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pith intervals as number of semitones). Approximate repetitions in one or moremusial works play a ruial role in disovering similarities between di�erentmusial entities and may be used for establishing \harateristi signatures"(see [6℄). Suh algorithms an be partiularly useful for melody identi�ationand musial retrieval.Both exat and approximate mathing tehniques have been used for a varietyof musial appliations (see overviews in MGettrik [23℄ ; Crawford et al [6℄;Rolland et al [28℄; Cambouropoulos et al [4℄). The spei� problem studied inthis paper is pattern-mathing for numeri strings where a ertain tolerane isallowed during the mathing proedure. This type of pattern-mathing has beenonsidered neessary for various musial appliations and has been used by someresearhers (see, for instane, Cope [5℄). A number of eÆient algorithms will bepresented in this paper that takle various aspets of this problem.Most omputer-aided musial appliations adopt an absolute numeri pithrepresentation (most ommonly MIDI pith and pith intervals in semitones; du-ration is also enoded in a numeri form). The absolute pith enoding, however,may be insuÆient for appliations in tonal musi as it disregards tonal quali-ties of pithes and pith-intervals (e.g. a tonal transposition from a major to aminor key results in a di�erent enoding of the musial passage and thus exatmathing annot detet the similarity between the two passages). One way toaount for similarity between losely related but non-idential musial strings isto use what will be referred to as Æ-approximate mathing (and -approximatemathing). In Æ-approximate mathing, equal-length patterns onsisting of in-tegers math if eah orresponding integer di�ers by not more than Æ- e.g. aC-major f60; 64; 65; 67g and a C-minor f60; 63; 65; 67g sequene an be mathedif a tolerane Æ = 1 is allowed in the mathing proess (-approximate mathingis desribed in the next setion). Two simple musial examples that illustratethe usefulness of the proposed pattern-mathing tehniques are presented in Ap-pendies I and II.Exat repetitions have been studied extensively. The repetitions an be eitheronatenated with the original substring or they may overlap or they may not.Algorithms for �nding non-overlapping repetitions in a given string an be foundin [1, 8, 15, 21, 18, 26℄ and algorithms for omputing overlapping repetitions anbe found in [3, 13, 14, 25℄. A natural extension of the repetitions problem is toallow the presene of errors; that is, the identi�ation of substrings that aredupliated to within a ertain tolerane k (usually edit distane or Hammingdistane). Moreover, the repeated substring may be subjet to other onstraints:it may be required to be of at least a ertain length, and ertain positions in itmay be required to be invariant.Furthermore, eÆient algorithms for omputing the approximate repetitionsare also diretly appliable to moleular biology (see [11, 17, 24℄) and in partiularin DNA sequening by hybridization ([27℄), reonstrution of DNA sequenesfrom known DNA fragments (see [29, 30℄), in human organ and bone marrowtransplantation as well as the determination of evolutionary trees among distintspeies ([29℄).



Another type of repetition that is used in omputer assisted musi analysis isthat of �nding evolutionary hains: given a string t (the \text") and a pattern p( the \motif"), �nd whether there exists a sequene u1 = p; u2; : : : ; u` ourringin the text t suh that ui+1 ours to the right of ui in t and ui and ui+1 are\similar" for 1 � i < ` (i.e. they di�er by a ertain number of symbols). In[9℄ and [7℄ algorithms for overlapping and non-overlapping evolutionary hainswere presented and several variants of the problem were studied: omputing thelongest hain, omputing the hain with the least number of errors.The paper is organised as follows. In the next setion we present some baside�nitions for strings and bakground notions for approximate mathing. In Se-tion 3 we present an algorithm for Æ-approximate (the �rst notion of approxima-tion) pattern mathing. In setion 4 we present an algorithm for Æ; -approximate(the seond notion of approximation) pattern mathing. In setion 5 we presentalgorithms for omputing all Æ and fÆ; g- approximate squares in a given text.Finally in Setion 6 we present our onlusions and open problems.2 Bakground and basi string de�nitionsA string is a sequene of zero or more symbols from an alphabet �; the stringwith zero symbols is denoted by �. The set of all strings over the alphabet � isdenoted by ��. A string x of length n is represented by x1 : : : xn, where xi 2 �for 1 � i � n. A string w is a substring of x if x = uwv for u; v 2 ��; weequivalently say that the string w ours at position juj+1 of the string x. Theposition juj + 1 is said to be the starting position of w in x and the positionjwj + juj the end position of u in x. A string w is a pre�x of x if x = wu foru 2 ��. Similarly, w is a suÆx of x if x = uw for u 2 ��.The string xy is a onatenation of two strings x and y. The onatenationsof k opies of x is denoted by xk . For two strings x = x1 : : : xn and y = y1 : : : ymsuh that xn�i+1 : : : xn = y1 : : : yi for some i � 1, the string x1 : : : xnyi+1 : : : ymis a superposition of x and y. We say that x and y overlap.Let x be a string of length n. A pre�x x1 : : : xp, 1 � p < n, of x is a periodof x if xi = xi+p for all 1 � i � n � p. The period of a string x is the shortestperiod of x. A string y is a border of x if y is a pre�x and a suÆx of x.Let � be an alphabet of integers and Æ an integer. Two symbols a; b of � aresaid to be Æ-approximate, denoted a =Æ b if and only ifja� bj � ÆWe say that two strings x; y are Æ-approximate, denoted x Æ= y if and only ifjxj = jyj; and xi =Æ yi; 8i 2 f1::jxjg (2:1)Let  be an integer. Two strings x; y are said to be -approximate, denotedx = y if and only if jxj = jyj; and jxjX1 jxi � yij <  (2:2)



Furthermore, we say that two strings x; y are f; Æg-approximate, denoted x ;Æ= y,if and only if x and y satisfy onditions (2.1) and (2.2).3 Æ-Approximate Pattern MathingThe problem of Æ-approximate pattern mathing is formally de�ned as follows:given a string t = t1 : : : tn and a pattern p = p1 : : : pm ompute all positions j oft suh that p Æ= t[j::j +m� 1℄The algorithm is based on the O(1)-time omputation of the \Delta states"DStatej ; j 2 f1::ng by using bit operations under the assumption that m � w,where w is the number of bits in a mahine word. The basi steps of the algorithmare as follows:1. First we ompute the \Delta table" DT : we set DT (�) = r, where � denotesa symbol ourring in t and r = r1 : : : rm is a binary word with ri equal to1 if j�� pij � Æ, otherwise ri is equal to 0 for i 2 f1::mg.2. Let LeftShift be a bit-wise operation that shifts the bits of a binary wordby one position to the left. We de�neDStatej = (LeftShift(DStatej�1) OR 1) AND DT [tj ℄ (3:1)for j=1 : : : n and DState0 = 0; hene this proedure is alled \Shift-And".One we have omputed the DT table, we an use it to ompute the DStatejfor j=1 : : : n, using the reursive formula (3.1).3. We say that there is a Æ-approximate math (or simply Æ-math) at positionj �m+ 1 if and only if the m-th bit of DStatej is 1 or equivalently if andonly if DStatej , is greater or equal to 2m�1 when it is viewed as a deimalinteger.Example. For �=f1, : : :, 9g let us onsider p=3,4,6,2, t=3,4,6,2,8,2,4,5,7,1and Æ=1. In the preproessing table,DT (�) denotes the positions where j��pij �Æ. For example, DT [3℄ = 1011 beause j3� pij � 1 for i = 1; 2; 4.i pi DT [1℄ DT [2℄ DT [3℄ DT [4℄ DT [5℄ DT [6℄ DT [7℄ DT [8℄ DT [9℄4 2 1 1 1 0 0 0 0 0 03 6 0 0 0 0 1 1 1 0 02 4 0 0 1 1 1 0 0 0 01 3 0 1 1 1 0 0 0 0 0Table 1. The table DT for pattern p = 2; 6; 4; 3 and alphabet � = f1; : : : ; 9g.The table below evaluates DStatej using the relation (3.1). For example,



DState4 = (LeftShift(DState3) OR 1) AND DT [t4℄=(LeftShift(0100) OR 1) AND DT [2℄= (1000 OR 1) AND 1001= 1001 AND 1001= 1001whih implies that there is a math starting at position 1 of t, sine the 4-thbit of DState4 is 1.j 1 2 3 4 5 6 7 8 9 10tj 3 4 6 2 8 2 4 5 7 1LeftShift(DStatej�1) OR 1 0001 0011 0111 1001 0011 0001 0011 0111 11 01 1001DT [tj ℄ 1011 0011 0100 1001 0000 1001 0011 0110 0100 1000DStatej 0001 0011 0100 1001 0000 0001 0011 0110 0100 1000[DStatej ℄10 1 3 4 9 0 1 3 6 4 8Table 2. Computing the Dstates and �nding the Æ-approximate mathes.A Æ-approximate math ours at position j�m+1 of t if [DStatej ℄10 � 2m�1,where [DStatej ℄10 denotes the DStatej as a deimal integer. Therefore, there isone math ending at position 4 of t (f3,4,6,2g) and another one at position 10of t (f4,5,7,1g) sine fDState4; DState10g � 23.3.1 Pseudo-odeFig. 1 gives a omplete spei�ation of the algorithm. In the line 3 we have thepreproessing phase whih ompute the DT table. In line 6 we use the reursiveformula to ompute theDStates. Finally, in line 7 we apply the mathing riteriato see whether there is a Æ-approximate math or not.1. proedure Shift-And(p, t, Æ) f n = jtj; m = jpj g2. begin3. DTi[�℄ � 1 if j�� pij � Æ0 otherwise 8i 2 f1::mg; 8� 2 �4. DState0  05. for j  1 to n do6. DStatej  (LeftShift(DStatej�1) OR 1 ) AND DT [tj ℄7. if DStatej � 2m�1 then write j-m+18. od9. end Fig. 1. The Shift-And Proedure.



3.2 Running timeAssuming that the pattern length is no longer than the memory word size ofthe mahine (thus O(1) size), the time omplexity of the preproessing phase isO(n) (sine we need to evaluate DT only for the symbols that our in t) andthe time omplexity of the searhing phase in O(n). Figure 2 shows the timing 1for di�erent text sizes.
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Fig. 2. Timing urves for the Shift-And Proedure.4 fÆ; g-Approximate Pattern MathingThe problem of fÆ; g-approximate pattern mathing is formally de�ned as fol-lows: given a string t = t1 : : : tn and a pattern p = p1 : : : pm ompute all positionsj of t suh that p Æ;= t[j::j +m� 1℄In order to solve this problem we �rst make use of the Shift-And algorithmto �nd the Æ-approximate mathes of the pattern p in t. One we �nd a Æ-approximate math we want to know whether it is also a -approximate math.To do so, we seek to ompute suessive \Delta States" DStatej and \GammaStates" GStatesj in O(1) time using bit operations under the assumption thatm � w where w is the number of bits in a mahine word. The main steps of thealgorithm are as follows:1. We need to ompute the \Delta Table"DT as we did before and the \GammaTable" GT table; we set GT (�) = r, where � denotes a symbol in thealphabet and r = r1 : : : rm is a word with ri equal to j�� pij if j�� pij � Æ,otherwise ri is equal to 0 for i 2 f1::mg. Eah ri, i 2 f1::mg is stored as abinary number of d bits where d = dlog(Æ �m)e.1 Using a SUN Ultra Enterprise 300MHz running Solaris Unix.



2. Let LeftShift be a bit-wise operation that shifts the bits of a binary wordone position to the left and RightShift shifts the bits of a binary word dpositions to the right. One we have omputed the DT and GT tables, wean use them to ompute the DStatej and GStatej for j=1 : : : n, using thereursive formulasDStatej = (LeftShift(DStatej�1) OR 1) AND DT [tj ℄ (4:1)GStatej = RightShift(GStatej�1; d) +GT [tj ℄ (4:2)We also need to de�ne the seeds DState0=0 and GState0=0. We all thisproedure \Shift-Plus" beause we use the \shift" and \plus" operatorsto ompute eah new state.3. We say that there is a math (fÆ; g-approximate math) at position j�m+1if and only if the m-th bit of DStatej is 1 and the m-th blok of d bits takenas an integer is � .Example. For our example let � = f1; : : : ; 9g, the pattern p = 3; 4; 6; 2; thetext t = 3; 4; 6; 2; 8; 2; 4; 5; 7; 1 , Æ = 1 and  = 3. We will use bloks of size 3(d = 3) to store the j� � pij values where j� � pij � Æ. For example, GT [3℄ =000 100 000 100 beause j3 � pij � 1 for i=1,2,4 and the di�erenes are 0,1,1respetively. (see left hand table of table 3).i pi 1 2 3 4 5 6 7 8 90 1 0 1 0 0 0 0 01 3 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 1 0 1 0 0 0 02 4 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 1 0 1 0 03 6 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 01 0 1 0 0 0 0 0 04 2 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0
j 1 2 3 4 5 6 7 8 9 10tj 3 4 6 2 8 2 4 5 7 10 1 0 1 0 1 1 0 0 03 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 01 0 1 0 1 0 1 0 0 04 0 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 0 00 1 0 1 0 1 0 0 1 06 0 0 0 0 0 0 0 1 1 00 0 0 0 0 0 0 0 0 01 0 1 0 1 0 1 0 0 02 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 1Table 3. The left hand side table is the \Gamma Table" GT and the right hand sidetable is the table for �nding f; Æg-approximate mathes.The right hand table above shows the omputation of the DStates and theGStates using (4.2). For example,GState9 = RightShift( 000010010000,3 ) + 000000100000= 000000010010 + 000000100000 = 000000110010We already know that there are two Æ-approximate mathes ending at posi-tions 4 and 10 of t. Now we an use the last three bits of GState4 and GState10to �nd out the values of , whih are 0 and 4 respetively (see right hand tableof Fig. 3).



4.1 Pseudo-odeFig. 3 below gives a omplete desription of the algorithm. In the lines 3 and 4 arethe preproessing phase whih ompute the DT table and GT table respetively.In lines 8 and 9 we ompute the next DState and GState respetively. Finally,in line 10 we apply the mathing riteria to see whether there is a math or not.1. proedure Shift-Plus(p, t, Æ, ) f n = jtj; m = jpj g2. begin3. DTi[�℄ � 1 if j�� pij � Æ0 otherwise 8i 2 f1::mg; 8� 2 �4. GTdi�d:::di�1[�℄ � j�� pij if DTi[�℄ = 10 otherwise 8i 2 f1::mg; 8� 2 �5. DState0  06. GState0  07. for j  1 to n do8. DStatej  (LeftShift(DStatej�1) OR 1) AND DT [tj ℄9. GStatej  RightShift(GStatej�1, d) + GT [tj ℄10. if DStatej � 2m�1 AND GStatedm�d:::dm�1 �  then write j-m+111. od12. end Fig. 3. The Shift-Plus Algorithm.4.2 Running timeAssuming that Æ �m � 2d � 1 the time omplexity of the preproessing phaseis O(Æ �m+ j�j) and the time omplexity of the searhing phase in O(n), thusindependent from the alphabet size and the pattern length. Figure 4 shows thetiming for di�erent text sizes.
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5 Computing Approximate SquaresThe problem of omputing all Æ-approximate squares is formally de�ned as fol-lows: given a string t = t1 : : : tn and an integer Æ, ompute all positions j of t forwhih there exists a word u of length m suh thatt[j::j +m℄ Æ= u and t[j +m+ 1::j + 2m℄ Æ= uwhere u is said to be the root of the square.The problem of omputing all fÆ; g-approximate squares is formally de�nedas follows: given a string t = t1 : : : tn and two integers Æ and , ompute allpositions j of t for whih there exists a word u of length m suh thatt[j::j +m℄ Æ;= u and t[j +m+ 1::j + 2m℄ Æ;= uwhere u is said to be the root of the square.When we look for a square we will run into two possibilities: the root doesor does not our neessarily in the square.5.1 Consider an approximate square suh that the root ours inthe squareThe diagonal diag(i) orresponds to the pair of positions (j; j + i) and thereforeto the andidates for squares of length 2i. There exists an approximate squareof length 2i at position j if there exists a run of values not greater than Æ oflength at least i on the diagonal diag(i) starting at position j.For example, onsider diag(2) (see table 4) and Æ = 1. We are trying toloate runs of length at least 2 ontaining only values not greater than Æ = 1.We obtain: Position Square Roots14 (2,3,1,4) (2,3) or (1,4)For this example we only have a Æ-approximate square starting at position14 whih root an be either (2,3) or (1,4). Note that the roots ertainly our inthe square.5.2 Consider an approximate square suh that the root does notour neessarily in the stringWe say that there exists an approximate square of length 2i at position j if thereexists a run of values not greater than 2Æ of length at least i on the diagonaldiag(i) starting at position j. In other words, we are using 2Æ instead of Æ.For example, onsider diag(2) (see table of Fig. 4) and Æ = 1. We are tryingto loate runs of length at least 2 ontaining only values not greater than 2Æ = 2.We obtain:



1 5 10 15 19x = 2 -3 -5 4 -1 -7 1 -5 -5 3 -3 1 1 2 3 1 4 5 7i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 192 -3 -5 4 -1 -7 1 -5 -5 3 -3 1 1 2 3 1 4 5 7j1 2 0 5 7 2 3 9 1 7 7 1 5 1 1 0 1 1 2 3 52 -3 - 0 2 7 2 4 4 2 2 6 0 4 4 5 6 4 7 8 10 - diag(18)3 -5 - - 0 9 4 2 6 0 0 8 2 6 6 7 8 6 9 10 12 - diag(17)4 4 - - - 0 5 11 3 9 9 1 7 3 3 2 1 3 0 1 3 - diag(16)5 -1 - - - - 0 6 2 4 4 4 2 2 2 3 4 2 5 6 8 - diag(15)6 -7 - - - - - 0 8 2 2 10 4 8 8 9 10 8 11 12 14 - diag(14)7 1 - - - - - - 0 6 6 2 4 0 0 1 2 0 3 4 8 - diag(13)8 -5 - - - - - - - 0 0 8 2 6 6 7 8 6 9 10 12 - diag(12)9 -5 - - - - - - - - 0 8 2 6 6 7 8 6 9 10 12 - diag(11)10 3 - - - - - - - - - 0 6 2 2 1 0 2 1 2 4 - diag(10)11 -3 - - - - - - - - - - 0 4 4 5 6 4 7 8 10 - diag(9)12 1 - - - - - - - - - - - 0 0 1 2 0 3 4 6 - diag(8)13 1 - - - - - - - - - - - - 0 1 2 0 3 4 6 - diag(7)14 2 - - - - - - - - - - - - - 0 1 1 2 3 5 - diag(6)15 3 - - - - - - - - - - - - - - 0 2 1 2 4 - diag(5)16 1 - - - - - - - - - - - - - - - 0 3 4 6 - diag(4)17 4 - - - - - - - - - - - - - - - - 0 1 3 - diag(3)18 5 - - - - - - - - - - - - - - - - - 0 2 - diag(2)19 7 - - - - - - - - - - - - - - - - - - 0 - diag(1)- diag(0)Table 4. Table for omputing approximate squares.Position Square Roots5 (-1,-7,1,-5) (0,-6)9 (-5,3,-3,1) (-4,2)12 (1,1,2,3) (1,2) or (2,2)13 (1,2,3,1) (2,1) or (2,2)14 (2,3,1,4) (1,3), (1,4), (2,3) or (2,4)Furthermore, onsider diag(3) and Æ = 1. We are trying to loate runs oflength at least 3 ontaining only values not greater than 2Æ = 2. We obtain:Position Square Roots1 (2,-3,-5,4,-1,-7) (3,-2,-6)6 (-7,1,-5,-5,3,-3) (-6,2,-4)12 (1,1,2,3,1,4) (2,0,3), (2,1,3) or (2,2,3)13 (1,2,3,1,4,5) (0,3,4), (1,3,4) or (2,3,4)In those ases where we want to onsider a fÆ; g-approximate square we justhek eah Æ-approximate math to see if it is also a fÆ; g-approximate square.In the last example we will like to onsider Æ = 1 and  = 4. This meansthat we are trying to loate runs of length at least 2 ontaining only values notgreater than 2Æ = 2 but with  � 4. We obtain:Position Square Roots 12 (1,1,2,3,1,4) (2,0,3), (2,1,3) or (2,2,3) 413 (1,2,3,1,4,5) (0,3,4), (1,3,4) or (2,3,4) 4



5.3 Pseudo-odeFig. 5 gives the algorithm that solves the Æ-approximation square problem. Fig. 6below gives the algorithm that solves the fÆ; g-approximation square problem.1. proedure DeltaSquares(t, Æ) f n = jtj g2. begin3. for diag  2 to n=2 do4. i  0; dsum  05. for j  diag to n do6. diff  jt[i℄ � t[j℄j7. if diff � Æ then dsum  dsum + 18. else dsum  09. if dsum � diag then write j � 2 � diag + 210. i  i +111. od12. od13. end Fig. 5. The DeltaSquares Algorithm.1. proedure DeltaGammaSquares(t, Æ, ) f n = jtj g2. begin3. for diag  2 to n=2 do4. i  0; dsum  0; gsum  05. for j  diag to n do6. diff  jt[i℄ � t[j℄j7. if diff � Æ then8. begin9. dsum  dsum + 110. gsum  gsum + diff11. if dsum > diag then gsum  gsum� jt[i� diag℄� t[j � diag℄j12. end13. else14. begin15. dsum  0; gsum  016. end17. if dsum � diag AND gsum � g then write j � 2 � diag + 218. i  i +119. od20. od21. end Fig. 6. The DeltaGammaSquares Algorithm.



5.4 Running timeThe omplexity of these algorithms is easily seen to be O(n2). Figure 7 showsthe timing for di�erent text sizes.
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Fig. 7. Timing urves for fÆ; g-approximate squares.6 Conlusion and Open problemsThe running time of the omputation of Æ-approximate squares an be reduedto O(n logn); A theoretial algorithm is presented in [16℄ that shadows the Mainand Lorentz algorithm ([21℄).The following two problems are still open:Problem 1. Given a string t = t1 : : : tn and two integers m and Æ, ompute allpositions j of t, that there exists a string t̂ suh thatt[j::j +m℄ Æ= t̂t[j +m+ 1::j + 2m℄ Æ= t̂:::t[j + `m+ 1::j + (`+ 1)m℄ Æ= t̂Problem 2 Given a string t = t1 : : : tn and three integers m, Æ and , omputeall positions j of t, that there exists a string t̂ suh thatt[j::j +m℄ Æ;= t̂t[j +m+ 1::j + 2m℄ Æ;= t̂:::t[j + `m+ 1::j + (`+ 1)m℄ Æ;= t̂
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Pitch Interval Pattern: { 1,-1,3,0}
Pitch Interval String:
{ 1,-1,3,0,-5,2,-2,3,0,-5,0,2,0,2,3,-2,-1,-2,2,1,-1,3,0,-5,2,-2,3,0,-5,2,2,1,-1,-2,-2,7,2,-2,2,0,3,-1,-2,0,
-2,0,0,-3,-4,7,-2,-3,5,-3,-4,4,-2,2,1,-1,3,0,-5,2,-2,3,0,-5,2,2,1,-1,-2,0,2,0,1,2,2,2,1,-12,4,-2,10,-9}

APPENDIX I
Melody from Mozart’s  Sonata in A major

This melody may be represented as a string of pitch intervals (in number of semitones). If exact
matching is employed, three identical instances of the search pattern are found (patterns a, c and f);

the other 4 instances are not matched. If δ-approximate matching is employed for δ=1, then all seven
instances depicted above are found.



Pitch Interval Pattern: { 5,-1,1,4,3,5,0}
Pitch Interval String:
{ 5,-1,1,4,3,5,0,-1,-2,-2,5,-10,2,1,4,-9,2,2,3,-5,-7,5,-1,1,4,3,9,0,-2,-2,-1,1,4,-7,3,-1,-1,-1,2,-4,-12,
5,-1,1,4,3,3,0,-1,-2,-2,4,-7,2,1,-1,-2,-5,3,5,-1,1,4,3,5,0,-1,-2,-2,4,-7,2,1,-1,-2,-5,-2,-7,
5,-1,1,4,3,5,0,-1,-2,-2,5,-10,2,1,4,-9,2,2,3,-5,-7,5,-1,1,4,3,9,0,-2,-2,-3,-2,5,-10,2,1,4,-7,2,1,4,-12,2,1}

APPENDIX II
 Melody from Schumann’s Träumerei

This melody may be represented as a string of pitch intervals (in number of semitones).
If exact matching is employed only 3 identical instances of the given pattern are found (patterns a, d
and e); the other 3 instances are not matched. If δ-approximate matching is employed for δ=2, then 4
instances are found (patterns a, c, d and e); for δ=4 all 6 instances depicted above are discovered (γ-
approximate matching may be additionally applied to restrict δ-approximate matching especiall y for

larger δ values and for larger melodic corpuses.


