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Abstract1

The number and the size of spatial databases, e.g. for geo-
marketing, traffic control or environmental studies, are rapid-
ly growing which results in an increasing need for spatial data
mining. In this paper, we present new algorithms for spatial
characterization and spatial trend analysis. For spatial char-
acterization it is important that class membership of a data-
base object is not only determined by its non-spatial
attributes but also by the attributes of objects in its neighbor-
hood. In spatial trend analysis, patterns of change of some
non-spatial attributes in the neighborhood of a database ob-
ject are determined. We present several algorithms for these
tasks. These algorithms were implemented within a general
framework for spatial data mining providing a small set of
database primitives on top of a commercial spatial database
management system. A performance evaluation using a real
geographic database demonstrates the effectiveness of the
proposed algorithms. Furthermore, we show how the algo-
rithms can be combined to discover even more interesting
spatial knowledge. 

Keywords: Data Mining Algorithms, Database Primitives,
Spatial Data, Characterization, Trend Detection.

1. Introduction

Spatial Database Systems (SDBS) (Gueting 1994) are data-
base systems for the management of spatial data. To find im-
plicit regularities, rules or patterns hidden in large spatial da-
tabases, e.g. for geo-marketing, traffic control or
environmental studies, spatial data mining algorithms are
very important. A variety of data mining algorithms for min-
ing in relational as well as spatial databases have been pro-
posed in the literature (Fayyad et al. 1996, Chen et al. 1996., Ko-
perski et al. 1996, for overviews). 

In this paper, we present new algorithms for characteriza-
tion and trend detection in spatial databases. These tasks, es-
pecially characterization in spatial databases were also stud-
ied in (Lu et al. 1993), (Koperski. & Han 1995), (Ng 1996) and
(Knorr & Ng 1996). For methods of spatial statistics including
regression methods for trend detection see e.g. (Isaaks &
Srivastava 1989). A simple approach for spatial trend detec-
tion, based on a generalized clustering algorithm, is present-
ed in (Ester et al. 1997b). 

In (Lu et al. 1993), attribute-oriented induction is per-
formed using spatial and non-spatial concept hierarchies to
discover relationships between spatial and non-spatial at-
tributes. The data is generalized along these concept hierar-
chies. This process yields abstractions of the data from low
concept levels to higher ones which can be used to summa-
rize or characterize the data in more general terms.

(Koperski. & Han 1995) introduces spatial association rules
which describe associations between objects based on dif-
ferent spatial neighborhood relations. They present an algo-
rithm to discover spatial rules of the form X → Y (c%),
where X and Y are sets of spatial or non-spatial predicates
and c is the confidence of the rule. 

(Ng 1996) and (Knorr & Ng 1996) study characteristic prop-
erties of clusters of points using reference maps and themat-
ic maps in a spatial database. For instance, a cluster may be
explained by the existence of certain neighboring objects
which may “cause” the existence of the cluster. For a giv
cluster of points, they give an algorithm which can efficien
ly find the “top-k” polygons that are “closest” to the cluste
For n given clusters of points, an algorithm is present
which can find common polygons or classes of polygo
that are nearest to most, if not all, of the clusters.

Our algorithms for spatial characterization and trend d
tection are presented within a general framework based
database primitives for spatial data mining. Most spatial d
mining algorithms make use of explicit or implicit neighbo
hood relations. We argue that spatial data mining algorith
heavily depend on an efficient processing of neighborho
relationships since the neighbors of many objects have to
investigated in a single run of a data mining algorithm
Therefore, the extension of an SDBS by data structures 
operations for efficient processing of neighborhood re
tions is proposed in (Ester et al. 1997a). 

The rest of the paper is organized as follows. We brie
introduce database primitives for spatial data mining in s
tion 2. In section 3 and section 4, new algorithms for spa
characterization and spatial trend detection are presen
The performance of the algorithms is evaluated in sectio
using real data from a geographic information syste
Section 6 concludes the paper.

2. Database Primitives for Spatial Data Mining
Our database primitives for spatial data mining (Ester et al.
1997a) are based on the concepts of neighborhood gra

1.  Copyright  1998, American Association for Artificial 
Intelligence (www.aaai.org). All rights reserved.
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and neighborhood paths which in turn are defined with re-
spect to neighborhood relations between objects. 

There are three basic types of spatial relations: topologi-
cal, distance and direction relations which may be combined
by logical operators to express a more complex neighbor-
hood relation. We will only mention the direction relations
for the 2-dimensional case because they are explicitly need-
ed for our filter predicates. To define the direction relations,
e.g. O2 south O1, we consider one representative point of the
object O1 as the origin of a virtual coordinate system whose
quadrants and half-planes define the directions. To fulfil the
direction predicate, all points of O2 have to be located in the
respective area of the plane. Figure 1 illustrates the defini-
tion of some direction relations using 2D polygons. 

Obviously, the directions are not uniquely defined but
there is always a smallest direction relation for two objects A
and B, called the exact direction relation of A and B, which is
uniquely determined. For instance, in figure 1 A and B satis-
fy the direction relations northeast and east but the exact di-
rection relation of A and B is northeast. 

Definition 1: (neighborhood graphs and paths) Let neigh-
bor be a neighborhood relation and DB be a database of spa-

tial objects. A neighborhood graph 

is a graph with nodes N = DB and edges  where
an edge e = (n1, n2) exists iff neighbor(n1,n2) holds. A

neighborhood path of length k is defined as a sequence of
nodes [n1, n2, . . ., nk], where neighbor(ni, ni+1) holds for all

.

We assume the standard operations from relational alge-
bra like selection, union, intersection and difference to be
available for sets of objects and sets of neighborhood paths
(e.g., the operation selection(set, predicate) returns the set of
all elements of a set satisfying the predicate predicate).
Only the following important operations are briefly de-
scribed: 

• neighbors: Graphs × Objects × Predicates -->
Sets_of_objects

• paths: Sets_of_objects --> Sets_of_paths;
• extensions: Graphs × Sets_of_paths × Integer × Pred-

icates -> Sets_of_paths
The operation neighbors(graph, object, predicate) returns

the set of all objects connected to object in graph satisfying
the conditions expressed by the predicate predicate. 

The operation paths(objects) creates all paths of length 1
formed by a single element of objects and the operation ex-
tensions(graph, paths, max, predicate) returns the set of all
paths extending one of the elements of paths by at most max
nodes of graph. The extended paths must satisfy the pr
cate predicate. The elements of paths are not contained in
the result implying that an empty result indicates that no
of the elements of paths could be extended.

Because the number of neighborhood paths may beco
very large, the argument predicate in the operations neigh-
bors and extensions acts as a filter to restrict the number o
neighbors and paths to certain types of neighbors or pa
The definition of predicate may use spatial as well as non
spatial attributes of the objects or paths.

For the purpose of KDD, we are mostly interested in pa
“leading away” from the start object. We conjecture that 
spatial KDD algorithm using a set of paths which are cro
ing the space in arbitrary ways will not produce useful p
terns. The reason is that spatial patterns are most often
effect of some kind of influence of an object on other obje
in its neighborhood. Furthermore, this influence typical
decreases or increases more or less continuously with
creasing or decreasing distance. To create only relev
paths, we introduce special filter predicates which sel
only a subset of all paths, thus also significantly reducing 
runtime of data mining algorithms. 

There are many possibilities to define “starlike” filters
The filter starlike, e.g., requires that, when extending a pa
p = [n1,n2,...,nk] with a node nk+1, the exact “final” direction
of p may not be generalized. For instance, a path with final
rection northeast can only be extended by a node of an ed
with the exact direction northeast. The filter variable-starlike
requires only that, when extending p the edge (nk, nk+1) has
to fulfil at least the exact “initial” direction of p. For in-
stance, a neighborhood path with initial direction north can be
extended such that the direction north or the more special di-
rection northeast is satisfied. Figure 2 illustrates these filter
when extending the paths from a given start object. The 
ure also depicts another filter vertical starlike which is less
restrictive in vertical than in horizontal direction. 

3. Spatial Characterization

We define a spatial characterization of a given set of target
objects with respect to the database containing these targets
as a description of the spatial and non-spatial proper
which are typical for the target objects but not for the who
database. We use the relative frequencies of the non-sp

figure 1: Illustration of some direction relations
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figure 2: Illustration of some filter predicates
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attribute values and the relative frequencies of the different
object types as the interesting properties. For instance, dif-

ferent object types in a geographic database are communi-
ties, mountains, lakes, highways, railroads etc. To obtain a
spatial characterization, we consider not only the properties
of the target objects, but also the properties of their neigh-
bors up to a given maximum number of edges in the neigh-
borhood graph. Figure 3 depicts an example for the relative
frequencies in the database as well as in the target regions
and the ratio of these frequencies in comparison with the
specified level of significance. 

The task of spatial characterization is to discover the set of
all tuples (attribute, value) and the set of all objects types for
which the relative frequency in a set targets, extended by its

neighbors, is significantly different from the relative fre-
quency in DB. A very frequent property present only in the
neighborhood of very few of the targets would create mis-
leading results. Therefore, we require that such a property
must also have a significantly larger relative frequency in
the neighborhood of many targets.

Definition 2: (spatial characterization): Let  be
a neighborhood graph and targets be a subset of DB. Let

freqs(prop) denote the number of occurrences of the proper-
ty prop in the set s and let card(s) denote the cardinality of s.
The frequency factor of prop with respect to targets and DB,
denoted by , is defined as follows:

Let significance and proportion be real numbers and let
max-neighbors be a natural number. Let 
denote the set of all objects reachable from one of the ele-
ments of s by traversing at most i of the edges of the neigh-
borhood graph G. Then, the task of spatial characterization
is to discover each property prop and each natural number 
n ≤ max-neighbors such that (1) the set objects =

 as well as (2) the sets objects =

 for at least proportion many t ∈ targets

satisfy the condition: 

In point (1) the union of the neighborhood of all target ob-
jects is considered simultaneously, whereas in point (2) the

figure 3: Sample frequencies and differences
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characterization(graph ; set of objects targets; real significance, proportion; integer max-neighbors)

initialize the set of characterizations as empty;
initialize the set of regions to targets;
initialize n to 0;
calculate frequencyDB(prop) for all properties prop = (attribute, value);
while n ≤ max-neighbors do

for each attribute of DB and for the special attribute object type do
for each value of attribute do

calculate frequencyregions(prop) for property prop = (attribute, value);
if  ≥ significance or  ≤ 1 / significance then

add (prop, n, ) to the set characterizations;
if n < max-neighbors then

for each object in regions do
add neighbors( , object, TRUE) to regions;

increment n by 1;
extract all tuples (prop, n, f(prop)) from characterizations which are significant in at least proportion of the 

regions with n extensions;
return the rule generated from these characterizations;

GDB
r

f regions
DB prop( ) f regions

DB prop( )
f regions

DB prop( )

GDB
r

figure 4:  Algorithm spatial characterization



neighborhood of each target object is considered separately.
The parameter proportion specifies the minimum confi-
dence required for the characterization rules and the fre-
quency factors of the properties provide a measure of their
interestingness with respect to the given target objects.

Figure 4 presents the algorithm for discovering spatial
characterizations. The parameter proportion is relevant only
for the last step of the algorithm, i.e. for the generation of a
rule. Note the importance of the parameter n (that is, the
maximum number of edges of the neighborhood graph tra-
versed starting from a target object) in the resulting charac-
terizations. For example, a property may be significant when
considering all neighbors which are reachable from one of
the target objects via 2 edges of the neighborhood graph.
However, the same property may not be significant when
considering further neighbors if then the target regions are
extended by objects for which the property is not frequent.
The generated rule has the following format: 

target ⇒ p1 (n1, freq-fac1) ∧ ... ∧ pk (nk, freq- fack).
This rule means that for the set of all targets extended by

ni neighbors, the property pi is freq-faci times more (or less)
frequent than in the database. 

4. Spatial Trend Detection
We define a spatial trend as a regular change of one or more
non-spatial attributes when moving away from a given start
object o. We use neighborhood paths starting from o to mod-
el the movement and we perform a regression analysis on the
respective attribute values for the objects of a neighborhood
path to describe the regularity of change. Since we are inter-
ested in trends with respect to o, we use the distance from o
as the independent variable and the difference of the at-

tribute values as the dependent variable(s) for the regression.
The correlation of the observed attribute values with the val-
ues predicted by the regression function yields a measure of
confidence for the discovered trend.

In the following, we will use linear regression, since it is
efficient and often the influence of some phenomenon to its
neighborhood is either linear or may be transformed into a
linear model, e.g. exponential regression. Figure 5 illus-
trates a positive and a negative (linear) trend as well as a sit-
uation where no significant (linear) trend is observed. 

Definition 3: (spatial trend detection): Let g be a neighbor-
hood graph, o an object (node) in g. and a be a subset of all
non-spatial attributes. Let t be a type of function, e.g. linear
or exponential, used for the regression and let filter be one of
the filters for neighborhood paths. Let min-conf be a real
number and let min-length as well as max-length be natural
numbers. The task of spatial trend detection is to discover
the set of all neighborhood paths in g starting from o and
having a trend of type t in attributes a with a correlation of at
least min-conf. The paths have to satisfy the filter and their
length must be between min-length and max-length.
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figure 5: Sample trends

.

.. ...

..
.

...

(b) negative trend (c) no trend

distance distance

.

.. ..
.. .

.
...

di
ff

er
en

ce

di
ff

er
en

ce

global-trend(graph g; object o; attribute a; type t; real min-conf, integer min-length,max-length; filter f)
initialize a list of paths to the set extensions(g, path(o), min-length, f);
initialize an empty set of observations;
initialize the last-correlation and last-paths as empty;
initialize first-pos to 1;
initialize last-pos to min-length;
while paths is not empty do

for each path in paths do
for object from first-pos of path to last-pos of path do

calculate diff as a(object) - a(o) and calculate dist as dist(object,o);
insert the tuple (diff, dist) into the set of observations;

perform a regression of type t on the set of observations;
if abs(correlation) of the resulting regression function ≥ min-conf then

set last-correlation to correlation and last-paths to paths;
if the length of the paths < max-length then 

replace the paths by the set extensions(g,paths,1, f);
increment last-pos by 1;
set first-pos to last-pos;

else set paths to the empty list;
else return last-correlation and last-paths;

return the last correlation and last-paths;

figure 6:  Algorithm global-trend



Definition 3 allows different specializations. Either the
set of all discovered neighborhood paths (global trend) or
each of its elements (local trend) must have a trend of the
specified type. 

Algorithm global-trend is depicted in figure 6. Beginning
from o, it creates all neighborhood paths of the same length
simultaneously - starting with min-length and continuing
until max-length. The regression is performed once for each
of these sets of all paths of the same length. If no trend of
length l with correlation ≥ min-conf is detected, then the path
extensions of length l+1, l+2, . . ., max-length are not creat-
ed. The algorithm returns the significant spatial trend with
the maximum length.

Algorithm local-trends is outlined in figure 7. This algo-
rithm performs a regression once for each of the neighbor-
hood paths with length ≥ min-length and a path is only ex-
tended further if it has a significant trend. The algorithm
returns two sets of paths showing a significant spatial trend,
a set of positive trends and a set of negative trends.

5. Performance Evaluation
We implemented the database primitives on top of the com-
mercial DBMS Illustra (Illustra 1997) using its 2D spatial
data blade which offers R-trees. The advantage of this ap-
proach is an easy and rather portable implementation. The
disadvantage is that we cannot reduce the relatively large
system overhead imposed by the underlying DBMS. 

A geographic database on Bavaria was used for the exper-
imental performance evaluation of our algorithms. The data-
base contains the ATKIS 500 data (Bavarian State Bureau of
Topography and Geodesy 1996) and the Bavarian part of the
statistical data obtained by the German census of 1987, i.e.
2043 Bavarian communities with one spatial attribute (poly-
gon) and 52 non-spatial attributes (such as average rent or
rate of unemployment). Also included are spatial objects
representing natural object like mountains or rivers and in-

frastructure such as highways or railroads. The total number
of spatial objects in the database then amounts to 6924. The
relation communities is sketched in figure 8. This geograph-
ic database may be used, e.g., by economic geographers to
discover spatial rules on the economic power of communi-
ties. We performed several sets of experiments to measure
the performance of our characterization and spatial trend de-
tection algorithms. Note, that the runtime of the algorithms
is in general not dependent on the database size but on the
size of the input and on the number of neighborhood opera-
tions performed for the considered objects. This number de-
pends on the average number of neighbors per object in the
database which is an application dependent parameter. In

local-trends(graph g; object o; attribute a; type t; real min-conf, integer min-length,max-length; filter f)
initialize a list of paths to the set extensions(g, path(o), min-length, f);
initialize two empty sets of positive and negative trends;
while paths is not empty do

initialize the set of observations as empty;
remove the first element of paths and take it as path;
for object from min-length-th object of path to last object of path do

calculate diff as a(object) - a(o) and calculate dist as dist(object,o);
insert the tuple (diff,dist) into the set of observations;

perform a regression of type t on the set of observations;
if abs(correlation) of the resulting regression function ≥ min-conf then

if correlation > 0 then
insert the tuple (path, correlation) into the set of positive trends;

else insert the tuple (path, correlation) into the set of negative trends;
if the length of path < max-length then

add the extensions(g,path,1, f) to the head of paths;
return positive-trends and negative-trends;

figure 7:  Algorithm local-trends

figure 8:  Spatial and non-spatial attributes

Relation Bavarian Communities:

name popula-
tion

unem-
ployment 

for-
eigners . . . spatial 

Munich 1.300.000 0.06 0.15 . . .

. . . . . . . . . . . . . . . . . .
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our geographic information system the average number of
neighboring communities is approximately six. 

5.1 Characterization

The characterization algorithm usually starts with a small set
of target objects, selected for instance by a condition on
some non-spatial attribute(s) such as “rate of retired people
= HIGH” (see figure 9, left). Then, the algorithms expands
regions around the target objects, simultaneously selecting
those attributes of the regions for which the distribution of
values differs significantly from the distribution in the whole
database (figure 9, right). In the last step of the algorithm, a
characterization rule is generated describing the target re-
gions (figure 9, bottom). In this example, not only some
non-spatial attributes but also the neighborhood of moun-
tains (after three extensions) are significant for the charac-
terization of the target regions. 

Table 1 reports the efficiency of our spatial characteriza-
tion algorithm. The numbers are calculated as the average
over all start objects for several experiments with different
target sets. 

5.2 Trend Detection

Spatial trends describe a regular change of non-spatial 
tributes when moving away from a start object o. The two al-
gorithms above may produce different patterns of change
the same start object o. 

The existence of a global trend for a start object o indi-
cates that if considering all objects on all paths starting fr
o the values for the specified attribute(s) in general tend to
increase (decrease) with increasing distance. Figure 10 (
depicts the result of algorithm global-trend for the attribu
“average rent” and the city of Regensburg as a start obje

Algorithm local-trends detects single paths starting from
an object o and having a certain trend. The paths starti
from o may show different pattern of change, e.g., som
trends may be positive while the others may be negat
Figure 10 (right) illustrates this case for the attribute “ave
age rent” and the city of Regensburg as a start object.

The spatial objects within a trend region, i.e. either t
start objects or the objects forming the paths, may be 
subject of further analysis. For instance, algorithm global-
trend may detect regions showing a certain global trend, a
algorithm local-trends then finds within these regions som
paths having the inverse trend (see figure 10). Then, we m
try to find an explanation for those “inverse” paths. Anoth
possibility is to detect “centers” for a given attribute fir
(using algorithm global-trend) and then apply our charact
ization algorithm to the centers to find their common prope
ties. An example for this approach is presented in more 
tail in section 5.3. 

For our performance test we applied both algorithms
the Bavaria database varying min-confidence from 0.6 to 0.8
for the attribute “average rent” and linear type of regressi
The predicate intersects was used as the neighborhood rela
tion to define the graph. The filter vertical starlike for paths
was used because due to our domain knowledge we exp
ed the most significant trends in north-south direction. T
length of the paths was restricted by min-length = 4 and max-
length = 7. 

Table 2 reports the performance results for the algorith
global-trend and local-trends. The average numbers show
were calculated over all start objects. 

 characterization of target sets

number of 
neighbors 

(n)

Ø neighbors 
operations

Ø no. objects 
in expanded 

region

Ø runtime per 
start object 
(min:sec)

1 1 8.7 0:59
2 8.8 28.7 1:73

3 28.7 59.8 3:59
4 60.2 92.8 5:61
5 92.8 123.9 7:31

Table 1: Performance of spatial characterization 

figure 9: Characterizing wrt. high rate of retired people

maximally expanded regions

object has high rate of retired people ⇒ 
apartments per building = very low (0, 9.1) ∧ 
rate of foreigners = very low (0, 8.9) ∧ 
rate of academics = medium (0, 6.3) ∧ 
average size of enterprises = very low (0, 5.8) ∧ 
object type = mountain (3, 4.1)

target objects

rule characterizing the target objects

figure 10: Visualization of trends for attribute “average 
rent” starting from the city of Regensburg

Global trend (min-conf:0.7) Local trends (min-conf:0.9)

direction of decreasing attribute values
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5.3 Combining Trend Detection and 
Characterization

In our last set of experiments, we combined trend detection
and characterization. In a first step, we detected centers for
attribute “average rent” using algorithm global-trend: mini-
mum correlation was set to 0.7 and we selected only those
communities where the slope of the trend was less than -10-4

and the path length was not smaller than 5, i.e. we were only
interested in linear trends that are noticeably decreasing. 

With this definition, we found 24 centers out of the 2043
communities. The characterization rule discovered for these
centers contains the following properties: 

rate of academics = high (1, 9.1),
average number of persons per household = low (1, 2.5), 
rate of foreigners = low (1, 2.8).
Note that no attribute was significant for n = 0, i.e. without

considering the neighborhood of the target object. Only if
we extend the target regions by one neighbor, we can see
some characteristic properties. Thus, this result could not be
found by a non-spatial characterization algorithm. 

6. Conclusions
In this paper, we presented new algorithms for spatial char-
acterization and spatial trend detection. To obtain a spatial
characterization, we consider not only the properties of the
target objects but also the properties of their neighbors. The
goal of spatial trend analysis is to discover patterns of
change of some non-spatial attribute(s) in the neighborhood
of a start object. The algorithms were implemented within a
general framework for spatial data mining providing a small
set of database primitives on top of a commercial spatial da-
tabase management system. The effectiveness of the pro-
posed algorithms was demonstrated by a performance eval-
uation using a real geographic database.

Future research will have to consider the following issues.
The algorithm for spatial characterization might be extended

to discover not only summarizing characterization rules b
also discriminating rules. Furthermore, neighborhood pa
may also be used as input for the well-known relational d
mining algorithms such as decision tree classifiers. Altern
tively, new spatial data mining algorithms operating direc
on neighborhood graphs and paths will be investigated.
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 Algorithm global-trend

correlation 
Ø neighbors 
operations

Ø runtime (sec.)

0.60 56.6 91
0.70 55.0 90
0.80 54.3 85
0.90 53.7 84

 Algorithm local-trends

correlation 
Ø neighbors 
operations

Ø runtime (sec.)

0.60 8.4 14.3
0.70 8.3 13.8
0.80 8.1 12.9
0.90 7.1 11.3

Table 2: Performance of both trend algorithm
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