

(i)
Rr0

(c)

Tr0
∑

S=Ar0

PRS(bvr)�L
(j)
Sr0

(c))) (6)

If we take the logarithm of l(c) this can be rewritten

as:

log(l(c)) = (U(i)(c) + U(j)(c))log(ε) + ...

+log(1
4

· Qr0
+ 1

4
· Qr1

+ 1
4

· Qr2
+ 1

4
· Qr3

)
(7)

As can be observed, if all 16 values are scaled jointly,

the scaling multiplications can be easily undone numeri-

cally at the virtual root, when the overall likelihood of

the tree is computed (see [16] for more details). This is

not the case, if one intends to scale the ancestral prob-

ability values individually on a per-rate (r0, ..., r3) basis.

The problem that arises with using Γ on very large trees

is that, the 16 ancestral probability values (using four dis-

crete Γ rates for DNA data), may have such highly diver-

gent numerical values because of the 4 discrete rates r0, r1,

r2, r3, that scaling across all 16 of them will still not prevent

numerical under-flow. In other words, the smallest value of

those 16 will be too small and the largest too large to fit

into the representable machine number range between 0.0

and 1.0. Scaling values above 1.0 will yield numerical over-

flow and does hence not provide a solution either. At pre-

sent, we are not aware how scaling multiplications can be

undone (reversed) in a numerically stable way at the root,

if one scales the probability values for each discrete rate

category individually. This phenomenon could also occur

for models other than Γ that only use four values per site

(see below), but will probably occur on significantly larger

trees. While one could use extended precision libraries, as

provided for instance by the GNU Scientific Library, the

negative performance impact will be such, that the compu-

tation of large trees also becomes prohibitive.

It is however possible to address this scaling problem

by discarding the per-rate/category likelihoods that con-

tribute least to the overall likelihood and thereby

approximate the GAMMA-based likelihood score of a

site. This approach (currently unpublished) has been

implemented in PhyML [5].

To this end, we advocate the usage of per-site rate

categories as proposed and implemented in RAxML

(CAT approximation of rate heterogeneity [24]),

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470

http://www.biomedcentral.com/1471-2105/12/470

Page 8 of 14

PhyloBayes [25], or FastTree 2.0 [6]. While methods that

model among-site rate heterogeneity by using one rate

per site can help to significantly reduce computational

requirements (memory utilization and floating point

operations are reduced by approximately a factor of four

compared to a Γ model with four discrete rates [24]),

they can also help to resolve the aforementioned numer-

ical problems with Γ on very large trees. Note that, the

CAT approximation as implemented in RAxML should

not be confused with the substantially different CAT

model implemented in PhyloBayes. The unfortunate fact

that an identical acronym is used is because at time of

publication, the author of RAxML was not aware of the

PhyloBayes CAT model that was introduced earlier.

One key issue with the so-called CAT approximation

of rate heterogeneity [24] in RAxML was that branch

length values were meaningless. This has been corrected

in RAxML version 7.2.9 (available at http://wwwkramer.

in.tum.de/exelixis/software/RAxML-7.2.9.tar.bz2) by

appropriately re-scaling the per-site rate categories such

that the mean substitution rate is 1.0. While, as we

show, the correctly scaled CAT-based branch lengths

are highly correlated (see results section) with the

branch lengths obtained from the Γ model, the overall

tree length obtained for Γ and CAT-based branch

lengths can vary significantly. Analogous results were

obtained for FastTree 2.0 [6]. This does not represent a

problem as long as post-analysis tools for trees (e.g,

divergence-time estimation, ancestral state reconstruc-

tion) do not rely on absolute branch length values.

Another issue that needs to be addressed is that CAT-

based log likelihood scores across different runs (e.g.,

two ML searches on the original alignment using differ-

ent starting trees) can not be compared directly, because

the estimates and assignments of rate categories to sites

may be slightly different for each search/tree topology.

Therefore, for comparing likelihood scores of trees

under the CAT approximation of rate heterogeneity, we

need to score all alternative trees under the same assign-

ment of rate categories to sites. RAxML v729 imple-

ments the -f n option to score a set of fixed trees

under the same rate category to site assignment.

Finally, one also needs to assess how differently trees

are ranked (ordered) with respect to their log likelihood

scores, if scored under Γ or under CAT. While one

would not expect a perfect rank correlation (because

CAT has more ML model parameters than Γ), because

both models accomodate rate heterogeneity, the correla-

tion should not be too low either.

Results and Discussion
Test Datasets

To assess our methods, we used two large multi-gene

datasets of plants.

The first dataset comprises 37,831 taxa and 9,028 sites

and was obtained as follows: We assembled a DNA

sequence matrix of 37,831 seed plant taxa consisting of

the chloroplast regions atpB (1,861 taxa, > 2.6 Mega-

bases [Mb]), matK (10,886 taxa, > 14.3 Mb), rbcL (7,319

taxa, > 9.7 Mb), trnK (4,163 taxa, > 7.5 Mb), and trnL-

trnF (17,618 taxa, > 13 Mb), and the internal transcribed

spacer (ITS; 26,038 taxa, > 14.3 Mb), using the Phylo-

geny Assembly with Databases tool (PHLAWD [12]

http://code.google.com/p/phlawd). All sequence align-

ments were conducted using MAFFT version 6 [26] for

initial alignments and MUSCLE for profile alignments

[27]. Alignment matrix manipulations were performed

with Phyutility [28].

The second dataset comprises 55,593 taxa and 9,853

sites and was obtained using the same pipeline as

described above. The gene regions used were atpB

(2,346 taxa, > 3.6 Megabases [Mb]), matK (14,848 taxa,

> 33.6 Mb), rbcL (10,269 taxa, > 14.9 Mb), trnK (5,859

taxa, > 15.3 Mb), and trnL-trnF (25,346 taxa, > 30.1

Mb), and the internal transcribed spacer (ITS; 37,492

taxa, > 30.9 Mb).

For ease of reference we henceforth denote the 37,831

taxon datasets as 38 K and the 55,593 taxon as 56 K.

Trees computed on the 56 K dataset have recently been

published [29] and the alignment is available at http://

datadryad.org/. The 38 K dataset is currently unpub-

lished, but will be made available immediately upon

publication.

Backbone Algorithm

To test the backbone algorithm we executed the dedi-

cated RAxML version (available at http://wwwkramer.in.

tum.de/exelixis/software/BackboneSearch.zip) with the

experimental -L command line option. This option

initially builds a backbone tree and then deploys the

CAT approximation of rate heterogeneity [24] with the

standard RAxML hill-climbing search algorithm [18,30]

to apply lazy SPR moves (see [18]) within the backbone

only. We used tree size reduction factors of 0.25 and

0.5. As starting trees, we used randomized stepwise

addition order parsimony starting trees generated with

RAxML v727 (-y option). For each dataset, we inferred

10 ML trees for each of the 10 parsimony starting trees.

RAxML was executed using the Pthreads-based parallel

version [31] with 16 threads on unloaded Quad-Core

AMD Opteron nodes with 16 cores and 128 GB RAM

each.

We computed average runtimes over 10 runs for the

38 K and 56 K datasets respectively. For each backbone

tree, we also computed the theoretical minimum num-

ber of bytes (denoted as Memory for Backbone) required

to store the ancestral probability vectors at the virtual

tips and the inner nodes which dominate memory

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470

http://www.biomedcentral.com/1471-2105/12/470

Page 9 of 14

http://wwwkramer.in.tum.de/exelixis/software/RAxML-7.2.9.tar.bz2
http://wwwkramer.in.tum.de/exelixis/software/RAxML-7.2.9.tar.bz2
http://code.google.com/p/phlawd
http://datadryad.org/
http://datadryad.org/
http://wwwkramer.in.tum.de/exelixis/software/BackboneSearch.zip
http://wwwkramer.in.tum.de/exelixis/software/BackboneSearch.zip

requirements. If the branch length optimization process,

unlike in our current implementation, is limited to opti-

mizing branches within the backbone, this theoretical

minimum value represents a good estimate of the mem-

ory footprint for a backbone tree search. We also com-

puted the respective memory requirements for the

comprehensive tree (denoted as Memory for Full tree),

which reflects the ‘standard’ memory requirements

when no reduction factor is applied.

These values (see Tables 2 and 3) provide a notion of

the potential memory savings that can be achieved by

the backbone approach. In Tables 2 and 3 we also pro-

vide the respective execution times and average log like-

lihood scores obtained by using the backbone algorithm

(R := 0.25, R := 0.5) and a comprehensive search on the

full tree (R := 1.0). Those values have been averaged

over 10 runs (10 starting trees). While execution times

can be reduced by the backbone approach, log likeli-

hood scores obtained by conducting searches on a back-

bone are slightly worse than those obtained by

searching on the full tree. Also note that, for unfavor-

able tree shapes, that is, tree shapes where a substantial

part of the phylogenetic signal is located at or near the

tips, a too aggressive setting of R may potentially gener-

ate unfavorable results since this signal can be lost in

the backbone. However, some exploratory tests with

simulated data (results not shown) did not show such

an effect for backbone searches.

In Figures 5 and 6 we show that the choice of the ran-

dom number seed (-p option in RAxML), that deter-

mines the shape of the starting trees, has a significant

impact on the final log likelihood score (computed

under GTR+Γ), irrespective of the search strategy that is

used. On average, searches on the full tree yield better

likelihood scores than searches on backbone trees. How-

ever, the variance of the likelihood score as a function

of the starting tree (parsimony random number seed) is

analogous to the score variance between full and back-

bone tree searches. For example, on the 38 K dataset,

the log likelihood scores on 10 final trees obtained for

full searches show a standard deviation of 1307 log like-

lihood units. The average difference in log likelihood

scores per starting tree between the full search and a

backbone search with R := 0.50 is only 645 log likeli-

hood units and 2030 log likelihood units for backbone

searches with R := 0.25, respectively.

Given the runtimes savings that can be achieved by

the backbone approach, backbone tree searches can be

used, for instance, to explore a larger number of parsi-

mony starting trees which substantially influence the

final log likelihood scores. A reasonable strategy for

finding best-known ML trees may consist in starting

many fast searches with a relatively aggressive setting of

R := 0.25 to identify/determine a set of ‘good’ starting

trees that yield the best final log likelihood scores. In a

second step, full tree searches can be conducted on

those promising starting trees to find trees with even

better scores.

We used simulated datasets in order to better under-

stand the impact of the backbone algorithm on topolo-

gical accuracy. We ran indelible [32] to generate

simulated MSAs of 1500 taxa (575 bp) and 5000 taxa

(1074 bp). We compared the symmetric difference

(number of bipartitions that differ between two topolo-

gies) between the true tree and the topologies from the

starndard full search and the backbone-based ones. For

each dataset, the full search and the backbone search

with R := 0.25 and R := 0.5 were ran 5 different times

with different starting trees. Table 4 shows the average

symetric differences among all approaches for the data-

set with 1500 taxa. We see that, in terms of topological

accuracy, applying the reductions of R := 0.25 and R :=

0.5 yield topologies that remain close to the standard

full search. Furthermore, the distance to the true tree is

not increased by the reduction.

The likelihood scores for both simulated datasets fol-

low the same pattern as in the case of real data. These

results, details on how the simulation datasets were gen-

erated, as well as the symetric difference for the 5000

taxa dataset have been included in the additional file 1.

Table 2 Average runtimes, memory requirements, and

log likelihood scores (over 10 runs) for the 38 K dataset

37831 taxa

R = 0.25 R = 0.5 R = 1

Runtime (h) 30.41 38.60 54.03

Memory for Backbone (GB) 4.90 7.70 N/A

Memory for Full tree (GB) 10.33 10.33 10.33

LogLikelihood (Avg) -5531436 -5530051 -5529406

LogLikelihood (Std Dev) 943.26 770.47 1307.16

Avg (logLH - logLH(R = 1)) 2030.24 645.31 0.0

Table 3 Average runtimes, memory requirements, and

log likelihood scores (over 10 runs) for the 56 K dataset

55593 taxa

R = 0.25 R = 0.5 R = 1

Runtime (h) 50.17 63.22 85.89

Memory for Backbone (GB) 8.22 12.72 N/A

Memory for Full tree (GB) 16.82 16.82 16.82

LogLikelihood -7063342 -7061516 -7060488

LogLikelihood (Std Dev) 1727.90 1761.27 1718.47

Avg (logLH - logLH(R = 1)) 2853.41 1028.04 0.0

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470

http://www.biomedcentral.com/1471-2105/12/470

Page 10 of 14

SEV Performance

We also used the 38 K and 56 K datasets to test memory

savings and speedups achieved by applying the adapted

SEV technique to phylogenomic datasets. The gappyness

(percentage of missing data in the alignments) is 81.53%

for 38 K and 83.40% for 56 K, respectively.

For each alignment, we computed a parsimony start-

ing tree with RAxML that was then evaluated (model

Figure 5 Log Likelihood scores for different Reduction factors (38 k dataset). Plot of log likelihood scores under GTR+Γ of the final trees

obtained by each method as a function of the starting tree (random number seed) for the 38 K dataset. Each LH score (point) results from an

independent search. The lines linking the points are only guiding the eye.

Figure 6 Log Likelihood scores for different Reduction factors (56 k dataset). Plot of log likelihood scores under GTR+Γ of the final trees

obtained by each method as a function of the starting tree (random number seed) for the 56 K dataset. Each LH score (point) results from an

independent search. The lines linking the points are only guiding the eye.

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470

http://www.biomedcentral.com/1471-2105/12/470

Page 11 of 14

parameter and branch length optimization without tree

search, RAxML -f e option) with RAxML under the

GTR+Γ model using the SEV reimplementation (with

and without memory saving) and using the standard

likelihood implementation.

The standard implementation required 41 GB of

memory on the 38 K dataset and 66 GB of memory on

the 56 K dataset. The SEV technique with the memory

saving option enabled (-U option, available as of

RAxML v727) reduced memory footprints under Γ to

14 GB (38 K) and 21 GB (56 K) respectively. The log

likelihood scores for all three implementations were

exactly identical. As shown in Tables 5 and 6, the run-

times of the SEV-based versions are 25-40% faster than

for the standard implementation. The runtime differ-

ences between the SEV-based implementation with

memory saving enabled and the plain SEV version with-

out memory saving, can be attributed to differences in

memory access patterns. While both versions conduct

the same number of computations, the memory-saving

version needs to make millions of calls to OS routines

(free() and malloc()) while the plain SEV version

exhibits a higher memory footprint and thereby, poten-

tially, a higher cache miss rate.

Estimating branch lengths and computing likelihood

scores with CAT

We optimized branch lengths and model parameters

under CAT and Γ using RAxML v730 (-f n option) on

collections of 32 and 22 final ML trees for the 38 K and

56 K partitioned datasets, respectively. For the CAT

model, we also assessed the impact of using, 8, 16, 25

(default), and 40 per-site rate categories.

For each tree, we computed the average Pearson cor-

relation coefficient between the branch lengths obtained

under CAT (for 8, 16, 25, and 40 per-site rate cate-

gories) and the branch lengths as estimated under Γ.

We also computed the average tree length ratio over all

32 trees.

To determine if the trees are ranked in the same order

by their respective Γ and CAT log likelihood scores, we

computed the Spearman rank correlation of the CAT-

and Γ-based tree rankings. As shown in Tables 7 and 8,

the Spearman correlation was above 0.99 in all cases.

This indicates that, trees are ordered in almost the same

way, regardless of whether they are scored under CAT

or Γ.

We also used FastTree 2 (with options -gamma -nt

-nome -mllen) to score both collections of trees

under the hybrid CAT/Gamma20 model [6]. Once

again, the Spearman rank correlation of FastTree CAT/

Gamma20 and RAxML Γbased tree rankings remained

above 0.99 in all cases.

The average branch length correlation between CAT

and Γ optimized branches was above 0.87. On those two

large datasets, the absolute length of Γ-based branch

length estimates was larger than for CAT as shown by

the average tree length ratios.

We also executed analogous analyses on 10 smaller

single-gene (and non-partitioned) datasets with 1481 up

to 4114 taxa. In addition, we evaluated significantly lar-

ger ML tree collections (160 ML trees per dataset) for

those smaller datasets. These additional experiments

confirmed our observations for the 38 K and 55 K data-

sets and also revealed that the total tree length under

Table 4 Average symmetric differences (over 5 runs) for

the 1500 dataset

Average Symmetric Difference

R := 0.25 R := 0.5 R := 1

R := 0.25 182.6 169.9 188.0

R := 0.5 169.9 152.8 146.2

R := 1 188.0 146.2 133.0

True Tree 398.8 382.0 388.0

Table 5 SEV evaluation for the 38 k dataset

37831 taxa

SEVs SEVs with memory saving standard

Runtime (s) 4125.1 4116.8 6541.1

Memory (GB) 42 15 41

LogLikelihood -5528590 -5528590 -5528590

Execution times and memory requirements for optimizing model parameters

and branch lengths under on the 38 K dataset using SEVs, SEVs with memory

saving, and the standard likelihood implementation.

Table 6 SEV evaluation for the 56 k dataset

55593 taxa

SEVs SEVs with memory saving standard

Runtime (s) 7145.2 8095.1 11181.4

Memory (GB) 67 29 67

log likelihood -7059556 -7059556 -7059556

Execution times and memory requirements for optimizing model parameters

and branch lengths under on the 56 K dataset using SEVs, SEVs with memory

saving, and the standard likelihood implementation.

Table 7 Correlations between CAT and Γ models for the

38 k dataset

37831 taxa, 32 ML trees

Number of per-site rate categories 8 16 25 40

Average BL correlation with Γ 0.994 0.995 0.995 0.995

Average Tree length ratio (Γ/CAT) 1.743 1.739 1.739 1.739

Spearman rank correlation(Γ, CAT) 0.994 0.992 0.992 0.992

Correlation between CAT and Γ-based ML branch length estimates, total tree

length ratios, and Spearman rank correlation coefficients between likelihood-

induced tree rankings obtained from CAT and Γ for dataset 38 K.

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470

http://www.biomedcentral.com/1471-2105/12/470

Page 12 of 14

CAT, can also be larger than the Γ-based tree length.

Respective plots for all datasets are provided in the addi-

tional file 1.

Conclusions
We have explored several techniques, addressed pro-

blems, and proposed some solutions for phylogenetic

tree inference with likelihood-based methods on trees

with several tens of thousands of taxa.

Initially, we revisit and re-assess techniques for redu-

cing the tree size, inspired by earlier work on a program

called Phylogenetic Navigator (Phy-Nav). Significant

effort was invested in exploring different backbone con-

struction techniques (results/experiments not shown).

Here, we describe the method that worked best with

respect to final log likelihood scores. Such backbone-

based techniques can help to reduce memory footprints

and execution times. However, in almost all cases they

yield final trees with worse likelihoods compared to

comprehensive tree searches on a full, unreduced tree.

We find that likelihood scores of final trees heavily

depend on the respective starting trees, and conclude

that backbone approaches can be deployed for identify-

ing ‘good’ starting trees, that can then be further refined

using a comprehensive tree search.

We have adapted and re-implemented the SEV techni-

que for phylogenomic datasets with missing data and

enhanced it by a novel memory-saving option. This new

technique, is generally applicable to all likelihood-based

codes and can reduce execution times by 25-40% on

sufficiently ‘gappy’ datasets by omitting redundant com-

putations. More importantly, the revised SEV technique

can be deployed to achieve significant memory savings

that are almost proportional to the amount of missing

data in the test datasets. This technique has already

been fully integrated into the standard RAxML distribu-

tion (as of v727). Moreover, RAxML will automatically

determine whether to use the standard likelihood imple-

mentation or the SEV-based likelihood implementation.

Finally, we analyze problems associated to numerical

scaling for avoiding underflow, that can occur when

using the Γ model of rate heterogeneity on very large

datasets. While for the 38 K and 55 K datasets we were

still able to evaluate trees under Γ, on some even larger

datasets that we are currently analyzing (e.g., 116,408

taxa 18,692 sites) numerical scaling under Γ appears to

be impossible using 64-bit floating point arithmetics. To

this end, we advocate the usage of models that rely on

per-site rate categories for accommodating rate hetero-

geneity among sites. Clearly, further research is required

in this area to devise statistically robust and meaningful

models. Nonetheless, we provide an empirical assess-

ment of branch length estimates as obtained under Γ

and the RAxML-specific implementation for estimating

and assigning per-site evolutionary rate categories. We

find that, given proper scaling of per-site rates, branch

lengths between CAT and Γ based trees are highly cor-

related, despite the fact that absolute branch length

values can differ substantially. We also find that, order-

ing tree collections using Γbased and CAT-based log

likelihood scores induces very similar rankings of trees

as determined be the Spearman rank correlation

coefficient.

The work presented here has a clear exploratory flavor

and we hope that it will be useful to the community for

identifying future research directions pertaining to large-

scale phylogenetic inference using likelihood-based

methods. The problems and solutions we discuss in this

paper, emerged within the framework of the plant tree

of life grand challenge project that aims at reconstruct-

ing the plant tree of life comprising approximately

500,000 taxa.

Additional material

Additional file 1: Supplementary Material. Assesment of alternative

criteria to identify the innermost node of a tree. Evaluation of the

backbone algorithm with simulated data: Simulation details and

symmetric difference for the 5000 taxa dataset, log likelihood scores for

ML trees on simulated datasets(1500 and 5000 species). Evaluation of the

backbone algorithm with real data and comparison with FastTree 2.

Correlation between CAT and Γ-based ML branch length estimates, total

tree length ratios, and Spearman rank correlation coefficients between

likelihood-induced tree rankings obtained from CAT and Γ for 12

different datasets ranging from 1481 up to 4114 number of taxa.

Correlations between log likelihood scores under the RAxML CAT model

and Γ model for the 38 k and 56 k dataset. Correlations between log

likelihood scores under the RAxML CAT model and the FastTree 2 CAT/

Gamma20 model for the 38 k and 56 k dataset.

Acknowledgements

FIC is funded by the German Science Foundation (DFG), AS is funded by the

Heidelberg Institute for Theoretical Studies, SAS is funded by the National

Science Foundation (NSF). The authors would like to thank Bernard Moret

for granting access to his AMD Barcelona nodes and Morgan Price for useful

discussions regarding branch length issues under CAT.

Author details
1The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for

Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg,

Germany. 22 Smith Lab, Dept. Ecology and Evolutionary Biology, University

Table 8 Correlations between CAT and Γ models for the

56 k dataset

55593 taxa, 22 ML trees

Number of per-site rate categories 8 16 25 40

Average BL correlation with Γ 0.877 0.877 0.877 0.877

Average Tree length ratio (Γ/CAT) 1.569 1.567 1.567 1.608

Spearman rank correlation(Γ, CAT) 1.0 1.0 1.0 1.0

Correlation between CAT and Γ-based ML branch length estimates, total tree

length ratios, and Spearman rank correlation coefficients between likelihood-

induced tree rankings obtained from CAT and Γ for dataset 55 K.

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470

http://www.biomedcentral.com/1471-2105/12/470

Page 13 of 14

http://www.biomedcentral.com/content/supplementary/1471-2105-12-470-S1.PDF

of Michigan, 2005 Kraus Natural Science Building, Ann Arbor, MI 48109-1048

USA.

Authors’ contributions

FIC developed and implemented the backbone algorithm and conducted all

computational experiments. AS developed and implemented the SEV-based

techniques and implemented the CAT re-scaling procedure. SAS assembled

the large test datasets. FIC, AS, and SAS wrote and edited the manuscript.

Received: 23 April 2011 Accepted: 13 December 2011

Published: 13 December 2011

References

1. Ronaghi M: Pyrosequencing Sheds Light on DNA Sequencing. Genome

Research 2001, 11:3-11.

2. Felsenstein J: Evolutionary trees from DNA sequences: a maximum

likelihood approach. J Mol Evol 1981, 17:368-376.

3. Minh B, Vinh L, Haeseler A, Schmidt H: pIQPNNI: parallel reconstruction of

large maximum likelihood phylogenies. Bioinformatics 2005,

21(19):3794-3796.

4. Zwickl D: Genetic Algorithm Approaches for the Phylogenetic Analysis of

Large Biological Sequence Datasets under the Maximum Likelihood

Criterion. PhD thesis University of Texas at Austin; 2006.

5. Guindon S, Dufayard J, Lefort V, Anisimova M, Hordijk W, Gascuel O: New

algorithms and methods to estimate maximum-likelihood phylogenies:

assessing the performance of PhyML 3.0. Systematic biology 2010,

59(3):307.

6. Price M, Dehal P, Arkin A: FastTree 2- Approximately Maximum-Likelihood

Trees for Large Alignments. PLoS ONE 2010, 5(3):e9490.

7. Ronquist F, Huelsenbeck J: MrBayes 3: Bayesian phylogenetic inference

under mixed models. Bioinformatics 2003, 19(12):1572-1574.

8. Lartillot N, Blanquart S, Lepage T: PhyloBayes. v2. 3. 2007.

9. Drummond A, Rambaut A: BEAST: Bayesian evolutionary analysis by

sampling trees. BMC Evol Biol 2007, 7(214):1471-2148.

10. Smith S, Donoghue M: Rates of Molecular Evolution Are Linked to Life

History in Flowering Plants. Science 2008, 322(5898):86-89.

11. Goloboff PA, Catalano SA, Mirande JM, Szumik CA, Arias JS, Källersjö M,

Farris JS: Phylogenetic analysis of 73060 taxa corroborates major

eukaryotic groups. Cladistics 2009, 25:1-20.

12. Smith SA, Beaulieu JM, Donoghue MJ: Mega-phylogeny approach for

comparative biology: an alternative to supertree and supermatrix

approaches. BMC Evolutionary Biology 2009, 9(37).

13. Stamatakis A, Ludwig T, Meier H, Wolf MJ: Accelerating Parallel Maximum

Likelihood-based Phylogenetic Tree Calculations using Subtree Equality

Vectors. Proc of IEEE/ACM Supercomputing Conference 2002 (SC2002) 2002,

[Proceedings on CD].

14. Yang Z: Maximum likelihood phylogenetic estimation from DNA

sequences with variable rates over sites. J Mol Evol 1994, 39:306-314.

15. Le S, Schmidt H, Haeseler A: PhyNav: A novel approach to reconstruct

large phylogenies. Proc of GfKl conference 2004.

16. In Bioinformatics: High Performance Parallel Computer Architectures. Edited

by: Schmidt B. Taylor 85-115.

17. de Hoon MJL, S Imoto JN, Miyano S: Open source clustering software.

Bioinformatics 2004, 20(9):1453-1454.

18. Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic

analyses with thousands of taxa and mixed models. Bioinformatics 2006,

22(21):2688-2690.

19. Stamatakis A, Ludwig T, Meier H, Wolf MJ: AxML: A Fast Program for

Sequential and Parallel Phylo-genetic Tree Calculations Based on the

Maximum Likelihood Method. Proceedings of 1st IEEE Computer Society

Bioinformatics Conference (CSB2002) 2002, 21-28.

20. Pond S, Muse S: Column sorting: Rapid calculation of the phylogenetic

likelihood function. Systematic biology 2004, 53(5):685-692.

21. Sumner J, Charleston M: Phylogenetic estimation with partial likelihood

tensors. Journal of theoretical biology 2010, 262(3):413-424.

22. Stamatakis A, Alachiotis N: Time and memory efficient likelihood-based

tree searches on gappy phylogenomic alignments. Bioinformatics 2010,

26(12):i132-i139.

23. Ripplinger J, Sullivan J: Does Choice in Model Selection Affect Maximum

Likelihood Analysis? Syst Biol 2008, 57:76-85.

24. Stamatakis A: Phylogenetic Models of Rate Heterogeneity: A High

Performance Computing Perspective. Proc. of IPDPS2006, HICOMB

Workshop, Proceedings on CD, Rhodos, Greece 2006.

25. Lartillot N, Philippe H: A Bayesian Mixture Model for Across-Site

Heterogeneities in the AminoAcid Replacement Process. Mol Biol Evol

2004, 21(6):1095-1109.

26. Katoh K, Toh H: Recent developments in the MAFFT multiple sequence

alignment program. Briefings in Bioinformatics 2008, 9(4):286-298.

27. Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and

high throughput. Nucleic Acids Research 2004, 32(5):1792-1797.

28. Smith SA, Dunn CW: Phyutility: a phyloinformatics tool for trees,

alignments and molecular data. Bioinformatics 2008, 24(5):715-716.

29. Smith S, Beaulieu J, Stamatakis A, Donoghue M: Understanding

angiosperm diversification using small and large phylogenetic trees.

American Journal of Botany 2011, ajb-1000481v1.

30. Stamatakis A, Blagojevic F, Antonopoulos CD, Nikolopoulos DS: Exploring

new Search Algorithms and Hardware for Phylogenetics: RAxML meets

the IBM Cell. J VLSI Sig Proc Sys 2007, 48(3):271-286.

31. Stamatakis A, Ott M: Efficient computation of the phylogenetic likelihood

function on multi-gene alignments and multi-core architectures. Phil

Trans R Soc series B Biol Sci 2008, 363:3977-3984.

32. Fletcher W, Yang Z: INDELible: a flexible simulator of biological sequence

evolution. Molecular biology and evolution 2009, 26(8):1879-1888.

doi:10.1186/1471-2105-12-470
Cite this article as: Izquierdo-Carrasco et al.: Algorithms, data structures,
and numerics for likelihood-based phylogenetic inference of huge
trees. BMC Bioinformatics 2011 12:470.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470

http://www.biomedcentral.com/1471-2105/12/470

Page 14 of 14

http://www.ncbi.nlm.nih.gov/pubmed/11156611?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7288891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7288891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16046495?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16046495?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20525638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20525638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20525638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20224823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20224823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12912839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12912839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18832643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18832643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7932792?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7932792?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14871861?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16928733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16928733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15545249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15545249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19822153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19822153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20529898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20529898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18275003?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18275003?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15014145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15014145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18372315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18372315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15034147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15034147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18227120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18227120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19423664?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19423664?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	PhyNav Revisited: Constraining the tree search to a backbone tree
	Building the Backbone
	Tree Searches on the Backbone

	Subtree Equality Vectors Re-Visited
	Saving Memory with SEVs

	Numerical Problems of the Γ Model of Rate Heterogeneity

	Results and Discussion
	Test Datasets
	Backbone Algorithm
	SEV Performance
	Estimating branch lengths and computing likelihood scores with CAT

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	References

