
Algorithms for Algebraic Path Properties in Concurrent
Systems 13; of Constant Treewidth Components

Krishnendu Chatterjee and Rasmus Ibsen-Jensen and Amir Goharshady and Andreas

Pavlogiannis

Technical Report No. IST-2015-340-v1+1
Deposited at 15 Jul 2016 09:12
https://repository.ist.ac.at/340/1/main.pdf

IST Austria (Institute of Science and Technology Austria)
Am Campus 1
A-3400 Klosterneuburg, Austria

Copyright © 2012, by the author(s).
All rights reserved.
Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for pro�t or
commercial advantage and that copies bear this notice and the full citation on the �rst page.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
speci�c permission.

Algorithms for Algebraic Path Properties in
Concurrent Systems of Constant Treewidth Components

Abstract
We study algorithmic questions for concurrent systems where the
transitions are labeled from a complete, closed semiring, and path
properties are algebraic with semiring operations. The algebraic
path properties can model dataflow analysis problems, the shortest
path problem, and many other natural properties that arise in pro-
gram analysis. We consider that each component of the concurrent
system is a graph with constant treewidth, and it is known that the
controlflow graphs of most programs have constant treewidth. We
allow for multiple possible queries, which arise naturally in demand
driven dataflow analysis problems (e.g., alias analysis). The study
of multiple queries allows us to consider the tradeoff between the
resource usage of the one-time preprocessing and for each individ-
ual query. The traditional approaches construct the product graph
of all components and apply the best-known graph algorithm on
the product. In the traditional approach, even the answer to a single
query requires the transitive closure computation (i.e., the results of
all possible queries), which provides no room for tradeoff between
preprocessing and query time.

Our main contributions are algorithms that significantly improve
the worst-case running time of the traditional approach, and pro-
vide various tradeoffs depending on the number of queries. For ex-
ample, in a concurrent system of two components, the traditional
approach requires hexic time in the worst case for answering one
query as well as computing the transitive closure, whereas we show
that with one-time preprocessing in almost cubic time, each sub-
sequent query can be answered in at most linear time, and even
the transitive closure can be computed in almost quartic time. Fur-
thermore, we establish conditional optimality results that show that
the worst-case running times of our algorithms cannot be improved
without achieving major breakthroughs in graph algorithms (such
as improving the worst-case bounds for the shortest path problem
in general graphs whose current best-known bound has not been
improved in five decades). Finally, we provide a prototype imple-
mentation of our algorithms which significantly outperforms the
existing algorithmic methods on several benchmarks.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
Analysis

General Terms Algorithms, Languages

Keywords Concurrent systems, Constant-treewidth graphs, Alge-
braic path properties, Shortest path.

1. Introduction
In this work we consider concurrent finite-state systems where
each component is a constant-treewidth graph, and the algorithmic
question is to determine algebraic path properties between pairs of
nodes in the system. Our main contributions are algorithms which
significantly improve the worst-case running time of the previous
known algorithms. We establish conditional optimality results for

some of our algorithms in the sense that they cannot be improved
without achieving major breakthrough in the algorithmic study
of graph problems. We also present experimental results which
show that our algorithms perform favorably for several real-world
benchmarks.

Concurrency and algorithmic approaches. The analysis of concur-
rent systems is one of the fundamental problems in computer sci-
ence in general, and programming languages in particular. A finite-
state concurrent system consists of several components, each of
which is a finite-state graph, and the whole system is a composi-
tion of the components. Since errors in concurrent systems are hard
to reproduce by simulations due to combinatorial explosion in the
number of interleavings, formal methods are necessary to analyze
such systems. In the heart of the formal approaches are graph algo-
rithms, which provide the basic search procedures for the problem.
The basic graph algorithmic approach is to construct the product
graph (i.e., the product of the component systems) and then apply
the best-known graph algorithms on the product graph. While there
are many practical approaches for the analysis of concurrent sys-
tems, a fundamental theoretical question is whether special proper-
ties of graphs that arise in analysis of programs can be exploited to
develop faster algorithms as compared to the basic approach.

Special graph properties for programs. A very well-studied notion
in graph theory is the concept of treewidth of a graph, which is a
measure of how similar a graph is to a tree (a graph has treewidth 1
precisely if it is a tree) [65]. The treewidth of a graph is defined
based on a tree decomposition of the graph [39], see Section 2 for
a formal definition. On one hand the treewidth property provides
a mathematically elegant way to study graphs, and on the other
hand there are many classes of graphs which arise in practice and
have constant treewidth. The most important example is that the
controlflow graph for goto-free programs for many programming
languages are of constant treewidth [68], and it was also shown
in [38] that typically all Java programs have constant treewidth.

Algebraic path properties. To specify properties of traces of con-
current systems we consider a very general framework, where
edges of the system are labeled from a complete, closed semiring
(which subsumes bounded and finite distributive semirings), and
we refer to the labels of the edges as weights. For a given path, the
weight of the path is the semiring product of the weights on the
edges of the path, and the weights of different paths are combined
using the semiring plus operator. For example, (i) the Boolean
semiring (with semiring product as AND, and semiring plus as OR)
expresses the reachability property; (ii) the tropical semiring (with
real numbers as edge weights, semiring product as standard sum,
and semiring plus as minimum) expresses the shortest path prop-
erty; and (iii) with letter labels on edges, semiring product as string
concatenation and semiring plus as union we can express the regu-
lar expression of reaching from one node to another. The algebraic
path properties subsumes the dataflow analysis of the IFDS/IDE
frameworks [64, 66] in the intraprocedural setting, which consider
compositions of distributive dataflow functions, and meet-over-all-
paths as the semiring plus operator. Since IFDS/IDE is a special
case of our framework, a large and important class of dataflow

1 2015/7/11

analysis problems that can be expressed in IFDS/IDE can also be
expressed in our framework. However, the IFDS/IDE framework
works for sequential interprocedural analysis, whereas we focus on
intraprocedural analysis, but in the concurrent setting.

Expressiveness of algebraic path properties. The algebraic path
properties provide an expressive framework with rich modeling
power. A well-studied case is that of dataflow analysis of distribu-
tive flow functions [23, 26, 32, 64, 66]. Here we elaborate on two
other important classes. For a detailed discussion, see Appendix A.

1. Weighted shortest path. The algebraic paths framework sub-
sumes several problems on weighted graphs. The most well-
known such problem is the shortest path problem [6, 35, 36, 44,
72], phrased on the tropical semiring. For example, the edge
weights (positive and negative) can express energy consump-
tions, and the shortest path problem asks for the least energy
consuming path. Another important quantitative property is the
mean-payoff property, where each edge weight represents a re-
ward or cost, and the problem asks for a path that minimizes the
average of the weights along a path. Many quantitative prop-
erties of relevance for program analysis (e.g., to express per-
formance or resource consumption) can be modeled as mean-
payoff properties [18, 24]. The mean-payoff and other funda-
mental problems on weighted graphs (e.g., the most probable
path and the minimum initial credit problem) can be reduced to
the shortest-path problem [16, 18, 21, 22, 47, 55, 71, 73].

2. Regular expressions. Consider the case that each edge is anno-
tated with an observation or action. Then the regular expression
to reach from one node to another represents all the sequences
of observable actions that lead from the start node to the tar-
get. The regular languages of observable actions have provided
useful formulations in the analysis and synthesis of concurrent
systems [19, 30, 33]. Regular expressions have also been used
as algebraic relaxations of interprocedurally valid paths in se-
quential and concurrent systems [14, 74].

The algorithmic problem. In graph theoretic parlance, graph algo-
rithms typically consider two types of queries: (i) a pair query given
nodes u and v (called pu, vq-pair query) asks for the algebraic path
property from u to v; and (ii) a single-source query given a node
u asks for the answer of pu, vq-pair queries for all nodes v. Since
we consider the concurrent setting, in addition to the classical pair
and single-source queries, we also consider partial queries. Given a
concurrent system with k components, a node in the product graph
is a tuple of k component nodes. A partial node u in the product
only specifies nodes of a nonempty strict subset of all the compo-
nents. Our work also considers partial pair and partial single-source
queries, where the input nodes are partial nodes. Queries on partial
nodes are very natural, as they capture properties between local
locations in a component, that are shaped by global paths in the
whole concurrent system. For example, constant propagation and
dead code elimination are local properties in a program, but their
analysis requires analyzing the concurrent system as a whole.

Preprocess vs query. A topic of widespread interest in the pro-
gramming languages community is that of on-demand analysis
[5, 23, 29, 43, 58, 62, 63, 66, 75, 76]. Such analysis has several
advantages, such as (quoting from [43, 63]) (i) narrowing down
the focus to specific points of interest, (ii) narrowing down the
focus to specific dataflow facts of interest, (iii) reducing work in
preliminary phases, (iv) sidestepping incremental updating prob-
lems, and (v) offering demand analysis as a user-level operation.
For example, in alias analysis, the question is whether two point-
ers may point to the same object, which is by definition modeled
as a question between a pair of nodes. Similarly, e.g., in constant
propagation a relevant question is whether some variable remains
constant between a pair of controlflow locations. The problem of
on-demand analysis allows us to distinguish between a single pre-

processing phase (one time computation), and a subsequent query
phase, where queries are answered on demand. The two extremes
of the preprocessing and query phase: (i) complete preprocessing
(aka transitive closure computation) where the result is precom-
puted for every possible query, and hence queries are answered by
simple table lookup; and (ii) no preprocessing where no prepro-
cessing is done, and every query requires a new computation. How-
ever, in general, there can be a tradeoff between the preprocessing
and query computation. Most of the existing works for on-demand
analysis do not make a formal distinction between preprocessing
and query phases, as the provided complexities only guarantee the
same worst-case complexity property, namely that the total time for
handling any sequence of queries is no worse than the complete
preprocessing. Hence most existing tradeoffs are practical, without
any theoretical guarantees.

Previous results. In this work we consider finite-state concurrent
systems, where each component graph has constant treewidth, and
the trace properties are specified as algebraic path properties. Our
framework can model a large class of problems: typically the con-
trolflow graphs of programs have constant treewidth [17, 38, 68],
and if there is a constant number of synchronization variables
with constant-size domains, then each component graph has con-
stant treewidth. Note that this imposes little practical restrictions,
as typically synchronization variables, such as locks, mutexes
and condition variables have small (even binary) domains (e.g.
locked/unlocked state). The best-known graph algorithm for the
algebraic path property problem is the classical Warshall-Floyd-
Kleene [35, 49, 56, 72] style dynamic programming, which re-
quires cubic time. Two well-known special cases of the algebraic
path problem are (i) computing the shortest path from a source to
a target node in a weighted graph, and (ii) computing the regular
expression from a source to a target node in an automaton whose
edges are labeled with letters from a finite alphabet. In the first
case, the best-known algorithm is the Bellman-Ford algorithm with
time complexity Opn ¨mq (where n is the number of vertices and
m is the number of edges, and since m can be n2, the worst-case
bound is Opn3

q). In the second case, the well-known construction
of Kleene’s [49] theorem requires cubic time. The only existing al-
gorithmic approach for the problem we consider is to first construct
the product graph (thus if each component graph has size n, and
there are k components, then the product graph has size Opnkq),
and then apply the best-known graph algorithm (thus the overall
time complexity is Opn3¨k

q). Hence for the important special case
of two components we obtain a hexic-time (i.e., Opn6

q) algorithm.
Moreover, for algebraic path properties (even for the special case
of shortest path) the current best-known algorithms for one pair
query (or one single-source query) computes the entire transitive
closure. Hence the existing approach does not allow a tradeoff of
preprocessing and query as even for one query the entire transitive
closure is computed.

Our contributions. Our main contributions are improved algorith-
mic upper bounds, proving several optimality results of our algo-
rithms, and experimental results. Below all the complexity mea-
sures (time and space) are in the number of basic machine opera-
tions and number of semiring operations. We elaborate our contri-
butions below.

1. Improved upper bounds. We present improved upper bounds
both for general k components, and the important special case
of two components.
• General case. We show that for k ě 3 components with
n nodes each, after Opn3¨pk´1q

q preprocessing time, we
can answer (i) single-source queries in Opn2¨pk´1q

q time,
(ii) pair queries in Opnk´1

q time, (iii) partial single-source
queries in Opnkq time, and (iv) partial pair queries in Op1q
time; while using at all times Opn2¨k´1

q space. In contrast,

2 2015/7/11

Preprocess Query time
Time Space Single-source Pair Partial single-source Partial pair

Previous results [35, 49, 56, 72] Opn6q Opn4q Opn2q Op1q Opn2q Op1q

Our result Corollary 2 pε ą 0q Opn3q Opn2`εq Opn2`εq Opn2q Opn2`εq Opn2q

Our result Theorem 3 pε ą 0q Opn3`εq Opn3q Opn2`εq Opnq Opn2q Op1q

Our result Corollary 3 pε ą 0q Opn4`εq Opn4q Opn2q Op1q Opn2q Op1q

Table 1: The algorithmic complexity for computing algebraic path queries wrt a closed, complete semiring on a concurrent graph G which is
the product of two constant-treewidth graphs G1, G2, with n nodes each.

n1`ε n3`ε n4

n1`ε

n3

n3
` pi` jq ¨ n2

Corollary 2

n3`ε
` i ¨ n` j

Theorem 3 n4`ε
` i` j

Corollary 3

i pair queries

j
pa

rt
ia

lp
ai

rq
ue

ri
es

Figure 1: Given a concurrent graph G of two constant-treewidth
graphs of n nodes each, the figure illustrates the time required by
the variants of our algorithms to preprocess G, and then answer
i pair queries and j partial pair queries. The different regions
correspond to the best variant for handling different number of such
queries. In contrast, the current best solution requiresOpn6

`i`jq
time. For ease of presentation we omit the Op¨q notation.

the existing methods [35, 49, 56, 72] compute the transitive
closure even for a single query, and thus require Opn3¨k

q

time and Opn2¨k
q space.

• Two components. For the important case of two threads, the
existing methods requireOpn6

q time andOpn4
q space even

for one query. In contrast, we establish a variety of tradeoffs
between preprocessing and query times, and the best choice
depends on the number of expected queries. In particular,
for any fixed ε ą 0, we establish the following three results.

Three results. First, we show (Corollary 2) that with Opn3
q

preprocessing time and using Opn2`ε
q space, we can an-

swer single-source queries in Opn2`ε
q time, and pair and

partial pair queries require Opn2
q time. Second, we show

(Theorem 3) that with Opn3`ε
q preprocessing time and us-

ing Opn3
q space, we can answer the pair and the partial

pair queries in time Opnq and Op1q, respectively. Third, we
show (Corollary 3) that the transitive closure can be com-
puted using Opn4`ε

q preprocessing time and Opn4
q space,

after which single-source queries require Opn2
q time, and

pair and partial pair queries require Op1q time (i.e., all
queries require linear time in the size of the output).

Tradeoffs. Our results provide various tradeoffs: The first
result is best for answering Opn1`ε

q pair and partial pair
queries; the second result is best for answering between
Ωpn1`ε

q and Opn3`ε
q pair queries, and Ωpn1`ε

q partial
pair queries; and the third result is best when answering

Ωpn3`ε
q pair queries. Observe that the transitive closure

computation is preferred when the number of queries is
large, in sharp contrast to the existing methods that compute
the transitive closure even for a single query. Our results
are summarized in Table 1 and the tradeoff is pictorially
illustrated in Figure 1.

2. Optimality of our results. Given our significant improvements
for the case of two components, a very natural question is
whether the algorithms can be improved further. While present-
ing matching bounds for polynomial-time graph algorithms to
establish optimality is very rare in the whole of computer sci-
ence, we present conditional lower bounds which show that our
combined preprocessing and query time cannot be improved
without achieving a major breakthrough in graph algorithms.
• Almost optimality. First, note that for the first result (ob-

tained from Corollary 2) our space usage and single-source
query time are arbitrarily close to optimal, as both the in-
put and the output have size Θpn2

q. Moreover, the result is
achieved with preprocessing time less than Ωpn4

q, which is
a lower bound for computing the transitive closure (which
has n4 entries). Furthermore, for our third result (obtained
from Corollary 3) the Opn4`ε

q preprocessing time is arbi-
trarily close to optimal, and the Opn4

q preprocessing space
is indeed optimal, as the transitive closure computes the dis-
tance among all n4 pairs of nodes (which requires Ωpn4

q

time and space).
• Conditional lower bound. In recent years, the conditional

lower bound problem has received vast attention in com-
plexity theory, where under the assumption that certain
problems (such as matrix multiplication, all-pairs short-
est path) cannot be solved faster than the existing upper
bounds, lower bounds for other problems (such as dynamic
graph algorithms) are obtained [1, 2, 42]. The current best-
known algorithm for algebraic path properties for general
(not constant-treewidth) graphs is cubic in the number of
nodes. Even for the special case of shortest paths with posi-
tive and negative weights, the best-known algorithm (which
has not been improved over five decades) isOpn¨mq, where
m is the number of edges. Since m can be Ωpn2

q, the cur-
rent best-known worst-case complexity is cubic in the num-
ber of nodes. We prove that pair queries require more time
in a concurrent graph of two constant-treewidth graphs, with
n nodes each, than in general graphs with n nodes. This im-
plies that improving theOpn3

q combined preprocessing and
query time over our result (from Corollary 2) for answering
r queries, for r ď Opnq, would yield the same improvement
over the Opn3

q time for answering r pair queries in general
graphs. That is, the combination of our preprocessing and
query time (from Corollary 2) cannot be improved without
equal improvement on the long standing cubic bound for
the shortest path and the algebraic path problems in gen-
eral graphs. Additionally, our result (from Theorem 3) can-
not be improved much further even for n2 queries, as the
combined time for preprocessing and answering n2 queries

3 2015/7/11

is Opn3`ε
q using Theorem 3, while the existing bound is

Opn3
q for general graphs.

3. Experimental results. We provide a prototype implementation
of our algorithms which significantly outperforms the baseline
methods on several benchmarks.

Technical contributions. The results of this paper rely on several
novel technical contributions.

1. Upper bounds. Our upper bounds depend on a series of techni-
cal results.
(a) The first key result for our upper bounds is an algorithm

for constructing a strongly balanced tree-decomposition T .
A tree is called pβ, γq-balanced if for every node u and
descendant v of u that appears γ levels below, the size of
the subtree of T rooted at v is at most a β fraction of the
size of the subtree of T rooted at u. For any fixed δ ą 0 and
λ P N with λ ě 2, let β “ pp1 ` δq{2qλ´1 and γ “ λ.
We show that a pβ, γq-balanced tree decomposition of a
constant-treewidth graph with n nodes can be constructed in
Opn ¨ lognq time and Opnq space. To our knowledge, this
is the first algorithm that constructs a tree decomposition
with such a strong notion of balance. This property is crucial
for achieving the resource bounds of our algorithms for
algebraic paths. The construction is presented in Section 3.

(b) Given a concurrent graph G obtained from k constant-
treewidth graphs Gi, we show how a tree-decomposition
of G can be constructed from the strongly balanced tree-
decompositions Ti of the componentsGi, in time that is lin-
ear in the size of the output. We note that G can have large
treewidth, and thus determining the treewidth of G can be
computationally expensive. Instead, our construction avoids
computing the treewidth ofG, and directly constructs a tree-
decomposition ofG from the strongly balanced tree decom-
positions Ti. The construction is presented in Section 4.

(c) Given the above tree-decomposition algorithm for concur-
rent graphs G, in Section 5 we present the algorithms for
handling algebraic path queries. In particular, we introduce
the partial expansion G of G for additionally handling par-
tial queries, and describe the algorithms for preprocessing
and querying G in the claimed time and space bounds.

2. Lower bound. Given an arbitrary graph G (not of constant
treewidth) of n nodes, we show how to construct a constant-
treewidth graph G2 of 2 ¨ n nodes, and a graph G1 that is
the product of G2 with itself, such that algebraic path queries
in G coincide with such queries in G1. This construction re-
quires quadratic time on n. The conditional optimality of our
algorithms follows, as improvement over our algorithms must
achieve the same improvement for algebraic path properties on
arbitrary graphs.

All our algorithms are simple to implement and provided as pseu-
docode in Appendix F. Several technical proofs are also relegated
to the appendix due to lack of space.

1.1 Related Works

Treewidth of graphs. The notion of treewidth for graphs as an ele-
gant mathematical tool to analyze graphs was introduced in [65].
The significance of constant treewidth in graph theory is huge
mainly because several problems on graphs become complexity-
wise easier. Given a tree decomposition of a graph with low
treewidth t, many NP-complete problems for arbitrary graphs can
be solved in time polynomial in the size of the graph, but exponen-
tial in t [4, 7, 9–11]. Even for problems that can be solved in poly-
nomial time, faster algorithms can be obtained for low treewidth
graphs, for example, for the distance problem [25]. The constant-
treewidth property of graphs has also been used in the context of

logic: Monadic Second Order (MSO) logic is a very expressive
logic, and a celebrated result of [27] showed that for constant-
treewidth graphs the decision questions for MSO can be solved in
polynomial time; and the result of [31] shows that this can even
be achieved in deterministic log-space. Various other models (such
as probabilistic models of Markov decision processes and games
played on graphs for synthesis) with the constant-treewidth restric-
tion have also been considered [20, 59]. The problem of comput-
ing a balanced tree decomposition for a constant treewidth graph
was considered in [61]. More importantly, in the context of pro-
gramming languages, it was shown by [68] that the controlflow
graphs of goto-free programs from many programming languages
have constant treewidth. This theoretical result was subsequently
followed up in several practical approaches, and although in the
presence of gotos the treewidth is not guaranteed to be bounded, it
has been shown that programs in several programming languages
have low treewidth in practice ([17, 38]). The constant-treewidth
property of graphs has been used to develop faster algorithms for
sequential interprocedural analysis [23], and on the analysis of au-
tomata with auxiliary storage (e.g., stacks and queues) [57]. The
techniques of [23] do not extend to the concurrent setting because
even though the component graphs have constant treewidth, the
graph which is the product of the components has treewidth that
depends on the number of nodes. Thus none of the previous works
exploit the constant-treewidth property for faster algorithms in the
concurrent setting.

Concurrent system analysis. The problem of concurrent system
analysis has been considered in several works, both for intrapro-
cedural as well context-bounded interprocedural analysis [3, 15,
33, 41, 46, 51–53, 60], and many practical tools have been devel-
oped as well [52, 54, 60, 67]. In this work we focus on the in-
traprocedural analysis with constant-treewidth graphs, and present
algorithms with better asymptotic complexity. None of the previ-
ous works consider the constant-treewidth property, nor do they
improve the asymptotic complexity of the basic algorithm for the
algebraic path property problem.

2. Definitions

In this section we present definitions related to semirings, graphs,
concurrent graphs, and tree decompositions. We start with some
basic notation on sets and sequences.

Notation on sets and sequences. Given a number r P N, we denote
by rrs “ t1, 2, . . . , ru the natural numbers from 1 to r. Given a
set X and a k P N, we denote by Xk

“
śk
i“1X , the k times

Cartesian product of X . A sequence x1, . . . xk is denoted for short
by pxiq1ďiďk, or pxiqi when k is implied from the context. Given
a sequence Y , we denote by y P Y the fact that y appears in Y .

2.1 Complete, closed semirings

Definition 1 (Complete, closed semirings). We fix a complete
semiring S “ pΣ,‘,b,0,1q where Σ is a countable set, ‘ and
b are binary operators on Σ, and 0,1 P Σ, and the following
properties hold:

1. ‘ is associative, commutative, and 0 is the neutral element,
2. b is associative, and 1 is the neutral element,
3. b distributes over ‘,
4. ‘ is infinitely associative,
5. b infinitely distributes over ‘,
6. 0 absorbs in multiplication, i.e., @a P Σ : ab 0 “ 0.

Additionally, we consider that S is equipped with a closure opera-
tor ˚, such that @s P Σ : s˚ “ 1‘ psb s˚q “ 1‘ ps˚ b sq (i.e.,
the semiring is closed).

4 2015/7/11

2.2 Graphs and tree decompositions

Graphs and weighted paths. LetG “ pV,Eq be a weighted finite
directed graph (henceforth called simply a graph) where V is a
set of n nodes and E Ď V ˆ V is an edge relation, along with
a weight function wt : E Ñ Σ that assigns to each edge of G
an element from Σ. Given a set of nodes X Ď V , we denote by
GrXs “ pX,E X pX ˆXqq the subgraph of G induced by X . A
path P : u ù v is a sequence of nodes px1, . . . , xkq such that
x1 “ u, xk “ v, and for all 1 ď i ă k we have pxi, xi`1q P E.
The length of P is |P | “ k´1, and a single node is itself a 0-length
path. A path P is simple if no node repeats in the path (i.e., it does
not contain a cycle). Given a path P “ px1, . . . , xkq, the weight
of P is bpP q “

Â

pwtpxi, xi`1qqi if |P | ě 1 else bpP q “ 1.
Given nodes u, v P V , the semiring distance dpu, vq is defined as
dpu, vq “

À

P :uùv bpP q, and dpu, vq “ 0 if no such P exists.

Trees. A tree T “ pV,Eq is an undirected graph with a root node
u0, such that between every two nodes there is a unique simple
path. For a node u we denote by Lvpuq the level of u which is
defined as the length of the simple path from u0 to u. A child of a
node u is a node v such that Lvpvq “ Lvpuq`1 and pu, vq P E, and
then u is the parent of v. For a node u, any node (including u itself)
that appears in the path from u0 to u is an ancestor of u, and if v is
an ancestor of u, then u is a descendant of v. Given two nodes u, v,
the lowest common ancestor (LCA) is the common ancestor of u
and v with the highest level. Given a tree T , a contiguous subtree is
subgraph pX,E1q of T such thatE1 “ EXpXˆXq and for every
pair u, v P X , every node that appears in the unique path from u to
v belongs toX . A tree is k-ary if every node has at most k-children
(e.g., a binary tree has at most two children for every node). In a
full k-ary tree, every node that has a child has exactly k-children.

Tree decompositions. A tree-decomposition TreepGq “ T “

pVT , ET q of a graph G is a tree, where every node Bi in T is a
subset of nodes of G such that the following conditions hold:

C1 VT “ tB0, . . . , Bbu with Bi Ď V , and
Ť

BiPVT
Bi “ V

(every node is covered).
C2 For all pu, vq P E there exists Bi P VT such that u, v P Bi

(every edge is covered).
C3 For all i, j, k such that there is a bag Bk that appears in the

simple path Bi ù Bj in TreepGq, we have Bi X Bj Ď Bk
(every node appears in a contiguous subtree of T).

The sets Bi which are nodes in VT are called bags. We denote by
|T | “ |VT | the number of bags in T . Conventionally, we call B0

the root of T , and denote by LvpBiq the level of Bi in TreepGq.
For a bag B of T , we denote by T pBq the subtree of T rooted at
B. A bag B is called the root bag of a node u if u P B and every
B1 that contains u appears in T pBq. We often use Bu to refer to
the root bag of u, and define Lvpuq “ LvpBuq. Given a bag B, we
denote by

1. VT pBq the nodes of G that appear in bags in T pBq,
2. VT pBq the nodes of G that appear in B and its ancestors in T .

The width of the tree-decomposition T is the size of the largest
bag minus 1. The treewidth t of G is the smallest width among the
widths of all tree decompositions of G. Note that if T achieves the
treewidth of G, we have |VT pBq| ď pt ` 1q ¨ |T pBq|. Given a
graph G with treewidth t and a fixed α P N, a tree-decomposition
TreepGq is called α-approximate if it has width at most α¨pt`1q´
1. Figure 2 illustrates the above definitions on a small example.

2.3 Concurrent graphs

Product graphs. A graph Gp “ pVp, Epq is said to be the product
graph of k graphs pGi “ pVi, Eiqq1ďiďk if Vp “

ś

i Vi and Ep is
such that for all u, v P Vp with u “ xuiy1ďiďk and v “ xviy1ďiďk,

1

8

9

2

10

3

6

4

7

5

8 9 10

1 8 9

2 8 10

2 3 10

7 8 9

6 7 9

4 6 9 5 6 7

B6

Figure 2: A graph G with treewidth 2 (left) and a corresponding
tree-decomposition T “ TreepGq of 8 bags and width 2 (right).
The distinguished bag B6 is the root bag of node 6. We have
VT pB6q “ t6, 7, 9, 4, 5u and VT pB6q “ t6, 7, 9, 8, 10, 2u. The
subtree T pB6q is shown in bold.

we have pu, vq P Ep iff there exists a set I Ď rks such that
(i) pui, viq P Ei for all i P I, and (ii) ui “ vi for all i R I.
In words, an edge pu, vq P Ep is formed in the product graph by
traversing a set of edges tpui, viq P EiuiPI in some component
graphs tGiuiPI , and traversing no edges in the remaining tGiuiRI .
We say that Gp is the k-self-product of a graph G1 if Gi “ G1 for
all 1 ď i ď k.

Concurrent graphs. A graph G “ pV,Eq is called a concurrent
graph of k graphs pGi “ pVi, Eiqq1ďiďk if V “ Vp and E Ď Ep,
where Gp “ pVp, Epq is the product graph of pGiqi. Given a
concurrent graph G “ pV,Eq and a node u P V , we will denote
by ui the i-th constituent of u. We say thatG is a k-self-concurrent
of a graph G1 if Gp is the k-self-product of G1.

Various notions of composition. The framework we consider is
quite general as it captures various different notions of concurrent
composition. Indeed, the edge set of the concurrent graph is any
possible subset of the edge set of the corresponding product graph.
Then, various well-known composition notions can be modeled as
follows. For any edge pu, vq P E of the concurrent graph G, let
Iu,v “ ti P rks : pui, viq P Eiu denote the components that
execute a transition in pu, vq.

1. In synchronous composition at every step all components make
one move each simultaneously. This is captured by Iu,v “ rks
for all pu, vq P E.

2. In asynchronous composition at every step only one component
makes a move. This is captured by |Iu,v| “ 1 for all pu, vq P E.

Thus the framework we consider is not specific to any particular
notion of composition, and all our results apply to various different
notions of concurrent composition that exist in the literature.

Partial nodes of concurrent graphs. A partial node u of a con-
current graph G is an element of

ś

ipViYtKuq, where K R
Ť

i Vi.
Intuitively, K is a fresh symbol to denote that a component is un-
specified. A partial node u is said to refine a partial node v, denoted
by u Ď v if for all 1 ď i ď k either vi “ K or vi “ ui. We say
that the partial node u strictly refines v, denoted by u Ă v, if u Ď v
and u ‰ v (i.e., for at least one constituent i we have vi “ K but
ui ‰ K). A partial node u is called strictly partial if it is strictly
refined by some node u P V (i.e., u has at least one K). The notion
of semiring distances is extended to partial nodes, and for partial
nodes u, v of G we define the semiring distance from u to v as

dpu, vq “
à

uĎu,vĎv

dpu, vq

where u, v P V . In the sequel, a partial node u will be either (i) a
node of V , or (ii) a strictly partial node. We refer to nodes of the first

5 2015/7/11

Method: DiningPhilosophers
1 while True do
2 while fork not mine or knife not mine do
3 if fork is free then
4 lockp`q
5 acquirepforkq
6 unlockp`q
7 end
8 if knife is free then
9 lockp`q

10 acquirepknifeq
11 unlockp`q
12 end
13 end
14 dinepfork, knifeq// for some time
15 lockp`q
16 releasepforkq
17 releasepknifeq
18 unlockp`q
19 discusspq// for some time
20 end

1 20

2

13

14

15

16

17

18

19

3

4

5

6

7

8

9

10

11

12

1, 19, 20

1, 2, 19

2, 13, 19

13, 14, 19

14, 15, 19

15, 16, 19

16, 17, 19

17, 18, 19

2, 7, 12

2, 3, 7

3, 4, 7

4, 5, 7

5, 6, 7

7, 8, 12

8, 9, 12

9, 10, 12

10, 11, 12

Figure 3: A concurrent program (left), its controlflow graph (middle), and a tree decomposition of the controlflow graph (right).

case as actual nodes, and write u (i.e., without the bar). Distances
where one endpoint is a strictly partial node u succinctly quantify
over all nodes of all the components for which the corresponding
constituent of u is K. Observe that the distance still depends on the
unspecified components.

The algebraic paths problem on concurrent graphs of constant-
treewidth components. In this work we are interested in the
following problem. Let G “ pV,Eq be a concurrent graph of
k ě 2 constant-treewidth graphs pGi “ pVi, Eiqq1ďiďk, and
wt : E Ñ Σ be a weight function that assigns to every edge of
G a weight from a set Σ that forms a complete, closed semiring
S “ pΣ,‘,b,0,1q. The algebraic path problem on G asks the
following types of queries:

1. Single-source query. Given a partial node u of G, return the
distance dpu, vq to every node v P V . When the partial node
u is an actual node of G, we have a traditional single-source
query.

2. Pair query. Given two nodes u, v P V , return the distance
dpu, vq.

3. Partial pair query. Given two partial nodes u, v of G where at
least one is strictly partial, return the distance dpu, vq.

Figure 3 presents the notions introduced in this section on a toy
example on the dining philosophers problem. In Appendix A we
discuss the vast modeling capabilities of the algebraic paths frame-
work, and illustrate the importance of pair and partial pair queries
in the analysis of the dining philosophers program.

Input parameters. For technical convenience, we consider a uni-
form upper bound n on the number of nodes of each Gi (i.e.
|Vi| ď n). Similarly, we let t be an upper bound on the treewidth
of each Gi. The number k is taken to be fixed and independent
of n. The input of the problem consists of the graphs pGiq1ďiďk,
together with some representation of the edge relation E of G.

Complexity measures. The complexity of our algorithms is mea-
sured as a function of n. In particular, we do not consider the size of
the representation ofE when considering the size of the input. This
has the advantage of obtaining complexity bounds that are inde-
pendent of the representation ofE, which be represented implicitly
(such as synchronous or asynchronous composition) or explicitly,

depending on the modeling of the problem under consideration.
The time complexity of our algorithms is measured in number of
operations, with each operation being either a basic machine oper-
ation, or an application of one of the operations of the semiring.

3. Strongly Balanced Tree Decompositions

In this section we introduce the notion of strongly balanced tree
decompositions, and present an algorithm for computing them effi-
ciently on constant-treewidth graphs. The following sections make
use of this construction.

Strongly balanced tree decompositions. Given a tree-
decomposition T and constants 0 ă β ă 1, γ P N`, a bag
B of T is called pβ, γq-balanced if for every descendant Bi of B
with LvpBiq´LvpBq “ γ, we have |T pBiq| ď β ¨ |T pBq|, i.e., the
number of bags in T pBiq is at most a β-fraction of those in T pBq.
A tree-decomposition T is called a pβ, γq tree-decomposition if
every bag of T is pβ, γq-balanced. A pβ, γq tree-decomposition
that is α-approximate is called an pα, β, γq tree-decomposition.
The following theorem is central to the results obtained in this
paper. The proof is technical and relegated to Appendix B, and
here we provide a sketch of the algorithm for obtaining it.
Theorem 1. For every graph G with n nodes and constant
treewidth, for any fixed δ ą 0 and λ P N with λ ě 2, let
α “ 4 ¨ λ{δ, β “ pp1 ` δq{2qλ´1, and γ “ λ. A binary pα, β, γq
tree-decomposition TreepGq withOpnq bags can be constructed in
Opn ¨ lognq time and Opnq space.

Sketch of Theorem 1. The construction of Theorem 1 considers
that a tree-decomposition Tree1pGq of width t and Opnq bags
is given (which can be obtained using e.g. [12] in Opnq time).
Given two parameters δ ą 0 and λ P N with λ ě 2, Tree1pGq
is turned to an pα, β, γq tree-decomposition, for α “ 4 ¨ λ{δ,
β “ pp1` δq{2qλ´1, and γ “ λ, in two conceptual steps.

1. A tree of bags RG is constructed, which is pβ, γq-balanced.
2. RG is turned to an α-approximate tree decomposition of G.

The first construction is obtained by a recursive algorithm Rank,
which operates on inputs pC, `q, where C is a component of

6 2015/7/11

NhpCq B C2C1

Figure 4: Illustration of one recursive step of Rank on a component
C (gray). C is split into two sub-components C1 and C2 by removing
a list of bags X “ pBiqi. Once every λ recursive calls, X contains
one bag, such that the neighborhood NhpCiq of each Ci is at most
half the size of NhpCq (i.e., the red area is split in half). In the
remaining λ ´ 1 recursive calls, X contains m bags, such that the
size of each Ci, is at most 1`δ

2
fraction the size of C. (i.e., the gray

area is split in almost half).

Tree1pGq, and ` P rλs specifies the type of operation the algorithm
performs on C. Given such a component C, we denote by NhpCq the
neighborhood of C, defined as the set of bags of Tree1pGq that are
incident to C. Informally, on input pC, `q, the algorithm partitions
C into two sub-components C1 and C2 such that either (i) the size
of each Ci is approximately half the size of C, or (ii) the size of
the neighborhood of each Ci is approximately half the size of the
neighborhood of C. More specifically,

1. If ` ą 0, then C is partitioned into components Y “

pC1, . . . , Crq, by removing a list of bags X “ pB1, . . . Bmq,
such that |Ci| ď δ

2
¨ |C|. The union of X yields a new bag

B in RG. Then Y is merged into two components C1, C2 with
|C1| ď |C2| ď

1`δ
2
¨ |C|. Finally, each Ci is passed on to the

next recursive step with ` “ p`` 1q mod λ.
2. If ` “ 0, then C is partitioned into two components C1, C2 such

that |NhpCiq X NhpCq| ď |NhpCq|
2

by removing a single bag B.
This bag becomes a new bag B in RG, and each Ci is passed on
to the next recursive step with ` “ p`` 1q mod λ.

Figure 4 provides an illustration. The second construction is ob-
tained simply by inserting in each bag B of RG the nodes contained
in the neighborhood NhpCq of the component C upon which B was
constructed. In Appendix B we prove that these two steps yield an
pα, β, γq tree-decomposition of G.

Use of pα, β, γq tree-decompositions. For ease of presentation we
consider that every TreepGq is a full binary tree. Let α “ 4 ¨ λ{δ,
β “ pp1 ` δq{2qλ´1 and γ “ λ. Since our tree decompositions
are pβ, γq-balanced, we can always attach empty children bags to
those that have only one child, while increasing the size of TreepGq
by a constant factor only. In the sequel, TreepGq will denote a full
binary pα, β, γq tree-decomposition of G. The parameters δ and λ
will be chosen appropriately in later sections.
Remark 1. The notion of balanced tree decompositions exists in
the literature [13, 31], but balancing only requires that the height of
the tree is logarithmic in its size. Here we develop a stronger notion
of balancing, which is crucial for proving the complexity results of
the algorithms presented in this work.

4. Concurrent Tree Decomposition

In this section we present the construction of a tree-decomposition
TreepGq of a concurrent graphG “ pV,Eq of k constant-treewidth
graphs. In general, G can have treewidth which depends on the
number of its nodes. While the treewidth computation for constant-
treewidth graphs is linear time [12], it is NP-complete for general
graphs [11]. Hence computing a tree decomposition that achieves

TreepG1q

1

1 2 1 3

TreepG2q

a

a b a c

ConcurTreepGq

x1, ay
x1, by x2, ay
x1, cy x3, ay

x1, ay
x1, by
x3, ay
x3, by

x1, ay
x1, by
x2, ay
x2, by

x1, ay
x1, cy
x2, ay
x2, cy

x1, ay
x1, cy
x3, ay
x3, cy

Figure 5: The tree-decomposition ConcurTreepGq of a concurrent
graph G of two constant-treewidth graphs G1 and G2.

the treewidth of G can be computationally expensive (e.g., expo-
nential in the size ofG). Here we develop an algorithm ConcurTree
which constructs a tree-decomposition ConcurTreepGq ofG, given
a pα, β, γq tree-decomposition of the components, in Opnkq time
and space (i.e., linear in the size ofG), such that the following prop-
erties hold: (i) the width is Opnk´1

q; and (ii) for every bag in level
at least i ¨ γ, the size of the bag is Opnk´1

¨ βiq.

Algorithm ConcurTree for concurrent tree decomposition. Let
G be a concurrent graph of k of graphs pGiq1ďiďk. The input
consists of a full binary tree-decomposition Ti of constant width for
every graphGi. In the following,Bi ranges over bags of Ti, and we
denote by Bi,r , with r P r2s, the r-th child of Bi. We construct the
concurrent tree-decomposition T “ ConcurTreepGq “ pVT , ET q
of G using the recursive procedure ConcurTree, which operates
as follows. On input pTipBiqq1ďiďk, return a tree decomposition
where

1. The root bag B is

B “
ď

1ďiďk

˜˜

ź

jăi

VTj pBjq

¸

ˆBi ˆ

˜

ź

jąi

VTj pBjq

¸¸

(1)
2. If every Bi is a non-leaf bag of Ti, for every choice

of xr1, . . . , rky P r2sk, repeat the procedure for
pTipBi,riqq1ďiďk, and let B1 be the root of the returned
tree. Make B1 a child of B.

Let Bi be the root of the tree-decomposition Ti. We denote
by ConcurTreepGq the application of the recursive procedure
ConcurTree on pTipBiqq1ďiďk. Figure 5 provides an illustration.
Remark 2. Recall that for any bag Bj of a tree-decomposition
Tj , we have VTj pBjq “

Ť

B1j
B1j , where B1j ranges over bags in

TjpBjq. Then, for any two bags Bi1 , Bi2 , of tree-decompositions
Ti1 and Ti2 respectively, we have

VTi1
pBi1q ˆ VTi2

pBi2q “
ď

B1i1
,B1i2

`

B1i1 ˆB
1
i2

˘

where B1i1 and B1i2 range over bags in Ti1pBi1q and Ti2pBi2q re-
spectively. Since each tree-decomposition Ti has constant width,
it follows that |VTi1

pBi1q ˆ VTi2
pBi2q| “ Op|Ti1pBi1q| ¨

|Ti2pBi2q|q. Thus, the size of each bag B of ConcurTreepGq
constructed in Eq. (1) on some input pTipBiqqi is |B| “

Op
ř

i

ś

j‰i njq, where ni “ |TipBiq|.

In view of Remark 2, the time and space required by ConcurTree
to operate on input pTipBiqq1ďiďk where |TipBiq| “ ni is given,
up to constant factors, by

7 2015/7/11

B1 B2 B3 B4

u x2 x3 x4

x2 x3 x4 v

Figure 6: Illustration of Lemma 1. If P is the unique simple path
B1 ù B4 in TreepGq, then there exist (not necessarily distinct)
xi P Bi´1 X Bi with 1 ă i ď 4 such that dpu, vq “ dpu, x2q b
dpx2, x3q b dpx3, x4q b dpx4, vq.

T pn1, . . . , nkq ď
ÿ

1ďiďk

ź

j‰i

nj `
ÿ

priqiPr2s
k

T pn1,r1 , . . . , nk,rk q (2)

such that for every i we have that
ř

riPr2s
ni,ri ď ni. In Ap-

pendix C we establish that the solution to the above recurrence is
Opnkq, where ni ď n for all 1 ď i ď k.

The following theorem establishes that ConcurTreepGq is a tree-
decomposition of G constructed in Opnkq time and space. Addi-
tionally, if every input tree-decomposition Ti is pβ, γq-balanced,
then the size of each bag B of ConcurTreepGq decreases geomet-
rically with its level LvpBq. See Appendix C for the formal proof.
Theorem 2. Let G “ pV,Eq be a concurrent graph of k constant-
treewidth graphs pGiq1ďiďk of n nodes each. Let a binary pα, β, γq
tree-decomposition Ti for every graph Gi be given, for some
constant α. ConcurTree constructs a 2k-ary tree-decomposition
ConcurTreepGq of G in Opnkq time and space, with the follow-
ing property. For every i P N and bag B at level LvpBq ě i ¨ γ, we
have |B| “ Opnk´1

¨ βiq.

5. Concurrent Algebraic Paths
We now turn our attention to the core algorithmic problem of this
paper, namely answering semiring distance queries in a concur-
rent graph G of k constant-treewidth graphs pGiq1ďiďk. To this
direction, we develop a data-structure ConcurAP (for concurrent
algebraic paths) which will preprocess G and afterwards support
single-source, pair, and partial pair queries in G.

Semiring distances on tree decompositions. The preprocessing
and query of our data-structure exploits a key property of semiring
distances on tree decompositions. This property is formally stated
in Lemma 1, and concerns any two nodes u, v that appear in some
distinct bagsB1,Bj of TreepGq. Informally, the semiring distance
dpu, vq can be written as the semiring multiplication of distances
dpxi, xi`1q, where xi is a node that appears in the i-th and pi´1q-
th bags of the unique simple path B1 ù Bj in TreepGq. Figure 6
provides an illustration (we refer to Appendix D for the proof).
Lemma 1. Consider a graph G “ pV,Eq with a weight function
wt : E Ñ Σ, and a tree-decomposition TreepGq. Let u, v P V ,
and P : B1, B2, . . . , Bj be a simple path in T such that u P B1

and v P Bj . Let A “ tuu ˆ p
ś

1ăiďj pBi´1 XBiqq ˆ tvu. Then
dpu, vq “

À

px1,...,xj`1qPA

Âj
i“1 dpxi, xi`1q.

Informal description of the preprocessing. The preprocessing
phase of ConcurAP is handled by algorithm ConcurPreprocess,
which performs the following steps.

1. First, the partial expansion G of G is constructed by introduc-
ing a pair of strictly partial nodes u1, u2 for every strictly partial
node u of G, and edges between strictly partial nodes and the
corresponding nodes of G that refine them.

2. Second, the concurrent tree-decomposition T “

ConcurTreepGq of G is constructed, and modified to a
tree-decomposition T of the partial expansion graph G.

3. Third, a standard, two-way pass of T is performed to compute
local distances. In this step, for every bag B in T and all
partial nodes u, v P B, the distance dpu, vq is computed (i.e.,
all-pair distances in B). Since we compute distances between
nodes that are local in a bag, this step is called local distance
computation. This information is used to handle (i) single-
source queries and (ii) partial pair queries in which both nodes
are strictly partial.

4. Finally, a top-down pass of T is performed in which for every
node u and partial node v P V T pBuq (i.e., v appears in some
ancestor ofBu) the distances dpu, vq and dpv, uq are computed.
This information is used to handle pair queries in which at least
one node is a node of G (i.e., not strictly partial).

Algorithm ConcurPreprocess. We now formally describe algo-
rithm ConcurPreprocess for preprocessing the concurrent graph
G “ pV,Eq for the purpose of answering algebraic path queries.
For any desired 0 ă ε ď 1, choose a λ P N and δ P R such that
λ ě 4

ε
and δ ď ε

18
. Let α “ 4 ¨ λ{δ, β “ pp1 ` δq{2qλ´1 and

γ “ λ. On input G “ pV,Eq, where G is a concurrent graph of
k constant-treewidth graphs pGi “ pVi, Eiqq1ďiďk, and a weight
function wt : E Ñ Σ, ConcurPreprocess operates as follows:

1. Construct the partial expansionG “ pV ,Eq ofG together with
an extended weight function wt : E Ñ Σ as follows.
(a) The node set is V “ V Ytu1, u2 : Du P V s.t. u Ă uu; i.e.,

V consists of nodes in V and two copies for every partial
node u that is strictly refined by a node u of G.

(b) The edge set is E “ E Y tpu1, uq, pu, u2
q : u1, u2

P

V and u P V s.t. u Ă u1, u2
u, i.e., along with the original

edgesE, the first (resp. second) copy of every strictly partial
node has outgoing (resp. incoming) edges to (resp. from) the
nodes of G that refine it.

(c) For the weight function we have wtpu, vq “ wtpu, vq if
u, v P V , and wtpu, vq “ 1 otherwise. That is, the original
weight function is extended with value 1 (which is neutral
for semiring multiplication) to all new edges in G.

2. Construct the tree-decomposition T “ pV T , ET q of G as
follows.
(a) Obtain an pα, β, γq tree-decomposition Ti “ TreepGiq of

every graph Gi using Theorem 1.
(b) Construct the concurrent tree-decomposition T “

ConcurTreepGq of G using pTiq1ďiďk.
(c) Let T be identical to T , with the following exception: For

every bag B of T and B the corresponding bag in T , for
every node u P B, insert in B all strictly partial nodes u1,
u2 of V that u refines. Formally, set B “ B Y tu1, u2 :
Du P B s.t. u Ă uu. Note that also u P B.

3. Perform the local distance computation on T as follows.
For every partial node u, maintain two map data-structures
FWDu,BWDu : Bu Ñ Σ. Intuitively, FWDu (resp., BWDu)
aims to store the forward (resp., backward) distance, i.e., dis-
tance from (resp., to) u to (resp. from) vertices in Bu. Initially
set FWDupvq “ wtpu, vq and BWDupvq “ wtpv, uq for all
partial nodes v P Bu (and FWDupvq “ BWDupvq “ 0 if
u, v R E). At any point in the computation, given a bag B we
denote by wtB : BˆB Ñ Σ a map data-structure such that for
every pair of partial nodes u, v with Lvpvq ď Lvpuq we have
wtBpu, vq “ FWDupvq and wtBpv, uq “ BWDupvq.
(a) Traverse T bottom-up, and for every bag B, execute an

all-pairs algebraic path computation on GrBs with weight
function wtB . This is done using classical algorithms,
e.g. [35, 49, 56, 72]. For every pair of partial nodes u, v with
Lvpvq ď Lvpuq, set BWDupvq “ d1pv, uq and FWDupvq “

8 2015/7/11

d1pu, vq, where d1pu, vq and d1pv, uq are the computed dis-
tances in GrBs.

(b) Traverse T top-down, and for every bag B perform the
computation of Item 3a.

4. Perform the ancestor distance computation on T as fol-
lows. For every node u, maintain two map data-structures
FWD`u ,BWD`u : V T pBuq Ñ Σ from partial nodes that appear
in the ancestor bags ofBu to Σ. These maps aim to capture dis-
tances between the node u and nodes in the ancestor bags ofBu
(in contrast to FWDu and BWDu which store distances only be-
tween u and nodes in Bu). Initially, set FWD`u pvq “ FWDupvq
and BWD`u pvq “ BWDupvq for every partial node v P Bu.
Given a pair of partial nodes u, v with Lvpvq ď Lvpuq we de-
note by wt`pu, vq “ FWD`u pvq and wt`pv, uq “ BWD`u pvq.
Traverse T via a DFS starting from the root, and for every en-
countered bag B with parent B

1
, for every node u such that B

is the root bag of u, for every partial node v P V T pBuq, assign

FWD`u pvq “
à

xPBXB
1

FWDupxq b wt`px, vq (3)

BWD`u pvq “
à

xPBXB
1

BWDupxq b wt`pv, xq (4)

If B is the root of T , simply initialize the maps FWD`u and
BWD`u according to the corresponding maps FWDu and BWDu
constructed from Item 3.

5. Preprocess T to answer LCA queries in Op1q time [40].

The following claim states that the first (resp. second) copy of each
strictly partial node inserted in Item 1 captures the distance from
(resp. to) the corresponding strictly partial node of G.
Claim 1. For every partial node u and strictly partial node v we
have dpu, vq “ dpu, v2q and dpv, uq “ dpv1, uq.

Key novelty and insights. The key novelty and insights of our
algorithm are as follows:

1. A partial pair query can be answered by breaking it down to sev-
eral pair queries. Instead, preprocessing the partial expansion
of the concurrent graph allows to answer partial pair queries
directly. Moreover, the partial expansion does not increase the
asymptotic complexity of the preprocessing time and space.

2. ConcurPreprocess computes the transitive closure only during
the local distance computation in each bag (Item 3 above),
instead of a global computation on the whole graph. The key
reason of our algorithmic improvement lies on the fact that the
local computation is cheaper than the global computation, and
is also sufficient to handle queries fast.

3. The third key aspect of our algorithm is the strongly balanced
tree decomposition, which is crucially used in Theorem 2 to
construct a tree decomposition for the concurrent graph such
that the size of the bags decreases geometrically along the lev-
els. By using the cheaper local distance computation (as op-
posed to the transitive closure globally) and recursing on a ge-
ometrically decreasing series we obtain the desired complexity
bounds for our algorithm. Both the strongly balanced tree de-
composition and the fast local distance computation play im-
portant roles in our algorithmic improvements.

We now turn our attention to the analysis of ConcurPreprocess.
The following lemma is proved in Appendix D.

Lemma 2. T is a tree decomposition of the partial expansion G.

In Lemma 3 we establish that the forward and backward maps
computed by ConcurPreprocess store the distances between nodes.
Lemma 3. At the end of ConcurPreprocess, the following asser-
tions hold:

1. For all nodes u, v P V such that Bu is in T pBvq, we have
FWD`u pvq “ dpu, vq and BWD`u pvq “ dpv, uq.

2. For all strictly partial nodes v P V and nodes u P V we have
FWD`u pv

2
q “ dpv, uq and BWD`u pv

1
q “ dpu, vq.

3. For all strictly partial nodes u, v P V we have FWDu1pv2q “
dpu, vq and BWDu2pv1q “ dpv, uq.

Proof. We describe the key invariants that hold during the traversals
of T by ConcurPreprocess in Item 3a, Item 3b and Item 4 after the
algorithm processes a bag B. All cases depend on Lemma 1.

Item 3a For every pair of partial nodes u, v P B such that Lvpvq ď
Lvpuq we have FWDupvq “

À

P1
wtpP1q and BWDupvq “

À

P2
wtpP2q where P1 and P2 are u ù v and v ù u

paths respectively that only traverse nodes in V T pBq. The
statement follows by a straightforward induction on the levels
processed by the algorithm in the bottom-up pass. Note that if
u and v are partial nodes in the root of T , the statement yields
FWDupvq “ dpu, vq and BWDupvq “ dpv, uq.

Item 3b The invariant is similar to the previous, except that P1 and
P2 range over all u ù v and v ù u paths in G respectively.
Hence now FWDupvq “ dpu, vq and BWDupvq “ dpv, uq. The
statement follows by a straightforward induction on the levels
processed by the algorithm in the top-down pass. Note that the
base case on the root follows from the previous item, where the
maps BWD and FWD store actual distances.

Item 4 For every node u P B and partial node v P V T pBq we have
FWD`u pvq “ dpu, vq and BWD`u pvq “ dpv, uq. The statement
follows from Lemma 1 and a straightforward induction on the
length of the path from the root of T to the processed bag B.

Statement 1 of the lemma follows from Item 4. Similarly for state-
ment 2, together with the observation that every strictly partial node
v appears in the root of T , and thus v P V T pBuq. Finally, state-
ment 3 follows again from the fact that all strictly partial nodes
appear in the root bag of T . The desired result follows.

We now consider the complexity analysis, and we start with a
technical lemma on recurrence relations.
Lemma 4. Consider the recurrences in Eq. (5) and Eq. (6).

Tkpnq ď n3¨pk´1q
` 2λ¨k ¨ Tk

˜

n ¨

ˆ

1` δ

2

˙λ´1
¸

(5)

Skpnq ď n2¨pk´1q
` 2λ¨k ¨ Sk

˜

n ¨

ˆ

1` δ

2

˙λ´1
¸

(6)

Then

1. Tkpnq “ Opn3¨pk´1q
q, and

2. (i) Skpnq “ Opn2¨pk´1q
q if k ě 3, and (ii) S2pnq “ Opn2`ε

q.

The proof of Lemma 4 is technical, and presented in Ap-
pendix D. The following lemma analyzes the complexity of
ConcurPreprocess, and makes use of the above recurrences.
Lemma 5. ConcurPreprocess requires Opn2¨k´1

q space and
1. Opn3¨pk´1q

q time if k ě 3, and 2. Opn3`ε
q time if k “ 2.

Proof. We examine each step of the algorithm separately.

1. The time and space required for this step is bounded by the
number of nodes introduced in the partial expansion G, which
is 2 ¨

ř

iăk

`

n
i

˘

“ Opnk´1
q.

2. By Theorem 2, ConcurTreepGq is constructed in Opnkq time
and space. In T , the size of each bag B is increased by constant
factor, hence this step requires Opnkq time and space.

9 2015/7/11

3. In each pass, ConcurPreprocess spends |B|3 time to perform
an all-pairs algebraic paths computation in each bagB of T [35,
49, 56, 72]. The space usage for storing all maps FWDu and
BWDu for every node u whose root bag is B is Op|B|2q, since
there are at most |B| such nodes u, and each map has size
|B|. By the previous item, we have |B| “ Op|B|q, where
B is the corresponding bag of T before the partial expansion
of G. By Theorem 2, we have |B| “ Opnk´1

¨ βiq, where
LvpBq ě i¨γ “ i¨λ, and β “ pp1`δq{2qλ´1. Then, since T is
a full 2k-ary tree, the time and space required for preprocessing
every γ “ λ levels of T is given by the following recurrences
respectively (ignoring constant factors for simplicity).

Tkpnq ď n3¨pk´1q
` 2λ¨k ¨ Tk

˜

n ¨

ˆ

1` δ

2

˙λ´1
¸

Skpnq ď n2¨pk´1q
` 2λ¨k ¨ Sk

˜

n ¨

ˆ

1` δ

2

˙λ´1
¸

By the analysis of Eq. (5) and Eq. (6) of Lemma 4, we have that
Tkpnq “ Opn3¨pk´1q

q and (i) Skpnq “ Opn2¨pk´1q
q if k ě 3,

and (ii) S2pnq “ Opn2`ε
q.

4. We first focus on the space usage. Let B
i
u denote the ancestor

bag of Bu at level i. We have

|V T pBuq| “
ÿ

i

|B
i
u| ď c1 ¨

ÿ

i

|B
ti{γu

u | ď c2 ¨
ÿ

i

|Bti{γu
u |

ď c3 ¨
ÿ

i

´

nk´1
¨ βi

¯

“ Opnk´1
q

for some constants c1, c2, c3. The first inequality comes from
expressing the size of all (constantly many) ancestors B

i
u with

ti{γu “ j as a constant factor the size of B
ti{γu

u . The second
inequality comes from Item 1 of this lemma, which states that
Op|B|q “ Op|B|q for every bag B. The third inequality comes
from Theorem 2. By Item 2, there are Opnkq such nodes u in
T , hence the space required is Opn2¨k´1

q.
We now turn our attention to the time requirement. For every
bag B, the algorithm requires Op|B|2q time to iterate over
all pairs of nodes u and x in Eq. (3) and Eq. (4) to compute
the values FWD`u pvq and BWD`u pvq for every v P V T pBq.
Hence the time required for all nodes u and one partial node
v P V T pBq to store the maps values FWD`u pvq and BWD`pvq
is given by the recurrence

Tkpnq ď n2¨pk´1q
` 2λ¨k ¨ Tk

˜

n ¨

ˆ

1` δ

2

˙λ´1
¸

The analysis of Eq. (5) and Eq. (6) of Lemma 4 gives Tkpnq “
Opn2¨pk´1q

q for k ě 3 and T2pnq “ Opn2`ε
q (i.e., the

above time recurrence is analyzed as the recurrence for Sk of
Lemma 4). From the space analysis we have that there exist
Opnk´1

q partial nodes v P V T pBq for every node u whose
root bag is B. Hence the total time for this step is Opn3¨pk´1q

q

for k ě 3, and Opn3`ε
q for k “ 2.

5. This step requires time linear in the size of T [40].

The desired result follows.

Algorithm ConcurQuery. In the query phase, ConcurAP answers
distance queries using the algorithm ConcurQuery. We distinguish
three cases, according to the type of the query.

1. Single-source query. Given a source node u, initialize a map
data-structure A : V Ñ Σ, and initially set Apvq “ 0 for

all nodes v P V . Perform a BFS on T starting from Bu,
and for every encountered bag B and nodes x, v P B with
Lvpvq ď Lvpxq, setApvq “ Apvq‘pApxqbFWDxpvqq. Return
the map A.

2. Pair query. Given two nodes u, v P V , find the LCA B of bags
Bu and Bv . Return

À

xPBXV pFWD`u pxq b BWD`v pxqq.
3. Partial pair query. Given two partial nodes u, v,

(a) If both u and v are strictly partial, return FWDu1pv2q, else
(b) If u is strictly partial, return BWD`v pu

1
q, else

(c) Return FWD`u pv
2
q.

We thus establish the following theorem.
Theorem 3. Let G “ pV,Eq be a concurrent graph of k constant-
treewidth graphs pGiq1ďiďk, and wt : E Ñ Σ a weight function
of G. For any fixed ε ą 0, the data-structure ConcurAP correctly
answers single-source and pair queries and requires:

1. Preprocessing time
(a) Opn3¨pk´1q

q if k ě 3, and (b) Opn3`ε
q if k “ 2.

2. Preprocessing space Opn2¨k´1
q.

3. Single-source query time
(a) Opn2¨pk´1q

q if k ě 3, and (b) Opn2`ε
q if k “ 2.

4. Pair query time Opnk´1
q.

5. Partial pair query time Op1q.

Proof. The correctness of ConcurQuery for handling all queries
follows from Lemma 1 and the properties of the preprocessing
established in Lemma 3. The preprocessing complexity is stated in
Lemma 5. The time complexity for the single-source query follows
by the observation that ConcurQuery spends quadratic time in
each encountered bag, and the result follows from the recurrence
analysis of Eq. (6) in Lemma 4. The time complexity for the pair
query follows from the Op1q time to access the LCA bag B of Bu
and Bv , and the Op|B|q “ Opnk´1

q time required to iterate over
all nodes x P B X V . Finally, the time complexity for the partial
pair query follows from the Op1q time lookup in the constructed
maps FWD, FWD` and BWD`.

Note that a single-source query from a strictly partial node u can
be answered in Opnkq time by breaking it down to nk partial pair
queries. The most common case in analysis of concurrent programs
is that of two threads, for which we obtain the following corollary.
Corollary 1. Let G “ pV,Eq be a concurrent graph of two
constant-treewidth graphs G1, G2, and wt : E Ñ Σ a weight
function of G. For any fixed ε ą 0, the data-structure ConcurAP
correctly answers single-source and pair queries and requires:

1. Preprocessing time Opn3`ε
q.

2. Preprocessing space Opn3
q.

3. Single-source query time Opn2`ε
q.

4. Pair query time Opnq.
5. Partial pair query time Op1q.

Remark 3. In contrast to Corollary 1, the existing methods for
handling even one pair query require hexic time and quartic
space [35, 49, 56, 72] by computing the transitive closure. While
our improvements are most significant for algebraic path queries,
they imply improvements also for special cases like reachability
(expressed in Boolean semirings). For reachability, the complete
preprocessing requires quartic time, and without preprocessing ev-
ery query requires quadratic time. In contrast, with almost cubic
preprocessing we can answer pair (resp., partial pair) queries in
linear (resp. constant) time.

Note that Item 4 of ConcurPreprocess is required for handling pair
queries only. By skipping this step, we can handle every (partial)
pair query u, v similarly to the single source query from u, but
restricting the BFS to the path P : Bu ù Bv , and spending

10 2015/7/11

Op|B|2q time for each bagB of P . Recall (Theorem 2) that the size
of each bagB in T (and thus the size of the corresponding bagB in
T) decreases geometrically every γ levels. Then, the time required
for this operation is Op|B

1
|
2
q “ Opn2

q, where B
1

is the bag of P
with the smallest level. This leads to the following corollary.
Corollary 2. Let G “ pV,Eq be a concurrent graph of two
constant-treewidth graphs G1, G2, and wt : E Ñ Σ a weight
function of G. For any fixed ε, the data-structure ConcurAP (by
skipping Item 4) correctly answers single-source and pair queries
and requires:

1. Preprocessing time Opn3
q.

2. Preprocessing space Opn2`ε
q.

3. Single-source query time Opn2`ε
q.

4. Pair and partial pair query time Opn2
q.

Finally, we can use ConcurAP to obtain the transitive closure of G
by performing n2 single-source queries. The preprocessing space
is Opn2`ε

q by Corollary 2, and the space of the output is Opn4
q,

since there are n4 pairs for the computed distances. Hence the total
space requirement is Opn4

q. The time requirement is Opn4`ε
q,

since by Corollary 2, every single-source query requires Opn2`ε
q

time. We obtain the following corollary.
Corollary 3. Let G “ pV,Eq be a concurrent graph of two
constant-treewidth graphs G1, G2, and wt : E Ñ Σ a weight
function of G. For any fixed ε ą 0, the transitive closure of G wrt
wt can be computed in Opn4`ε

q time and Opn4
q space.

6. Conditional Optimality for Two Graphs
In the current section we establish the optimality of Corollary 2 in
handling algebraic path queries in a concurrent graph that consists
of two constant-treewidth components. The key idea is to show
that for any arbitrary graph (i.e., without the constant-treewidth
restriction) G of n nodes, we can construct a concurrent graph
G1 as a 2-self-concurrent asynchronous composition of a constant-
treewidth graph G2 of 2 ¨ n nodes, such that semiring queries in G
coincide with semiring queries in G1.

Arbitrary graphs as composition of two constant-treewidth
graphs. We fix an arbitrary graph G “ pV,Eq of n nodes, and
a weight function wt : E Ñ Σ. Let xi, 1 ď i ď n range over
the nodes V of G, and construct a graph G2 “ pV 2, E2q such that
V 2 “ txi, yi : 1 ď i ď nu and E2 “ tpxi, yiq, pyi, xiq : 1 ď
i ď nu Y tpyi, yi`1q, pyi`1, yiq : 1 ď i ă nu.
Claim 2. The treewidth of G2 is 2.

We construct a graph G1 “ pV 1, E1q as a 2-self-concurrent asyn-
chronous composition of G2, by including the following edges.

1. Black edges. For all 1 ď i ď n and 1 ď j ă n
we have pxxi, yjy, xxi, yj`1yq, pxxi, yj`1y, xxi, yjyq P E1 ,
and for all 1 ď i ă n and 1 ď j ď n we have
pxyi, xjy, xyi`1, xjyq, pxyi`1, xjy, xyi, xjyq P E

1.
2. Blue edges. For all 1 ď i ď n we have
pxxi, xiy, xxi, yiyq, pxyi, xiy, xxi, xiyq P E

1 .
3. Red edges. For all pxi, xjq P E we have pxxi, yjy, xxi, xjyq P
E1.

4. Green edges. For all 1 ď i, j ď n with i ‰ j we have
pxxi, xjy, xxi, yjyq P E

1.

Additionally, we construct a weight function such that
wt1pxxi, yjy, xxi, xjyq “ wtpxi, xjq for every red edge
pxxi, yjy, xxi, xjyq, and wt1pu, vq “ 1 for every other edge pu, vq.
Figure 7 provides an illustration of the construction.
Lemma 6. For every xi, xj P V , there exists a path P : xi ù xj
with wtpP q “ z in G iff there exists a path P 1 : xxi, xiy ù

xxj , xjy with wtpP 1q “ z in G1.

x1

x2 x3

x1 x2 x3y1 y2 y3

x1

x2

x3

y1

y2

y3

Figure 7: A graphG (left), andG1 that is a 2-self-product of a graph
G2 of treewidth 2 (right). The weighted edges of G correspond to
weighted red edges on G1. The distance dpxi, xjq in G equals the
distance dpxxi, xiy, xxj , xjyq “ dpxK, xiy, xK, xjyq in G1.

Lemma 6 implies that for every xi, xj P V , we have dpxi, xjq “
dpxxi, xiy, xxj , xjyq, i.e., pair queries in G for nodes xi, xj co-
incide with pair queries pxxi, xiy, xxj , xjyq in G1. Observe that in
G1 we have dpxxi, xiy, xxj , xjyq “ dpxK, xiy, xK, xjyq, and hence
pair queries in G also coincide with partial pair queries in G1.

Theorem 4. For every graph G “ pV,Eq and weight function
wt : E Ñ Σ there exists a graph G1 “ pV ˆ V,E1q that
is a 2-self-concurrent asynchronous composition of a constant-
treewidth graph, together with a weight function wt1 : E1 Ñ Σ,
such that for all u, v P V , and xu, uy, xv, vy P V 1 we have
dpu, vq “ dpxu, uy, xv, vyq “ dpxK, uy, xK, vyq. Moreover, the
graph G1 can be constructed in quadratic time in the size of G.

This leads to the following corollary.

Corollary 4. Let TSpnq “ Ωpn2
q be a lower bound on the time

required to answer a single algebraic paths query wrt to a semiring
S on arbitrary graphs of n nodes. Consider any concurrent graph
G which is an asynchronous self-composition of two constant-
treewidth graphs of n nodes each. For any data-structure DS, let
TDSpG, rq be the time required by DS to preprocess G and answer
r pair queries. We have TDSpG, 1q “ ΩpTSpnqq.

Conditional optimality of Corollary 2. Note that for r “ Opnq
pair queries, Corollary 2 yields that the time spent by our data-
structure ConcurAP for preprocessing G and answering r queries
is TConcurAPpG, rq “ Opn3

q. The long-standing (over five decades)
upper bound for answering even one pair query for algebraic path
properties in arbitrary graphs of n nodes is Opn3

q. Theorem 4 im-
plies that any improvement upon our results would yield the same
improvement for the long-standing upper bound, which would be a
major breakthrough.

Almost-optimality of Theorem 3 and Corollary 3. Finally, we
highlight some almost-optimality results obtained by variants of
ConcurAP for the case of two graphs. By almost-optimality we
mean that the obtained bounds areOpnεq factor worse that optimal,
for any fixed ε ą 0 arbitrarily close to 0.

1. According to Theorem 3, after Opn3`ε
q preprocessing time,

single-source queries are handled in Opn2`ε
q time, and partial

pair queries in Op1q time. The former (resp. later) query time
is almost linear (resp. exactly linear) in the size of the output.
Hence the former queries are handled almost-optimally, and
the latter indeed optimally. Moreover, this is achieved using
Opn3`ε

q preprocessing time, which is far less than the Ωpn4
q

time required for the transitive closure computation (which
computes the distance between all n4 pairs of nodes).

11 2015/7/11

λ 2 3 4 5 6 7 8
% 6 7 16 22 25 57 17

Table 2: Percentage of cases for which the transitive closure of the
graphG for the given value of λ is at most 5% slower than the time
required to obtain the transitive closure of G for the best λ.

2. According to Corollary 3, the transitive closure can be com-
puted in Opn4`ε

q time, for any fixed ε ą 0, and Opn4
q space.

Since the size of the output is Θpn4
q, the transitive closure is

computed in almost-optimal time and optimal space.

7. Experimental Results
In the current section we report on experimental evaluation of our
algorithms, in particular of the algorithms of Corollary 3. We test
their performance for obtaining the transitive closure on various
concurrent graphs. We focus on the transitive closure for a fair
comparison with the existing algorithmic methods, which compute
the transitive closure even for a single query. Since the contribu-
tions of this work are algorithmic improvements for algebraic path
properties, we consider the most fundamental representative of this
framework, namely, the shortest path problem. Our comparison is
done against the standard Bellman-Ford algorithm, which (i) has
the best worst-case complexity for the problem, and (ii) allows for
practical improvements, such as early termination.

Basic setup. We use two different sets of benchmarks, and obtain
the controlflow graphs of Java programs using Soot [69], and use
LibTW [70] to obtain the tree decompositions of the corresponding
graphs. For every obtained graph G1, we construct a concurrent
graph G as a 2-self asynchronous composition of G1, and then
assign random integer weights in the range r´103, 103

s, without
negative cycles. Although this last restriction does not affect the
running time of our algorithms, it allows for early termination of
the Bellman-Ford algorithm (and thus only benefits the latter).

DaCapo benchmarks. In our first setup, we extract controlflow
graphs of methods from the DaCapo suit [8]. The average treewidth
of the input graphs is around 6. This supplies a large pool of 120
concurrent graphs, for which we use Corollary 3 to compute the
transitive closure. This allows us to test the scalability of our algo-
rithms, as well as their practical dependence on input parameters.
Recall that our transitive closure time complexity is Opn4`ε

q, for
any fixed ε ą 0, which is achieved by choosing a sufficiently large
λ P N and a sufficiently small δ P R when running the algorithm
of Theorem 1. We compute the transitive closure for various λ. In
practice, δ has effects only for very large input graphs. For this, we
fix it to a large value (δ “ 1{3) which can be proved to have no ef-
fect on the obtained running times. Table 2 shows for each value of
λ, the percentage of cases for which that value is at most 5% slower
than the smallest time (among all tested λ) for each examined case.
We find that λ “ 7 works best most of the time.

Figure 8 shows the time required to compute the transitive closure
on each concurrent graph G by our algorithm (for λ “ 7) and the
baseline Bellman-Ford algorithm. We see that our algorithm signif-
icantly outperforms the baseline method. Note that our algorithm
seems to scale much better than its theoretical worst-case bound of
Opn4`ε

q of Corollary 3.

Concurrency with locks. Our second set of experiments is
on methods from containers of the java.util.concurrent library
that use locks as their synchronization mechanism. The average
treewidth of the input graphs is around 8. In this case, we expand
the node set of the concurrent graphG with the lock set r3s`, where
` is the number of locks used by G1. Intuitively, the i-th value of
the lock set denotes which one of the two components owns the
i-th lock (the value is 3 if the lock is free). Transitions to nodes

Figure 8: Time required to compute the transitive closure on con-
current graphs of various sizes. Our algorithm is run for λ “ 7. TO
denotes that the computation timed out after 30 minutes.

Java method n Topsq Tbpsq

ArrayBlockingQueue: poll 19 19 60
ArrayBlockingQueue: peek 20 20 81
LinkedBlockingDeque: advance 25 29 195
PriorityBlockingQueue: removeEQ 25 32 176
ArrayBlockingQueue: init 26 47 249
LinkedBlockingDeque: remove 26 49 290
ArrayBlockingQueue: offer 26 56 304
ArrayBlockingQueue: clear 28 33 389
ArrayBlockingQueue: contains 32 205 881
DelayQueue: remove 42 267 3792
ConcurrentHashMap: scanAndLockForPut 46 375 2176
ArrayBlockingQueue: next 46 407 3915
ConcurrentHashMap: put 72 1895 TO

Table 3: Time required for the transitive closure on concurrent
graphs extracted from methods of the java.util.concurrent library.
Topsq and Tbpsq correspond to our method and the baseline
method respectively. TO denotes timeout after 8 hours.

that perform lock operations are only allowed wrt the lock seman-
tics. Similarly as before, we compare our transitive closure time
with the standard Bellman-Ford algorithm. Table 3 shows a time
comparison between our algorithms and the baseline method. We
observe that our transitive closure algorithm is significantly faster,
and also scales better.

8. Conclusions
We have considered the fundamental algorithmic problem of com-
puting algebraic path properties in a concurrent intraprocedural set-
ting, where component graphs have constant treewidth. We have
presented algorithms that significantly improve the existing theo-
retical complexity of the problem, and provide a variety of tradeoffs
between preprocessing and query times for on-demand analyses.
Moreover, we have proved that further theoretical improvements
over our algorithms must achieve major breakthroughs. Given that
our theoretical results are almost tight in the intraprocedural con-
current setting, interesting directions of future work is to extend
to the interprocedural setting. However, in that case even the ba-
sic problem of reachability is undecidable, and other techniques
and formulations are required to make the analysis tractable, such
as context-bounded formulations and regular approximations of in-
terprocedural paths [15, 52, 60]. The effect of constant-treewidth
components in such formulations is an interesting theoretical direc-
tion to pursue, with potential for practical use.

12 2015/7/11

References
[1] A. Abboud and V. V. Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In FOCS, pages 434–443, 2014.
[2] A. Abboud, V. V. Williams, and H. Yu. Matching triangles and basing

hardness on an extremely popular conjecture. In STOC, pages 41–50,
2015.

[3] R. Alur, S. Kannan, and M. Yannakakis. Communicating hierarchical
state machines. ICAL, 1999.

[4] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard
problems restricted to partial k-trees . Discrete Appl Math, 1989.

[5] W. A. Babich and M. Jazayeri. The method of attributes for data flow
analysis. Acta Informatica, 10(3), 1978.

[6] R. Bellman. On a Routing Problem. Quarterly of Applied Mathemat-
ics, 1958.

[7] M. Bern, E. Lawler, and A. Wong. Linear-time computation of optimal
subgraphs of decomposable graphs. J Algorithm, 1987.

[8] S. M. e. a. Blackburn. The dacapo benchmarks: Java benchmarking
development and analysis. In OOPSLA, 2006.

[9] H. Bodlaender. Discovering treewidth. In SOFSEM 2005: Theory and
Practice of Computer Science, volume 3381 of LNCS. Springer, 2005.

[10] H. L. Bodlaender. Dynamic programming on graphs with bounded
treewidth. In ICALP, LNCS. Springer, 1988.

[11] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybern.,
1993.

[12] H. L. Bodlaender. A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM J. Comput., 1996.

[13] H. L. Bodlaender and T. Hagerup. Parallel algorithms with optimal
speedup for bounded treewidth. SIAM J. Comput., 1998.

[14] A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static
analysis of concurrent programs with procedures. In Proceedings
of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL, 2003.

[15] A. Bouajjani, J. Esparza, S. Schwoon, and J. Strejček. Reachabil-
ity analysis of multithreaded software with asynchronous communi-
cation. FSTTCS, 2005.

[16] P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, and J. Srba.
Infinite runs in weighted timed automata with energy constraints. In
Formal Modeling and Analysis of Timed Systems, volume 5215 of
Lecture Notes in Computer Science, pages 33–47. Springer Berlin
Heidelberg, 2008.

[17] B. Burgstaller, J. Blieberger, and B. Scholz. On the tree width of
ada programs. In Reliable Software Technologies - Ada-Europe 2004.
2004.

[18] P. Cerny, T. A. Henzinger, and A. Radhakrishna. Quantitative abstrac-
tion refinement. In POPL, pages 115–128, 2013.

[19] P. Cerny, E. M. Clarke, T. A. Henzinger, A. Radhakrishna, L. Ryzhyk,
R. Samanta, and T. Tarrach. From non-preemptive to preemptive
scheduling using synchronization synthesis. In CAV, 2015.

[20] K. Chatterjee and J. Lacki. Faster algorithms for Markov decision
processes with low treewidth. In CAV, 2013.

[21] K. Chatterjee, L. Doyen, and T. A. Henzinger. Quantitative languages.
ACM Trans. Comput. Log., 11(4), 2010.

[22] K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis. Faster algorithms
for quantitative verification in constant treewidth graphs. In CAV,
2015.

[23] K. Chatterjee, R. Ibsen-Jensen, A. Pavlogiannis, and P. Goyal. Faster
algorithms for algebraic path properties in recursive state machines
with constant treewidth. In POPL, 2015.

[24] K. Chatterjee, A. Pavlogiannis, and Y. Velner. Quantitative interpro-
cedural analysis. In POPL, 2015.

[25] S. Chaudhuri and C. D. Zaroliagis. Shortest Paths in Digraphs of Small
Treewidth. Part I: Sequential Algorithms. Algorithmica, 1995.

[26] R. Chugh, J. W. Voung, R. Jhala, and S. Lerner. Dataflow analysis for
concurrent programs using datarace detection. In Proceedings of the
29th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI, 2008.

[27] B. Courcelle. Graph rewriting: An algebraic and logic approach.
In Handbook of Theoretical Computer Science (Vol. B). MIT Press,
Cambridge, MA, USA, 1990.

[28] A. De, D. D’Souza, and R. Nasre. Dataflow analysis for datarace-free
programs. In Proceedings of the 20th European Conference on Pro-
gramming Languages and Systems: Part of the Joint European Con-
ferences on Theory and Practice of Software, ESOP’11/ETAPS’11,
pages 196–215. Springer-Verlag, 2011.

[29] E. Duesterwald, R. Gupta, and M. L. Soffa. Demand-driven computa-
tion of interprocedural data flow. POPL, 1995.

[30] M. B. Dwyer, L. A. Clarke, J. M. Cobleigh, and G. Naumovich. Flow
analysis for verifying properties of concurrent software systems. ACM
Trans. Softw. Eng. Methodol., 13(4):359–430, 2004.

[31] M. Elberfeld, A. Jakoby, and T. Tantau. Logspace versions of the
theorems of Bodlaender and Courcelle. In FOCS, 2010.

[32] A. Farzan and P. Madhusudan. Causal dataflow analysis for concurrent
programs. In Proceedings of the 13th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems,
TACAS, 2007.

[33] A. Farzan, Z. Kincaid, and A. Podelski. Inductive data flow graphs.
POPL, 2013.

[34] T. Fernandes and J. Desharnais. Describing data flow analysis tech-
niques with kleene algebra. Sci. Comput. Program., 65(2):173–194,
2007.

[35] R. W. Floyd. Algorithm 97: Shortest path. Communications of the
ACM, 1962.

[36] L. R. Ford. Network Flow Theory. Report P-923, The Rand Corpora-
tion, 1956.

[37] D. Grunwald and H. Srinivasan. Data flow equations for explicitly
parallel programs. In Proceedings of the Fourth ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPOPP,
1993.

[38] J. Gustedt, O. Maehle, and J. Telle. The treewidth of java programs.
In Algorithm Engineering and Experiments. Springer, 2002.

[39] R. Halin. S-functions for graphs. Journal of Geometry, 1976.
[40] D. Harel and R. Tarjan. Fast Algorithms for Finding Nearest Common

Ancestors. SIAM Journal on Computing, 1984.
[41] D. Harel, O. Kupferman, and M. Vardi. On the complexity of verifying

concurrent transition systems. In CONCUR. 1997.
[42] M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak. Uni-

fying and strengthening hardness for dynamic problems via the online
matrix-vector multiplication conjecture. In STOC, pages 21–30, 2015.

[43] S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural dataflow
analysis. SIGSOFT Softw. Eng. Notes, 1995.

[44] D. B. Johnson. Efficient Algorithms for Shortest Paths in Sparse
Networks. J. ACM, 1977.

[45] V. Kahlon, N. Sinha, E. Kruus, and Y. Zhang. Static data race detection
for concurrent programs with asynchronous calls. In Proceedings
of the the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering, ESEC/FSE ’09, pages 13–22, 2009.

[46] V. Kahlon, S. Sankaranarayanan, and A. Gupta. Static analysis for
concurrent programs with applications to data race detection. Inter-
national Journal on Software Tools for Technology Transfer, 15(4):
321–336, 2013.

[47] R. M. Karp. A characterization of the minimum cycle mean in a
digraph. Discrete Mathematics, 1978.

[48] G. A. Kildall. A unified approach to global program optimization. In
Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, POPL, 1973.

[49] S. C. Kleene. Representation of events in nerve nets and finite au-
tomata. Automata Studies, 1956.

[50] J. Knoop, B. Steffen, and J. Vollmer. Parallelism for free: Efficient
and optimal bitvector analyses for parallel programs. ACM Trans.
Program. Lang. Syst., 1996.

[51] S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis
of concurrent queue systems. TACAS, 2008.

13 2015/7/11

[52] A. Lal and T. Reps. Reducing concurrent analysis under a context
bound to sequential analysis. Form. Methods Syst. Des., 2009.

[53] A. Lal, T. Touili, N. Kidd, and T. Reps. Interprocedural analysis of
concurrent programs under a context bound. TACAS, 2008.

[54] A. Lal, S. Qadeer, and S. K. Lahiri. A solver for reachability modulo
theories. CAV, 2012.

[55] E. Lawler. Combinatorial Optimization: Networks and Matroids.
Saunders College Publishing, 1976.

[56] D. J. Lehmann. Algebraic structures for transitive closure. Theoretical
Computer Science, 1977.

[57] P. Madhusudan and G. Parlato. The tree width of auxiliary storage.
POPL, 2011.

[58] N. A. Naeem, O. Lhoták, and J. Rodriguez. Practical extensions to the
ifds algorithm. CC, 2010.

[59] J. Obdrzálek. Fast mu-calculus model checking when tree-width is
bounded. In CAV, 2003.

[60] S. Qadeer and J. Rehof. Context-bounded model checking of concur-
rent software. TACAS, 2005.

[61] B. A. Reed. Finding approximate separators and computing tree width
quickly. In STOC, 1992.

[62] T. Reps. Demand interprocedural program analysis using logic
databases. In Applications of Logic Databases, volume 296. 1995.
ISBN 978-1-4613-5926-5.

[63] T. Reps. Program analysis via graph reachability. ILPS, 1997.
[64] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow

analysis via graph reachability. In POPL, 1995.
[65] N. Robertson and P. Seymour. Graph minors. iii. planar tree-width.

Journal of Combinatorial Theory, Series B, 1984.
[66] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow

analysis with applications to constant propagation. Theor. Comput.
Sci., 1996.

[67] D. Suwimonteerabuth, J. Esparza, and S. Schwoon. Symbolic context-
bounded analysis of multithreaded java programs. SPIN, 2008.

[68] M. Thorup. All Structured Programs Have Small Tree Width and Good
Register Allocation. Information and Computation, 1998.

[69] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundare-
san. Soot - a java bytecode optimization framework. In CASCON ’99.
IBM Press, 1999.

[70] T. van Dijk, J.-P. van den Heuvel, and W. Slob. Computing treewidth
with libtw. Technical report, University of Utrecht, 2006.

[71] A. Viterbi. Error bounds for convolutional codes and an asymptot-
ically optimum decoding algorithm. IEEE Trans. Inf. Theor., 13(2):
260–269, 1967.

[72] S. Warshall. A Theorem on Boolean Matrices. J. ACM, 1962.
[73] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B.

Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. P. Puschner, J. Staschulat, and P. Stenström. The worst-case
execution-time problem - overview of methods and survey of tools.
ACM Trans. Embedded Comput. Syst., 7(3), 2008.

[74] D. Yan, G. Xu, and A. Rountev. Demand-driven context-sensitive alias
analysis for java. In Proceedings of the 2011 International Symposium
on Software Testing and Analysis, ISSTA, 2011.

[75] X. Yuan, R. Gupta, and R. Melhem. Demand-driven data flow analysis
for communication optimization. Parallel Processing Letters, 07(04):
359–370, 1997.

[76] F. K. Zadeck. Incremental data flow analysis in a structured program
editor. SIGPLAN, 1984.

14 2015/7/11

APPENDIX
A. Modeling power

The algebraic paths framework considered in this work has a rich
expressive power, as it can model a wide range of path problems
arising in the static analysis of programs.

Reachability. The simplest path problem asks whether there
exists a path between two locations of a concurrent sys-
tem. The problem can be formulated on the boolean semiring
ptTrue,Falseu,_,^,False,Trueq.

Dataflow problems. A wide range of dataflow problems has an
algebraic paths formulation, expressed as a “meet-over-all-paths”
analysis [48]. Perhaps the most well-known case is that of dis-
tributive flow functions considered in the IFDS framework [64, 66].
Given a finite domain D and a universe F of distributive dataflow
functions f : 2D Ñ 2D , a weight function wt : E Ñ F as-
sociates each edge of the controlflow graph with a flow function.
The weight of a path is then defined as the composition of the flow
functions along its edges, and the dataflow distance between two
nodes u, v is the meet [(union or intersection) of the weights of
all u ù v paths. The problem can be formulated on the meet-
composition semiring pF,[, ˝,H, Iq, where I is the identity func-
tion. We note, however, that the IFDS/IDE framework considers in-
terprocedural paths in sequential programs. In contrast, the current
work focuses on intraprocedural analysis of concurrent programs.
The dataflow analysis of concurrent programs has been a problem
of intensive study (e.g. [26, 28, 32, 37, 45, 50]), where (part of) the
underlying analysis is based on an algebraic, “meet-over-all-paths”
approach.

Weighted problems. The algebraic paths framework subsumes
several problems on weighted graphs. The most well-known such
problem is the shortest path problem [6, 35, 36, 44, 72], phrased on
the tropical semiring pR Y t´8,8u, inf,`,8, 0q. A number of
other fundamental problems on weighted graphs can be reduced to
various instances of the shortest-path problem, e.g. the most prob-
able path, the mean-payoff and the minimum initial credit prob-
lem [16, 22, 47, 55, 71]. Lately, path problems in weighted sys-
tems are becoming increasingly important in quantitative verifica-
tion and quantitative program analysis [16, 18, 21, 24, 73].

Kleene algebras. Finally, a well-known family of closed semirings
used in program analysis is that of Kleene algebras [34]. A common
instance is when edges of the controlflow graph are annotated with
observations or actions. In such case the set of observations/actions
the system makes in a path between two nodes of the controlflow
graph forms a regular language [19, 30, 33]. Kleene algebras have
also been used as algebraic relaxations of interprocedurally valid
paths in sequential and concurrent systems [14, 74].

Modeling example

Figure 9 illustrates the introduced notions in a small example of
the well-known k dining philosophers problem. For the purpose
of the example, lock is considered a blocking operation. Consider
the case of k “ 2 threads being executed in parallel. The graphs
G1 and G2 that correspond to the two threads have nodes of the
form pi, `q, where i P r20s is a node of the controlflow graph, and
` P r3s denotes the thread that controls the lock (` “ 3 denotes
that ` is free, whereas ` “ i P r2s denotes that it is acquired by
thread i). The concurrent graph G is taken to be the asynchronous
composition of G1 and G2, and consists of nodes xx, yy, where x
and y is a node of G1 and G2 respectively, such that x and y agree
on the value of ` (all other nodes can be discarded). For brevity, we
represent nodes of G as triplets xx, y, `y where now x and y are

nodes in the controlflow graphs G1 and G2 (i.e., without carrying
the value of the lock), and ` is the value of the lock. A transition
to a node xx, y, `y in which one component Gi performs a lock
is allowed only from a node where ` “ 3, and sets ` “ i in the
target node (i.e., xx, y, iy). Similarly, a transition to a node xx, y, `y
in which one component Gi performs an unlock is allowed from a
node where ` “ i, and sets ` “ 3 in the target node(i.e., xx, y, 3y).

Suppose that we are interested in determining (1) whether the first
thread can execute dinepfork, knifeq without owning fork or knife,
and (2) whether a deadlock can be reached in which each thread
owns one resource. These questions naturally correspond to partial
pair and pair queries respectively, as in case (1) we are interested
in a local property of G1, whereas in case (2) we are interested in a
global property of G. We note, however, that case (1) still requires
an analysis on the concurrent graph G.

Local property as a partial pair query. Assume that we are
interested in determining whether the first thread can execute
dinepfork, knifeq without owning fork or knife. A typical datafact
set is D “ tfork, knife, nullu, where each datafact denotes that the
corresponding resource must be owned by the first thread. The con-
current graphG is associated with a weight function wt of dataflow
functions f : 2D Ñ 2D . The dataflow function wtpeq along an
edge e behaves as follows on input datafact F (we only describe
the case where F “ fork, as the other case is symmetric).

1. If e transitions to a node in which the second thread acquires
fork or the first thread releases fork, then wtpeqpforkq Ñ null
(i.e., fork is removed from the datafacts).

2. Else, if e transitions to a node in which the first thread acquires
fork, then wtpeqpnullq Ñ fork (i.e., fork is inserted to the
datafacts).

Similarly for the F “ knife datafact. The “meet-over-all-paths”
operation is set intersection. Then the question is answered by
testing whether dpx1, 1, 3y, x14,K, 3yq “ tfork, knifeu, i.e., by
performing a partial pair query, in which the node of the second
thread is unspecified.

Global property as a pair query. Assume that we are interested in
determining whether the two threads can cause a deadlock. Because
of symmetry, we look for a deadlock in which the first thread may
hold the fork, and the second thread may hold the knife. A typical
datafact set is D “ 2tfork,knifeu. For a datafact F P D we have

1. fork P F if fork may be acquired by the first thread.
2. knife P F if knife may be acquired by the second thread.

The concurrent graph G is associated with a weight function wt
of dataflow functions f : 2D Ñ 2D . The dataflow function wtpeq
along an edge e behaves as follows on input datafact F .

1. If e transitions to a node in which the second thread ac-
quires fork or the first thread releases fork, then wtpeqpF q Ñ
F ztforku (i.e., the first thread no longer owns fork).

2. If e transitions to a node in which the first thread acquires fork,
then wtpeqpF q Ñ F Y tforku (i.e., the first thread now owns
fork).

3. If e transitions to a node in which the first thread acquires
knife or the second thread releases knife, then wtpeqpF q Ñ
F ztknifeu (i.e., the second thread no longer owns knife).

4. If e transitions to a node in which the second thread acquires
knife, then wtpeqpF q Ñ F Y tknifeu (i.e., the second thread
now owns knife).

The “meet-over-all paths” operation is set union. Then the
question is answered by testing whether tfork, knifeu P

dpx1, 1, 3y, x2, 2, 3yq, i.e., by performing a pair query, and find-
ing out whether the two threads can start the while loop with each
one holding one resource. Alternatively, we can answer the ques-
tion by performing a single-source query from x1, 1, 3y and finding

15 2015/7/11

Method: DiningPhilosophers
1 while True do
2 while fork not mine or knife not mine do
3 if fork is free then
4 lockp`q
5 acquirepforkq
6 unlockp`q
7 end
8 if knife is free then
9 lockp`q

10 acquirepknifeq
11 unlockp`q
12 end
13 end
14 dinepfork, knifeq// for some time
15 lockp`q
16 releasepforkq
17 releasepknifeq
18 unlockp`q
19 discusspq// for some time
20 end

1 20

2

13

14

15

16

17

18

19

3

4

5

6

7

8

9

10

11

12

1, 19, 20

1, 2, 19

2, 13, 19

13, 14, 19

14, 15, 19

15, 16, 19

16, 17, 19

17, 18, 19

2, 7, 12

2, 3, 7

3, 4, 7

4, 5, 7

5, 6, 7

7, 8, 12

8, 9, 12

9, 10, 12

10, 11, 12

Figure 9: A concurrent program (left), its controlflow graph (middle), and a tree decomposition of the controlflow graph (right).

out whether there exists any node in the concurrent graph G in
which every thread owns one resource (i.e., its distance contains
tfork, knifeu).

B. Details of Section 3
Throughout this section we fix

α “ 4 ¨ λ{δ; β “ pp1` δq{2qλ´1; γ “ λ

We show how given a graph G of treewidth t and a tree-
decomposition Tree1pGq of b bags and width t, we can construct
in Opb ¨ log bq time and Opbq space a pα, β, γq tree-decomposition
with b bags. That is, the resulting tree-decomposition has width at
most α ¨ pt` 1q, and for every bag B and descendant B1 of B that
appears γ levels below, we have that |T pB1q| ď β ¨ |T pBq| (i.e.,
the number of bags in T pB1q is at most β times as large as that in
T pBq). The result is established in two steps.

Tree components and operations Split and Merge. Given a tree-
decomposition T “ pVT , ET q, a component of T is a subset of
bags of T . The neighborhood NhpCq of C is the set of bags in VT zC
that have a neighbor in C, i.e.

NhpCq “ tB P VT zC : ptBu ˆ Cq X ET ‰ Hu

Given a component C, we define the operation Split as SplitpCq “
pX ,Yq, where X Ď C is a list of bags pB1, . . . B2{δq and Y is
a list of sub-components pC1, . . . Crq such that removing each bag
Bi from C splits C into the subcomponents Y , and for every i we
have |Ci| ď δ

2
¨ |C|. Note that since C is a component of a tree,

we can find a separator bag that splits C into sub-components of
size at most |C|

2
. Applying this step recursively for logp2{δq levels

yields the desired separator set X . For technical convenience, if
this process yields less than 2{δ bags, we repeat some of these bags
until we have 2{δ many.

Consider a list of components Y “ pC1, . . . Crq, and let z “
ř

i |Ci|. Let j be the largest integer such that
řj
i“1 |Ci| ď

z
2

. We
define the operation MergepYq “ pC1, C2q, where C1 “

Ťj
i“1 Ci

and C2 “
Ťr
i“j`1 Ci. The following claim is trivially obtained.

Claim 3. If |Ci| ă δ
2
¨ z for all i, then |C1| ď |C2| ď

1`δ
2
¨ z.

Proof. By construction, 1´δ
2
¨ z ă |C1| ď

1
2
¨ z, and since C1 and

C2 partition Y , we have C1 ` C2 “ 1. The result follows.

Construction of a pβ, γq-balanced rank tree. In the following, we
consider that TG “ Tree1pGq “ pVT , ET q is a tree-decomposition
of G and has |VT | “ b bags. Given the parameters λ P N with
λ ě 2 and δ ą 0, we use the following algorithm Rank to construct
a tree of bags RG. Rank operates recursively on inputs pC, `q where
C is a component of TG and ` P t0u Y rλ´ 1s, as follows.

1. If |C| ¨ δ
2
ď 1 , construct a bag B “

Ť

BPC B, and return B.
2. Else, if ` ą 0 , let pX ,Yq “ SplitpCq. Construct a bag B “

Ť

BiPX Bi, and let pC1, C2q “ MergepYq. Call Rank recur-
sively on input pC1, p``1q mod λq and pC2, p``1q mod λq,
and let B1, B2 be the returned bags. Make B1 and B2 the left
and right child of B.

3. Else, if ` “ 0 , if |NhpCq| ą 1, find a bag B whose removal
splits C into connected components C1, C2 with |NhpCiq X
NhpCq| ď |NhpCq|

2
. Call Rank recursively on input pC1, p` ` 1q

mod λq and pC2, p` ` 1q mod λq, and let B1, B2 be the
returned bags. Make B1 and B2 the left and right child of
B. Finally, if |NhpCq| ď 1, call Rank recursively on input
pC, p`´ 1q mod λq.

In the following we use the symbols B and B to refer to bags
of TG and RG respectively. Given a bag B, we denote by CpBq
the input component of Rank when B was constructed, and define
the neighborhood of B as NhpBq “ NhpCpBqq. Additionally, we
denote by BhpBq the set of separator bagsB1, . . . Br of C that were
used to construct B. It is straightforward that BhpB1q XBhpB2q “

H for every distinct B1 and B2.
Claim 4. Let B and B1 be respectively a bag and its parent in
RG. Then NhpBq Ď NhpB1q Y BhpB1q, and thus |NhpBq| ď
|NhpB1q| ` 2{δ.

Proof. Every bag in NhpCpBqq is either a bag in NhpCpB1qq, or a
separator bag of CpB1q, and thus a bag of BhpB1q.

16 2015/7/11

NhpCq B C2C1

Figure 10: Illustration of one recursive step of Rank on a compo-
nent C (gray). C is split into two sub-components C1 and C2 by
removing a list of bags X “ pBiqi. Once every λ recursive calls,
X contains one bag, such that the neighborhood NhpCiq of each Ci
is at most half the size of NhpCq (i.e., the red area is split in half).
In the remaining λ ´ 1 recursive calls, X contains 2{δ bags, such
that the size of each Ci, is at most 1`δ

2
fraction the size of C. (i.e.,

the gray area is split in almost half).

Note that every bag B of TG belongs in BhpBq of some bag B of
RG, and thus the bags of RG already cover all nodes and edges ofG
(i.e., properties C1 and C2 of a tree decomposition). In the follow-
ing we show how RG can be modified to also satisfy condition C3,
i.e., that every node u appears in a contiguous subtree of RG. Given
a bag B, we denote by NhVpBq “ B Y

Ť

BPNhpBqB, i.e., NhVpBq
is the set of nodes of G that appear in B and its neighborhood. In
the sequel, to distinguish between paths in different trees, given a
tree of bags T (e.g. TG or RG) and bags B1, B2 of T , we write
B1 ùT B2 to denote the unique simple path from B1 to B2 in
T .

We say that a pair of bags pB1, B2q form a gap of some node u in a
tree of bags T (e.g., RG) if u P B1 X B2 and for the unique simple
path P : B1 ùT B2 we have that |P | ě 2 (i.e., there is at least
one intermediate bag in P) and for all intermediate bags B in P we
have u R B. The following crucial lemma shows that if B1 and B2

form a gap of u in xRG, then for every intermediate bag B in the path
P : B1 ùT B2, u must appear in some bag of NhpBq.
Lemma 7. For every node u, and pair of bags pB1, B2q that form
a gap of u in RG, such that B1 is an ancestor of B2, for every
intermediate bag B in P : B1 ùRG B2 in RG, we have that
u P NhVpBq.

Proof. Fix any such a bag B, and since B1 and B2 form a gap of u,
there exist bagsB1 P BhpB1q andB2 P BhpB2qwith u P B1XB2.
LetBr be the rightmost bag of the path P1 : B1 ùTG B2 that has
been chosen as a separator when B was constructed. Note that B1

has been chosen as such a separator, therefore Br is well defined.
We argue that Br P NhpBq, which implies that u P NhVpBq. This
is done in two steps.

1. Since B2 is a descendant of B, we have that B2 P CpBq, i.e.,
B2 is a bag of the component when B was constructed.

2. By the choice of Br , for every intermediate bag Bi in the path
Br ùTG B2 we haveBi P CpBq. HenceBr is incident to the
component where B2 belonged at the time B was constructed.

These two points imply that Br P NhpBq, as desired. Figure 11
provides an illustration of the argument.

Turning the rank tree to a tree decomposition. Lemma 7 sug-
gests a way to turn the rank tree RG to a tree-decomposition. Let
xRG “ ReplacepRGq be the tree obtained by replacing each bag B
of RG with NhVpBq. For a bag B in RG let pB be the corresponding
bag in xRG and vice versa.

Br B2 CpBq NhpBq

Figure 11: Illustration of Lemma 7. Since B2 belongs to CpBq
and the blue sub-component has not been split yet, the bag Br is
in the neighborhood of the blue sub-component, and thus in the
neighborhood of CpBq.

Claim 5. If there is a pair of bags pB1, pB2 that form a gap of some
node u in xRG, then there is a pair of bags pB11, pB12 that also form a
gap of u, and pB11 is ancestor of pB12.

Proof. Assume that neither of pB1, pB2 is ancestor of the other.

1. If for some i P t1, 2u there is no bag Bi P BhpBiq such that
u P Bi, then u P NhVpBiq and hence there is an ancestor B1i of
Bi such that u P NhVpB1iq. Thus pB1i and pBi form a gap of u in
xRG.

2. Else, there exists a B1 P BhpB1q and B2 P BhpB2q such that
u P B1 X B2. Let B be first bag in the path B1 ùTG B2

that was chosen as a separator we have B P BhpBq for some
ancestor B of B1 and B2, therefore u P NhVpBq.

It follows that there exists an ancestor pB1i of some pBi so that the
two form a gap of u in xRG.

The following lemma states that xRG is a tree decomposition of G.

Lemma 8. xRG “ ReplacepRGq is a tree-decomposition of G.

Proof. It is straightforward to see that the bags of xRG cover all
nodes and edges of G (properties C1 and C2 of the definition of
tree-decomposition), because for each bag B, we have that B Ď pB.
It remains to show that every node u appears in a contiguous
subtree of xRG (i.e., that property C3 is satisfied).

Assume towards contradiction otherwise, and by Claim 5 it follows
that there exist bags pB1 and pB2 in xRG that form a gap of some node
u such that pB1 is an ancestor of pB2. Let pP : pB1 ù

xRG

pB2 be the
path between them, and P : B1 ùRG B2 the corresponding path
in RG. By Lemma 7 we have u R B1 X B2, otherwise for every
intermediate bag B P pP we would have u P NhVpBq and thus
u P pB. Additionally, we have u P B2, otherwise by Claim 4, we
would have u P NhVpB12q, where B12 is the parent of B2, and thus
u P pB12, contradicting the assumption that pB1 and pB2 form a gap of
u. Hence u R B1. A similar argument as that of Claim 5 shows that
there exists an ancestor B11 of B1 such that u P B11, and WLOG,
take B11 to be the lowest ancestor of B1 with this property. Then
B11 is also an ancestor of B2, and B11 and B2 form a gap of u in
RG. Since B1 is an intermediate bag in B11 ùRG B2, by Lemma 7
we have that u P NhVpBq, thus u P pB. We have thus arrived at a
contradiction, and the desired result follows.

Properties of the tree-decomposition xRG. Lemma 8 states that
xRG obtained by replacing each bag of RG with NhVpBq is a tree-
decomposition of G. The remaining of the section focuses on

17 2015/7/11

showing that xRG is a pα, β, γq tree-decomposition of G, and that
it can be constructed in Opb ¨ log bq time and Opbq space.
Lemma 9. The following assertions hold:

1. Every bag pB of xRG is pβ, γq-balanced.
2. For every bag pB of xRG, we have | pB| ď α ¨ pt` 1q.

Proof. We prove each item separately.

1. For every bag B constructed by Rank,in at least γ ´ 1 out of
every γ levels, Item 2 of the algorithm applies, and by Claim 3,
the recursion proceeds on components C1 and C2 that are at
most 1`δ

2
factor as large as the input component C in that

recursion step. Thus B is pβ, γq-balanced in RG, and hence pB is
pβ, γq-balanced in xRG.

2. It suffices to show that for every bag B, we have |NhpBq| ď
α ´ 1 “ 2 ¨ p2{δq ¨ λ ´ 1. Assume towards contradiction
otherwise. Let B be the first bag that Rank assigned a rank
such that |NhpBq| ě 2 ¨ p2{δq ¨ λ. Let B1 be the lowest
ancestor of B in RG that was constructed by Rank on some
input pC, `q with ` “ 1, and let B2 be the parent of B1 in RG

(note that B1 can be B itself). By Item 3 of Rank, it follows that
|NhpB1q| ď t

|NhpB2q|
2

u` 1. Note that B1 is at most λ´ 1 levels
above B (as we allow B1 to be B). By Claim 4, the neighborhood
of a bag can increase by at most p2{δq from the neighborhood
of its parents, hence NhpB1q ě p2{δq ¨ pλ ` 1q. The last two
inequalities lead to |NhpB2q| ě 2 ¨ p2{δq ¨ λ, which contradicts
our choice of B.

The desired result follows.

A minimal example. Figure 12 illustrates an example of xRG con-
structed out of a tree-decomposition Tree1pGq. First, Tree1pGq is
turned into a binary and balanced tree RG and then into a binary
and balanced tree xRG. If the numbers are pointers to bags, such that
Tree1pGq is a tree-decomposition for G, then xRG is a binary and
balanced tree-decomposition of G. The values of λ and δ are im-
material for this example, as xRG becomes perfectly balanced (i.e.,
p1{2, 1q-balanced).
Theorem 1. For every graph G with n nodes and constant
treewidth, for any fixed δ ą 0 and λ P N with λ ě 2, let
α “ 4 ¨ λ{δ, β “ pp1 ` δq{2qλ´1, and γ “ λ. A binary pα, β, γq
tree-decomposition TreepGq withOpnq bags can be constructed in
Opn ¨ lognq time and Opnq space.

Proof. By [12] an initial tree-decomposition Tree1pGq of G with
width t and b “ Opnq bags can be constructed in Opnq time.
Lemma 8 and Lemma 9 prove that the constructed xRG is a pα, β, γq
tree-decomposition of G. The time and space complexity come
from the construction of RG by the recursion of Rank. It can be
easily seen that every level of the recursion processes disjoint com-
ponents Ci of Tree1pGq in Op|Ci|q time, thus one level of the re-
cursion requires Opbq time in total. There are Oplog bq such levels,
since every λ levels, the size of each component has been reduced
to at most a factor pp1 ` δq{2qλ´1. Hence the time complexity is
Opb ¨ log bq “qpn ¨ lognq. The space complexity is that of process-
ing a single level of the recursion, hence Opbq “ Opnq.

C. Details of Section 4

Lemma 10. ConcurTreepGq is a tree decomposition of G.

Proof. We show that T satisfies the three conditions of a tree
decomposition.

C1 For each node u “ xuiy1ďiďk, let j “ arg mini Lvpuiq. Then
u P B, whereB is the bag constructed by step 1 of ConcurTree
when it operates on the tree-decompositions pTipBiqq1ďiďk
with Bj “ Buj , the root bag of uj in Tj .

C2 Similarly, for each edge pu, vq P E with u “ xuiy1ďiďk and
v “ xviy1ďiďk, let j “ arg minipmaxpLvpuiq, Lvpviqqq. Then
pu, vq P B, where B is a bag similar to C1.

C3 For any node u “ xuiy1ďiďk and path P : B ù B1 with
u P B X B1, let B2 be any bag of P . Since at least one of
B, B1 is a descendant of B2, we have VT pBq Ď VT pB

2
q or

VT pB
1
q Ď VT pB

2
q, and because u P B X B1, if B2 was

constructed on input pTipB2i qq1ďiďk, we have ui P VTipBiq.
Let pTipBiqq1ďiďk and pTipB1iqq1ďiďk be the inputs to the
algorithm when B and B1 were constructed, and it follows that
for some 1 ď j ď k we have uj P Bj X B1j . Then B2j is
an intermediate bag in the path Pj : Bj ù B1j in Tj , thus
u P B2j .

The desired result follows.

Lemma 11. Consider the following recurrence.

T pn1, . . . , nkq ď
ÿ

1ďiďk

ź

j‰i

nj `
ÿ

priqiPr2s
k

T pn1,r1 , . . . , nk,rk q (7)

such that for every i we have that
ř

priqiPr2sk
ni,ri ď ni. Then we

have

T pn1, . . . , nkq ď
ź

1ďiďk

ni ´
ÿ

1ďiďk

ź

j‰i

nj . (8)

Proof. Indeed, substituting Eq. (8) to the recurrence Eq. (7) we
have

T pn1, . . . , nkq ď
ÿ

1ďiďk

ź

j‰i

nj`

ÿ

priqiPr2sk

˜

ź

1ďiďk

ni,ri ´
ÿ

1ďiďk

ź

j‰i

nj,rj

¸

“
ÿ

1ďiďk

ź

j‰i

nj `X ´ Y (9)

where

X “
ÿ

priqiPr2sk

˜

ź

1ďiďk

ni,ri

¸

and

Y “
ÿ

priqiPr2sk

˜

ÿ

1ďiďk

ź

j‰i

nj,rj

¸

We compute X and Y respectively.

X “
ÿ

priqiPr2sk

˜

ź

1ďiďk

ni,ri

¸

“
ÿ

r1Pr2s

n1,r1 ¨

¨

˝

ÿ

r2Pr2s

n2,r2 ¨

¨

˝. . .
ÿ

rkPr2s

nk,rk

˛

‚

˛

‚

ď
ź

1ďiďk

ni (10)

18 2015/7/11

1

2

3

4

5

6

7

ñ

1

2

4

6

753

ñ

1,2

2,4

4

4,6

7,64,5,62,3,4

TreepGq RG xRG

Figure 12: Given the tree-decomposition TreepGq on the left, the graph in the middle is the corresponding RG and the one on the right is the
corresponding tree-decomposition xRG “ ReplacepRGq after replacing each bag B with NhVpBq.

by factoring out every ni,ri of the sum. Similarly,

Y “
ÿ

priqiPr2sk

˜

ÿ

1ďiďk

ź

j‰i

nj,rj

¸

“
ÿ

1ďiďk

¨

˝

ÿ

priqiPr2sk

ź

j‰i

nj,rj

˛

‚

“2 ¨
ÿ

1ďiďk

¨

˝

ÿ

r1Pr2s

n1,r1 ¨ . . .

¨

˝

ÿ

ri´1Pr2s

ni´1,ri´1 ¨

¨

˝

ÿ

ri`1Pr2s

ni`1,ri`1 ¨ . . .

¨

˝

ÿ

rkPr2s

nk,rk

˛

‚

˛

‚

˛

‚

˛

‚

ě2 ¨
ÿ

1ďiďk

ź

j‰i

nj (11)

as the inner sum in the second line is independent of i, and ri P r2s.

Substituting inequalities Eq. (10) and Eq. (11) to Eq. (9) we obtain

T pn1, . . . , nkq ď
ÿ

1ďiďk

ź

j‰i

nj `X ´ Y

ďc1 ¨
ź

1ďiďk

ni ´ c2 ¨
ÿ

1ďiďk

ź

j‰i

nj

for appropriate choices of the constants c1, c2, and thus
T pn1, . . . , nkq “ Opn1 ¨ . . . ¨ nkq “ Opnkq, as desired.

Lemma 12. ConcurTree requires Opnkq time and space.

Proof. It is easy to verify that ConcurTreepGq performs a constant
number of operations per node per bag in the returned tree decom-
position. Hence we will bound the time taken by bounding the size
of ConcurTreepGq. Consider a recursion step of ConcurTree on
input pTipBiqq1ďiďk. Let ni “ |TipBiq| for all 1 ď i ď k, and
ni,ri “ |TipBi,riq|, ri P r2s, where Bi,ri is the ri-th child of Bi.
In view of Remark 2, the time required by ConcurTree on this in-
put is given by the recurrence in Eq. (7), up to a constant factor.
The desired result follows from Lemma 11.

Theorem 2. Let G “ pV,Eq be a concurrent graph of k constant-
treewidth graphs pGiq1ďiďk of n nodes each. Let a binary pα, β, γq
tree-decomposition Ti for every graph Gi be given, for some
constant α. ConcurTree constructs a 2k-ary tree-decomposition
ConcurTreepGq of G in Opnkq time and space, with the follow-
ing property. For every i P N and bag B at level LvpBq ě i ¨ γ, we
have |B| “ Opnk´1

¨ βiq.

Proof. Lemma 10 proves the correctness and Lemma 12 the com-
plexity. Here we focus on bounding the size of a bag B with
LvpBq ď i ¨ γ. Let pTipBiqq1ďiďk be the input on ConcurTree

when it constructed B using Eq. (1) and ni “ |TipBiq|. Ob-
serve that LvpBq “ LvpBiq for all i, and since each Ti is pβ, γq-
balanced, we have that ni ď Opn ¨ βiq. Since each Ti is α-
approximate, |Bi| “ Op1q for all i. It follows from Eq. (1) and
Remark 2 that |B| “ Opnk´1

¨ βiq.

D. Details of Section 5

Lemma 1. Consider a graph G “ pV,Eq with a weight function
wt : E Ñ Σ, and a tree-decomposition TreepGq. Let u, v P V ,
and P : B1, B2, . . . , Bj be a simple path in T such that u P B1

and v P Bj . Let A “ tuu ˆ p
ś

1ăiďj pBi´1 XBiqq ˆ tvu. Then
dpu, vq “

À

px1,...,xj`1qPA

Âj
i“1 dpxi, xi`1q.

Proof. By [23, Lemma 1], for every bag Bi with i ą 1 and path
P : u ù v, there exists a node xi P Bi X Bi´1. Denote by Px,y
a path x ù y in G. Then

dpu, vq “
à

Pu,v

bpPu,vq

“
à

xiPBi´1XBi

¨

˝

à

Pu,xi

bpPu,xiq b
à

Pxi,v

bpPxi,vq

˛

‚

“
à

xiPBi´1XBi

pdpu, xiq b dpxi, vqq

and the proof follows an easy induction on i.

Claim 1. For every partial node u and strictly partial node v we
have dpu, vq “ dpu, v2q and dpv, uq “ dpv1, uq.

Proof. By construction, for every node v P V that strictly refines v
(i.e., v Ă v), we have wtpv1, vq “ dpv1, vq “ 1 and wtpv, v2q “
dpv, v2q “ 1, i.e., every such v can reach (resp. be reached from)
v2 (resp. v1) without changing the distance from u. The claim
follows easily.

Lemma 2. T is a tree decomposition of the partial expansion G.

Proof. By Theorem 2, ConcurTreepGq is a tree decomposition of
G. To show that T is a tree decomposition of the partial expansion
G, it suffices to show that the conditions C1-C3 are met for every
pair of nodes u1, u2 that correspond to a strict partial node u of G.
We only focus on u1, as the other case is similar.

C1 This condition is met, as u1 appears in every bag of T that
contains a node u that refines u1.

C2 Since every node u1 is connected only to nodes u of G that
refine u, this condition is also met.

19 2015/7/11

C3 If u1
“ xK, . . .Ky, then u1 appears in all bags of T , hence the

condition is met. Otherwise, let 1 ď i ď k be any index such
that for the i-th constituent ui of u1, we have ui ‰ K (i.e., ui P
Vi), and note that every node u P V that refines u has ui as its i-
th constituent. LetBi be the root bag of TreepGiq, and we have
that u P VTipBiq. Additionally, if for some bagB1i of TreepGiq
we have u R VTipB

1
iq, then u R VTipB

2
i q for any descendant

B2i of B1i. Hence, by the construction of ConcurTreepGq, the
node ui appears as a constituent in a contiguous subtree of
ConcurTreepGq, thus the set of nodes u that refine u1 appears
in a contiguous subtree of ConcurTreepGq. It follows that u1

appears in a contiguous subtree of T , as desired.

The desired result follows.

Lemma 4. Consider the recurrences in Eq. (5) and Eq. (6).

Tkpnq ď n3¨pk´1q
` 2λ¨k ¨ Tk

˜

n ¨

ˆ

1` δ

2

˙λ´1
¸

(5)

Skpnq ď n2¨pk´1q
` 2λ¨k ¨ Sk

˜

n ¨

ˆ

1` δ

2

˙λ´1
¸

(6)

Then

1. Tkpnq “ Opn3¨pk´1q
q, and

2. (i) Skpnq “ Opn2¨pk´1q
q if k ě 3, and (ii) S2pnq “ Opn2`ε

q.

Proof. We analyze each recurrence separately. First we consider
Eq. (5). Note that
˜

n ¨

ˆ

1` δ

2

˙λ´1
¸3¨pk´1q

“

ˆ

1` δ

2

˙3¨pλ´1q¨pk´1q

¨ n3¨pk´1q

(12)
and

2λ¨k ¨

ˆ

1` δ

2

˙3¨pλ´1q¨pk´1q

“
p1` δq3¨pλ´1q¨pk´1q

22¨k¨λ`3¨pk`λ´1q
(13)

and since logp1` δq “ lnp1`δq
ln 2

ă δ
ln 2

ă 2 ¨ δ, we have

p1` δq3¨pλ´1q¨pk´1q
“ 2logp1`δq¨3¨pλ´1q¨pk´1q

ă 26¨δ¨pλ´1q¨pk´1q

Hence the expression in Eq. (13) is bounded by 2x with

x ď 6 ¨ δ ¨ pλ´ 1q ¨ pk ´ 1q ´ 2 ¨ k ¨ λ` 3 ¨ pλ` k ´ 1q

“ ´2 ¨ λ ¨ k ¨ p1´ 3 ¨ δq ` 3 ¨ pλ` k ´ 1q ¨ p1´ 2 ¨ δq

Let fpkq “ ´2 ¨ λ ¨ k ¨ p1´ 3 ¨ δq ` 3 ¨ pλ` k ´ 1q ¨ p1´ 2 ¨ δq
and note that since λ ě 4

ε
ě 4 and δ ď ε

18
ď 1

18
, fpkq is

decreasing, and thus maximized for k “ 2, for which we obtain
fp2q “ ´4 ¨λ ¨ p1´3 ¨δq`3 ¨λ ¨ p1´2 ¨δq “ ´λ ¨ p1´6 ¨δq ă 0
as δ ď 1

18
. It follows that there exists a constant c ă 1 for which

2λ¨k ¨ Tk

˜

n ¨

ˆ

1` δ

2

˙λ´1
¸

ď c ¨ n3¨pk´1q

which yields that Eq. (5) follows a geometric series, and thus
Tkpnq “ Opn3¨pk´1q

q.

We now turn our attention to Eq. (6). When k ě 3, an analysis
similar to Eq. (5) yields the bound Opn2¨pk´1q

q. When k “ 2,
since ε ą 0, we write Eq. (6) as

S2pnq ď n2`ε
` 22¨λ

¨ S2

˜

n ¨

ˆ

1` δ

2

˙λ´1
¸

(14)

Similarly as above, we have
˜

n ¨

ˆ

1` δ

2

˙λ´1
¸2`ε

“

ˆ

1` δ

2

˙p2`εq¨pλ´1q

¨ n2`ε (15)

and

22¨λ
¨

ˆ

1` δ

2

˙p2`εq¨pλ´1q

“
p1` δqp2`εq¨pλ´1q

2´2`ε¨pλ´1q
(16)

and since logp1` δq “ lnp1`δq
ln 2

ă δ
ln 2

ă 2 ¨ δ, we have

p1` δqp2`εq¨pλ´1q
ă 22¨δ¨p2`εq¨pλ´1q

Hence the expression in Eq. (16) is bounded by 2x with

x ď 2 ¨ δ ¨ p2` εq ¨ pλ´ 1q ` 2´ ε ¨ pλ´ 1q

“ pλ´ 1q ¨ p2 ¨ δ ¨ p2` εq ´ εq ` 2

ď pλ´ 1q ¨
4 ¨ ε` 2 ¨ ε2 ´ 18 ¨ ε

18
` 2

ď p1´ λq ¨ ε ¨
2

3
` 2

ď ´p4´ εq ¨
2

3
` 2 ď 0

since δ ď ε
18

and λ ě 4
ε

and ε ď 1. It follows that there exists a
constant c ă 1 for which

22¨λ
¨ S2pnq ď c ¨ n2`ε

which yields that Eq. (14) follows a geometric series, and thus
S2pnq “ Opn2`ε

q.

E. Details of Section 6

Claim 2. The treewidth of G2 is 2.

Proof. Construct a bag Bi and let xi, yi P Bi for all 1 ď i ď n,
and yi`1 P Bi for all 1 ď i ă n. Make a tree T where Bi is
ancestor of Bi`1. Then T is a tree decomposition of G2 and has
width 2.

Lemma 6. For every xi, xj P V , there exists a path P : xi ù xj
with wtpP q “ z in G iff there exists a path P 1 : xxi, xiy ù

xxj , xjy with wtpP 1q “ z in G1.

Proof. Recall that only red edges contribute to the weights of paths
in G1. We argue that there is path P : xxi, xiy ù xxj , xjy in G1

that traverses a single red edge iff there is an edge pxi, xjq in G
with bpP q “ wtpxi, xjq.

1. Given the edge pxi, xjq, the path P is formed by traversing the
red edge pxxi, yjy, xxi, xjyq as

xxi, xiy Ñ xxi, yiy ù xxi, yjy Ñ xxi, xjy Ñ

xyi, xjy ù xyi, xjy Ñ xxj , yjy

Since wtppxxi, yjy, xxi, xjyqq “ wtpxi, xjq and all other edges
of P have weight 1, we have that bpP q “ wtpxi, xjq.

2. Every path P that traverses a red edge xxi1 , yj1y Ñ xxi1 , xj1y
has to traverse a blue edge to xxj1 , xj1y. Then xj1 must be xj ,
otherwise P will traverse a second red edge before reaching
xxj , xjy.

The result follows easily from the above.

20 2015/7/11

F. Formal Pseudocode of Our Algorithms
The current section presents formally (in pseudocode) the algo-
rithms that appear in the main part of the paper.

Algorithm 1: Rank
Input: A component C of T , a natural number ` P rλs
Output: A rank tree RG

1 Assign T Ð an empty tree
2 if |C| ¨ δ

2
ď 1 then

3 Assign B Ð
Ť

BPC B and make B the root of T
4 else if ` ą 0 then
5 Assign pX ,Yq Ð SplitpCq
6 Assign B Ð

Ť

BiPX Bi

7 Assign pC1, C2q Ð MergepYq
8 Assign T1 Ð RankpC1, p`` 1q mod λq

9 Assign T2 Ð RankpC2, p`` 1q mod λq

10 Make B the root of T and T1 and T2 its left and right subtree
11 else
12 if |NhpCq| ą 1 then
13 Let B Ð a bag of C whose removal splits C to C1, C2 with

|NhpCiq X NhpCq| ď |NhpCq|
2

14 Assign B Ð B

15 Assign T1 Ð RankpC1, p`` 1q mod λq

16 Assign T2 Ð RankpC2, p`` 1q mod λq

17 Make B the root of T and T1 and T2 its left and right subtree
18 else
19 Assign T Ð RankpC, p`´ 1q mod λq
20 end
21 end
22 return T

Algorithm 2: ConcurTree
Input: Tree-decompositions Ti “ pVTi

, ETi
q1ďiďk with root bags

pBiq1ďiďk .
Output: A tree decomposition T of the concurrent graph

1 Assign B ÐH

2 Assign T Ð a tree with the single bag B as its root
3 for i P rks do
4 Assign B Ð B Y

´

ś

1ďjăi VTj
pBjq ˆBi ˆ

ś

iăjďk VTj
pBjq

¯

5 end
6 if none of the Bi’s is a leaf in its respective Ti then
7 for every sequence of bags B11, . . . , B

1
k such that each B1i is a child

of Bi in Ti do
8 Assign T 1i Ð ConcurTreepT1pB11q, . . . , TkpB

1
kqq

9 Add T 1i to Ti, setting the root of T 1i as a new child of B
10 end
11 end
12 return T

Algorithm 3: ConcurPreprocess Item 1
Input: Graphs pGi “ Vi, Eiq1ďiďk , a concurrent graph GpV,Eq of Gi’s

and a weight function wt : E Ñ Σ

/* Construct the partial expansion G of G */

1 Assign V Ð V

2 Assign E Ð E

3 Create a map wt : E Ñ Σ

4 Assign wtÐ wt
5 foreach u1 P

ś

ipVi Y tKuq do
6 Let u P V such that u Ă u1

7 Assign V Ð V Y

u1, u2
(

8 Assign E Ð E Y

pu1, uq, pu, u2q
(

9 Set wtpu1, uq Ð 1

10 Set wtpu, u2q Ð 1

11 end
12 return G “ pV ,Eq and wt

Algorithm 4: ConcurPreprocess Item 2
Input: A tree-decomposition T “ TreepGq “ pVT , ET q and the partial

expansion G “ pV ,Eq

/* Construct the tree-decomposition T of G */

1 Assign V T ÐH

2 foreach bag B P VT do
3 Assign B Ð B foreach u P B do
4 foreach u P V such that u Ă u do
5 Assign B Ð B Y

u1, u2
(

6 end
7 end
8 Assign V T Ð V T Y tBu

9 end
10 return T “ pV T , ET q

21 2015/7/11

Algorithm 5: ConcurPreprocess Item 3

Input: The partial expansion tree-decomposition T “ pV T , ET q, and
weight function wt

/* Local distance computation */
1 foreach partial node u do
2 Create two maps FWDu, BWDu : Bu Ñ Σ

3 for v P Bu do
4 Assign FWDupvq Ð wtpu, vq
5 Assign BWDupvq Ð wtpv, uq
6 end
7 end
8 foreach bag B of T in bottom-up order do
9 Assign d1 Ð the transitive closure of GrBs with wrt wtB

10 foreach u, v P B do
11 if Lvpvq ď Lvpuq then
12 Assign BWDupvq Ð d1pv, uq

13 Assign FWDupvq Ð d1pu, vq

14 end
15 end
16 end
17 foreach bag B of T in top-down order do
18 Assign d1 Ð the transitive closure of GrBs with wrt wtB
19 foreach u, v P B do
20 if Lvpvq ď Lvpuq then
21 Assign BWDupvq Ð d1pv, uq
22 Assign FWDupvq Ð d1pu, vq

23 end
24 end
25 end

Algorithm 6: ConcurPreprocess Item 4

Input: The partial expansion tree-decomposition T “ pV T , ET q and
maps FWDu, BWDu : Bu Ñ Σ for every partial node u

/* Ancestor distance computation */
1 foreach node u P V do
2 Create two maps FWD`u , BWD`u : VT pBuq Ñ Σ

3 end
4 foreach bag B of T in DFS order starting from the root do
5 Let B1 be the parent of B
6 foreach node u P B X V such that B is the root of u do
7 foreach v P V T pBuq do
8 Assign FWD`u pvq Ð

À

xPBXB
1

FWDupxq b wt`px, vq

9 Assign BWD`u pvq Ð
À

xPBXB
1

BWDupxq b wt`pv, xq

10 end
11 end
12 end

Algorithm 7: ConcurQuery Single-source query
Input: A source node u P V
Output: A map A : V Ñ Σ that contains distances of vertices from u

1 Create a map A : V Ñ Σ

2 for v P V do
3 Assign Apvq Ð 0
4 end
5 for every bag B of T in BFS order starting from Bu do
6 for x, v P B X V do
7 if Lvpvq ď Lvpxq then
8 Assign Apvq Ð Apvq ‘Apxq b FWDxpvq

9 end
10 end
11 end
12 return A

Algorithm 8: ConcurQuery Pair query
Input: Two nodes u, v P V
Output: The distance dpu, vq

1 Let B Ð the LCA of Bu and Bv in T
2 Assign dÐ 0

3 for x P B X V do
4 Assign dÐ d‘ FWD`u pxq b BWD`v pxq

5 end
6 return d

Algorithm 9: ConcurQuery Partial pair query

Input: Two partial nodes u, v P V , at least one of which is strictly partial
Output: The distance dpu, vq

1 if both u and v are strictly partial then
2 return FWDu1 pv2q

3 else if u is strictly partial then
4 return BWD`v pu

1q

5 else
6 return FWD`u pv

2q

7 end

22 2015/7/11

