
METHODOLOGY ARTICLE Open Access

Algorithms designed for compressed-gene-
data transformation among gene banks
with different references
Qiuming Luo, Chao Guo* , Yi Jun Zhang, Ye Cai and Gang Liu

Abstract

Background: With the reduction of gene sequencing cost and demand for emerging technologies such as precision

medical treatment and deep learning in genome, it is an era of gene data outbreaks today. How to store, transmit and

analyze these data has become a hotspot in the current research. Now the compression algorithm based on reference

is widely used due to its high compression ratio. There exists a big problem that the data from different gene banks

can’t merge directly and share information efficiently, because these data are usually compressed with different

references. The traditional workflow is decompression-and-recompression, which is too simple and time-consuming.

We should improve it and speed it up.

Results: In this paper, we focus on this problem and propose a set of transformation algorithms to cope with it. We

will 1) analyze some different compression algorithms to find the similarities and the differences among all of them, 2)

come up with a naïve method named TDM for data transformation between difference gene banks and finally 3)

optimize former method TDM and propose the method named TPI and the method named TGI. A number of

experiment result proved that the three algorithms we proposed are an order of magnitude faster than traditional

decompression-and-recompression workflow.

Conclusions: Firstly, the three algorithms we proposed all have good performance in terms of time. Secondly, they

have their own different advantages faced with different dataset or situations. TDM and TPI are more suitable for small-

scale gene data transformation, while TGI is more suitable for large-scale gene data transformation.

Keywords: Reference-based compression, DNA sequence compression, Gene data transformation

Background

With the development of the sequencing technologies,

the cost for sequencing has become lower and lower,

while the speed of sequencing has become faster and

faster. As a result, we will find that the gene data from

various species is experiencing an explosive growth and

we have been in an era of gene big data. Human Gen-

ome Project [1], launched in 1990, using the first gener-

ation of gene sequencing technology, took 13 years and

cost 3 billion dollars, finally completed by a number of

scientists from multiple countries around the world.

Now Illumina’s latest gene sequencing platform, the

HiSeq X Ten system, requires only $1000 to sequence

the whole gene of a single person and can complete se-

quencing of more than 18,000 human genomes through-

out a year [2, 3]. Nowadays, more and more gene

projects are set up [4–8], so gene data will continue to

accumulate expansion. Facing with such a large amount

of data, how to store, transmit and analyze will be a big

problem for researchers [9].

For dealing with the problem of storing, gene com-

pression is an essential mean [10, 11]. So far, there are

some gene compression algorithms which are effective

have been proposed. Generally, these methods are di-

vided into two categories depending on whether they are

based on reference or not. These algorithms based on

non-reference, such as BIND [12], DNACompress [13],

GeNML [14], XM [15] and POMA [16], could not han-

dle these gene data that is going through explosive

growth effectively. On the contrary, algorithms based on

* Correspondence: 2150230422@email.szu.edu.cn

NHPCC/Guangdong Key Laboratory of popular HPC and College of

Computer Science and Software Engineering, Shenzhen University, Shenzhen

518060, China

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Luo et al. BMC Bioinformatics (2018) 19:230

https://doi.org/10.1186/s12859-018-2230-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2230-2&domain=pdf
http://orcid.org/0000-0002-2417-4887
mailto:2150230422@email.szu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

reference are the state-of-the-art approach, because they

exploit the similarity between sequences (e.g., humans

have at least 99.5% of gene similarity and the similarity

between gorilla and human is as high as 99% [17]). With

the algorithms based on reference, many countries has

built their own gene bank, such as NCBI (National

Center for Biotechnology Information), The EMBL

(European Molecular Biology Laboratory), DDBJ (DNA

Data Bank of Japan) and CNGB (China National Gene

Bank). However, there exists a big obstacle for sharing in-

formation among all of these institutions, because these

institutions may select different sequences as the refer-

ence. The traditional workflow is decompression-and-

recompression workflow, which means that we should

decompress the dataset that is compressed with one refer-

ence, and then compress it with another reference.

Obviously, it is not direct and time-consuming.

Focusing on the problem, in this article, we propose a

set of transformation algorithms to cope with it. The

traditional workflow just exploits the similarity between

dataset and reference, but it ignores the similarity be-

tween references. Our new transformation algorithms

exploit the similarity of references to avoid the trad-

itional decompression-and-recompression workflow.

They simplify the original workflow to reduce large

amounts of time.

Related work

Due to the traditional compression tools and algorithms

based on non-reference not dealing with gene data ef-

fectively, we will pay our attentions on the algorithms

based on reference.

The main concept of referential compression is, given

a to-be-compressed sequence and a reference, writing an

output file containing only the differences between the

two input sequences. Generally, there is three steps in

the framework:

1) Build an index for the given reference;

2) Search the corresponding position of to-be-

compressed sequence in the reference, using the

index,

3) Finally encode the to-be-compressed sequence with

the information from step 2 and then encode the

preliminary results to produce the final file.

Though a great deal of efficient referential compres-

sion algorithms have been proposed [18–22], we just se-

lect FRESCO [23], ERGC [24] and ODI [25] as typical

tools. We will discuss these tools in detail next.

FRESCO is a referential compression algorithm pro-

posed by Sebastian et al. in 2013. Ignoring the time of

building index, it is the fastest compression algorithm

while its compression ratio is pretty good. It uses a hash

table to index the complete reference genome. Its value

is the position where k-mer is found in the reference

and its key is the hash value calculated by each k-mer in

the reference. With the index, FRESCO use the same

hash function to get the key of each non-overlapping

k-mer in the to-be-compressed sequence, and then

search them with the index. A successful lookup returns

a list of positions where the k-mer can be found in the

reference. For each match, we extend the match through

direct comparison with the reference and pick out the

longest match. If the length of the longest match is lon-

ger than the threshold, a new entry which record a tuple

containing position PF and the length of the match LEN

is created in the result and the next lookup on the table

will use the k-mer starting on position PF + LEN. If not,

the base pair on position PF + 1 is set as a difference

between matches and a new lookup will be made using the

k-mer starting on position PF + 1. This method will repeat

until the entire to-be-compressed sequence is processed.

FRESCO need too much time to build the index struc-

ture, which will caused that if the gene data required to

compressed is small-scale, the time for building index is

far more than the time for compression. ODI algorithm

exploits the fact that the similarity rate of the homolo-

gous species at the corresponding position is far higher

than that at other positions to build partial index

structure. There are four main methods in the compari-

son compression process (RP represent the pointer to

the reference and CP represent the pointer to the

to-be-compressed sequence):

� SNP detection algorithm. Match segments from the

reference and the to-be-compressed sequences

directly.

� SNP test. Test if the previous match ended in a

Single Nucleotide Polymorphism.

� Brute-force search. Execute a brute-force search for

a match within δ base pairs.

� Index lookup. Index ∆ base pairs from the reference

starting on the current RP and perform one table

lookup (using the k-mer starting at CP), just like

FRESCO. If the lookup returns more than one entry,

we choose the one most close to the RP.

Generally, we always build index with the whole refer-

ence sequence, making the index structure is too large.

In the process of searching, the positions of most match

is close to the target sequence’s corresponding position

in the reference sequence. ERGC employs a divide and

conquer strategy. At first ERGC divides the entire refer-

ence and target genomes into parts of equal sizes and

processes each pair of parts sequentially. For each part,

ERGC build a hash index structure with the length of K

which is decided by the length of the part and is the

Luo et al. BMC Bioinformatics (2018) 19:230 Page 2 of 12

length of k-mer at the same time. If lookup return an

empty list, ERGC rebuild the index structure with a fac-

tor less than K and do search again. Then ERGC calcu-

late the edit distance of the mismatched area and decide

whether the edit distance or character information need

to be recorded into the result. Finally, ERGC compress

the stored information using delta encoding [26] and en-

code the stored information using PPMD encoder [27].

Referential compression algorithm is mainly used to

compress sequences which are highly similar to the refer-

ence, recording the same and the differences between

to-be-compressed sequences and the reference. Obviously,

compression and decompression are very dependent on

the reference. For the homologous species in different

gene banks, the compressed data could not share directly,

because they may use different sequence as reference in

the compression process. As a result, when we need to

merge the data from two different gene banks based on

different references, the traditional workflow is

decompression-and- recompression, which is a waste of

time. Given this, we should propose a more succinct algo-

rithm to make the data transformation from one gene

bank to another faster. At the same time, we can know

that these compression algorithms are so different and

each of them has its own peculiarity, which we should

take into account when we design our own algorithms.

Methods

Framework

According to the features of referential compression algo-

rithms, it is obvious that with the compressed data of tar-

get sequence and the reference, we can get the

distribution of the target sequence on the reference. Given

a compressed dataset compressed with the reference Ref1,

our goal is to get the compressed dataset compressed with

the reference Ref2, which means we replace Ref1 with

Ref2 for the dataset. The traditional process is decompres-

sing the dataset with Ref1 and then compressing the

former result with Ref2. However, the work above just ex-

ploit the similarity between the sequences in dataset and

Ref1 and the similarity between the sequences in dataset

and Ref2, ignoring the similarity between Ref1 and Ref2.

This is right where we can improve it.

To make full use of the similarity between Ref1 and

Ref2, what we do is to compress Ref1 with Ref2, getting

the distribution of Ref1 on Ref2. Supposed that we have

get the distribution of the sequences in dataset on Ref1

and the distribution of Ref1 on Ref2, we can easily get

the distribution of the sequences in dataset on Ref2

through transformation process. The framework is

shown below. Exploiting the similarity between Ref1 and

Ref2 to transform compressed data, it can avoid the

process of decompression-and-recompression to save a

lot of time Fig. 1.

Data process

To obtain the distribution of one sequence on another

sequence, we must know how to encode the match and

the mismatch. For the match, we record its position and

length, while for the mismatch we record its character.

Like the Fig. 2 showing, the target sequence will be

encoded through reference as triples, which is like

(start_pos, end_pos, misstr).

Having known how to encode target sequence with

reference, we also need to know how to encode a refer-

ence with another reference in order to figure out the

distribution between two references. Given that there

exists two references Ref1 and Ref2. We can encoded

Ref2 with Ref as tuples, which is like (Ref2start_pos,Re

f2end_pos,Ref1start_pos,Ref2end_pos, misstr).

TDM

There exist a target sequence T and two references Ref1

and Ref2. Supposed we have known the distribution of T

on Ref1 and the distribution of Ref1 on Ref2, there exist

four types of relationships among all of gene fragments

as Fig. 3 shows:

1. Case A: T matches Ref1 and Ref1 matches Ref2.

2. Case B: T mismatches Ref1 but Ref1 matches Ref2.

3. Case C: T matches Ref1 but Ref1 mismatches Ref2.

4. Case D: T mismatches Ref1 and Ref1 mismatches

Ref2.

The above four cases are the most typical correspond-

ing relationships between target sequence and two refer-

ences. For case A, we should do match process, i.e. get

Fig. 1 Through this transformation framework, we get the distribution

of target sequence on Ref1 and the distribution of Ref1 on Ref2 when

processing the compressed data. Then we can make full use of the

similarity between Ref1 and Ref2 to make transformation faster

Luo et al. BMC Bioinformatics (2018) 19:230 Page 3 of 12

and record the start position and end position of target

sequence on Ref2 with the distribution of Ref1 on Ref2.

For case B, C and D, we all do mismatch process, i.e.

record the characters in this part, while in case C, we

should use the partial decompression to achieve it.

According to the above-mentioned workflow, we put

forward the simplest direct transformation algorithm,

named TDM (transform by Direct Match). Its pseudo-

code is as the algorithm1 shows below. TDM just exploit

distribution between Ref1 and Ref2.

TPI

As we can see, for case B, C and D in Fig. 4, TDM do mis-

match process, resulting a decrease in compression ratio.

To improve the compression ratio, we optimize this algo-

rithm. According to the feature of encoding, we propose a

more heuristic algorithm, named TPI (Transform by

Partial Index). Its flowchart is as below.

As shown in the Fig. 4, TPI mainly optimize the mis-

match process of TDM. For the four cases in the Fig. 3,

we customize four different solutions:

1. In case A, if the length of match is short, doing

match process will waste storage, so we should

check whether it should do match process or

mismatch process according to its length.

2. In case B, matches are not aligned. Such as slice

alignment compression adapted by ERGC, when the

start of target sequence can get longer match in the

end of reference, it means that it is a misplaced

match, so the characters in mismatch should do

alignment and compression to improve the ratio.

3. In case C, like case B, for the target sequence, in

the match, we should do partial decompression to

get the characters and then do alignment and

compression.

4. In case D, we can not get the relationship between

T and Ref2, so for T and Ref2, in the mismatch, we

should do small-range alignment and compression

to improve the ratio.

Obviously, partial index compression algorithm is

adopted in case B, C and D. The pseudocode of partial

index compression algorithm is shown below.

In algorithm2, we first extend the length of the latest

match and then build the index of Ref2 within a certain

range to do alignment and compression. This exploit the

feature that genomes have high similarity at correspond-

ing position. Generally, a match whose position is close

to corresponding position is called a good match, be-

cause it need more space to encode the relative position

if the relative is too far away. TPI can guarantee the

(a)

(b)

Fig. 2 In (a), T(target sequence) can be encoded with Ref(reference) as (0.6)(7,7,T)(8,12)(13,14,G)(15,21)(22,23,TC)(24,25)(26,26,C)(27,30). In (b), Ref2(references)

can be encoded with Ref1(reference1) as (0,6,0,6)(7,7,7,7,A)(8,11,8,11)(12,12,12,12,A)(13,13,13,13)(14,14,13,13,G)(15,21,14,20)(22,24,21,23,GAT)(25,30,24,29)

Luo et al. BMC Bioinformatics (2018) 19:230 Page 4 of 12

relativity between the target sequence and reference by

small-range alignment and compression.

TGI

TDM and TPI are mainly designed for small-scale gene

data transformation. Next, we will introduce an

algorithm named TGI(Transform through Global Index)

based on global index, which do transformation between

gene banks faster at the price of taking more time to

construct index.

Different with TPI, the input of TGI is two reference se-

quences and all compressed gene data in the gene bank.

Fig. 4 RD presents the reference the original dataset compressed with and the RT presents the reference we want transform RD to

(a) (b)

(c) (d)

Fig. 3 Case (a) means that in this area, T is same to Ref1 and Ref1 is same to Ref2, so T is same to Ref2. Case (b) means that in this area, T is

different with Ref1 but Ref1 is same to Ref2, so T is different with Ref2. Case (c) means that in this area, T is same to Ref1 but Ref1 is different

with Ref2, so T is different with Ref2. Case (d) means that in this area, T is different with Ref1 and Ref1 is different with Ref2, so we could not

figure out the relationship between T and Ref2

Luo et al. BMC Bioinformatics (2018) 19:230 Page 5 of 12

TGI consists of 6 steps as below:

1. Construct the index of Ref2, which we will introduce

later, and then get the distribution of Ref1 on Ref2

through aligning Ref1 with Ref2 using the index.

2. Pre-process the compressed gene data in gene bank

to remove the effects of general compression, using

general compression tool to obtain the intermediate

compressed data. Then process the intermediate

compressed data to get the distribution of target

sequence T on Ref1.

3. Do alignment with the distribution of T on Ref1 and

the distribution of Ref1 on Ref2 using the TGI

matching algorithm, which will get more details later.

4. Return the match if what the step 3 return is match

and the length of match is longer than the given

threshold k. If the length of match is shorter than k,

we decompress the segment and return the

corresponding decompressed character information.

5. Do index alignment if step 3 or step 4 return the

mismatch and the number of characters is more than

k. If the number is less than k, we recorded the

corresponding decompressed character information.

6. If step 4 return the match, we get the relative start

position through start position of current matched

area minus end position of previous match and get

the length information through end position of

current match minus start position of current match.

Then record both. If this is the first match, we just

need to get the length information. Return step 3.

Have known the framework of the algorithm TGI, we

will get more details as follow.

Construction of index

The index of Ref2 is hash table. Different with the strat-

egy of dynamic memory allocation adopted by FRESCO,

we pre-allocate the memory according to Mem(Index) ∝

Length(Ref2) to avoid reallocating the memory, copying

the data and destroying the memory.

The Fig. 5 show the structure of the index. It is a

one-dimensional array. Its index position is the hash key

value and its value is the corresponding position in the

memory pool. The entry in the memory pool is as below.

We can use the Rabin-Karp algorithm to void repeti-

tive computation when we construct the index, which

facilitate the similarity between the post k-mer subse-

quence and the previous k-mer subsequence.

Match algorithm of TGI

The essential part of the algorithm TGI is the match algo-

rithm. As the Fig. 6 below shows, first, we should build

the index of Ref2 and get the distribution of Ref1 on Ref2

through the index. There also are 4 cases like Fig. 3:

1. Case A: code1 is match and code2 is mismatch.

If the length of the start position of code1 minus

the end position of code1 is longer than the

threshold, we take code1 as misplace match.

Then we decompress the area, align and compress

it with the index. If the length is shorter than the

threshold, we take code1 as match. If the length of

match is more than k, we record the start position

and the length, if not, we record the character

information of this area. The pseudocode of this

part like Algorithm3.

2. Case B. code1 is match and code2 is mismatch.

If the match length is long, we can partially

decompress and get the character information to

enhance the compression ratio. Then we align and

compress character information using the index of

Ref2. If the matched length is short, we decompress

this part directly and record the character information.

3. Case C: code1 is mismatch and code2 is match. Except

the decompression, the process is same as case B.

4. Case D: code1 and code2 are both mismatch. If the

previous transformation result is match, we align

directly and compare characters of both area to

extend the length of previous result. Then we check

if we need to align and compress depending on the

length of the rest part. If the previous

Luo et al. BMC Bioinformatics (2018) 19:230 Page 6 of 12

transformation result is not match, we check if we

need to align and compress depending on the

length of the subsequence in Distr1.

The pseudocode of this part like below:

Results

The test machine was two 2.50 GHz Intel Xeon E5–

2680 v3 CPU with 64GB RAM running CentOS6.6

whose kernel version is 2.6.32 and GCC version is 4.4.7,

JVM version is 1.6.0.

The dataset for test is same to the dataset used in

ERGC. We selected the first Chinese standard

genome sequence map YH-1 [28] sequenced by BGI,

Korean gene data KOREF_200090131 (KOR131 for

short) and KOREF_20090224 (KOR224 for short) [29].

All of these three datasets are human gene, which

contain 24 chromosomes, each about 2990 MB in

size. There exists a feature with these three datasets

that they not only consist of {‘N’, ‘C’,‘A’,‘T’,‘G’}, but also

contain some special characters like ‘U’,‘R’,‘S’,‘K’ and so

on. ERGC can help us to handle all these special

characters.

Fig. 5 Index structure of memory pool

Fig. 6 Flowchart of TGI

Luo et al. BMC Bioinformatics (2018) 19:230 Page 7 of 12

Next, we will use the datasets in the Table 1 below

to do cross test for transformation algorithms, and

then analyze our algorithms from three aspects of

transformation time, compression ratio and memory

consumption.

The main process of our test is getting the com-

pressed data of Tar (as Table 1 shows, it means the

target sequence) based on Ref2 from compressed data

of Tar based on Ref1. The D1 in the Table 1 means

that target sequence YH-1 based on KOR131 is trans-

formed into compressed data based on KOR224. We

can get the test result in Table 2 according to the ex-

periment scheme in Table 1. The result is get by ac-

cumulating the processing time of all chromosomes

and file size is the sum of all chromosomes.

The main contribution of our new algorithms is

simplifying the traditional workflow to attain the aim

to reduce transformation time. As the Fig. 7 shows

above, we can figure out that the transformation time

of all three algorithms is an order of magnitude less

than ERGC which adopts the traditional workflow. At

the same time, it is obvious that TGI is much faster

than TDM and TPI. This is because TGI constructs

index for the reference. We also need to notice that

building index is time-consuming.

Next, we will analyze the performances of these three

algorithms on other indicators.

At first, let us pay attention on compression ratio.

As Fig. 8 shows below, we can find that in dataset

D1、D2、D4 and D6, the compression ratio of trans-

formation algorithms are almost same to ERGC algo-

rithm while TGI is a little higher than TDM and TPI.

At the same time, in dataset D3 and D5, these three

transformation algorithms, especially TGI, have some

less in compression ratio. This is because dataset D3

is transformation from compressed KOR131 based on

YH-1 to compressed KOR131 based on KOR224 and

dataset D5 is transformation from compressed

KOR224 based on YH-1 to compressed KOR224

based on KOR131. KOR131 and KOR224 are both

Korean gene, the similarity between them is high than

the similarity between them and Chinese gene. So,

when the similarity between target sequence and Ref1

and the similarity between references is low, while

the similarity between target sequence and Ref2 is

high, our transformation will significantly reduce the

compression ratio.

Figure 9 below shows the comparison of the peak

of memory consumed by the three algorithms when

they are running. TDM just facilitate the similarity

between references, so its memory consumption is

low and it is positively related to the size of chromo-

some. TPI builds partial index, so its memory

consumption will larger the than TDM. TGI is almost

same to TPI. The memory consumption of ERGC is

related to the compression of each fragment, so its

memory consumption is unstable. At the same time,

too much indexes make the memory consumption of

ERGC is much more than the three transformation

algorithms.

As we know, TGI need build index for reference. It

can obviously reduce the transformation time, but it

also cause expenses in other places. Next, we will

analyze the efficiency of building hash index of refer-

ences. In this experiment, we selected the gene dataset

shown in Table 1 as reference. We compared the effi-

ciency of building index by comparing FRESCO and

TGI with the time of constructing index and the mem-

ory size of index. Since each dataset has 24 chromo-

somes, we selected chromosomes 1(236 MB),

chromosomes X(148 MB), chromosomes 13(109 MB)

and chromosomes 21(45 MB) from the YH dataset and

chromosomes 3(189 MB) and chromosomes 28(75 MB)

from the HG dataset by file size to analyze.

Table 1 Experiment datasets

dataset Target sequence(Tar) Reference 1(Ref1) Reference 2(Ref2)

D1 YH-1 KOR131 KOR224

D2 YH-1 KOR224 KOR131

D3 KOR131 YH-1 KOR224

D4 KOR131 KOR224 YH-1

D5 KOR224 YH-1 KOR131

D6 KOR224 KOR131 YH-1

Table 2 Result of transformation

ERGC TDM TPI TGI

dataset Trans time size Trans time size Trans time size Trans time size Index time

D1 965.97 8.79 71.94 9.06 83.59 8.93 14.91 8.58 113.00

D2 989.05 8.97 71.77 9.12 119.67 9.06 14.85 8.50 113.25

D3 761.63 5.98 72.94 9.07 143.53 8.16 15.73 13.64 112.98

D4 847.25 13.05 72.08 13.28 84.20 12.86 8.26 8.89 99.69

D5 769.74 4.69 72.68 8.03 119.21 6.91 16.41 13.74 113.40

D6 824.82 11.57 72.07 12.04 129.52 11.44 8.25 9.07 102.32

Luo et al. BMC Bioinformatics (2018) 19:230 Page 8 of 12

In Fig. 10, we compared the time of constructing index

of 4 chromosomes from YH dataset at 4 different values

of k. As we can see, the time significantly reduce after

using a memory pool, for the dynamic allocation of

memory is the most time-consuming. The time con-

sumed by TGI combining the memory pool and the fast

hash function is nearly twice the time consumed by the

method using memory pool, and is 10 times less than

the time consumed by FRESCO.

Because index structure of memory pool is same to

index structure of TGI, we just compared memory

consumption of TGI and FRESCO in Fig. 11. As we

can see, the size of the index constructed by the two

methods is positively related with size of the gene

data. The size of index created by TGI using memory

pool is larger than that by FRESCO using dynamic

memory method, but doesn’t double.

Discussion

We have introduced our three algorithms and the ex-

periment results. There exists some points that we need

to focus on.

Firstly, all of these are much faster than conven-

tional decompression-and-compression method.

These is the main attribution of this paper. We ex-

ploit the similarity between of references to reduce

three steps to two steps. Secondly, as the most im-

portant indicator of compression algorithms,

compression ratio of three new algorithms is almost

same to the traditional algorithms. This is an im-

portant embodiment of them as good transformation

methods. Finally, the transformation time of TGI is

about 10 times faster than TDM and TPI, but the

time of constructing index of TGI is much longer.

Index just need to be constructed one time, so if

there exists few data to transform, it is not worth

wasting time to construct index. On the contrary, if

there exist a large collection of gene data to trans-

form, the construction time will be far less than the

time we spend to align target sequence with refer-

ence. As a result, we can find that TDM and TPI

are more suitable for small-scale gene transformation

while TGI is more suitable for large-scale gene

transformation.

Fig. 7 The unit of time is seconds and the transformation time of ERGC is the sum of decompression time of compressed data based on Ref1

and compression time of decompressed data based on Ref2

Fig. 8 The original size of dataset is 2986.68 MB and the compression ratio presents like original data size: compressed data size

Luo et al. BMC Bioinformatics (2018) 19:230 Page 9 of 12

As for the small-scale gene transformation, selecting

TDM or TPI is also a question. TDM is a little faster

than TPI and its memory consumption is less than

TPI, but the compression ratio of TPI is better than

TDM when the target dataset and destination dataset

are not much similar. Our selection depend on what

we care about.

Conclusion

Trough discussion above, we can conclude that TDM

and TPI are more suitable for small-scale gene data

transformation and we select one of them depending

on what we care about is transformation speed or

compression ratio, while TGI is more suitable for

large-scale gene data transformation.

Although the transformation speed of three algo-

rithms we proposed is obviously faster than conven-

tional decompression-and-recompression process,

there are some aspects for optimization in the future.

1. Our algorithms mainly optimized the

transformation time. Although we have

adopted some methods to improve the

compression ratio, there is still a certain loss

in compression ratio. We can improve the

compression ratio in the future.

Fig. 10 Time of constructing index at different values of k and different chromosomes

Fig. 9 Memory consumption when running

Luo et al. BMC Bioinformatics (2018) 19:230 Page 10 of 12

2. In this paper, we just studied three compression

tools, and the subsequent research can be done for

more compression tools.

3. Due to the memory required of our algorithms is

low, we can choose process pools or thread pools

to improve the computation speed, or we can use

the distributed file system speed up the IO by

distributing the IO pressure on a single node to a

number of nodes through a high-speed network.

Abbreviation

k-mer: It is each motif of length k observed in a DNA sequence. Clearly, the number

of k-mer in a sequence of length L we can obtain is L – k

Acknowledgements

We would like to thank all the comments and suggestions.

Funding

The research was funded by project granted from Shenzhen Science Technology

Foundation:

JCYJ20170302153920897/JCYJ20150930105133185/JCYJ20150324140036842,

Guangdong Pre-national Project 2014GKXM054, and Guangdong Natural

Science Foundation: 2017B030314073/2016A030313036.

Availability of data and materials

The Korean gene data can get from ftp://ftp.kobic.kr/pub/KOBIC-KoreanGenome/

and the first Chinese standard genome sequence map YH-1 can get from http://

yh.genomics.org.cn/.

Authors’ contributions

QL: idea initiation, method development, manuscript writing and data analysis;

CG: method development and manuscript writing; YZ: idea initiation, method

development; YC: method development and manuscript writing; GL: method

development and manuscript writing; All authors read and approved the final

manuscript.

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published

maps and institutional affiliations.

Received: 16 September 2017 Accepted: 4 June 2018

References

1. Consortium GP, Abecasis GR, Altshuler D, et al. A map of human genome

variation from population-scale sequencing. Nature. 2010;467(7319):1061–73.

2. Reuter JA, Spacek D, Snyder MP. High-throughput sequencing technologies.

Mol Cell. 2015;58(4):586.

3. Illumina Int, HiSeq X Series of Sequencing Systems Specification Sheet.

access at https://www.illumina.com/documents/products/datasheets/

datasheet-hiseq-x-ten.pdf

4. Karsakov A, Bartlett T, Ryblov A, et al. Parenclitic network analysis of

methylation data for Cancer identification. PLoS One. 2017;12(1):e0169661.

Fig. 11 Memory size of index at different values of k

Luo et al. BMC Bioinformatics (2018) 19:230 Page 11 of 12

ftp://ftp.kobic.kr/pub/KOBIC-KoreanGenome/
http://yh.genomics.org.cn
http://yh.genomics.org.cn
https://www.illumina.com/documents/products/datasheets/datasheet-hiseq-x-ten.pdf
https://www.illumina.com/documents/products/datasheets/datasheet-hiseq-x-ten.pdf

5. Joly Y, Dove ES, Knoppers BM, et al. Data sharing in the post-genomic world:

the experience of the international Cancer genome Consortium (ICGC) data

access compliance office (DACO). PLoS Comput Biol. 2012;8(7):e1002549.

6. Nelson KE, Peterson JL, Garges S. Metagenomics of the human body[M].

Springer; 2011.

7. Gevers D, Knight R, Petrosino JF, et al. The human microbiome project: a

community resource for the healthy human microbiome. PLoS Biol. 2012;

10(8):e1001377.

8. CONSORTIUM E P. An integrated encyclopedia of DNA elements in the

human genome. Nature. 2012;489(7414):57–74.

9. Kahn SD. On the future of genomic data. Science. 2011;331(6018):728.

10. Nalbantog̃Lu OU, Russell DJ, Sayood K. Data compression concepts and

algorithms and their applications to bioinformatics. Entropy. 2009;12(1):34.

11. Pennisi E. Will computers crash genomics? Science. 2011;331(6018):666–8.

12. Bose T, Mohammed MH, Dutta A, et al. BIND - an algorithm for loss-less

compression of nucleotide sequence data. J Biosci. 2012;37(4):785–9.

13. Chen X, Li M, Ma B, et al. DNACompress: fast and effective DNA sequence

compression. Bioinformatics. 2002;18(12):1696–8.

14. Korodi G, Tabus I, Rissanen J, et al. DNA sequence compression - based on

the normalized maximum likelihood model. IEEE Signal Process Mag. 2007;

24(1):47–53.

15. Cao MD, Dix TI, Allison L, et al. A simple statistical algorithm for biological

sequence compression[C]//Data Compression Conference, 2007. DCC'07.

IEEE; 2007. p. 43-52.

16. Zhu Z, Zhou J, Ji Z, et al. DNA sequence compression using adaptive

particle swarm optimization-based Memetic algorithm. IEEE Trans Evol

Comput. 2011;15(5):643–58.

17. Christley S, Lu Y, Li C, et al. Human genomes as email attachments.

Bioinformatics. 2009;25(2):274–5.

18. Deorowicz S, Grabowski S. Robust relative compression of genomes with

random access. Bioinformatics. 2011;27(21):2979.

19. Brandon MC, Wallace DC, Baldi P. Data structures and compression

algorithms for genomic sequence data. Bioinformatics. 2009;25(14):1731–8.

20. Xie X, Zhou S, Guan J. CoGI: Towards compressing genomes as an image.

IEEE/ACM Trans Comput Biol Bioinform. 2015;12(6):1275–85.

21. Ochoa I, Hernaez M, Weissman T. iDoComp: a compression scheme for

assembled genomes. Bioinformatics. 2015;31(5):626–33.

22. Wang C, Zhang D. A novel compression tool for efficient storage of

genome resequencing data. Nucleic Acids Res. 2011;39(7):e45.

23. Wandelt S, Leser U. FRESCO: Referential compression of highly similar

sequences. IEEE/ACM Trans Comput Biol Bioinform. 2014;10(5):1275–88.

24. Deorowicz S, Grabowski S, Ochoa I, et al. Comment on: “ERGC: an efficient

referential genome compression algorithm”. Bioinformatics. 2015;31(21):

3468–75.

25. Alves F, Cogo V, Wandelt S, et al. On-demand indexing for referential

compression of DNA sequences. PLoS One. 2015;10(7):e0132460.

26. Hunt JJ, Vo KP, Tichy WF. Delta algorithms:an empirical analysis. Acm Trans

Softw Eng Methodol. 1998;7(2):192–214.

27. Moffat A. Implementing the PPM data compression scheme[J]. IEEE Trans

Commun. 1990;38(11):1917–21.

28. Wang J, Wang W, Li R, et al. The diploid genome sequence of an Asian

individual. Nature. 2008;456(7218):60–5.

29. Ahn SM, Kim TH, Lee S, et al. The first Korean genome sequence and

analysis: full genome sequencing for a socio-ethnic group. Genome Res.

2009;19(9):1622–9.

Luo et al. BMC Bioinformatics (2018) 19:230 Page 12 of 12

	Abstract
	Background
	Results
	Conclusions

	Background
	Related work

	Methods
	Framework
	Data process
	TDM
	TPI
	TGI
	Construction of index
	Match algorithm of TGI

	Results
	Discussion
	Conclusion
	Abbreviation
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher’s Note
	References

