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Abstract: In this paper, the split fixed point and variational inclusion problem is considered.
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1. Introduction

Let H1 and H2 be two real Hilbert spaces with inner 〈·, ·〉 and norm ‖ · ‖. Let f : H1 →
2H1 be a multi-valued operator. Let g, T : H1 → H1 and S : H2 → H2 be three single-valued
non-linear operators. Let A : H1 → H2 be a non-zero bounded linear operator and A∗ be
the adjoint operator of A.

In this paper, we investigate the following split problem which aims to find a point
q ∈ H1, such that

q ∈ Fix(T) ∩ ( f + g)−1(0) and Aq ∈ Fix(S), (1)

where Fix(S) := {x ∈ H2 : x = S(x)} and Fix(T) := {x ∈ H1 : y = T(y)} stand
for the fixed point sets of S and T, respectively, and ( f + g)−1(0) denotes the solution set
of the variational inclusion of finding a point q ∈ H1, such that

0 ∈ ( f + g)(q). (2)

In what follows, we use Γ to denote the solution set of (1), i.e.,

Γ := {z ∈ H1 : z ∈ Fix(T) ∩ ( f + g)−1(0) and Az ∈ Fix(S)}.

A special case of (1) is the split fixed point problem of finding a point q ∈ H1, such that

q ∈ Fix(T) and Aq ∈ Fix(S), (3)

which generalizes the convex feasibility problem and the two-sets split feasibility problem
arising in the intensity-modulated radiation therapy [1].

There are various ways to solve the split problems, see [2–13]. To solve (3), a remarkable
channel brought up by Censor and Segal [14] is of the manner:

z0 ∈ H1, zn+1 = T(zn − νA∗(I − S)Azn), n ≥ 0, (4)

Mathematics 2023, 11, 641. https://doi.org/10.3390/math11030641 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11030641
https://doi.org/10.3390/math11030641
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8883-5034
https://orcid.org/0000-0002-0452-785X
https://doi.org/10.3390/math11030641
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11030641?type=check_update&version=2


Mathematics 2023, 11, 641 2 of 12

where S, T are directed operators.
A relaxation version of the (4) proposed by Moudafi [15] is defined by

z0 ∈ H1, zn+1 = (1− γn)zn + γnT[zn − νA∗(I − S)Azn], n ≥ 0,

where S, T are demicontractive operators.
Note that solving (3) is equivalent to solve the fixed point equation x = T(x)− νA∗(I−

S)Ax(ν > 0). By using this equivalent relation, Zheng et al. [16] suggested the following
algorithm for solving (3)

z0 ∈ H1, zn+1 = (1− σn)zn + σn[T(zn)− νA∗(I − S)Azn], n ≥ 0,

where S, T are demicontractive operators.
At the same time, variational inclusion affords a powerful tool for exploring all

kinds of problems appearing in natural science and engineering applications ([17,18]).
In particular, the variational inclusion theory is a natural development of the variational
principle. A variety of approaches have been proposed for solving variational inclusion (2),
see [19–25]. A valuable approach to solve (2) is the well-known forward–backward algo-
rithm ([26]) defined by

z0 ∈ H1, zn+1 = (I + γn f )−1(I − γng)(zn), n ≥ 0,

where the operator g is generally (inverse) strongly monotone.
To relax the strong monotonicity condition imposed on g, Tseng [27] proposed a modi-

fied forward–backward algorithm defined by{
yn = (I + γn f )−1(I − γng)(zn),
zn+1 = yn − µn(g(yn)− g(zn)),

where g is a monotone operator.
With the help of self-adaptive rule, Cholamjiak et. al. [28] suggested the following

Tseng-type algorithm to solve (2):
yn = (I + γn f )−1(I − γng)(zn),
zn+1 = (1− θn)zn + θnyn + θnµn(g(zn)− g(yn)),

µn+1 = min
{

µn, λn‖yn−zn‖
‖g(yn)−g(zn)‖

}
.

Motivated and inspired by the works in this field, the main purpose of this pa-
per is to construct an iterative algorithm for finding a solution of the split problem (1)
in which S and T are two demicontractive operators and g is a plain monotone operator.
The used method consists of forward–backward method, fixed point method and self-
adaptive method. Strong convergence analysis of the sequence generated by the algorithm
is proved provided the involved parameter satisfy some basic assumptions.

2. Preliminaries

Let H be a real Hilbert space. Let {zn} be a sequence in H and u ∈ H be a point.

• zn → u indicates that zn converges strongly to u as n→ +∞;
• zn ⇀ u indicates that zn converges weakly to u as n→ +∞;
• ωw(zn) denotes the the set of the weak cluster points of {zn} in H, i.e.,

ωw(zn) := {u ∈ H : there exists a subsequence {zni} of {zn} such that zni ⇀ u(i→ ∞)}.

Let g : H → H be an operator and g is called:
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(i) Strongly monotone if for some constant γ > 0, the following inequality holds

〈g(x)− g(y), x− y〉 ≥ γ‖x− y‖2, ∀x, y ∈ H.

(ii) Inverse strongly monotone if for some constant γ > 0 we have

〈g(x)− g(y), x− y〉 ≥ γ‖g(x)− g(y)‖2, ∀x, y ∈ H.

(iii) Monotone if the following result holds

〈g(x)− g(y), x− y〉 ≥ 0, ∀x, y ∈ H.

Let f : H → 2H be an operator. The graph Graph( f ) of f is defined by

Graph( f ) := {(x, y) ∈ H × H : y ∈ f (x)}.

Recall that f is said to be:

(i) Monotone if the set Graph( f ) is monotone, namely,

〈s1 − s2, t1 − t2〉 ≥ 0, ∀(si, ti) ∈ Graph( f ), i = 1, 2.

(ii) Maximal monotone if and only if f is a monotone operator and the following relation holds

(s, t) ∈ H × H, 〈s− u, t− v〉 ≥ 0, ∀(u, v) ∈ Graph( f )⇒ (s, t) ∈ Graph( f ). (5)

Let T : H → H be an operator and T is called

(i) Demiclosed if

zn ⇀ z(n→ ∞)
T(zn)→ y(n→ ∞)

}
⇒ y = T(z).

(ii) Lipschitz if for some constant µ > 0, we have

‖T(x)− T(y)‖ ≤ µ‖x− y‖, ∀x, y ∈ H.

(iii) Directed if ∀x ∈ H, ∀y ∈ Fix(T) we have

‖T(x)− y‖2 ≤ ‖x− y‖2 − ‖x− T(x)‖2.

(iv) Demicontractive if for some constant δ ∈ [0, 1), there holds

‖T(x)− y‖2 ≤ ‖x− y‖2 + δ‖x− T(x)‖2, ∀x ∈ H, ∀y ∈ Fix(T),

or
〈x− T(x), x− y〉 ≥ 1− δ

2
‖x− T(x)‖2, ∀x ∈ H, ∀y ∈ Fix(T). (6)

In this case, T is said to be a δ-demicontractive operator.

Remark 1. It is clearly from (iii) and (iv) that the demicontractive operator includes the directed
operator. Demicontractive operators have many applications, for instance, demicontractive operators
in terms of admissible perturbation are used during the construction phase of the matrix of ants
artificial pheromone ([29]).

Let Γ be a non-empty closed convex subset of H. Let projΓ be the metric projection
from H onto Γ, i.e.,

projΓ(x†) := arg min
x∈Γ
‖x− x†‖, x† ∈ H.
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It is well known that the following result holds: for x† ∈ H,

〈x† − projΓ(x†), x− projΓ(x†)〉 ≥ 0, ∀x ∈ Γ. (7)

The following lemma is well-known.

Lemma 1. Let H be a real Hilbert space. Then, for all x, y ∈ H, we have

‖x + y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2, (8)

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, (9)

and

‖βx + (1− β)y‖2 = β‖x‖2 + (1− β)‖y‖2 − β(1− β)‖x− y‖2, ∀β ∈ R. (10)

Lemma 2 ([30]). Let H be a real Hilbert space. Let f : H → 2H be a maximal monotone operator.
Let the operator g : H → H be monotone and Lipschitz continuous. Then f + g is a maximal
monotone operator.

Lemma 3 ([16]). Let H1 and H2 be two real Hilbert spaces. Let T : H1 → H1 and S : H2 → H2
be two demicontractive operators. Let A : H1 → H2 be a non-zero bounded linear operator.
Then, x ∈ Fix(T), Ax ∈ Fix(S)⇔ x ∈ Fix(T − νA∗(I − S)A)(∀ν > 0).

Lemma 4 ([31]). Let {rn}, {sn} and {µn} be three sequences in R. Assume that

(i) rn+1 ≤ (1− µn)rn + µnsn for all n ≥ 0;
(ii) rn ≥ 0 and µn ∈ [0, 1] for all n ≥ 0;
(iii) ∑∞

n=0 µn = +∞ and lim supn→∞ sn ≤ 0.

Then limn→∞ rn = 0.

3. Main Results

Assume H1 and H2 are two real Hilbert spaces. Assume the involved operators fulfil
the following conditions:

• f : H1 → 2H1 is a maximal monotone operator;
• g : H1 → H1 is an L-Lipschitz monotone operator;
• T : H1 → H1 is a σ-demicontractive operator;
• S : H2 → H2 is a ς-demicontractive operator;
• A : H1 → H2 is a non-zero bounded linear operator and A∗ is the adjoint operator

of A.

Suppose that the involved parameters fulfil the following conditions:

• α, β, δ, γ, and ν are five constants, such that α ∈ (0, 1), β ∈ (0, 1), δ ∈ (0, 1), γ ∈ (0, 1−σ
2 )

and ν ∈ (0, 1−ς
2γ‖A‖2 );

• {λn} and {µn} are two sequences in [0, 1] satisfying 0 < lim infn→∞ λn ≤ lim supn→∞
λn ≤ 1, limn→∞ µn = 0, and ∑n µn = ∞.

In the sequel, suppose Γ 6= ∅. Next, we first introduce an iterative algorithm for solv-
ing the split problem (1).

To obtain our main theorem, we first show several propositions.

Proposition 1. The sequences {zn}, {un} and {tn} are bounded.

Proof. Let p be a fixed point in Γ. Then, p = T(p), Ap = S(Ap) and p ∈ ( f + g)−1(0).
Based on Lemma 3, we have T(p)− νA∗(I − S)Ap = p for all ν > 0.
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By (36), we have zn − vn = zn − T(zn) + νA∗(I − S)Azn. Then, we obtain

‖zn − vn‖2 = ‖zn − T(zn) + νA∗(I − S)Azn‖2

≤ (‖zn − T(zn)‖+ ν‖A‖‖(I − S)Azn‖)2

≤ 2‖zn − T(zn)‖2 + 2ν2‖A‖2‖(I − S)Azn‖2,

(11)

and

〈zn − vn, zn − p〉 = 〈zn − T(zn), zn − p〉+ 〈νA∗(I − S)Azn, zn − p〉
= 〈zn − T(zn), zn − p〉+ ν〈(I − S)Azn, Azn − Ap〉.

(12)

Since S, T are ς-demicontractive and σ-demicontractive, respectively, from (6), we deduce

〈(I − S)Azn, Azn − Ap〉 = 〈(I − S)Azn − (I − S)Ap, Azn − Ap〉

≥ 1− ς

2
‖(I − S)Azn‖2,

(13)

and

〈zn − T(zn), zn − p〉 = 〈(I − T)zn − (I − T)p, zn − p〉

≥ 1− σ

2
‖zn − T(zn)‖2.

(14)

So, from (12)–(14), we get

〈zn − vn, zn − p〉 ≥ 1− σ

2
‖zn − T(zn)‖2 +

ν(1− ς)

2
‖(I − S)Azn‖2. (15)

By virtue of (8) and (37), we have

‖un − p‖2 = ‖zn − p− γ(zn − vn)‖2

= ‖zn − p‖2 − 2γ〈zn − p, zn − vn〉+ γ2‖zn − vn‖2.
(16)

Substituting (11) and (15) into (16) to deduce

‖un − p‖2 ≤ ‖zn − p‖2 − γ(1− σ)‖zn − T(zn)‖2 − γν(1− ς)‖(I − S)Azn‖2

+ 2γ2‖zn − T(zn)‖2 + 2γ2ν2‖A‖2‖(I − S)Azn‖2

= ‖zn − p‖2 − γ(1− σ− 2γ)‖zn − T(zn)‖2

− γν(1− ς− 2γν‖A‖2)‖(I − S)Azn‖2

≤ ‖zn − p‖2.

(17)

Since γ ∈ (0, 1−σ
2 ) and ν ∈ (0, 1−ς

2γ‖A‖2 ), it follows from (17) that ‖un − p‖ ≤ ‖zn − p‖.
Note that

‖wn − p + αρn(g(un)− g(wn))‖2

= ‖wn − p‖2 + 2αρn〈g(un)− g(wn), wn − p〉
+ α2ρ2

n‖g(un)− g(wn)‖2

= ‖un − p‖2 + ‖wn − un‖2 + 2〈wn − un, un − wn〉
+ 2〈wn − un, wn − p〉+ 2αρn〈g(un)− g(wn), wn − p〉
+ α2ρ2

n‖g(un)− g(wn)‖2

= ‖un − p‖2 + 2〈wn − un + αρn(g(un)− g(wn)), wn − p〉
− ‖wn − un‖2 + α2ρ2

n‖g(un)− g(wn)‖2.

(18)
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Thanks to (38), we gain

un − wn − αρn(g(un)− g(wn)) ∈ αρn( f + g)(wn). (19)

Since 0 ∈ αρn( f + g)(p), it follows from (19) and the monotonicity of αρn( f + g) that

〈wn − un + αρn(g(un)− g(wn)), wn − p〉 ≤ 0. (20)

Combining (40), (18) and (20), we have

‖wn − p + αρn(g(un)− g(wn))‖2 ≤ ‖un − p‖2 − ‖wn − un‖2 + α2ρ2
n‖g(un)− g(wn)‖2

≤ ‖un − p‖2 − ‖wn − un‖2 + β2‖un − wn‖2

= ‖un − p‖2 − (1− β2)‖un − wn‖2.

(21)

In light of (10) and (39), we derive

‖tn − p‖2 = ‖(1− λn)(un − p) + λn[wn − p + αρn(g(un)− g(wn))]‖2

= (1− λn)‖un − p‖2 + λn‖wn − p + αρn(g(un)− g(wn))‖2

− λn(1− λn)‖wn − un + αρn(g(un)− g(wn))‖2,

which together with (21) implies that

‖tn − p‖2 ≤ (1− λn)‖un − p‖2 + λn(‖un − p‖2 − (1− β2)‖un − wn‖2)

− λn(1− λn)‖wn − un + αρn(g(un)− g(wn))‖2

= ‖un − p‖2 − λn(1− β2)‖un − wn‖2

− λn(1− λn)‖wn − un + αρn(g(un)− g(wn))‖2

≤ ‖un − p‖2.

(22)

From (41), we obtain

‖zn+1 − p‖ = ‖µn(u− p) + (1− µn)(tn − p)‖
≤ µn‖u− p‖+ (1− µn)‖tn − p‖
≤ µn‖u− p‖+ (1− µn)‖zn − p‖
≤ · · ·
≤ max{‖u− p‖, ‖z0 − p‖}.

Then, {zn} is bounded and so are {un} (by (17)) and {tn} (by (22)).

Proposition 2. −1 ≤ lim supn→∞ sn < +∞, where

sn = −(1− µn)γν(1− ς− 2γν‖A‖2)
‖(I − S)Azn‖2

µn
− (1− µn)λn(1− β2)

‖un − wn‖2

µn

− (1− µn)γ(1− σ− 2γ)
‖zn − T(zn)‖2

µn
+ 2〈u− p, zn+1 − p〉

− (1− µn)λn(1− λn)
‖wn − un + αρn(g(un)− g(wn))‖2

µn
,

for all n ≥ 0.
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Proof. From (9) and (41), we acquire

‖zn+1 − p‖2 = ‖µn(u− p) + (1− µn)(tn − p)‖2

≤ (1− µn)‖tn − p‖2 + 2µn〈u− p, zn+1 − p〉.
(23)

Taking into account (17) and (22), we attain

‖tn − p‖2 ≤ ‖zn − p‖2 − γ(1− σ− 2γ)‖zn − T(zn)‖2 − λn(1− β2)‖un − wn‖2

− λn(1− λn)‖wn − un + αρn(g(un)− g(wn))‖2

− γν(1− ς− 2γν‖A‖2)‖(I − S)Azn‖2.

(24)

By (23) and (24), we have

‖zn+1 − p‖2 ≤ (1− µn)‖zn − p‖2 − (1− µn)γ(1− σ− 2γ)‖zn − T(zn)‖2

− (1− µn)λn(1− λn)‖wn − un + αρn(g(un)− g(wn))‖2

− (1− µn)γν(1− ς− 2γν‖A‖2)‖(I − S)Azn‖2

− (1− µn)λn(1− β2)‖un − wn‖2 + 2µn〈u− p, zn+1 − p〉

= (1− µn)‖zn − p‖2 + µn

{
− (1− µn)γ(1− σ− 2γ)

‖zn − T(zn)‖2

µn

− (1− µn)λn(1− λn)
‖wn − un + αρn(g(un)− g(wn))‖2

µn

− (1− µn)λn(1− β2)
‖un − wn‖2

µn
+ 2〈u− p, zn+1 − p〉

− (1− µn)γν(1− ς− 2γν‖A‖2)
‖(I − S)Azn‖2

µn

}
.

(25)

Set rn = ‖zn − p‖2 and

sn = −(1− µn)γν(1− ς− 2γν‖A‖2)
‖(I − S)Azn‖2

µn
− (1− µn)λn(1− β2)

‖un − wn‖2

µn

− (1− µn)γ(1− σ− 2γ)
‖zn − T(zn)‖2

µn
+ 2〈u− p, zn+1 − p〉

− (1− µn)λn(1− λn)
‖wn − un + αρn(g(un)− g(wn))‖2

µn
,

(26)

for all n ≥ 0.
On account of (25), we obtain

rn+1 ≤ (1− µn)rn + µnsn, n ≥ 0. (27)

From (26), we have

sn ≤ 2〈u− p, zn+1 − p〉 ≤ 2‖u− p‖‖zn+1 − p‖

which leads to lim supn→∞ sn < +∞.
Now, we show lim supn→∞ sn ≥ −1. If lim supn→∞ sn < −1, then there is an in-

teger m ∈ N fulfilling sn < −1, ∀n ≥ m. As a result of (27), we get rn+1 ≤ rn − µn
when n ≥ m. It follows that rn+1 ≤ rm − ∑n

i=m µi and so lim supn→∞ rn+1 ≤ rm −
lim supn→∞ ∑n

i=m µi = −∞ which is a contradiction because rn+1 = ‖zn+1 − p‖2 ≥ 0.
Therefore, −1 ≤ lim supn→∞ sn < +∞.

Proposition 3. Suppose that I − S and I − T are demiclosed at origin. Then, ωw(zn) ⊂ Γ.
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Proof. Thanks to Propositions 1 and 2, we conclude that {zn} and lim supn→∞ sn are
bounded. Choose any p† ∈ ωw(zn). Thus, there exist {znk} ⊂ {zn} and {snk} ⊂ {sn}
satisfying znk ⇀ p†(k→ ∞) and

lim sup
n→∞

sn = lim
k→∞

snk

= lim
k→∞

{
− (1− µnk )λnk (1− λnk )

‖wnk − unk + αρnk (g(unk )− g(wnk ))‖2

µnk

− (1− µnk )γν(1− ς− 2γν‖A‖2)
‖(I − S)Aznk‖2

µnk

+ 2〈u− p, znk+1 − p〉

− (1− µnk )γ(1− σ− 2γ)
‖znk − T(znk )‖2

µnk

− (1− µnk )λnk (1− β2)
‖unk − wnk‖2

µnk

}
.

(28)

Since {znk+1} is bounded, without loss of generality, we assume that limk→∞〈u −
p, znk+1 − p〉 exists. This together with (28) implies that

lim
k→∞

{
− (1− µnk )γ(1− σ− 2γ)

‖znk − T(znk )‖2

µnk

− (1− µni )λnk (1− β2)
‖unk − wnk‖2

µnk

− (1− µnk )λnk (1− λnk )
‖wnk − unk + ρnk (g(unk )− g(wnk ))‖2

µnk

− (1− µnk )γν(1− ς− 2γν‖A‖2)
‖(I − S)Aznk‖2

µnk

}
exists.

Hence,

lim
k→∞
‖znk − T(znk )‖ = 0, (29)

lim
k→∞
‖(I − S)Aznk‖ = 0, (30)

lim
k→∞
‖unk − wnk‖ = 0, (31)

and

lim
k→∞
‖wnk − unk + ρnk (g(unk )− g(wnk ))‖ = 0. (32)

By (36), ‖znk − vnk‖ ≤ ‖znk − T(zn)‖+ ν‖A‖‖(I − S)Aznk‖. It follows from (29) and
(30) that limk→∞ ‖znk − vnk‖ = 0. This together with (37) implies that

limk→∞ ‖unk − znk‖ = 0 and unk ⇀ p†(k→ ∞). (33)

Since Aznk ⇀ Ap†(k → ∞) and I − S is demiclosed at the origin, by (30), we obtain
Ap† ∈ Fix(S). Since znk ⇀ p†(k→ ∞) and I − T is demiclosed at the origin, from (29), we
deduce that p† ∈ Fix(T).

Finally, we show p† ∈ ( f + g)−1(0). Let (u, v) ∈ Graph( f + g). Thus, v− g(u) ∈ f (u).
Owing to

unk−wnk
αρnk

− g(unk ) ∈ f (wnk ), by the monotonicity of f , we deduce

〈v− g(u)−
unk − wnk

αρnk

+ g(unk ), u− wnk 〉 ≥ 0.
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It follows that

〈v, u− wnk 〉 ≥ 〈g(u)− g(unk ) +
unk − wnk

αρnk

, u− wnk 〉

= 〈g(u)− g(wnk ), u− wnk 〉+ 〈g(wnk )− g(unk ), u− wnk 〉

+ 〈
unk − wnk

αρnk

, u− wnk 〉.

(34)

At the same time, by the monotonicity of g, we have 〈g(u)− g(wnk ), u− wnk 〉 ≥ 0.
This together with (34) implies that

〈v, u− wnk 〉 ≥ 〈g(wnk )− g(unk ), u− wnk 〉+ 〈
unk − wnk

αρnk

, u− wnk 〉. (35)

By (31) and the Lipschitz continuity of g, we deduce ‖g(wnk )− g(unk )‖ → 0(k→ ∞).
It follows from (35) that 〈v, u− p†〉 ≥ 0. Taking into account Lemma 2 and (5), we conclude
that p† ∈ ( f + g)−1(0). Therefore, p† ∈ Γ and ωw(zn) ⊂ Γ.

Finally, according to Propositions 1–3, we show our main theorem.

Theorem 1. If I − T and I − S are demiclosed at the origin, then the sequence {zn} generated by
Algorithm 1 converges strongly to projΓ(u).

Algorithm 1: Tseng-type method I.
Let u ∈ H1 be a fixed point and z0 ∈ H1, ρ0 > 0 be two initial points.
Step 1. Assume that zn is given. Compute

vn = T(zn)− νA∗(I − S)Azn, (36)

and

un = zn − γ(zn − vn). (37)

Step 2. Compute

wn = (I + αρn f )−1(un − αρng(un)), (38)

and

tn = (1− λn)un + λn[wn + αρn(g(un)− g(wn))], (39)

where ρn = max{1, δ, δ2, · · · } such that

αρn‖g(un)− g(wn)‖ ≤ β‖un − wn‖. (40)

Step 3. Compute

zn+1 = µnu + (1− µn)tn. (41)

Set n := n + 1 and return to Step 1.

Proof. First, by (39) and (41), We have

‖znk+1 − znk‖ = ‖µnk (u− znk ) + (1− µnk )(tnk − znk )‖
≤ µnk‖u− znk‖+ (1− µnk )(1− λnk )‖unk − znk‖
+ (1− µnk )λnk‖wnk − unk + αρnk (g(unk )− g(wnk ))‖.

(42)



Mathematics 2023, 11, 641 10 of 12

Combining (32), (33), and (42), we obtain ‖znk+1 − znk‖ → 0(k → ∞) and znk+1 ⇀
p† ∈ Γ(k→ ∞).

Select p = projΓ(u). Take into account of (28), we get

lim sup
n→∞

sn ≤ lim
k→∞

2〈u− projΓ(u), znk+1 − projΓ(u)〉 = 2〈u− projΓ(u), p† − projΓ(u)〉.

This together with (7) implies that

lim sup
n→∞

sn ≤ 0.

By virtue of (25), we acquire

‖zn+1 − projΓ(u)‖
2 ≤ (1− µn)‖zn − projΓ(u)‖

2 + 2µn〈u− projΓ(u), zn+1 − projΓ(u)〉. (43)

In view of (43) and Lemma 4, we conclude that zn → projΓ(u) as n→ ∞.

Setting T = I in Algorithm 2 and Theorem 1, we obtain the following algorithm and
corollary.

Algorithm 2: Tseng-type method II.
Let u ∈ H1 be a fixed point and z0 ∈ H1, ρ0 > 0 be two initial points.
Step 1. Assume that zn is given. Compute

vn = zn − νA∗(I − S)Azn,

and

un = zn − γ(zn − vn).

Step 2. Compute

wn = (I + αρn f )−1(un − αρng(un)),

and

tn = (1− λn)un + λn[wn + αρn(g(un)− g(wn))],

where ρn = max{1, δ, δ2, · · · } such that

αρn‖g(un)− g(wn)‖ ≤ β‖un − wn‖.

Step 3. Compute

zn+1 = µnu + (1− µn)tn.

Set n := n + 1 and return to Step 1.

Corollary 1. If I − S is demiclosed at the origin, then the sequence {zn} generated by Algorithm 2
converges strongly to projΓ1

(u), where Γ1 := {x ∈ ( f + g)−1(0), Ax ∈ Fix(S)}.

4. Conclusions

In this paper, we investigate iterative algorithms for solving the split fixed points and
variational inclusion in Hilbert spaces. We propose an iterative method which consists
of fixed point method, Tseng-type splitting method and self-adaptive method for finding
a solution of the considered split problem in which the involved fixed point operators
S and T are all demicontractive and another operator g is plain monotone. We show
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that the sequence generated the constructed algorithm converges strongly to a solution
of the investigated split problem provided some additional conditions are satisfied.
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