Algorithms for Computer Algebra

K.O. Geddes University of Waterloo

S.R. Czapor Laurentian University

G. Labahn University of Waterloo

Kluwer Academic Publishers Boston/Dordrecht/London

CONTENTS

Preface

1.1	Introduction	1
1.2	Symbolic versus Numeric Computation	2
1.3	A Brief Historical Sketch	4
1.4	An Example of a Computer Algebra System: MAPLE	11
	Exercises	20

Chapter 2 Algebra of Polynomials, Rational Functions, and Power Series

2.1 Introduction	
2.2 Rings and Fields	
2.3 Divisibility and Factorization in Integral Domai	ns26
2.4 The Euclidean Algorithm	
2.5 Univariate Polynomial Domains	
2.6 Multivariate Polynomial Domains	
2.7 The Primitive Euclidean Algorithm	
2.8 Quotient Fields and Rational Functions	60
2.9 Power Series and Extended Power Series	
2.10 Relationships among Domains	
Exercises	

Chapter 3 Normal Forms and Algebraic Representations

3.1	Introduction	9
3.2	Levels of Abstraction	9
3.3	Normal Form and Canonical Form8	0
3.4	Normal Forms for Polynomials	4
3.5	Normal Forms for Rational Functions and Power Series	8
3.6	Data Structures for Multiprecision Integers and Rational Numbers	3
3.7	Data Structures for Polynomials, Rational Functions,	
	and Power Series	5
	Exercises	5

Chapter 4 Arithmetic of Polynomials, Rational Functions, and Power Series

4.1	1 Introduction	111
4.2	2 Basic Arithmetic Algorithms	112
4.3	3 Fast Arithmetic Algorithms: Karatsuba's Algorithm	
4.4	4 Modular Representations	120
4.5	5 The Fast Fourier Transform	
4.6	6 The Inverse Fourier Transform	
4.7	7 Fast Polynomial Multiplication	132
4.8	8 Computing Primitive N-th Roots of Unity	
4.9	9 Newton's Iteration for Power Series Division	136
	Exercises	145

Chapter 5 Homomorphisms and Chinese Remainder Algorithms

5.1	Introduction	151
5.2	Intermediate Expression Swell: An Example	.151
5.3	Ring Morphisms	.153
5.4	Characterization of Morphisms	.160
5.5	Homomorphic Images	.167
5.6	The Integer Chinese Remainder Algorithm	.174
5.7	The Polynomial Interpolation Algorithm	.183
5.8	Further Discussion of the Two Algorithms	.189
	Exercises	.196

Chapter 6 Newton's Iteration and the Hensel Construction

6.1	Introduction	205
6.2	P-adic and Ideal-adic Representations	205
6.3	Newton's Iteration for F(u)=0	214
6.4	Hensel's Lemma	226
6.5	The Univariate Hensel Lifting Algorithm	232
6.6	Special Techniques for the Non-monic Case	240
6.7	The Multivariate Generalization of Hensel's Lemma	250
6.8	The Multivariate Hensel Lifting Algorithm	260
	Exercises	274

Chapter 7 Polynomial GCD Computation

7.1	Introduction	279
7.2	Polynomial Remainder Sequences	280
7.3	The Sylvester Matrix and Subresultants	285
7.4	The Modular GCD Algorithm	300
7.5	The Sparse Modular GCD Algorithm	311
7.6	GCD's using Hensel Lifting: The EZ-GCD Algorithm	314
7.7	A Heuristic Polynomial GCD Algorithm	.320
	Exercises	.331

Contents

Chapter 8 Polynomial Factorization

8.1	Introduction	.337
8.2	Square-Free Factorization	.337
8.3	Square-Free Factorization Over Finite Fields	.343
8.4	Berlekamp's Factorization Algorithm	.347
8.5	The Big Prime Berlekamp Algorithm	.359
8.6	Distinct Degree Factorization	.368
8.7	Factoring Polynomials over the Rationals	.374
8.8	Factoring Polynomials over Algebraic Number Fields	.378
	Exercises	.384

Chapter 9 Solving Systems of Equations

9.1	Introduction	389
9.2	Linear Equations and Gaussian Elimination	390
9.3	Fraction-Free Gaussian Elimination	393
9.4	Alternative Methods for Solving Linear Equations	399
9.5	Nonlinear Equations and Resultants	405
	Exercises	422

Chapter 10 Gröbner Bases for Polynomial Ideals

10.1	Introduction	429
10.2	Term Orderings and Reduction	431
10.3	Gröbner Bases and Buchberger's Algorithm	439
10.4	Improving Buchberger's Algorithm	
10.5	Applications of Gröbner Bases	451
	Additional Applications	
	Exercises	

Chapter 11 Integration of Rational Functions

11.1 Introduction	473
11.2 Basic Concepts of Differential Algebra	474
11.3 Rational Part of the Integral: Hermite's Method	482
11.4 Rational Part of the Integral: Horowitz' Method	488
11.5 Logarithmic Part of the Integral	492
Exercises	508

Chapter	12 The Risch Integration Algorithm	
12.1	Introduction	
12.2	Elementary Functions	
12.3	Differentiation of Elementary Functions	519
	Liouville's Principle	
12.5	The Risch Algorithm for Transcendental Elementary Functions	
12.6	The Risch Algorithm for Logarithmic Extensions	530
12.7	The Risch Algorithm for Exponential Extensions	547
12.8	Integration of Algebraic Functions	561
	Exercises	

Notation

Index

575

577