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A numerical method for calculating the volume of a macromolecule and its first and second derivatives as 
a function of atomic coordinates is presented. For N atoms, the method requires about 0.3 N In@) seconds 
of CPI: time on a VAX-8800 to evaluate the volume and derivatives. As a test case, the method was used 
to evaluate a pressure-volume energy term in energy minimizations of the protein lysozyme at 1000 atm (1 
atm = 1.013 x 10' Pa). R.m.s. gradients of 10 -' kcal/mol/A were obtained at convergence. The calculated 
structures exhibited pressure-induced changes which were qualitatively similar to the changes observed in 
the 1000 atm structure determined by X-ray crystallography. 

INTRODUCTION 

Prior to the determination of the first three-dimen- 
sional protein structure, protein molecules were 
typically modeled as spheres or ellipsoids in 
calculations of hydrodynamic' or electrostatic prop- 
erties.'," With the advent of high resolution protein 
structures and advances in computational capabili- 
ties, methods using the overall shape of the protein 
and varying amounts of the detailed structure have 
been used in electrostatic,J." packing? and solvation 
ener&-lo calculations. Iterative energy calculations 
such as energy minimization and molecular dynam- 
ics require efficient algorithms for the evaluation of 
such potentials and, in some applications, their de- 
rivatives. 

This article presents a method for calculating t.he 
volume of a macromolecule and the first and second 
derivatives of the volume as a function of the atomic 
coordinates. Volume-dependent energy terms arise 
explicitly in studies involving high pressure, struc- 
tural packing defectsi and solvation energy.'" 

,4lthough the volume of a small molecule tends to 
change slowly with conformation, the volumes of 
biological macromolecules such as proteins are very 
sensitive to conformation. Although proteins are dy- 
namic structures in biological environments, they 
are well-packed structures on a v e r a g e k d  are less 
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compressible than ice."-'.' The protein lysozyme con- 
tracts less than 1% and deforms only on the order 
of tenths of an Angstrom unit at 1000 atmospheres 
(1 atm = 1.013 x 10" Pa) of hydrostatic pressure.'" 
The crystallographic data in the lysozyme study are 
not sufficient to permit a detailed atomic interpre- 
tation of this pressure-induced deformation. In an 
effort to understand the mechanistic basis of this 
pressure-induced deformation, the TINKER force 
fieldI4 was modified by adding a pressure-volume 
energy term and the energy of the lysozyme structure 
minimized at 1 and 1000 atm. 

Several types of surfaces and volumes are referred 
to in this work." The accessible surface of the solute 
is the locus of points occupied by a probe sphere 
center as it is "rolled" across the solute. The ex- 
cluded volume of a molecule is the volume enclosed 
by the accessible surface. The molecular surface is 
comprised of the contact surface and the reentrant 
surface. The contact surface is that part of the mol- 
ecule's van der Waal surface, which is contacted by 
the surface of the probe sphere. The reentrant sur- 
face is the locus of points defined by that part of the 
probe sphere surface which faces the solute but does 
not contact solute atoms when the probe sphere 
contacts more than one solute atom. The molecular 
volume is the volume enclosed by the molecular sur- 
face, i.e., the volume inaccessible to any paYt of the 
probe sphere. 

Previous workers have developed numerical15 and 
a n a l y t i ~ a l ' ~ ' ~  methods for calculating molecular and 
excluded volumes. In this work, the excluded volume 
is computed using an adaptation of the analytical 
procedure of Connolly.'The first- and second-vol- 
ume derivatives with respect to atomic positions are 
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found by an efficient numerical approximation. 
Since the search for neighboring atoms is performed 
using a course cubic grid, the calculational time re- 
quired for a molecule of N atoms is proportional to 
MnN. The energy minimization of the crystallo- 
graphic structure of the lysozyme molecule at 1 and 
1000 atm are presented as examples. 

DERIVATION 

The Excluded Volume 

The pressure-volume energy term was defined using 
the excluded volume of the molecule for consistency 
with the derivation of the van der Waals equation of 
state. The algorithms of C o ~ o l l y ' ~  were used to cal- 
culate the excluded volume to an accuracy of about 
0.01%. 

The First Derivatives 

The fust derivatives of the PV term with respect to 
atomic positions relate the change in atomic coor- 
dinates of solvent accessible atoms to the change in 
the excluded volume. One way to view these first 
derivatives is to view the solvent region as a contin- 
uum which exerts a force on each part of the ac- 
cessible surface. Determining the resolved force 
acting upon each solvent accessible atom is then 
reduced to determining the accessible area of each 
atom and the resolved force acting on each patch of 
accessible surface. 

The fust step in obtaining the forces on an atom 
is to define the accessible area. The algorithm used 
in the program Access20 was used to define the ac- 
cessible area for each atom. The force acting on the 
accessible area was then calculated. 

Because the geometry of several intersecting 
spheres is very complicated, Access solves a simpler 
problem (the intersection of circles in a plane) and 
uses numerical integration to combine the results. 
The atom in question, the "central" atom, is sec- 
tioned in planes along the z axis of the coordinate 
system used to describe the atomic coordinates. 
These z-sections are typically 0.1-0.2 A apart. To cast 
the problem automatically in terms of the accessible 
surface, the radius of each atom is taken to be the 
van der Waals radius plus the probe sphere radius. 
A probe sphere radius of 1.4 A was used to approx- 
imate the size of a water molecule. The surface of 
the central atom and its neighbors intersect each z 
section in a circle. The points where the neighbor's 
circles intersect the central atom's circle is calcu- 
lated for each z section. The accessible area is cal- 
culated from the central atom arcs which are not 
occluded by neighboring atoms. In Access, the re- 

sults of each z section are combined to find the 
accessible area of the atom. 

The force acting on an atom's accessible surface 
can be similarly expressed as the combination of 
forces acting on each section. Consider one z sec- 
tion. The position of the z section and the spacing 
between sections defines 4, and &; the z section 
intersects the central atom sphere at 4 = (4, + 
4&2 (Fig. 1). Assume that the central atom circle 
is accessible to solvent over the range 6, to 62. The 
force acting on one point, B, on an atom whose cen- 
ter is at 0 is 

where P is pressure, n is the normal vector BOlIBO1, 
and dS is the differential surface area. In spherical 
coordinates (Fig. 1) 

where a is the radius of the sphere (a = IBO( = van 
der Waals radius + 1.4 A) and i, j, and k are unit 
vectors in the x, y, and z directions, respectively. 
Then the force acting on this accessible patch de- 
fined b~ 81, 62, 41, and 42 is 

F = 1:: - ~ s i n 4 c o s ~ t  + s in4s in~  

+ cos4k]a2sin4 d& dB (4) 

F = (-Pa212) {(sine, - sine1)[(4, - 4,) 
- - sin24,)/2]i 

+ (case, - cos@z)l(42 - 41) 
- (si1124~ - sin2~$,)/2U 

+ (8, - B,) (~ in~4~ - sin24Jk) (5) 

The total force acting on the atom is obtained by 
adding the forces from each z section. 

The Second Derivatives 

The second derivatives of the PV energy relate the 
change in atomic coordinates of surface atoms to 
the change in the forces acting on the atoms. For 
example, if atom 1 defines part of the accessible 
surface of atom 0, then the pressure related force 
acting on atom 0 will change as atom 1 moves. For 
the force in the x direction, Fx, this can be written 
as 

In terms of an accessible arc in a specific z section, 
the force is a function of the angles 8, and 6,. The 
angles, in turn, are determined by the positions of 
the two respective neighboring atoms; atom 1 and 
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1. Arc definition. The arc segment shown (thick, 
solid lines) is defined in terms of an azimuthal angle, 4, 
and an equatorial angle, 6. The position of the azimuthal 
angle is determined by position of the z section (dashed 
line). 4 = 0" and O = 0" correspond to the z and x axes, 
respectively. The origin of this coordinate system is the 
atom center and the x, y, and z axes are parallel to the 
corresponding axes used in the protein coordinate data 
set. 

atom 2. So to evaluate terms such as aFxolax,, each 
accessible patch in a z section is analyzed separately. 
For a given patch, aFxolax, is evaluated using the 
equations below. The values of aFxoldx, for each 
patch in the z section are summed to obtain the value 
in that z section, and the values of each z section 
are combined to obtain the final value of aFx,lax,. 
In short, the additive properties of the differential 
are used so that a much simpler and more tractable 
problem can be solved. 

Consider one z section with three atoms, i = 0, 
1, 2, with coordinates (xi, y,, zi) and radii R, (van 
der Waals radius + 1.4 A). The central atom is i = 

0 and atoms 1 and 2 define the arc angles 8, and 02, 
respectively. The force Fo is the pressure related 
force acting on atom 0 from the accessible patch 
defined by angles 01, 02, and 4,. We seek the 
derivatives of Fo with respect to the coordinates of 
atoms 0, 1, and 2. Note that the positions of the z 
sections are defined relative to (so, yo, zo), so that 
4, and $9 are not a function of any atom coordinates. 

We need to evaluate 

aFo aFo ae, a ~ ,  a02 - - -- - +--  
ax, ae, axi a ~ ,  ax, (V 

for i = 0, 1,2 and analogous equations involving yi 
and zi. For most of this derivation, only the terms 
involving atom 1 will be written since the derivation 
involving atom 2 proceeds along the same lines. The 
above equations constitute level 1 of the chain rule 
applications. 

Two types of terms are evaluated in level 2. The 
first is a straightforward differentiation of (5) to ob- 
tain the aFo/de' type terms: 

For the second type of term, two new angles must 
be defined as  illustrated in Figure 2 

where 

and z' is the z coordinate of the z-section. Note that 
the arctangent takes on values between - n12 and 
7212. Since z' is defined by 4, and 4,, (z' - 2,) and 
r,, are constants. Then 

Figure 2. Geometry of a z-section. The X and Y axes are 
the axes of the protein atom coordinte system, the x and 
y axes are used to define O,, a,, and j?,. The atoms 0 and 
1 have coordinates (x,, yo) and (x,, y,), respectively, and 
the intersections of their atom spheres in this z section 
are represented by the dotted circles. 
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The particular point of intersection determines the 
sign of a. So 

a01 ag, aff1 - - - + -  
axi axi ax, 

for i = 0, 1 and analogous equations for yi and zi. 
The aelax type terms in level 2 are obtained dif- 

ferentiating (9) and (10) to produce the level 3 equa- 
tions 

for i = 0, 1 and analogous equations for x,, y,, and 
2,. Also 

for i = 0, 1 and analogous equations for yi and zi. 
The aulax type terms of level 3 are obtained from 

(11) to produce the level 4 equations 

au1iaxi = (au,ias,) (asliexi) (20) 

for i = 0 and 1. The derivatives on the right-hand 
side of (20)-(22) are obtained from ( l lH13) and 
are the level 5 equations 

and analogous equations for XI, yl, and z ,. 
Equations (7)<27) and analogous equations in- 

volving atom 2 were used to evaluate the second 
derivatives of the PV energy term. 

CALCULATION OF ENERGY 
MINIMIZED STRUCTURE 

Standard Potential Energy Functions 

The basic TINKER potential energy functions14 are 
variations of the usual set of functions found in mo- 
lecular mechanics programs: bond stretching, bond 
angle bending, torsional angle rotation, van der 

Waals, and electrostatic terms (charge-charge, 
charge-dipole, and dipole-dipole). Actual values for 
the various parameters are taken directly from 
I~lM2~l or from fits to small molecule thermodynamic 
and diffraction data, and to quantum mechanical cal- 
culations on protein subunits.14 As described in the 
results, three different minimizations were per- 
formed, one including all long range interactions and 
two includmg only those van der Wads interactions 
within 8.0 A and dipole-dipole interactions within 
12.0 A. A fifthdegree polynomial tapering function 
was applied at the cutoffs to keep the energy func- 
tion continuous through the second partial deriva- 
tives with respect to atomic position (see also ref. 
22). The tapering function was applied over the last 
10, 25, and of the van der Waals, dipole, and 
charge-charge interactions, respectively. 

Pressure-Volume Potential F'unction 

The pressure-volume function added to the total po- 
tential energy was 

Em = 0.00001457 x P x V (28) 

where Ew is in kcal/mol (1 kcal/mol = 4184 Jlmol), 
P is measured in atm (1 atm = 1.013 x lo5 Pa) and 
V is the excluded volume measured in A3 (1 A = 
10- lo m) using a 1.4 A radius probe sphere. The pres- 
sure was fixed at 1000 atm during all calculations in 
which the Ew term was used. The radii typically used 
in volume calculations represent the distance at 
which the van der Waals potential is at a minimum. 
To better approximate the "hard-sphere" boundary, 
the radii in this work used correspond to the distance 
at which the van der Wads potential produces a 
repulsive force of 1000 atm for atoms with 50% of 
their surface accessible to solvent (Table I). These 
radii were also used for the 1 atm structures. The 
work performed in going from the potential mini- 
mum to the radii in Table I is on the order of 0.2 
kcal/mol, well below thermal energy (0.6 kcal/mol). 
Excluded volumes were computed with the algo- 
rithms used in the AMS and VAM programs of Con- 
nolly.16 Derivatives of the excluded volume were 
computed using the formulas derived above. A nu- 
merical step size along the x axis of 0.01 or less 
was used in the derivative computations resulting in 

Table I. van der Waals radii used in energy minimization. 

van der Waals 
Atom type radius (A) 
C 1.50 
N 1.40 
0 1.35 
S 1.55 
alcohol, arnide, amine 

carboxyl H 0.80 
other H 0.95 
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values accurate to within 1% or less. The last cycles 
of the minimization used a step size of 0.001 A. 

Energy Minimization 

Since the observed X-ray pressure deformation and 
the computed pressure-volume work done are both 
very small, the ability to achieve complete conver- 
gence during energy minimization was crucial. Most 
optimization techniques currently applied to bipo- 
lymers provide an r.m.s. gradient per atom value of 
approximately 0.1 kcallmolel~ (1 kcal/mole/ A = 
6.948 x lo-" Nlmolecule) even after many thou- 
sands of iterations. This level of performance was 
unacceptable for the current work because the re- 
sidual force of 0.1 kcal/mole/h; obtained with most 
optimizers is of the same order of magnitude as the 
entire force exerted by the pressure-volume term. 
We therefore used a quadratically convergent Trun- 
cated Newton (TNCG) optimization procedure.14 
This method is a version of the classic Newton 
method for nonlinear optimization, but uses a pre- 
conditioned linear conjugate gradient procedure to 
partially solve the Newton equations at each cycle. 
Using the TNCG algorithm the calculation converged 
to an r.m.s. gradient of 0.0001 kcal/mole/A in about 
100 cycles or less. In the first part of the optimiza- 
tions (i.e., r.m.s. gradient greater than 0.1 kcallmole1 
A) simple diagonal preconditioning was used. Sym- 
metric successive over-relaxation (SSOR) or an In- 
complete Cholesky preconditioner were then used 
to attain the final convergence. 

APPLICATION 

Test Case 

Hen egg-white lysozyme served as the macromolec- 
ular test case for the volume-dependent terms be- 
cause of our interest in examining the mechanistic 
basis of the deformations observed in the 1000 atm 
crystal structure. The crystal structure of lysozyme 
was determined using data extending to a nominal 
resolution of 2 A?3 The Hendrickson and Komert 
restrained least-squares refinement program24 was 
used to refine the 1 atm and 1000 atm crystal struc- 
tures to an R factor (R = C, IF, - F,II&IF,I) of 
14.9%. The magnitude of the error in the crystallo- 
graphic models was estimated by comparing the 1 
atm model to a model derived from a "control" data 
set also collected at 1 atm but without the pressure 
cell. The control data was refined starting from the 
final 1 atm model. The r.m.s. difference was 0.047 A 
between Ca positions and 0.063 A for all atom p e  
sitions. 

Volumes for the structures are reported in Table 
11. To facilitate comparison of the crystallographic 
and calculated structures, the following atoms were 

deleted from the final structures prior to calculating 
the reported values: (1) residue side chains 61, 73, 
97, 121, 125, and 128 which are not welldefined in 
the crystallographic model and (2) all hydrogen at- 
oms since they are absent in the crystallographic 
model. To facilitate comparison to previously pub- 
lished work, the volumes were calculated using the 
commonly used set of radiil63 rather than the radii 
used in the energy minimization. The compressibility 
values calculated for lysozyme using the 1 atm and 
1000 atm crystallographic structures are relatively 
insensitive to the probe sphere radius; 1.2 h; and 1.6 
h; radii produce compressibility values within 1% of 
the value obtained with a 1.4 h; radius. 

Computational Characteristics 

The computational characteristics of the volume al- 
gorithms were as follows. The net pressure-related 
force acting on an entire molecule was used to eval- 
uate the accuracy of the force calculation. The ac- 
curacy of the first derivative calculation is limited 
by the spacing between the z sections. The approx- 
imation made for each arc is that 8, and are not 
a function of 4. As the interplane spacing is reduced, 
the approximation improves since 8, and 6, vary less 
over the 4 range of an arc. The net pressure-related 
force acting on an entire molecule, which should be 
zero, was used to evaluate the accuracy of the force 
calculation. In practice, an interplane spacing of 0.06 
h; appears to provide a good balance between ac- 
curacy and CPU time (Fig. 3), but the sensitivity of 
the truncated Newton method mentioned earlier re- 
quired a spacing of 0.01 h; for all but the last cycles, 
where the spacing was 0.001 A. 

z-section thickness (A) 
Figare 3. Trade-off between accuracy and spacing be- 
tween z sections. The total pressure force acting on a 
lysozyme molecule is plotted against the spacing between 
z sections. A perfect calculation would produce a force of 
zero. The CPU time required to evaluate the pressure force 
is proportional to the number of z sections traversing the 
molecule. 
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Table 11. Excluded volume values." 

Minimization-induced 
Pressure-induced change change relative to 1 atm 

Excluded volume (A') (%) crystal structure (%) 

Whole Domain Domain Whole Domain Domain Whole Domain Domain 
molecule I I1 molec. I I1 molec. I I1 

XRAY-1 237892 151705 97482 -0.52 -0.52 -0.24 
XRAY- 1000 23,767 15,624 9,818 
NOCUT- 1 23,200 15,221 9'679 -0.90 -0.82 -0.54 -2.90 -3.08 -1.66 
NOCUT-1000 22,991 15,096 9,627 
CUTOFF-1 23,147 15,351 9'613 -1.15 -0.83 -1.11 -3.12 -2.25 -2.33 
CUTOFF-1000 22,880 15,224 9,506 
WATER-1 231607 159525 99823 -0.80 -0.54 -0.41 - 1.19 -1.15 -0.19 
WATER-1000 23,419 15,441 9,783 

"An estimate of the experimental error in the crystallographic volumes is provided by a comparison of the XRAY-1 
structure with a control 1 atm structure; the excluded volumes of these two molecules differed by 42 A3 (0.18%), 48 A3 
(0.30%) and 33 A3 (0.33%) for the whole molecule, domain I and domain 11, respectively. 

For N atoms, the CPU time required to evaluate 
the pressure-volume term and its derivatives are O(N 
InN). The CPU time required as a function of the 
number of atoms is shown in Table 111. 

Calculated Structures 

The 1-atm X-ray model was used as the starting point 
for each of a series of energy minimizations which 
generated three calculated 1 atm structures. Hydre 
gen atoms were added prior to the energy minimi- 
zations in idealized positions, forming hydrogen 
bonds where possible. The three optimizations and 
the resulting structures are: (I) CUTOFF-1, a single 
lysozyme molecule using a van der Wads cutoff of 
8.0 A and dipole-dipole cutoff of 12.0 A, (2) NOCUT- 
1, a single lysozyme including all long-range inter- 
actions, and (3) WATER-I, lysozyme surrounded by 
157 crystallographic waters conserved between the 
1 and 1000 atm X-ray models and uskg the same 
8.0112.0 A cutoffs as in (1). The calculations includ- 
ing water molecules were included because visual 
comparison of the structures using Insight version 
2.3 (Biosym Technologies, Inc., San Diego, CA) sug- 
gested that explicit water molecules would act as 
"molecular doorstops." The water molecules filled 

Table HI. CPU Times." 

voids on the protein surface and limited the motion 
of neighboring side chains. 

Since the pressure related force on an accessible 
atom at 1 atm is at most 5 x kc all moll^ per 
atom, the pressure t6rm was not included in the 1- 
atm minimizations; the "1-atm" calculations were ac- 
tually in vacuo calculations. The resulting structures 
will still be referred to as the 1 atm calculated struc- 
tures. These 1-atm structures converged to a r.m.s. 
gradient value of kc all moll^ or less. 

In a second set of energy minimizations, the pres- 
sure-volume energy term was applied using 1000 atm 
of pressure to each of the 1-atm calculated struc- 
tures. The resulting structures are referred to as 
CUTOFF-1000, NOCUT-1000, and WATER-1000. The 
two minimizations using cutoffs converged to r.m.s. 
gradient values below kcallmolelA in 29 cycles 
(CUTOFF-1000) and 31 cycles (WATER-1000). The 
NOCUT-1000 structure did not converge to the same 
degree due to the combination of a dense Hessian 
matrix and very slow energy gradient evaluation. The 
NOCUT-1000 minimization was terminated after 43 
cycles with an r.m.s. gradient value of 0.03 kcall 
mo~e/A and r.m.s. positional shifts of less than 0.0004 
A for the last five cycles. It is unlikely that further 
reduction of the gradient would lead to any signifi- 
cant structural change. 

Number Number CPU time (s) 

of of First Second 
Molecule residues atoms Volume Derivative Derivative 

Threonine 1 26 8.8 11.7 11.8 
Enkephalin 5 75 22.2 31.4 28.4 
Gramacidin A 16 276 108.1 145.3 133.6 
Crambin 46 642 358.0 407.0 435.8 
Lysozyme 129 1961 1300.8 1468.6 1442.5 

Timings were done on a DEC VAX 8820 for z sections of 0.0601 A. For N atoms, the volume evaluations require 
about 0.09 MnN s and the derivative evaluations require about 0.10 MnN s. The time required is approximately proportional 
to the number of sections through the molecule. 
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Structural Comparison 

The following comparisons can be thought of in 
terms of three transitions or operations: (1) the ob- 
served pressure-induced deformation, (2) the cal- 
culated pressure-induced deformation, and (3) the 
effect of energy minimization (comparing the 1 atm 
calculated structure to the 1 atm observed struc- 
ture). 

Table I1 shows that all three types of energy min- 
imization produce a compression due to 1000 atm 
which is within a factor of about 2 of the observed 
crystal structures. The calculated compressibilities 
are too large for the whole molecule and the two 
domains. All calculations except the CUTOFF pair, 
agree with the crystallographic result that domain I 
is more compressible than domain II. However, the 
effect of energy minimization itself is several times 
larger than the observed or calculated pressure-in- 
duced deformations. 

Though the pressure-volume energy term pro- 
duces effects on the correct scale, the energy min- 
imization procedure itself compresses the protein 
(Table II). Such changes prevent one from using the 
calculated structures to infer the mechanism of de- 
formation in the observed structures. 

DISCUSSION 

Computational Cost and Performance 

The new method described here, the calculation of 
the first and second derivatives of excluded volume 
with respect to atomic coordinates, is an efficient 
numerical method and whose computational time 
scales for N atoms is proportional to MogN. The 
accuracy of the method is determined by the spacing 
between "slices" taken through the molecule. 

Lysozyme Test Case 

The details of the calculated deformation cannot be 
readily extrapolated to the crystal structures be- 
cause of the large changes incurred by energy rnin- 
imizing the 1-atm crystal structures. The excluded 
volume decrease observed upon energy minimiza- 
tion is reduced by the elimination of cutoffs for the 
van der Waals and electrostatic interactions and by 
the addition of explicit water molecules. This result 
confirms that the use of cut-offs for nonbonded po- 
tentials can have significant effectsz2 

There are at least two physical reasons why the 
energy minimized 1-atm structures are different than 
the observed crystal structure. Firstly, an energy 
minimized structure physically corresponds to a 
structure at 0 K. The volume of myoglobin at 80 K 
is 3% less than the volume at 300 K.25 Extrapolating 
this result to 0 K produces a volume decrease of 4% 
compared to the 300 K. Unlike myoglobin, lysozyme 

does not possess large cavities and its volume con- 
traction at low temperatures is probably smaller. So 
the contractions observed in these energy minimi- 
zations are of the magnitude expected for lysozyme 
at 0 K. Secondly, the force field used does not include 
a term for bulk solvent. The attractive van der Waals 
and electrostatic interactions between the protein 
and bulk solvent will tend to expand the protein. In 
short, there are physical reasons for the large (rel- 
ative to the pressure-induced deformation) changes 
incurred by energy minimizing the protein crystal 
structure. 

The lysozyme test case demonstrates the accuracy 
and feasibility of the volume derivatives. The volume 
and derivative calculations are accurate enough to 
permit energy minimizations to r.m.s. gradients of 

kcallmollhi. The pressure-volume energy term 
produces pressure effects on the same scale as ob- 
served in the crystal structures. 

Extensions 

The current algorithm could be refined by defining 
an accessible arc more accurately. The approxima- 
tion made for each arc is that 8, and 8, are not 
functions of 4. As the interplane spacing is reduced, 
the approximation improves since 8, and 64 vary less 
over the C#J range of an arc. A computationally more 
efficient strategy would be to consider 8, and e2 as 
a function of 4. As a first approximation, 8 can be 
regarded as a linear function of 4. 

Fortran subroutines to evaluate the volume and 
the first and second derivatives are available as part 
of the TINKER molecular mechanics program pack- 
age through J.W.P. 
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