
Algorithms for Building Consensus MUL-trees

Yun Cui1, Jesper Jansson2 ,�, and Wing-Kin Sung1,3

1 National University of Singapore, 13 Computing Drive, Singapore 117417
{yuncui01@gmail.com, ksung@comp.nus.edu.sg}

2 Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
Jesper.Jansson@ocha.ac.jp

3 Genome Institute of Singapore, 60 Biopolis Street, Genome, Singapore 138672

Abstract. A MUL-tree is a generalization of a phylogenetic tree that al-
lows the same leaf label to be used many times. Lott et al. [9,10] recently
introduced the problem of inferring a so-called consensus MUL-tree from
a set of conflicting MUL-trees and gave an exponential-time algorithm
for a special greedy variant. Here, we study strict and majority rule con-
sensus MUL-trees, and present the first ever polynomial-time algorithms
for building a consensus MUL-tree. We give a simple, fast algorithm for
building a strict consensus MUL-tree. We also show that although it is
NP-hard to find a majority rule consensus MUL-tree, the variant which
we call the singular majority rule consensus MUL-tree is unique and can
be constructed efficiently.

1 Introduction

To describe tree-like evolutionary history, scientists often use a data structure
known as the phylogenetic tree [3,17]. In traditional applications, phylogenetic
trees were always distinctly leaf-labeled, and in fact, the computational effi-
ciency of most existing methods for constructing and comparing phylogenetic
trees implicitly depends on this uniqueness property. The multi-labeled phylo-
genetic tree, or MUL-tree for short, is a generalization of the standard phylo-
genetic tree model that allows the same leaf label to be used more than once
in a single tree structure; for some examples, see Fig. 2 and 3. MUL-trees have
applications in different research fields such as Molecular Systematics [10,14,15],
Biogeography [4,12], the study of host-parasite cospeciation [13], and Computer
Science [8].

Ideally, one would like to generalize tools and concepts that have been demon-
strated to be useful for single-labeled phylogenetic trees to MUL-trees. Unfor-
tunately, certain basic problems become NP-hard when extended to MUL-trees.
For example, given a multiset S of splits (bipartitions of a fixed multiset L
of leaf labels), it is NP-hard to determine whether there exists an unrooted
MUL-tree leaf labeled by L such that the multiset of all its splits is equal to S,

� Funded by the Special Coordination Funds for Promoting Science and Technology
and KAKENHI grant number 23700011.

T. Asano et al. (Eds.): ISAAC 2011, LNCS 7074, pp. 744–753, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Algorithms for Building Consensus MUL-trees 745

whereas the corresponding problem for single-labeled trees is solvable in polyno-
mial time [7]. As another example, given a set R of rooted triplets (single-labeled
phylogenetic trees with exactly three leaves each), a classical algorithm by Aho
et al. [1] can check if there exists a single-labeled phylogenetic tree that is con-
sistent with all of the rooted triplets in R in polynomial time; on the other hand,
it is NP-hard to decide if there exists a MUL-tree consistent with R having at
most d leaf duplications, even if restricted to d = 1 [6]. In short, MUL-trees pose
new and sometimes unexpected algorithmic challenges.

A consensus tree is a phylogenetic tree that summarizes the branching of a
given set of (conflicting) phylogenetic trees. Different types of consensus trees
for single-labeled trees, along with fast algorithms for constructing them, have
been developed since the 1970’s and are widely used today; see, e.g., [3,17]. The
problem of constructing a consensus MUL-tree was introduced in [9,10], where an
exponential-time algorithm was provided for a specific, greedy type of consensus
MUL-tree.

1.1 Definitions

A rooted multi-labeled phylogenetic tree, or MUL-tree for short, is a rooted,
unordered leaf-labeled tree in which every internal node has at least two children.
Importantly, in a MUL-tree, the same label may be used for more than one leaf.
Fig. 2 and 3 show some examples. The multiset of all leaf labels that occur in a
MUL-tree T is denoted by Λ(T). For any multiset X and x ∈ X , the multiplicity
of x in X is the number of occurrences of x in X and is denoted by multX(x).
Below, the multiset union operation is expressed by the symbol �.

Let L be a multiset and let T be a MUL-tree with Λ(T) = L. If multL(�) = 1
for all � ∈ L then T is a single-labeled phylogenetic tree. Next, any submultiset C
of L is called a cluster of L, and if |C| = 1 then C is called trivial. Let V (T)
be the set of all nodes in T . For any u ∈ V (T), the subtree of T rooted at u
is written as T [u], and Λ(T [u]) is referred to as the cluster associated with u.
The cluster collection of T is the multiset C(T) =

⊎
u∈V (T){Λ(T [u])}. When a

cluster C belongs to C(T), we say that T contains C or that C occurs in T . Thus,
when a cluster C does not occur in a MUL-tree T , we have multC(T)(C) = 0.

Let T = {T1, T2, . . . , Tk} be a given set of MUL-trees satisfying Λ(T1) =
Λ(T2) = . . . = Λ(Tk) = L. Two popular types of consensus trees for single-
labeled trees are the strict consensus tree [16] and the majority rule consensus
tree [11]. We extend their definitions as follows.

• A strict consensus MUL-tree of T is a MUL-tree T such that Λ(T) = L and
C(T) =

⋂k
i=1 C(Ti), where

⋂
is the intersection of multisets. Formally, for

every C ∈ C(T), multC(T)(C) = min1≤i≤k multC(Ti)(C).
• A cluster that occurs in more than k/2 of the MUL-trees in T is a majority

cluster. A majority rule consensus MUL-tree of T is a MUL-tree T such that
Λ(T) = L and C(T) consists of all majority clusters, and for any C ∈ C(T),
multC(T)(C) equals the largest integer j such that the following condition
holds: |{Ti : multC(Ti)(C) ≥ j}| > k/2.

746 Y. Cui, J. Jansson, and W.-K. Sung

Next, we introduce a new kind of consensus tree. For any MUL-tree T , a cluster C
in C(T) is called singular if C � C �⊆ Λ(T). Note that if C ∈ C(T) is singular
then multC(T)(C) = 1 (but not the other way around).

• A singular majority rule consensus MUL-tree of T is a MUL-tree T such
that Λ(T) = L and C(T) consists of: (1) all trivial clusters in T1, T2, . . . , Tk;
and (2) all singular clusters that occur in more than k/2 of the MUL-trees
in T .

1.2 Our Results and Organization of the Paper

From here on, let T be a given set of MUL-trees and L a fixed multiset of leaf
labels with Λ(Ti) = L for every Ti ∈ T . Define k = |T | and n = |L|. Also, let
q equal the number of distinct elements in L. In other words, q ≤ n. We define
m = max�∈L multL(�) and call m the multiplicity of L.

The paper is organized as follows. Section 2 highlights some key properties of
consensus MUL-trees. Next, we explain how to construct a strict consensus MUL-
tree in O(nqk) time in Section 3. Section 4 shows that constructing a majority
rule consensus MUL-tree is NP-hard, even if restricted to instances where k = 3
and m = 3. However, the singular majority rule consensus MUL-tree admits
an efficient algorithm running in O(n3k) time, described in Section 5. To our
knowledge, these are the first ever polynomial-time algorithms for building a
consensus MUL-tree.

Our new results for strict and majority rule consensus MUL-trees, along with
previously known results for single-labeled phylogenetic trees (corresponding to
the case m = 1), are summarized in Fig. 1. Our results also hold for the analo-
gous unrooted MUL-tree versions of the problems, with the same computational
complexities. Due to space constraints, most proofs have been omitted from this
conference version of the paper.

Strict consensus

k ≥ 2

m = 1 Always exists;
always unique;
O(nk) time.

(Day [2])

m ≥ 2 Always exists;
may not be unique;

O(nqk) time.
Sections 2 and 3

Majority rule consensus

k = 2 k ≥ 3

m = 1 Always exists; Always exists;
always unique; always unique;

O(n) time. O(n2 + nk2) time.
(Day [2]) (Wareham [18])

m = 2 Always exists; May not exist;
may not be unique; may not be unique;

O(nq) time. unknown complexity.
Sections 2 and 3

m ≥ 3 Always exists; May not exist;
may not be unique; may not be unique;

O(nq) time. NP-hard.
Sections 2 and 3 Sections 2 and 4

Fig. 1. The complexity of building strict and majority rule consensus MUL-trees. For
k = 2, a strict consensus and a majority rule consensus MUL-tree are equivalent.

Algorithms for Building Consensus MUL-trees 747

2 Preliminaries

It is possible for two non-isomorphic MUL-trees to have identical cluster collec-
tions. See T1 and T2 in Fig. 2 for an example. This property was first observed by
Ganapathy et al. [4] for unrooted MUL-trees, and their example was simplified
by Holm et al. [7]. (The example given here is the same as Fig. 1 (b)–(c) in [7],
adapted to rooted MUL-trees.)

Define the delete operation on any non-root, internal node u in a MUL-tree T
as letting all children of u become children of the parent of u, and then remov-
ing u and the edge between u and its parent. Note that any delete operation
on a node u in T effectively removes one occurrence of a cluster from C(T),
namely Λ(T [u]), without affecting the other clusters.

Lemma 1. Let T = {T1, T2, . . . , Tk} be a set of MUL-trees with Λ(T1) =
Λ(T2) = . . . = Λ(Tk) = L. A strict consensus MUL-tree of T always exists
but might not be unique.

Proof. To prove the existence, let Z =
⋂k

i=1 C(Ti) (using the intersection of
multisets), and construct a MUL-tree T with Λ(T) = L and C(T) = Z as follows.
Set T equal to T1. Since Z ⊆ C(T), we have multZ(C) ≤ multC(T)(C) for every
C ∈ C(T). For each C ∈ C(T), arbitrarily select (multC(T)(C) − multZ(C))
nodes u in T with Λ(T [u]) = C and delete them. This yields a MUL-tree T
with multZ(C) = multC(T)(C) for every C ⊆ L and Λ(T) = L, so T is a strict
consensus MUL-tree of T .

To prove the non-uniqueness, consider T = {T1, T2} in Fig. 2. Each of T1

and T2 is a strict consensus MUL-tree of the set T = {T1, T2}. �	

Next, we consider majority rule consensus MUL-trees. For k = 2, a majority rule
consensus MUL-tree of T is equivalent to a strict consensus MUL-tree of T . If
k ≥ 3, the non-uniqueness and non-existence follow from the examples in Fig. 2
and 3. Hence:

Lemma 2. Let T = {T1, T2, . . . , Tk} be a set of MUL-trees with Λ(T1) =
Λ(T2) = . . . = Λ(Tk) = L. If k = 2, a majority rule consensus MUL-tree
of T always exists but might not be unique. If k ≥ 3, a majority rule consensus
MUL-tree might not exist and might not be unique.

Finally, we consider singular majority rule consensus MUL-trees. Let S be the
set of all singular, non-trivial clusters that occur in at least k/2 of the MUL-
trees in T . For any cluster C ∈ S and any singular majority rule consensus
MUL-tree T of T , we have multC(T)(C) = 1. Thus, for every C ∈ S, there is a
unique node tC in T such that C = Λ(T [tC]). For any two clusters C, C′ ∈ S,
we say that C is an ancestor (the parent) cluster of C′ in T if the node tC is an
ancestor (the parent) of the node tC′ .

748 Y. Cui, J. Jansson, and W.-K. Sung

T :

a d

a b

b c

1 T :

d c

2

a b

a b

T :3

aa dcbb

Fig. 2. Let T1, T2, T3 be the three MUL-trees shown above with Λ(T1) = Λ(T2) =
Λ(T3) = {a, a, b, b, c, d} = L. Then T1 �= T2 although C(T1) = C(T2) = {{a}, {a},
{b}, {b}, {c}, {d}, {a, b}, {a, b, c}, {a, b, d}, L}. Each of T1 and T2 is a strict consensus
MUL-tree of {T1, T2}, and also a majority rule consensus MUL-tree of {T1, T2, T3}.

T :

a b

dc a

4 T :

a

ba

5

c

d

T :

a

a

d

b c

6

Fig. 3. Here, T = {T4, T5, T6}, Λ(T4) = Λ(T5) = Λ(T6) = {a, a, b, c, d} = L. The non-
trivial majority clusters are {{a, b},{a, c},{a, d},{a, a, b, c, d}}. For any MUL-tree T that
contains all these clusters, multΛ(T)(a) ≥ 3 while multL(a) = 2, i.e., Λ(T) �= L. Thus, a
majority rule consensus MUL-tree of T does not exist. Also, all the non-trivial majority
clusters above are singular, so no singular majority rule consensus MUL-tree exists.

Lemma 3. Let T = {T1, T2, . . . , Tk} be a set of MUL-trees with Λ(T1) =
Λ(T2) = . . . = Λ(Tk) = L. If k ≥ 3 then a singular majority rule consensus
MUL-tree of T might not exist, but if it does, it is unique.

Proof. The non-existence follows from the example in Fig. 3.
Next, we prove the uniqueness. For the sake of obtaining a contradiction, sup-

pose there exist two different singular majority rule consensus MUL-trees A, B
of T . Since A �= B, there are two clusters C, C′ ∈ S such that C′ is the parent
cluster of C in A while C′ is not the parent cluster of C in B. It follows from the
definition of a singular cluster that C′ must be an ancestor cluster of C in B.
Thus, there exists another cluster C′′ such that C′ is an ancestor cluster of C′′

and C′′ is the parent cluster of C in B. This means that C � C′′ � C′, so C′′

cannot be an ancestor cluster of C′ in A. Hence, C′′ is not an ancestor cluster
of C in A, and so A must contain at least two copies of all elements in C. But
then C � C ⊆ L, contradicting the definition of a singular cluster. �	
Observe that the results in Lemmas 1, 2, and 3 hold even when restricted to
instances with m = 2, i.e., when multL(x) ≤ 2 for all x ∈ L.

Algorithms for Building Consensus MUL-trees 749

3 Building a Strict Consensus MUL-tree

This section describes a simple algorithm for constructing a strict consensus
MUL-tree. Our algorithm, named Strict consensus, is essentially an imple-
mentation of the existence proof in Lemma 1. The basic strategy is to remove
clusters from the cluster collection C(T1) by delete operations on suitable internal
nodes from T1 until a strict consensus MUL-tree is obtained. To identify which
clusters to remove, the algorithm uses vectors of integers to represent clusters
in T , as explained next. A leaf label numbering function is a bijection from the
set of distinct leaf labels in L to the set {1, 2, . . . , q}. We fix an arbitrary leaf
label numbering function f . For every Ti ∈ T and node u ∈ V (Ti), define a vec-
tor Du

i of length q such that, for every j ∈ {1, 2, . . . , q}, the jth element equals
multΛ(Ti[u])(f−1(j)). In other words, each element of the vector Du

i counts how
many times the corresponding leaf label occurs in the subtree rooted at node u
in Ti. Clearly, D�

i contains exactly one 1 and q − 1 0’s for any leaf � of Ti, and
Du

i for any internal node u equals the sum of its children’s Di-vectors.
For each MUL-tree Ti in T , Strict consensus first computes all Du

i -vectors
by one bottom-up traversal of Ti and initializes a trie Ai augmented with leaf
counters to store the cluster collection C(Ti). More precisely, the q elements
of each Du

i -vector are concatenated into a string of length q which is inserted
into Ai. Next, for each cluster in T1 (i.e., for each leaf in the trie A1), the
algorithm calculates how many of its occurrences to remove from T1 to obtain
a strict consensus MUL-tree by subtracting its minimum number of occurrences
among T2, . . . , Tk from the number of occurrences in T1; the tries A1, . . . , Ak are
used to retrieve these numbers efficiently. Finally, the necessary delete operations
are performed on T1.

Theorem 1. Let T = {T1, . . . , Tk} be a set of MUL-trees with Λ(T1) = . . . =
Λ(Tk). Algorithm Strict consensus constructs a strict consensus MUL-tree
of T in O(nqk) time.

4 Building a Majority Rule Consensus MUL-tree

This section demonstrates that constructing a majority rule consensus MUL-tree
is computationally hard. Define the following decision problem:

Majority rule consensus MUL-tree (MCMT):
Input: A set T = {T1, T2, . . . , Tk} of MUL-trees and a multiset L of leaf

labels such that Λ(Ti) = L for every Ti ∈ T .
Question: Is there a majority rule consensus MUL-tree of T ?

To prove the result, we will reduce the 1-IN-3 SAT problem to MCMT. 1-IN-3
SAT is known to be NP-hard [5] and is defined as:

750 Y. Cui, J. Jansson, and W.-K. Sung

1-in-3 Satisfiability (1-IN-3 SAT):
Input: A Boolean formula F in conjunctive normal form where every clause

contains at most 3 literals (3-CNF).
Question: Does there exist a truth assignment to F such that each clause

contains exactly one true literal?

First, define non-mono-replace on any Boolean formula F in 3-CNF as:

• For every clause Cu in F consisting of three positive literals, arbitrarily
select one of its literals xk and replace Cu = (xi ∨ xj ∨ xk) by two clauses
(xi∨xj∨ȳu)∧(yu∨xk), where yu is a newly added Boolean variable. Similarly,
for every clause Cu in F consisting of three negative literals, arbitrarily select
one of its literals x̄k and replace Cu = (x̄i∨x̄j∨x̄k) by (x̄i∨x̄j∨yu)∧(ȳu∨x̄k),
where yu is a newly added Boolean variable.

Below, we use the non-mono-replace operation to ensure that the Boolean for-
mula we reduce from has a special structure. The relationship between F and
the result of applying non-mono-replace on F is given by:

Lemma 4. Let F be a Boolean formula in 3-CNF and let F ′ be the 3-CNF
Boolean formula obtained by applying the non-mono-replace operation on F .
There exists a truth assignment for F such that every clause contains exactly
one true literal if and only if there exists a truth assignment for F ′ such that
every clause contains exactly one true literal.

We now describe the reduction. Let F be any given Boolean formula in 3-CNF.
As in the proof of Theorem 3.1 in [7], assume w.l.o.g. that: (i) No single clause
in F contains a variable xi as well as its negation x̄i as literals; and (ii) for
every variable xi in F , both xi and its negation x̄i appear somewhere in F as
literals. Then, apply non-mono-replace on F to obtain a Boolean formula F ′

with s variables and t clauses, for some positive integers s, t (this does not
affect properties (i) and (ii) above). Lastly, construct three MUL-trees T1, T2, T3

based on F ′ as follows. Let X = {x1, . . . , xs} and Z = {z1, . . . , zt} be two
sets in one-to-one correspondence with the variables and clauses of F ′. Say that
xi is positive (negative) in zj if xi corresponds to a variable in F ′ that occurs
positively (negatively) in jth clause. Define the leaf label multiset L for T1, T2, T3

as L = {x, x : x ∈ X}∪ {z, z, z : z ∈ Z}. (In other words, L contains two copies
of every element in X and three copies of every element in Z.) Next, for each
x ∈ X , define two subsets Zx, Z̃x of Z by Zx = {z ∈ Z : x is positive in z}
and Z̃x = {z ∈ Z : x is negative in z}. Let W = {Zx ∪ {x} : x ∈ X} and
W̃ = {Z̃x ∪ {x} : x ∈ X}. From W , W̃, construct three MUL-trees T1, T2, T3

with Λ(T1) = Λ(T2) = Λ(T3) = L whose sets of non-trivial clusters are: W ∪ W̃ ,
W∪{X∪Z}, and W̃∪{X∪Z}, respectively. Then, the set of non-trivial majority
clusters for {T1, T2, T3} is: W ∪W̃ ∪ {X ∪Z}. It is straightforward to show that
T1, T2, T3 are valid MUL-trees. Because of the non-mono-replace operation, for
every zj ∈ Z, there is exactly one or two subtrees attached to the root of T2 (T3)
that contains an occurrence of zj. The reduction’s correctness follows from:

Algorithms for Building Consensus MUL-trees 751

Lemma 5. A majority rule consensus MUL-tree for T1, T2, T3 exists if and only
if there exists a truth assignment for F ′ such that every clause contains exactly
one true literal.

Theorem 2. The MCMT problem is NP-hard, even if restricted to inputs where
k = 3 and each leaf label occurs at most 3 times.

5 Building a Singular Majority Rule Consensus
MUL-tree

Here, we present a polynomial-time algorithm for building a singular majority
rule consensus MUL-tree. By Lemma 3 in Section 2, when a singular majority
rule consensus MUL-tree of T exists, it is unique.

Our algorithm consists of two phases. The first phase constructs the set S of
all singular, non-trivial clusters that occur in at least k/2 of the MUL-trees in T .
To implement Phase 1, we enumerate all non-trivial clusters that occur in T and
count their occurrences using the technique described in Section 3. The second
phase builds the singular majority rule consensus tree of T by calling a top-
down, recursive procedure Build MUL-tree(L, S), listed in Fig. 4. The cluster
associated with the root of T is L, and the clusters associated with the children
of the root of T belong to a set F ⊆ S of maximal elements in S. More precisely,
we let F = {C ∈ S : C is not a submultiset of any cluster C′ ∈ S}. Then:

Algorithm Build MUL-tree

Input: A multiset L, and a set S of singular, non-trivial clusters of L.

Output: A MUL-tree leaf-labeled by L that contains all clusters in S, if one exists;
otherwise, FAIL.

1 Let F be the empty set.

2 for every X ∈ S do

2.1 if X is not a submultiset of any cluster currently in F then

Delete every cluster from F that is a submultiset of X. Insert X into F .

If L �
⊎

C∈F C then return FAIL.

endif

endfor

3 for every C ∈ F do

Compute S|C = {X ∈ S : X ⊆ C}.
If S|C �= ∅, let TC = Build MUL-tree(C, S|C); otherwise, let TC = null .

endfor

4 Let T be a MUL-tree whose root is attached to: (1) the root of TC for each
C ∈ F with TC �= null ; and (2) all leaves labeled by L \ (

⊎
C∈F C).

5 return T

End Build MUL-tree

Fig. 4. Algorithm Build MUL-tree

752 Y. Cui, J. Jansson, and W.-K. Sung

Lemma 6. F = {C ∈ S : C is not a submultiset of any cluster C′ ∈ S} equals
the set of all clusters associated with children of the root of the unique singular
majority consensus MUL-tree of T .

Steps 1 and 2 of Build MUL-tree compute F in a greedy fashion. After each
update to F in Step 2, if L is a proper submultiset of

⊎
C∈F C then no MUL-tree

leaf-labeled by L containing all clusters in S exists, and the algorithm reports
FAIL. Step 3 builds a sub-MUL-tree TC for each C in F by recursively calling
Build MUL-tree(C, S|C), where S|C = {X ∈ S : X ⊆ C}; the base case of
the recursion is when S|C = ∅. Then, in Step 4, the TC-trees and all “leftover
leaves” not in

⊎
C∈F C are assembled into the final consensus MUL-tree T , which

is returned in Step 5.
Build MUL-tree constructs a MUL-tree with O(|L|) internal nodes. For each

such node, it may need to execute all the steps of the procedure, which takes
O(|L||S|) time because |

⊎
C∈F C| ≤ |L|. The total running time of Phase 2 is

O(|L|2|S|) = O(n3k) since |L| = n and |S| = O(nk).

Theorem 3. Let T = {T1, . . . , Tk} be a set of MUL-trees with Λ(T1) = . . . =
Λ(Tk). Our algorithm constructs the singular majority consensus MUL-tree of T
(if it exists) in O(n3k) time.

References

1. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest
common ancestors with an application to the optimization of relational expressions.
SIAM Journal on Computing 10, 405–421 (1981)

2. Day, W.H.E.: Optimal algorithms for comparing trees with labeled leaves. Journal
of Classification 2(1), 7–28 (1985)

3. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc., Sunderland (2004)

4. Ganapathy, G., Goodson, B., Jansen, R., Le, H.-S., Ramachandran, V., Warnow,
T.: Pattern identification in biogeography. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics 3(4), 334–346 (2006)

5. Garey, M., Johnson, D.: Computers and Intractability – A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New York (1979)

6. Guillemot, S., Jansson, J., Sung, W.-K.: Computing a smallest multilabeled phy-
logenetic tree from rooted triplets. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 8(4), 1141–1147 (2011)

7. Huber, K.T., Lott, M., Moulton, V., Spillner, A.: The complexity of deriving multi-
labeled trees from bipartitions. J. of Comp. Biology 15(6), 639–651 (2008)

8. Huber, K.T., Spillner, A., Suchecki, R., Moulton, V.: Metrics on multilabeled trees:
Interrelationships and diameter bounds. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics 8(4), 1029–1040 (2011)

9. Lott, M., Spillner, A., Huber, K.T., Moulton, V.: PADRE: a package for analyzing
and displaying reticulate evolution. Bioinformatics 25(9), 1199–1200 (2009)

10. Lott, M., Spillner, A., Huber, K.T., Petri, A., Oxelman, B., Moulton, V.: Infer-
ring polyploid phylogenies from multiply-labeled gene trees. BMC Evolutionary
Biology 9, 216 (2009)

Algorithms for Building Consensus MUL-trees 753

11. Margush, T., McMorris, F.R.: Consensus n-Trees. Bulletin of Mathematical Biol-
ogy 43(2), 239–244 (1981)

12. Nelson, G., Platnick, N.: Systematics and Biogeography: Cladistics and Vicariance.
Columbia University Press (1981)

13. Page, R.D.M.: Parasites, phylogeny and cospeciation. International Journal for
Parasitology 23, 499–506 (1993)

14. Page, R.D.M.: Maps between trees and cladistic analysis of historical associations
among genes, organisms, and areas. Systematic Biology 43(1), 58–77 (1994)

15. Scornavacca, C., Berry, V., Ranwez, V.: Building species trees from larger parts of
phylogenomic databases. Information and Computation 209(3), 590–605 (2011)

16. Sokal, R.R., Rohlf, F.J.: Taxonomic congruence in the Leptopodomorpha re-
examined. Systematic Zoology 30(3), 309–325 (1981)

17. Sung, W.-K.: Algorithms in Bioinformatics: A Practical Introduction. Chapman &
Hall/CRC (2010)

18. Wareham, H.T.: An efficient algorithm for computing Mi consensus trees. B.Sc.
Honours thesis, Memorial University of Newfoundland, Canada (1985)

	Algorithms for Building Consensus MUL-trees
	Introduction
	Definitions
	Our Results and Organization of the Paper

	Preliminaries
	Building a Strict Consensus MUL-tree
	Building a Majority Rule Consensus MUL-tree
	Building a Singular Majority Rule Consensus MUL-tree
	References

