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Algorithms for Computing the QR Decomposition of
a Set of Matrices with Common Columns1

Petko Yanev,2 Paolo Foschi,2 and Erricos John Kontoghiorghes2,3

Abstract. The QR decomposition of a set of matrices which have common columns is investigated. The
triangular factors of the QR decompositions are represented as nodes of a weighted directed graph. An edge
between two nodes exists if and only if the columns of one of the matrices is a subset of the columns of the
other. The weight of an edge denotes the computational complexity of deriving the triangular factor of the
destination node from that of the source node. The problem is equivalent to constructing the graph and finding
the minimum cost for visiting all the nodes. An algorithm which computes the QR decompositions by deriving
the minimum spanning tree of the graph is proposed. Theoretical measures of complexity are derived and
numerical results from the implementation of this and alternative heuristic algorithms are given.
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1. Introduction. Computationally intensive methods for deriving the least-squares
estimators of seemingly unrelated regression and simultaneous equation models have
been proposed [12]. These estimation methods require the QR decompositions of a set
of matrices which have common columns. These columns correspond to exogenous
factors that occur in more than one econometric relationship of the model. Consider the
QR decomposition (QRD) of the full column rank matrix Ai ∈ Rm×ki :

QT
i Ai =

(
Ri

0

)
ki

m−ki
(i = 1, . . . ,G),(1)

where Qi ∈ Rm×m is orthogonal and Ri ∈ Rki×ki is upper triangular. The exogenous
matrices with common columns can be expressed as

Ai = ASi (i = 1, . . . ,G),(2)

where A ∈ Rm×n and Si ∈ Rn×ki is a selection matrix [5], [12], [15]. It is often the case
that n �∑G

i=1 ki , i.e. the number of distinct factors is much less than the total number
of factors occurring in the whole model.

The main method used to compute (1) is by forming the QRDs of A1, . . . , AG one at
a time, without taking into account that the matrices may share common columns. Let
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the QRD of A be given by

QT A =
(

R

0

)
n
m−n

,(3)

where Q ∈ Rm×m is orthogonal and R ∈ Rn×n is upper triangular. Thus, the upper
triangular factor Ri in (1) can be derived by computing the QRD

Q̃T
i RSi =

(
Ri

0

)
ki

n−ki
(i = 1, . . . ,G),(4)

where Q̃i ∈ Rn×n is orthogonal [9]–[11]. The orthogonal matrix Qi in (1) is defined by

Qi = Q

(
Q̃i 0
0 Im−n

)
(5)

Notice that the QRDs in (4) are equivalent to the re-triangularization of a set of upper-
triangular matrices after deleting columns.

Sequential and parallel strategies which compute the QRD of RSi have been proposed
[11], [12], [15]. These strategies use Givens rotations and exploit the non-full structure of
RSi . However, the occurrence of common columns among RS1, . . . , RSG has not been
exploited. The purpose of this work is to propose and investigate sequential factorization
strategies that take advantage of this possibility when n �∑G

i=1 ki . The algorithms are
based on Givens rotations [10].

A Givens rotation in plane (i, j) that reduces to zero the element bj,k when it is applied
from the left of B = [bi, j ] ∈ Rm×n will be denoted by G(k)

i, j , where 1 ≤ i, j ≤ m and

1 ≤ k ≤ n. The rotation G(k)
i, j B affects only the i th and j th rows of B. The changes in

these rows can be written as(
c s
−s c

)(
bi,:

bj,:

)
=
(

b̃i,1 · · · b̃i,k · · · b̃i,n

b̃j,1 · · · b̃j,k · · · b̃j,n

)
,(6)

where bj,k �= 0, c2 + s2 = 1, c = bi,k/τ , s = bj,k/τ , τ 2 = b2
i,k + b2

j,k , b̃i,k = τ and

b̃j,k = 0. If bj,k = 0, then G(k)
i, j ≡ Im . Standard column notation is used to denote sub-

vectors and sub-matrices [10]. The construction of a Givens rotation requires six flops
in time denoted by t . The same time is required to apply the rotation to a two-element
vector. Thus, nt flops are needed to compute (6). Notice that the rotation is not applied
to the pair of elements bi,k and bj,k used in the construction of the rotation. These are set
to τ and zero, respectively.

In the next section Givens’ sequences for computing the QRD of RSi (i = 1, . . . ,G)
are presented. Section 3 proposes an efficient algorithm for computing the QRDs of
RS1, . . . , RSG , which are represented as nodes of a directed graph. Numerical results
are presented in Section 4 and the performance of the algorithm is evaluated. In Section 5
conclusions are offered.

2. Computing the QR decomposition of RSi . There are many equivalent strategies
for computing the QRD using Givens rotations [10]. Consider the case where the ele-
ments of a matrix below the main diagonal are annihilated column-by-column and from
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Fig. 1. Computing the QRD of A ∈ R12×8 using Givens rotations.

bottom to the top with zero elements being preserved throughout the annihilation pro-
cess. Furthermore, let the Givens rotations be between adjacent planes. The number of
Givens rotations required to compute (3) is given by

∑n
i=1(m − i) = n(2m − n − 1)/2

and QT is defined by

QT =
n∏

i=1

m−i∏
j=1

G(i)
m− j,m− j+1.(7)

Figure 1 shows the annihilation pattern corresponding to this Givens’ sequence, where
m = 12 and n = 8. An entry i (i = 1, . . . , 35) indicates that the element is reduced to
zero by the i th rotation. The complexity of computing the QRD (3) using this strategy
is given by

C(m, n) = t
n∑

i=1

(m − i)(n − i + 1)(8)

= tn(3m(n + 1)− n2 − 3n − 2)/6.

Thus, the complexity of computing the QRDs of A1, . . . , AG simultaneously is given by

T1(m, k,G) =
G∑

i=1

C(m, ki ),(9)

where k = (k1, . . . , kG).
Let Si in (2) be expressed as Si ≡ (eλi,1 · · · eλi,ki

) with λi = (λi,1, . . . , λi,ki ), where
eλi, j is the λi, j th column of the unit matrix In , i = 1, . . . ,G and j = 1, . . . , ki [11], [12],
[15]. Then the number of Givens rotations needed to compute the QRD (4) is given by∑ki

j=1(λi, j − j) and the orthogonal matrix Q̃T
i is defined as

Q̃T
i =

ki∏
n=1

λi,n−n∏
j=1

G(n)
λi,n− j,λi,n− j+1.(10)
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Fig. 2. Computing the QRD of RSi , where R ∈ R12×12, ki = 6 and λi = (1, 2, 5, 6, 10, 12).

Figure 2 shows the Givens’ sequence when re-triangularizing RSi , where n = 12, ki = 6
and λi = (1, 2, 5, 6, 10, 12).

The complexity of computing the QRD (4) is given by

Ci (λi , ki ) = t
ki∑

j=1

(λi, j − j)(ki − j + 1).(11)

Thus, the total complexity of computing (3) followed by re-triangularization of RS1, . . . ,

RSG one at a time is given by

T2(λi , ki , G) = C(m, n)+
G∑

i=1

Ci (λi , ki ).(12)

3. The Minimum Spanning Tree Algorithm. The triangular factors R, R1, . . . , RG

can be represented as nodes N0, N1, . . . , NG of a weighted directed graph. An edge
between two nodes Ni and Nj (denoted by Ei, j ) exists and is directed from Ni towards
Nj if and only if Ri contains all the columns of Rj (i, j = 0, 1, . . . ,G and i �= j). The
weight of Ei, j is denoted by Ci, j , the complexity of computing Rj given Ri . The goal
is to construct the graph and to find the shortest path for visiting all the nodes. This is
equivalent to finding the Minimum Spanning Tree (MST) of the graph which provides
the minimum computational cost for deriving R1, . . . , RG [16], [17]. A spanning tree is
a subgraph of a graph which contains all the nodes of the graph and is a tree.

To determine the MST the properties of the graph need to be explored. Let�(V, E, n)
be a graph with the sets of nodes and edges denoted by V and E , respectively, and n
denotes the number of columns of the matrix R. The graph�(V, E, n) can be divided into
n levels L1, . . . , Ln . The matrices with k columns belong to the level Lk (k = 1, . . . , n).
Notice that R belongs to level Ln and level Ln−1 can have at most n nodes (matrices).
In general, there are at most Cn

k = n!/k! (n − k)! nodes in the level Lk (k = 1, . . . , n).
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Therefore, the maximum number of nodes in �(V, E, n) is

|V |max =
n−1∑
i=0

Cn
i = 2n − 1.(13)

Now, from the kth level there exists a maximum of Cn
k (2

(n−k) − 2) edges. Thus, the
maximum number of edges in the graph is

|E |max =
n−2∑
i=0

Cn
i (2

(n−i) − 2)

= 3n − 2n+1 + 1.(14)

Let Ei, j exist and let pi, j denote the position of the j th column of Rj in Ri . Notice that
pi, j ≥ j for every j . Then the cost of the edge Ci, j is given by

Ci, j = t
kj∑

j=1

(pi, j − j)(kj − j + 1).(15)

Now, let Rs ∈ L p, Rh ∈ Lq and Ri ∈ Lr , where Es,i and Eh,i exist, and p �= q �= r . If
there is a path from Rs to Rh , then Ch,i ≤ Cs,i . Therefore, Es,i can be deleted from the
graph. A path from Rs to Rh exists if and only if the node Rh can be reached from the
node Rs . When this rule is applied the number of the edges to be computed is reduced.
Figure 3 illustrates the graph �(V, E, 6) with all (Figure 3(a)) and with the reduced
(Figure 3(b)) number of edges. The matrices R and Ri (i = 1, . . . ,G) are denoted by
square and round frames, respectively. The indexes of columns for each matrix are shown
by a sequence of digits in the frames.

In order to determine the MST, the cost Ci, j of each edge is computed and, for each
node, the incoming edge with minimum cost is selected. If more than one incoming edge
with equal weights exist, then one of them is selected randomly. The correctness of this
algorithm follows from the acyclic property of�(V, E, n) [1]. The time required to derive
Ci, j depends on the time to compute pi,1, . . . , pi,kj and calculate the summation (15). At
most ki comparisons are necessary to determine pi,1, . . . , pi,kj . A single comparison and
the summation of (15) requires one and 5kj flops, respectively. The total time needed to
compute Ci, j is ki + 5kj ≤ 6ki ≡ ki t . Let

TEDGE = max
i=1,...,G

(ki t)(16)

and the upper bound of the time needed for deriving the MST of a graph with |E | nodes
be given by

TMST ≤ |E |TEDGE + |E |.(17)

Here |E |TEDGE is the maximum time needed to compute the costs of all edges and |E |
is the maximum number of comparisons that could be done. Then the complexity of
computing the matrices R1, . . . , RG using the MST approach is

T3(ki ,m, n, pi ,G) = C(m, n)+
G∑

i=1

ki∑
j=1

(pi, j − j)(ki − j + 1)+ TMST,(18)
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Fig. 3. The Graph �(V, E, n) with all and the reduced number of edges, where |V | = 9 and n = 6. (a) The
Graph �(V, E, 6), where |E | = 17. (b) The Graph �(V, E, 6), where |E | = 10.

where C(m, n) is given by (8) and corresponds to the complexity of computing the QRD
(3) and pi = (pi,1 · · · pi,ki ).

The MST approach reduces the complexity in the specific case where the columns of
some of the matrices are subsets of the columns of other matrices. In order to exploit the
possibility of common columns occurring in R1, . . . , RG new nodes (hereafter called
artificial nodes) are added in the graph �(V, E, n). An artificial node is the conjunction
of the columns of two or more matrices. The QRD of these matrices might be more
quickly derivable given the QRD of the artificial node. Figure 4 illustrates the graph
�(V, E, 6), where the two artificial nodes R̃9 and R̃10 are denoted by square frames.
Thus, the problem becomes one of finding the optimal tree which covers R1, . . . , RG in
the graph that includes all artificial nodes. Algorithm 1 computes this optimal tree.

Now, let the full graph generated by Algorithm 1 be denoted by �F(VF, EF, n), where
|VF| = 2G + 1 and the maximum number of edges is given by |EF|MAX = 2G(2G + 1)/2.
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Fig. 4. The Graph �(V, E, n) with the artificial nodes R̃9 and R̃10, where |V | = 10, |E | = 9 and n = 6.

The number of all subgraphs which include the matrices R1, . . . , RG is 2(2
G−G). Thus,

an upper bound for the total complexity of this algorithm is

C(G) = 2(2
G−G)TMST + 2G(2G + 1)TEDGE/2+ Ts,(19)

where TEDGE and TMST are given by (16) and (17), respectively. The time to compute the
complexities of each MST and to derive the minimum one is denoted by Ts .

Algorithm 1 implements the optimal strategy for computing R1, . . . , RG , given R.
However, this optimal strategy has a double exponential complexity. Thus, it is not
computationally feasible. To reduce the computational cost of Algorithm 1 a heuristic
approach can be considered. The heuristic algorithm (Algorithm 2) computes the MST
of the initial matrices R1, . . . , RG and then searches for artificial nodes which can reduce
the weight of the tree. An artificial node is added to the MST if and only if it reduces the
complexity between an existing node and its children. Then a new MST is reconstructed
and the procedure is repeated. A maximum of 2G artificial nodes can be constructed from
the G initial matrices. Each of these artificial nodes is evaluated to determine whether
it should be included in the tree or not. Thus, the complexity of finding the MST using
this heuristic approach is exponential O(2G) and computationally expensive.

Algorithm 2 can be modified to reduce its high complexity. The artificial nodes
are constructed from the columns of those two child nodes which have the maximum
number of common columns. In this way not all 2G artificial nodes are considered. The

Algorithm 1. The optimal MST algorithm

1. Construct the full graph consisting of R1, . . . , RG and all possible
artificial nodes.

2. Find all the edges and their corresponding weights.
3. For all subgraphs which include R1, . . . , RG find the MST of each of them.
4. Compute the complexity of each MST and choose the minimum one.
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Algorithm 2. The heuristic MST algorithm

1. Find the MST of R1, . . . , RG .
2. for each node with more than one outgoing edge do
3. Construct all artificial nodes from the columns of the child nodes.
4. Compute the weights of the incoming and outgoing edges of the new

artificial node.
5. Add the new artificial node to the tree if it reduces the cost.
6. Re-construct the MST until no more artificial nodes can be added.
7. end for

total number of computed matrices is Ḡ, where max(Ḡ) = 2G. Thus, the complexity
of determining the MST is polynomial O(kG2). The total complexity of the modified
heuristic method is

T4(ki ,m, n, pi , Ḡ)(20)

= C(m, n)+
Ḡ∑

i=1

ki∑
j=1

(pi, j − j)(ki − j + 1)+ O(kG4).

4. Numerical Results. The modified heuristic approach is most efficient in the two
cases, where there are many artificial nodes or none, but the columns of some matrices
are subsets of the columns of others. The performance of the algorithms is considered
in these two cases. First, when Ri is a sub-matrix of Rj for all i = k, k + 1, . . . ,G
j = 0, 1, . . . ,G (i �= j), where 1 < k < G/2 and the MST containing R1, . . . , RG

cannot be optimized. In this case no artificial nodes can be determined and the solution
is optimal. Second, when the columns of none of the initial matrices R1, . . . , RG are
subsets of the columns of other initial matrices, but where they have most of their
columns common. Here many artificial nodes can be determined, but the solution may
not be optimal. Table 1 shows the execution times of the modified heuristic method
in these two cases. The performance of computing the QRDs (4) one at a time is also
reported. Comparisons between the two methods are made also using their theoretical
measures of complexity.

The constructed MST of each of the matrices in Table 1(a) is a binary tree. In this
case no artificial nodes can be determined. Thus the MST strategy for factorizing the
matrices R1, . . . , RG is optimal. Furthermore, the execution time of the modified heuristic
algorithm is the same as that of Algorithm 2. In Table 1(b) the matrices R1, . . . , RG have
a large number of common columns, but none of them is a sub-matrix of another matrix.
In this example G/2 artificial nodes are constructed. Thus, the MST consists of 3G/2
nodes. An artificial node is constructed from two matrices if they have at least half of
their columns in common. Notice that, in both cases, the heuristic method executes in
less than two-thirds of the time required by re-triangularization of R1, . . . , RG one at a
time. The discrepancy between the theoretical and actual performance of the heuristic
algorithm is attributable to the implementation overheads.
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Table 1. Theoretical complexity and execution time of the modified heuris-
tic method and that of re-triangularizing the G matrices one at a time, where

the total number of distinct columns of all matrices is n.

Execution times Theoretical complexity

Retriang. Heuristic Retriang. Retriang.
G n method method Heuristic Heuristic

(a) No artificial nodes exist in the graph. The MST is a binary tree which
consists of exactly G matrices.

14 1120 4.39 3.09 1.42 1.70
14 2560 54.29 36.90 1.47 1.70
14 2880 85.68 56.05 1.52 1.70
14 3200 120.87 82.60 1.46 1.70
30 1440 10.69 6.63 1.61 1.85
30 2240 35.70 22.25 1.60 1.85
30 2560 56.68 37.29 1.52 1.85
30 3040 120.46 74.31 1.62 1.85
62 1920 25.10 16.38 1.53 1.93
62 2560 65.66 42.89 1.53 1.93

(b) The MST consists of 3G/2 nodes from which G/2 are artificial.

16 500 0.67 0.44 1.52 1.60
16 1000 3.97 2.56 1.55 1.60
16 1500 11.79 7.53 1.57 1.60
16 2000 27.44 17.88 1.55 1.60
28 1500 8.80 5.66 1.55 1.67
28 2000 18.88 11.99 1.57 1.67
28 2500 35.39 21.91 1.61 1.67
28 3000 62.71 37.71 1.66 1.67
40 2400 27.37 18.05 1.52 1.72
40 3200 62.92 38.31 1.64 1.72

5. Conclusion. Strategies for computing the QRD of the set of matrices A1, . . . , AG

which have common columns have been considered. The first strategy computes the QRD
of each matrix independently and does not exploit the relationship that may exist among
the matrices. The second strategy expresses the matrix Ai as ASi , where A consists of
all the distinct columns of A1, . . . , AG and Si is a column-selection matrix. Initially
it computes the triangular factor R of the QRD of A. Then it derives the QRD of Ai

by re-triangularizing RSi (i = 1, . . . ,G). This re-triangularization is equivalent to the
multiple-column downdating of the QRD [9], [12]. The second strategy is found to have
better complexity than the first.

The remaining novel strategies use a weighted directed graph to express the relation-
ship (common columns) among the matrices. The nodes represent the triangular factors
R1, . . . , RG derived from the QRDs of A1, . . . , AG , respectively. An edge between two
nodes exist if the columns of one of their corresponding matrices is a subset of the
columns of the other. The weight of an edge is the computational cost of deriving the
triangular factor of the subset matrix given the QRD of the larger matrix. The MST of
this graph provides efficient strategies for computing the QRDs of A1, . . . , AG when
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the columns of some of them are subsets of the columns of others. If no such matrices
exist, then the MST is equivalent to the second strategy which derives R1, . . . , RG one
at a time. This is offset by adding new (artificial) nodes which correspond to matrices
constructed from the conjunction of columns of two or more matrices.

The algorithm for deriving the MST of the graph that includes all artificial nodes
has double exponential complexity and is thus computationally intractable. A heuristic
approach that reduces the complexity of the algorithm to polynomial time has been
proposed. The performance of the heuristic method has been investigated in two cases,
where it is most efficient. The numerical results indicate the superiority of this method
compared with that of the second strategy which re-triangularizes RS1, . . . , RSG one at
a time.

The re-triangularization of the matrices RSi (i = 1, . . . ,G) has been performed using
Givens rotations. Householder transformations and block versions of Givens rotations
can also be used [3], [13], [14], [18]. Furthermore, in some econometric models the data
matrices A1, . . . , AG may have special structures and properties [2], [4]–[5],[6], [12]. In
such cases the efficient re-triangularization of RSi (i = 1, . . . ,G) will require special
algorithms. This will result in the edges of the directed graphs having different costs.
However, the derivation of the MST and heuristic strategies for factorizing the matrices
will remain the same. Currently, the adaptation of the proposed strategies to compute
subset regression models is under investigation [7], [8].

Acknowledgement. The authors are grateful to Maurice Clint for his constructive
comments and suggestions.
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