
Algorithms for Discovering Bucket Orders from Data

Aristides Gionis
HIIT Basic Research Unit

University of Helsinki

Heikki Mannila
HIIT Basic Research Unit

Helsinki University of Technology and
University of Helsinki

Kai Puolamäki
HIIT Basic Research Unit

Helsinki University of Technology

Antti Ukkonen
HIIT Basic Research Unit

Helsinki University of Technology

ABSTRACT
Ordering and ranking items of different types are important
tasks in various applications, such as query processing and
scientific data mining. A total order for the items can be
misleading, since there are groups of items that have prac-
tically equal ranks.

We consider bucket orders, i.e., total orders with ties.
They can be used to capture the essential order informa-
tion without overfitting the data: they form a useful con-
cept class between total orders and arbitrary partial orders.
We address the question of finding a bucket order for a set
of items, given pairwise precedence information between the
items. We also discuss methods for computing the pairwise
precedence data.

We describe simple and efficient algorithms for finding
good bucket orders. Several of the algorithms have a prov-
able approximation guarantee, and they scale well to large
datasets. We provide experimental results on artificial and
a real data that show the usefulness of bucket orders and
demonstrate the accuracy and efficiency of the algorithms.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - data mining

General Terms: Algorithms, Performance, Theory

Keywords: Ordering, ranking, partial order, bucket order

1. INTRODUCTION
Ordering and ranking items of different types are impor-

tant tasks in various applications, such as ranking database
query results [1, 6, 11, 12, 13, 19, 22], web ranking [4, 5, 10,
17, 20], finding orders of items in data mining [16, 23, 27],
and in machine learning [7, 8, 15, 21]. The requirements
for the results of ordering and ranking vary according to the
application. In ranking answers to a web search query it is
important to get the most relevant pages among the top 10
(or so) of the answers, so that the user can select the rel-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

evant link quickly; the relative ordering of irrelevant pages
is not important. In other applications, such as processing
scientific queries or aggregating preference information, the
ordering of the whole set of answers is of interest.

Consider, as an example, the question of aggregating movie
preference data. Given a set of movies, viewers have given
grades to the some of the movies. The grading scale typically
has low granularity: there might be 5–10 different grades.
The rankings contradict each other frequently, and the scales
used by different persons can be very different, so it is well
motivated to ask what would be a sound and efficient way
of combining the rankings of the individual viewers.

Finding a total order for all the movies would be an over-
fit to the data: the distinction between the movies ranked
562nd and 563rd is probably not significant. It is much
more meaningful to find a coarser classification of the movies
into groups and the relative ordering of those groups (cor-
responding to movies that can be labeled from masterpieces
or excellent to really bad or pathetic).

In this paper, we consider the discovery of bucket orders
from data. A bucket order [11, 28] (also called a weak order)
is a total order with ties. More formally, a bucket order B =
〈M1, . . . , Mk〉 on the set of items M is a partial order on M
defined by a partition of M into k buckets, M1, . . . , Mk. The
items within a bucket are incomparable, while all elements
in bucket Mi precede all elements in bucket Mj , if i < j.
Note that, in the previous example, a ranking of movies by
a viewer into classes 1–5 is a bucket order. In general, a
bucket order B on the set M can also be viewed as a matrix
CB : the entry CB

tu is 1
2

if t and u belong to the same bucket,

CB
tu = 1 if t precedes u in the bucket order, and CB

tu = 0 if
t follows u in the bucket order.

Our approach is as follows. Given a set of rankings on
subsets of the set M of items, we compute the pair order
matrix C. The entry Ctu indicates how many users preferred
item t to item u. The pair order matrix is normalized so
that Ctu + Cut = 1 for all t and u. Then we search for a
bucket order B, such that CB approximates C in the best
way possible as determined by an L1 norm between C and
CB .

Given a pair order matrix, the problem of finding the
bucket order that minimizes the L1 norm is NP-hard. Hence
one needs to look for approximation algorithms. Ailon et
al. [2] describe an insightful randomized algorithm for the
feedback arc set problem, i.e., for finding total orders. We
adapt the pivot algorithm of [2] to finding bucket orders and
analyze its approximation behavior. We prove that the al-

Research Track Poster

561

gorithm achieves an approximation ratio of 9; if the entries
of the pair order matrix satisfy also the triangle inequal-
ity, then the approximation ratio is 5. We also show that
the expected running time of the algorithm on any input is
O(n log n) for n items. This means, incidentally, that the
algorithm does not inspect all the entries of the pair order
matrix.

Bucket orders can also be discovered by grouping items
into buckets from a total order. We briefly describe two
algorithms based on this approach and compare their per-
formance to the pivot algorithm in the empirical section.

The rest of this paper is organized as follows. In Sec-
tion 2 we describe the basic bucket order model. Section 3
discusses the properties of bucket orders and gives some sim-
ple results. The pivot algorithm is given in Section 4, where
we also give some theoretical results related to its approx-
imation ratio and expected running time. Alternative ap-
proaches to finding bucket orders are given in Section 5,
while Section 6 presents our experimental results. Related
work is considered in Section 7, and finally in Section 8 we
give our concluding remarks and we discuss possible exten-
sions of the model.

2. BASIC DEFINITIONS
A partial order on a set of items M is a reflexive, antisym-

metric, and transitive binary relation on M . A total order
T is a partial order such that for all pairs of items u, t ∈M
either (u, t) ∈ T or (t, u) ∈ T . For many applications, mod-
eling the data with a total order might be a too strict. On
the other hand, arbitrary partial orders can be too complex
for user interface requirements.

We focus on the study of bucket orders, a class of par-
tial orders between total orders and arbitrary partial or-
ders. A bucket order B for a set of items M is defined by a
sequence of k buckets, 〈M1, . . . , Mk〉, where the nonempty
sets {Mj}j∈{1,...,k} form a partition of M . The items within
a bucket, u, t ∈ Mj are unordered, i.e., (u, t) /∈ B and
(t, u) /∈ B, whereas the buckets are totally ordered, i.e.,
for every u ∈Mi and t ∈Mj , i < j, we have (u, t) ∈ B.

In the applications we consider in this paper we assume
that we can obtain pairwise ordering information between
items of M . That is, we assume that we have an |M | × |M |
pair order matrix C, where entry Ctu measures the evidence
or probability that the item t precedes the item u. We assume
that the values Ctu are in the interval [0, 1]. Furthermore
we assume that for all t, u we have

Ctu + Cut = 1, Ctu ≥ 0 (probability constraint). (1)

In many cases it is also reasonable to assume that the entries
of C matrix satisfy the triangle inequality, that is, for all t,
u, and v we have

Ctu ≤ Ctv + Cvu (triangle inequality). (2)

Any partial order P can be represented with a pair or-
der matrix CP satisfying the probability constraint and the
triangle inequality, the former capturing antisymmetry, and
the latter capturing transitivity. The entries of CP are

CP
tu =

8<
:

1 (t, u) ∈ P
0 (u, t) ∈ P
1
2

(t, u) /∈ P and (u, t) /∈ P,

for all t �= u, and CP
tt = 1

2
.

Total orders and bucket orders are special cases of partial
orders, and hence they can be represented as pair order ma-
trices. The pair order matrix CT for a total order T can be
rearranged so that the all diagonal entries are equal to 1

2
,

the entries above the diagonal are equal to 1, and the entries
below the diagonal are equal to 0. Similarly, the pair order
matrix CB for a bucket order B can be rearranged to a block
diagonal matrix, so that the entries below, inside, and above
the diagonal blocks are equal to 0, 1

2
, and 1, respectively.

Given a dataset of items and a pair order matrix on the
items we want to find the best bucket order describing this
data. As a cost function for measuring the quality of the
solution we use distance between matrices. If C and D are
two matrices, we define

L(C, D) =
X
t�=u

g(Ctu, Dtu),

where g is a symmetric non-negative function
satisfying g(x, x) = 0, and in particular

L1(C, D) =
X
t�=u

|Ctu −Dtu|. (3)

Other distance measures between matrices are also possible,
but not considered in this paper.1 We now define the bucket
order problem.

Problem 1. Let C be a pair order matrix on a set of
items M . Find a bucket order B on the items of M such
that the distance measure L1(C, CB) is minimized.

In other words, the task is to find a bucket order B on
the items of M , minimizing the sum of values |Ctu − 1| if
(t, u) ∈ B, |Ctu| if (u, t) ∈ B, and |Ctu− 1

2
| if (t, u) �∈ B and

(u, t) �∈ B, for all pairs (t, u).

Example. For a very simple example to motivate our prob-
lem formulation and also contrast with previous work by Fa-
gin et al. [13], consider the following dataset. We have only
two items M = {a, b} and a set of 100 sequences, permuta-
tions of M , such that 51 of them rank a before b, and the
rest 49 rank b before a. Then the pair order matrix will be

C =

»
0.5 0.51
0.49 0.5

–
,

and the optimal bucket order according to Problem 1 will
place a and b in the same bucket, which is a very intuitive
solution. On the other hand, the median-aggregation algo-
rithm proposed in [13] will select a final ranking that will
place a before b. This example demonstrates that the two
ranking models, the one considered in this paper and the one
in [13], have different objectives and different properties.

Obtaining the pair order matrix. We construct the pair
order matrix C by using a set of total orders of the items
in M . This is done by setting Ctu to be the fraction of the
total orders in which t precedes u. If each of the total or-
ders ranks all items in M , the resulting pair order matrix
will satisfy both the probability and triangle inequality con-
straints. If the total orders rank only proper subsets of M ,

1Notice that denoting the distance measure in Equation (3)
by L1 is a slight abuse of notation, since the L1 matrix
norm is usually meant to be the maximum over all matrix
columns of the sum of the absolute values of the entries in
the column.

Research Track Poster

562

the resulting pair order matrix is guaranteed to satisfy only
the probability constraint.

3. PROPERTIES OF THE MODEL
In this section we discuss basic properties of the bucket

order problem.

Number of bucket orders. We first note that given n
items, the number of distinct bucket orders with k nonempty
buckets is given by the Stirling numbers of the second kind
S(n, k). The total number S(n) of distinct bucket orders on
n items satisfies

S(n) ∼ n!

2(log 2)n+1
,

for example, see sequence number A000670 in [26], and [28].

NP-hardness. We show that the bucket order problem is
NP-hard. The proof idea is based on the concept of tourna-
ments, which are complete directed graphs with no two-node
cycles. A pair order matrix C with 0–1 values, i.e., Ctu = 1
or Ctu = 0, whenever t �= u, corresponds to a tournament
graph. We first have the following.

Observation 1. Let G be a tournament graph. Then the
cost of the optimal total order for G is equal to the cost of
the optimal bucket order.

Proof. Let T ∗(G) and B∗(G) be the costs of the optimal
total order and optimal bucket order for G, respectively. We
show that T ∗(G) = B∗(G).

First it is clear that B∗(G) ≤ T ∗(G), since any total order
is also a bucket order. On the other hand, we have T ∗(G) ≤
B∗(G). Assume that the bucket order that achieves B∗(G)
is not a total order. We convert that optimal bucket order
to a total order by ordering the vertices within buckets one
bucket at a time. For each bucket, any ordering within the
bucket does not change the costs with respect to the vertices
outside the bucket, only the vertices inside the bucket have
influence on the cost. Since G is a tournament, for a bucket
with k vertices, the cost inside the bucket is k(k−1)/2. Take
any random permutation π of the vertices inside the bucket,
and consider also the reverse permutation π′ that orders the
vertices in the reverse order than π. There are a total of
k(k−1) edges, and each edge is charged to either π or π′, so
one of the two permutations should have cost no more than
k(k− 1)/2. By applying the same argument and linearizing
the items in each bucket, we can create a total order that
has cost at most B∗(G). �

Theorem 1. Given a pair order matrix C, the problem
of finding the optimal bucket order for C is NP-hard.

Proof. From Observation 1, for pair order matrices cor-
responding to tournament graphs, finding the optimal bucket
order is equivalent to finding the optimal total order. Since
the latter problem is NP-hard [3], the bucket order problem
is also NP-hard. �

At this point, it is natural to ask if the above argument can
be generalized and, in fact, prove that there is no additional
cost improvement in finding a bucket order over finding the
optimal total order. However, this is not the case; if the
pair order matrix has a clear bucket structure then the cost

of the optimal bucket order can be significantly better than
the cost of the optimal total order.

A single parameter. Our problem formulation does not
require providing the number of buckets: bucket orders with
unnecessarily small or unnecessarily large number of buck-
ets are penalized automatically from the objective function.
Thus, finding the optimal bucket order using the formulation
of Problem 1 is a parameter-free task.

Note that that our main algorithm uses one parameter β
whose value influences the final number of buckets, however,
(i) the effect is not so dramatic, (ii) β = 1

4
is a default

value that can be used in all cases, and which provides the
approximation guarantee of the algorithm.

4. THE PIVOT ALGORITHM

4.1 Description of the algorithm
The bucket pivot algorithm is a sorting algorithm that cre-

ates a bucket order. The algorithm selects a random pivot
element, after which it compares the pivot with the other
items and divides them to three classes: “left”, “same” and
“right”. The algorithm then recurses to bucket sort the
“left” and “right” classes. The “same” class contains, in
addition to the pivot, all items for which there is no clear
relative ordering with respect to the pivot. The “same” class
will be output as a bucket.

The bucket pivot algorithm for a set of items M and a
pair order matrix C, BP(M ,C,β), is given as pseudocode in
Algorithm 1. The algorithm outputs a bucket order. The
algorithm has one parameter, β which defines the limit by
which the items are put to the same bucket. Unless other-
wise mentioned, we use β = 1

4
. For β = 0, the bucket pivot

algorithm returns a total order and is equivalent to the FAS-
PIVOT algorithm of [2], and if β > 1

2
the algorithm always

returns only one bucket.

4.2 Theoretical results
Our results are summarized in the following theorems.

The first one states that the pivot algorithm has a bounded
approximation ratio.

Theorem 2. Let C be a pair order matrix, BP the bucket
order found by the pivot algorithm with β = 1

4
, and OPT

be the optimal bucket order for matrix C. Furthermore, let
LBP be the expected cost of the solution found by the pivot
algorithm, that is, LBP = E

ˆ
L1(C

BP , C)
˜
, and LOPT be

the cost of the optimal solution. In the general case we have
LBP ≤ 9LOPT . If C satisfies also the triangle inequality
we have LBP ≤ 5LOPT . For restricted matrices with values
in {0, 1

2
, 1}, the bounds without and with triangle inequality,

are LBP ≤ 5LOPT and LBP ≤ 3LOPT , respectively.

The proof follows the ideas presented in [2]. Details will be
available in the full version of this paper.

It is not hard to see that an input matrix corresponding
to a total order results in the worst-case running time of
O(n2). However, for the expected number of comparisons
we can state the following.

Theorem 3. The expected number of comparison opera-
tions made by the bucket pivot algorithm is O(n log n).

The proof is similar to the one used to show the expected
running time of randomized quicksort. Since the size of the

Research Track Poster

563

Algorithm 1 The Bucket Pivot Algorithm. By default, we
use β = 1

4
.

BP(V ,C,β) {Input: V , set of items; C, pair order matrix;
β ≥ 0, parameter. Output: Bucket order.}
if V = ∅ then

return ∅
end if
Pick a pivot t ∈ V uniformly at random.
L← ∅
S ← {t}
R← ∅
for all items u ∈ V \ {t} do

if Ctu < 1
2
− β then

Add u to L.
else if 1

2
− β ≤ Ctu < 1

2
+ β then

Add u to S.
else if 1

2
+ β ≤ Ctu then

Add u to R.
end if

end for
return order 〈BP(L, C, β), S, BP(R, C, β))〉

input matrix C is O(n2), but the expected running time is
only O(n log n), the algorithm in general does not inspect all
elements of C. In some cases it is thus possible to compute
only those elements of C that are needed.

5. ALTERNATIVE ALGORITHMS
Both of the alternative algorithms are based on the fol-

lowing idea: Given a total order of the items we can sort the
columns of the pair order matrix according to it. A bucket
order can then be constructed by viewing the columns of the
pair order matrix as an n-dimensional time-series which is
segmented to k segments. Segmentation can be done opti-
mally by using dynamic programming, so the only question
is how to select the total order.

The first alternative is to take any total order T that is a
linear extension of the bucket order given by the bucket pivot
algorithm. Another approach is to consider the rowsums
of the matrix C. The ith rowsum is simply the sum of
all elements on row i. The total order can be formed by
ordering the items in increasing (or decreasing) order of the
rowsums.

Running time of segmentation by dynamic programming
is quadratic in n. This can be overcome by using some al-
ternative segmentation algorithm. We use globally iterative
replacement (gir), proposed in [18]. For time-series data,
gir tends to produce segmentations very close to the opti-
mal ones given by the dynamic programming algorithm.

The two alternative algorithms are called bp-gir and rs-
gir, depending if the pivot algorithm (bp) or rowsums (rs)
are used to determine the initial total order.

6. APPLICATIONS AND EXPERIMENTS
We used both artificial and real datasets for studying

the algorithms’ performance. In the following B denotes
a bucket order and CB is the corresponding pair order ma-
trix. In all cases the parameter β used in the pivot algorithm
was 0.25.

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

number of items

tim
e

(i
n

s)

k = 20
k = 50

Figure 1: Median (of 50 runs) running times of the
pivot algorithm (bp) with different number of items.
k denotes the number of buckets in the input. Rows
of the pair matrix were computed on the fly based on
a set of either 1000 or 2000 artificially generated se-
quences (total orders). The two upper curves show
the running times for 2000 sequences. At 4000 items
k has a small effect on the running time. In case of
1000 sequences (lower curves) k has no effect.

6.1 Artificial data
We use artificial data to demonstrate the algorithms’ scal-

ability and noise tolerance. Scalability of bp-gir and rs-gir
was not tested, because segmenting a time series of both
length and dimension n is not feasible for very large n, even
when global iterative replacement is used.

Synthetic input data is generated with the following pro-
cedure. First we pick uniformly at random a bucket order
G on n items with k buckets. Then we construct a set S
of sequences of the n items, such that a fraction ρ of the
sequences are completely random and the rest are linear
extensions of G. The pair order matrix C is obtained by
counting how many times item i precedes item j in the se-
quences and normalizing the resulting matrix such that the
probability constraint holds.

To test the scalability we created datasets containing 1000
or 2000 sequences with different values of n (n = {250, 500,
1000, 2000, 4000}) and k (k = {10, 20, 50}). The level of
noise ρ was fixed to 0.2. We ran the bp algorithm 50 times
for each input (using the same input each time) and mea-
sured the running time on each round. Results are shown
in Figure 1.

For testing the noise tolerance a MATLAB implementa-
tion was used. Note that in general the pivot algorithm does
not determine the complete error L1(C

G, CB), since this
would require O(n2) steps. The test was performed merely
to compare the algorithms’ output to the “ground truth” in
a simple case. Letting n = 100 and k = 5 we generate 100
sequences with different levels of noise, denoted ρ, and con-
struct the input matrix CG based on these. Every algorithm
was run 100 times for each value of ρ. A new input matrix
was created every round. For rs-gir, the number of buckets
k must be specified in advance. The algorithm was provided
with the correct value of k in every case. Results are given
in Figure 2. Interestingly rs-gir behaves very much like the

Research Track Poster

564

0 0.2 0.4 0.6 0.8 1

0

500

1000

1500

2000

2500

ρ

m
ea

n(
L

1(C
G

 −
 C

B
))

bp
bp−gir
rs−gir

Figure 2: Results for noise tolerance when using
artificial data. The graph shows how the level of
noise ρ in the input affects the average cost in terms
of L1 between the input matrix CG (“ground truth”)
and output matrix CB for the different algorithms.

pivot-based algorithms. All algorithms are able to sustain
up to 30% noise in the input.

6.2 Paleontology Data
The NOW database [14] contains records of fossil discover-

ies of late Cenozoic land mammals in Europe. The dataset
we use contains information on 139 species and 124 fossil
discovery sites. For every fossil in the dataset, the site of
discovery and the species in question is reported. In general
several fossils are found at the same site, thus, the data can
be represented as a 0–1 matrix of dimension 124 × 139. A
very important problem in analysing this kind of data in pa-
leontology is that of biochronology: in the lack of geological
evidence or geochronologically datable materials, obtain an
ordering of the sites based on the sites/species 0–1 matrix.

Bucket orders are a in fact a natural way of representing
the temporal order of the site in this case. Determining an
exact age for a given site can be very hard. Instead experts
have assigned each site to an Mammal Neogene (MN) class,
classes ranging from 3 (oldest) to 17 (youngest). Clearly the
MN-classification is a bucket order on the sites. One evalu-
ation criterion for the algorithms is how well the discovered
bucket orders agree with the bucket order defined by the
MN-system.

To run our algorithms on the paleontology data we need to
obtain a pair order matrix for the sites based on the original
sites/species 0–1 matrix. The pair order matrix is obtained
by sampling all possible orderings of the sites with a Markov
Chain Monte Carlo method [25]. The test was performed by
running all of the three proposed algorithms 100 times on
this matrix. Number of buckets k was set to 17 for rs-gir,
since this was the average number of buckets discovered by
the bp algorithm.

The resulting pair order matrix of the sites, when the
matrix is rearranged according to an order found by the
basic pivot algorithm is shown in Figure 3. The bucket-
order structure of the sites is evident.

More detailed results for the same input matrix are given
in Table 1. The best performance is achieved when using

20 40 60 80 100 120

20

40

60

80

100

120
0

0.2

0.4

0.6

0.8

1

Figure 3: Pair order matrix of the paleontological
data. The order for matrix rows/columns is ob-
tained by running the algorithm bp-pr.

rs-gir. The segmentation postprocessing step also improves
the basic pivot algorithm. Also, the best solution found by
bp is almost as good as rs-gir.

Even with this relatively small dataset bp-gir and rs-
gir are both several orders of magnitude slower than bp.
Therefore it is in fact much faster to run bp many times
and use the best solution found. With very large datasets
this may be infeasible, however, since computing the error
L1(C

B , C) takes time of order O(n2).
We also compare the bucket orders produced by the algo-

rithms against the “ground truth” order BMN provided by
the MN-classification system. The errors (cMN) are smaller
in this case, showing that the bucket orders discovered by
our algorithms are in good agreement with the MN system.
The algorithm that compares the best against the MN or-
dering is again rs-gir. However, basic bp found at least
once a solution that is only 0.7 percent worse in terms of
cMN than the one found by using rs-gir.

Very important for this case study is also the number of
buckets discovered by the parameter-free algorithms. The
number of different MN classes in this data is 14. On the
average the pivot based algorithms find 17 buckets. The cor-
respondance is thus very good, given that the exact number
of classes in the MN-system is still a matter of debate.

7. RELATED WORK
As mentioned above, the pivot algorithm presented in this

paper is inspired by the algorithm presented by Ailon et
al. [2] for the feedback arc set problems, i.e., for learning
total orders in tournament graphs.

A considerable amount of previous work has focused on
ranking query results, either database queries [1, 6, 19, 22],
or web search results [4, 5, 17, 20, 10]. This is quite different
from our framework since only items related to query are
ranked, and usually only the top items of the ranking are of
interest.

More related to our approach are data mining papers that
attempt to describe the complete set of data using partial
orders [23, 27], or fragments of order [16]. Related is also
the work on rank aggregation, led by Fagin et al. [11, 12, 13]

Research Track Poster

565

bp bp-gir rs-gir
avg. c 315.20 278.16 277.08
min. c 287.59 277.05 277.08
max. c 368.00 280.49 277.08
std. c 18.41 0.75 0.00
avg. cMN 356.03 232.64 228.00
min. cMN 229.50 220.50 228.00
max. cMN 490.00 259.00 228.00
std. cMN 65.86 7.56 0.00
avg. NB 17.54 17.16 17.00
min. NB 14.00 14.00 17.00
max. NB 20.00 20.00 17.00
std. NB 1.43 1.42 0.00

Table 1: Test results for paleontological data (β =
0.25). Each algorithm was run for 100 times on the
input matrix shown in Figure 3. Here c = L1(C

B , C),
where CB is the solution found by the algorithm and
C is the input matrix. Number of buckets in the
solution is denoted by Nb and cMN = L1(C

B , CMN),
where CMN is a matrix corresponding to the MN-
order defined by experts. NB is the number of buck-
ets in the order returned by the algorithm.

and by Dwork et al. [10], which attempts to combine several
total rankings into one single total ranking that agrees with
the given rankings as much as possible. The same problem
of combining different permutations has also been studied
using probabilistic methods [21].

Ranking problems have also been considered in machine
learning community under different formulations, for exam-
ple, in [15] they discuss the problem of learning a total order
on labels from a set of examples that declare preference be-
tween pairs of labels, and in [8] they consider the problem of
learning a ranking function from points in in R

d to a discrete
set of grades {1, . . . , k}. Much more related with our work is
the paper by Cohen et al. [7]. They suggest the problem of
learning an order of items based on a pairwise score function
between item pairs, just as our pair order matrix. However,
their objective function is different than ours and it does not
explicitly model the concept of buckets.

8. CONCLUSIONS
We have described an approach to finding bucket orders

from data. Bucket orders are a natural class of partial orders
and they are suitable for modeling real-life situations where
ties between elements are possible.

We gave a simple algorithm for finding bucket orders and
showed that it has a bounded approximation ratio for the
NP-complete task of finding the bucket order that best ap-
proximates the pair order matrix. The algorithm is scalable
and works very fast in practice. We also discussed variations
of the method that yield even better approximations of the
pair order matrix.

We demonstrated the usefulness of the algorithm on both
artificial data and real data on fossils. The results show
that the pivot algorithm and its variations provide good and
intuitive results.

One interesting direction for extending the basic model
in the future is to consider the problem of finding several
bucket orders using mixture modeling.

9. REFERENCES
[1] S. Agrawal et al. Automated ranking of database query

results. In CIDR, 2003.
[2] N. Ailon, M. Charikar, and A. Newman. Aggregating

inconsistent information: ranking and clustering. In STOC,
2005.

[3] N. Alon. Ranking tournaments. SIAM Journal of Discrete
Mathematics, 2006. to appear.

[4] A. Borodin et al. Link analysis ranking: Algorithms,
theory, and experiments. ACM Transactions on Internet
Technology, 5(1), 2005.

[5] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks and
ISDN Systems, 30(1–7):107–117, 1998.

[6] S. Chaudhuri et al. Probabilistic ranking of database query
results. In VLDB, 2004.

[7] W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to
order things. Journal of Artificial Intelligence Research,
10:243–270, 1999.

[8] K. Crammer and Y. Singer. Pranking with ranking. In
NIPS, 2001.

[9] A. B. Cruse. On removing a vertex from the assignment
polytope. Linear Algebra and its Applications, 26:45–57,
1979.

[10] C. Dwork et al. Rank aggregation methods for the web. In
WWW, 2001.

[11] R. Fagin et al. Comparing and aggregating rankings with
ties. In PODS, 2004.

[12] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k
lists. In SODA, 2003.

[13] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity
search and classification via rank aggregation. In SIGMOD,
2003.

[14] M. Fortelius et al. Provinciality, diversity, turnover and
paleoecology in land mammal faunas of the later Miocene
of western Eurasia. In R. Bernor, V. Fahlbusch, and
W. Mittmann, editors, The Evolution of Western Eurasian
Neogene Mammal Faunas, pages 414–448. Columbia
University Press, New York, 1996.

[15] J. Fürnkranz and E. Hüllermeier. Pairwise preference
learning and ranking. In ECML, 2003.

[16] A. Gionis, T. Kujala, and H. Mannila. Fragments of order.
In KDD, 2003.

[17] T. Haveliwala. Topic-sensitive pagerank. In WWW, 2002.
[18] J. Himberg et al. Time series segmentation for context

recognition in mobile devices. In ICDM, 2001.
[19] I. F. Ilyas et al. Rank-aware query optimization. In

SIGMOD, 2004.
[20] J. M. Kleinberg. Authoritative sources in a hyperlinked

environment. Journal of the ACM, 46(5), 1999.
[21] G. Lebanon and J. D. Lafferty. Cranking: Combining

rankings using conditional probability models on
permutations. In ICML, 2002.

[22] C. Li et al. Query algebra and optimization for relational
top-k queries. In SIGMOD, 2005.

[23] H. Mannila and C. Meek. Global partial orders from
sequential data. In KDD, 2000.

[24] P. McJones. Eachmovie collaborative filtering data set,
1997. http://research.compaq.com/SRC/eachmovie/.

[25] K. Puolamäki, M. Fortelius, and H. Mannila. Seriation in
paleontological data using Markov Chain Monte Carlo
methods. PLoS Computational Biology, 2(2):e6, 2006.

[26] N. J. A. Slone. The on-line encyclopedia of integer
sequences, 2005.
http://www.research.att.com/˜njas/sequences/.

[27] A. Ukkonen, M. Fortelius, and H. Mannila. Finding partial
orders from unordered 0-1 data. In KDD, 2005.

[28] H. S. Wilf. generatingfunctionology. Academic Press, 1994.
http://www.math.upenn.edu/~wilf/DownldGF.html.

Research Track Poster

566

