
BioMed Central

Page 1 of 16

(page number not for citation purposes)

BMC Bioinformatics

Open AccessMethodology article

Algorithms for effective querying of compound graph-based
pathway databases
Ugur Dogrusoz*1, Ahmet Cetintas1, Emek Demir2 and Ozgun Babur1

Address: 1Center for Bioinformatics and Computer Engineering Dept., Bilkent University, Ankara, Turkey and 2Computational Biology Center,
Memorial Sloan-Kettering Cancer Center, New York, NY, USA

Email: Ugur Dogrusoz* - ugur@cs.bilkent.edu.tr; Ahmet Cetintas - cetintas@gmail.com; Emek Demir - demir@cbio.mskcc.org;
Ozgun Babur - ozgun@cs.bilkent.edu.tr

* Corresponding author

Abstract

Background: Graph-based pathway ontologies and databases are widely used to represent data
about cellular processes. This representation makes it possible to programmatically integrate
cellular networks and to investigate them using the well-understood concepts of graph theory in
order to predict their structural and dynamic properties. An extension of this graph
representation, namely hierarchically structured or compound graphs, in which a member of a
biological network may recursively contain a sub-network of a somehow logically similar group of
biological objects, provides many additional benefits for analysis of biological pathways, including
reduction of complexity by decomposition into distinct components or modules. In this regard, it
is essential to effectively query such integrated large compound networks to extract the sub-
networks of interest with the help of efficient algorithms and software tools.

Results: Towards this goal, we developed a querying framework, along with a number of graph-
theoretic algorithms from simple neighborhood queries to shortest paths to feedback loops, that
is applicable to all sorts of graph-based pathway databases, from PPIs (protein-protein interactions)
to metabolic and signaling pathways. The framework is unique in that it can account for compound
or nested structures and ubiquitous entities present in the pathway data. In addition, the queries
may be related to each other through "AND" and "OR" operators, and can be recursively organized
into a tree, in which the result of one query might be a source and/or target for another, to form
more complex queries. The algorithms were implemented within the querying component of a new
version of the software tool PATIKAweb (Pathway Analysis Tool for Integration and Knowledge
Acquisition) and have proven useful for answering a number of biologically significant questions for
large graph-based pathway databases.

Conclusion: The PATIKA Project Web site is http://www.patika.org. PATIKAweb version 2.1 is
available at http://web.patika.org.

Background
Especially with the help of novel large-scale analysis
methods, a massive amount of data is now being gathered

on cellular processes [1-3]. Unfortunately, most of these
data are fragmented and incomplete. One of the biggest
challenges of bioinformatics today is to represent and

Published: 16 November 2009

BMC Bioinformatics 2009, 10:376 doi:10.1186/1471-2105-10-376

Received: 2 November 2008
Accepted: 16 November 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/376

© 2009 Dogrusoz et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.biomedcentral.com/1471-2105/10/376
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19917102
http://www.patika.org
http://web.patika.org
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10:376 http://www.biomedcentral.com/1471-2105/10/376

Page 2 of 16

(page number not for citation purposes)

integrate this type of knowledge effectively to construct a
knowledge base that can act as a blueprint for simulations
and other analysis methods, enabling us to better under-
stand and predict the behavior of a cell [4].

Even though traditional way of representing cellular path-
ways with still images often yields very pretty pictures,
such drawings are mostly not reusable. In addition,
underlying ontology and notation are often far from
being uniform or consistent, mostly dependent on
implicit conventions rather than explicit, formal rules [4].
Recently, these problems have resulted in a major shift
towards the use of more formal ontologies and to the
dynamic representation of pathways that support pro-
grammatic integration and manipulation of pathways,
regardless of the underlying ontology. Among these,
graphs, one of the most common discrete mathematical
structures [5], have been most popular for "in-silico"
modeling of biological pathways, from metabolic path-
ways to gene regulatory networks to signaling pathways
[4,6-8]. Such modeling is crucial for the field of systems
biology, which deals with a systems-level understanding
of biological networks. Three levels of increasing com-
plexity are listed in [6] for the analysis of cellular net-
works, where network topology (global structural
properties), interaction patterns (local structural connec-
tivity), and network decomposition (hierarchical func-
tional organization) are addressed at each level,
respectively. Representing such complex networks as
graphs makes it possible to investigate the topology and
function of these networks using the well-understood
concepts of graph theory and to predict their structural
properties or to detect special structures or properties in
them. In addition, this representation has made the sys-
tematic (i.e., programmatic) integration of these complex
networks feasible. A comprehensive survey of such predic-
tion, detection, and reconstruction methods can be found
in [6].

Lately, an extension of this graph representation, namely
hierarchically structured graphs or simply compound graphs,
has become popular, in which a node of a biological net-
work may recursively contain or include a sub-network of
a somehow logically similar group of biological objects
[4,9]. This extension provides many benefits for the anal-
ysis of biological pathways; most importantly, it reduces
the complexity of large networks by decomposing them
into distinct components or modules.

There has been much work on querying for the occur-
rences of sub-structures (from specified subgraphs to spe-
cial sub-structures), such as graphlets or motifs in graph-
based data, including pathways [6]. Most approaches
employ a graph-matching algorithm to find one or all
(exact or inexact) instances of the specified subgraph [10-

12]. Others take a comparative approach to interpreting
molecular networks, contrasting and aligning networks of
different species and molecular types under varying con-
ditions [13]. Graph algorithms, such as the shortest paths
between a specified pair of objects in a graph database,
have been in use for quite a while [14], whereas their use
in graph-based pathway databases has only recently
become popular [15-17].

Here, we present a framework for querying a compound
graph-based pathway database, as well as a number of
graph-based queries and algorithms that are needed to
implement these queries. We assume a database in which
pathways are stored in an integrated manner, as opposed
to a list of independent pathways. A query to the database
is performed over this integrated, higher-level network of
pathways, which aims to find a sub-network of interest
(Figure 1). Such a query might require a rich set of graph
algorithms. This framework and associated graph algo-
rithms were implemented as part of a new version of the
bioinformatics tool PATIKAweb [18]. The range of graph-
theoretic queries described as part of this framework is
among the most comprehensive to be built so far and, in
our best knowledge, is the first querying framework that
accounts for compound structures (i.e., the grouping or
abstractions of biological objects to an arbitrary level of
depth) in a graph-based knowledge base.

Definitions
Let G = (V, E) be a graph with a non-empty node set V and
an edge set E. An edge, e = {x, y} or simply xy, joining

How pathways are integratedFigure 1
How pathways are integrated. Conceptual illustration of
how pathways are integrated in a knowledge base (each path-
way is colored distinctly), which is typically on disk, and how
a sub-network of interest (parts of three different original
pathways) may be extracted and displayed as a result of a
query.

BMC Bioinformatics 2009, 10:376 http://www.biomedcentral.com/1471-2105/10/376

Page 3 of 16

(page number not for citation purposes)

nodes x and y is said to be incident with both x and y. Node
x is called a neighbor of y and vice versa. A pathway graph
G = (V, E) is a graph, where some of the edges in E are
marked as inhibition edges (e.g., an interaction that disa-
bles or impedes the target reaction node via the source
state node).

A path between two nodes n0 and nk is a non-empty graph
P = (V ', E') with V' = {n0, n1, ..., nk} and E' = {n0n1, n1n2 ,
..., nk-1nk}, where ni are all distinct. n0 and nk are called the
end points of path P = n0n1 ... nk, whose length, denoted by
|P| is the number of edges on it. A path is said to be
directed if all its ordered edges are directed in the same
direction. A directed path P is called an incoming (outgoing)
path of node n if P ends at target (starts at source) node n.
A directed path is called positive (negative) if it contains an
even (odd) number of inhibitors (i.e., inhibition edges).

Given node sets A and B, an A-B path is a path with its
ends in A and B, respectively, and no node of P other than
its ends is from either set A or B. An A-path is a path where
one of its end nodes is in A, and no other nodes and inter-
actions are from A.

A path C with identical end nodes is called a cycle. A
directed cycle is called positive feedback (negative feedback)
if it contains an even (odd) number of inhibitors.

The distance dG(x, y), between two nodes x and y in graph
G, is the length of a shortest x-y path in G. If G' = (V ', E')
is a subgraph of G = (V, E), and G' contains all the edges
xy ∈ E with x, y ∈ V', then G' is an vertex-induced or simply
induced subgraph of G; we say that V' induces G' in G and
write G' = G [V']. If node x is the starting node of a directed
path that ends up at node y, then node y is said to be in
the downstream of node x; similarly, node x is said to be in
the upstream of node y. A node y in the downstream of a
node x is a potential target of x; similarly, x is a potential reg-
ulator of y. A compound graph CG = (G, I) is a 2-tuple of a
graph G and a rooted directed inclusion tree I ⊆ V × V,
which defines nesting relations for V by partitioning it
into base nodes (i.e., leaves of the inclusion tree) and com-
pound nodes (Figure 2). Notice that we assume that edges
of G cannot join two vertices, one of which is an ancestor
of the other one in the inclusion tree.

Ontology

The query framework and the algorithms described in the
paper were all designed and implemented assuming the
PATIKA ontology [4], which shows the utmost similarity to
standard representations, such as BioPAX [19] and SBGN
[20]. However, the results should be applicable to other
graph-based pathway representations without difficulty.

The PATIKA ontology is based on a two-level qualitative
model. At the entity level, interactions and relations can

be addressed in an abstract manner, where the exact state
or details of the involved entities is unknown, such as
with protein-protein interactions, inferred relations, and
literature-derived information. At the state/transition or
mechanistic level, each entity is associated with a set of
states that interact with each other via transitions. This
level can capture more detailed information, such as com-
partments, molecular complexes, and different types of
biological events (e.g., covalent modification, transporta-
tion, and association). This two-level representation ele-
gantly covers most biological pathway-related
phenomena, and is capable of integrating information
present in the literature and in molecular biology data-
bases. Additionally, PATIKA uses the notion of compound
graphs to represent abstractions, which are logical group-
ings that may be used to handle the complex and incom-
plete nature of the data. Figure 3 shows example pathways
drawn at biological entity and state/transition levels.

More formally, a compound pathway graph CP = (G, I) is a
2-tuple of a pathway graph G and a directed acyclic inclusion
graph. Notice that this is different than traditional com-
pound graphs as we do not require compound structures
in our pathway models to form a tree. I, where

• V (G): union of nodes denoting bioentities, states,
transitions, molecular complexes, and abstractions of
five distinct types: regular, incomplete state, incom-
plete transition, homology state, and homology tran-
sition;

• E(G): union of interaction edges of various types
(such as PPI edges at bioentity level and activator
edges between a state and a transition), some of which
are directed and/or inhibitory;

• V (I) = V (G);

Example compound graphFigure 2
Example compound graph. An example compound graph
(V (G) = {n1, n2, n3, n4, n5, c1}, E(G) = {n2c1, n3n2, n3n5, n4n1},
and I = {c1n4, c1n5}). The order, in which nodes are traversed,
depends on the relationship between a compound structure
and its members and on the relationship between members
of a compound structure.

BMC Bioinformatics 2009, 10:376 http://www.biomedcentral.com/1471-2105/10/376

Page 4 of 16

(page number not for citation purposes)

• E(I): union of inclusion edges for defining com-
pound structures (molecular complexes and abstrac-
tions).

In order for a compound pathway graph CP = (G, I) to
comply with the PATIKA ontology, it needs to satisfy cer-
tain additional invariants; for instance, regular abstrac-
tions cannot have a direct interaction (edge).

Results
PATIKAweb [18] is a pathway analysis tool with a distrib-
uted architecture, where the server is composed of a data-
base component and an application server. The
implementation uses the JSP (JavaServer Pages) edition of
the Tom Sawyer Visualization technology [21] to handle
highly-dynamic and advanced visual content along with
Java™, JavaScript™ and DHTML/HTML.

The query component of PATIKAweb was implemented as a
Java applet, embracing all algorithms discussed in this
paper. See Additional file 1 for a sample querying scenario
comprised of a number of these operations.

Query interface of PATIKAweb

For utmost flexibility, the queries are allowed to be recur-
sively organized into a tree in PATIKAweb, in which the

result of one query might be a source and/or target for
another. Queries may be related to each other through
"AND" and "OR" operators (Figure 4). A query may be
executed not only on the database but also on the current
local pathway model. When a query initiated from the
query dialog finishes, the resulting pathway model is sum-
marized by a Query Result Dialog. The model can be
viewed in either or both of bioentity and mechanistic lev-
els. Figure 5 shows a sample query result.

Experiments

We performed a number of experiments to test our algo-
rithms using the implementation within PATIKAweb. The
tests were performed on an ordinary personal computer
using a randomly created integrated pathway knowledge
base, consisting of about 20,000 pathway nodes and
30,000 edges. The knowledge base was held in memory.
However, with the success of current high performance
object/relational persistence and query services, the slow-
down should not be dramatic when it is on disk. Our
experiments revealed that our theoretical analysis is in
line with the results of our implementation. Below, we
provide the details.

One set of experiments computes the graph of interest
GoI(S, k). The time complexity of this algorithm is pro-

Sample pathways represented by PATIKA ontologyFigure 3
Sample pathways represented by PATIKA ontology. (left) Canonical wnt pathway containing examples of compound
structures, such as regular abstractions (e.g., "protein degradation"), homology abstractions (e.g., 5 wnt genes), and molecular
complexes (e.g., APC:Axin) [4]. (right) Partial human interaction networks containing PPIs and the transcriptional regulation
interactions of proteins CRK and SP1, respectively.

BMC Bioinformatics 2009, 10:376 http://www.biomedcentral.com/1471-2105/10/376

Page 5 of 16

(page number not for citation purposes)

portional to the number of nodes and edges in the k-
neighborhood of nodes of interest, as Figure 6 indicates.

Experiments in this set also measure k versus the execu-
tion time with random source sets of various sizes. As Fig-
ure 6 illustrates, independent of the source set size,

execution time increases rapidly (but not exponentially)
up to a certain distance (between 12 and 15), after which
it remains constant. One might expect an exponential
increase in the number of nodes reached (and thus, the
execution time) as the distance increases. However, in
practice, up to all of the neighbors of a newly visited node
might already have been visited, avoiding a combinatorial
increase [22]. After a certain number of steps, all nodes are
expected to have been visited.

Another set of experiments we performed was to compute
the shortest paths SP(S, T, k, d). Remember that the time
complexity of this algorithm is O(l + |NB(S, k)|), where l
is the total length of the paths enumerated. Here, l
depends on the choice of S and T, and can be exponential
in the size of the graph, in the worst case. However, our
experiments show that, on average, that is not the case,
and l is dominated by the second term. The reason for this
is that, roughly speaking, if the shortest length between
sets is "too long", the number of paths found is small.
Similarly, if the number of paths found is large, the short-
est length between sets is short. Obviously, l equals the
number of paths found multiplied by the shortest path
length between sets. Therefore, there is a tradeoff between
the number of paths and the shortest length between sets.
This hides the exponential behavior expected in the worst

Sample queryFigure 4
Sample query. Sample query tree to find the union of 1-
neighborhood of the objects on the shortest path from
states whose name starts with "Fas" to states whose name
starts with "RB" with the shortest path from states whose
name starts with "Fas" to states whose name starts with
"JNK1" [18].

Sample query resultFigure 5
Sample query result. Mechanistic view of the result of the following sample query: paths-of-interest (yellow) with source of
all mechanistic nodes whose names contain "caspase-8" (green) and target for those whose names contain "bax" (cyan) with
limit 8; Highlight Legend Dialog for this query is shown on the right.

BMC Bioinformatics 2009, 10:376 http://www.biomedcentral.com/1471-2105/10/376

Page 6 of 16

(page number not for citation purposes)

Query parameters vs. execution timeFigure 6
Query parameters vs. execution time. (top) Result set size (|NB(S, k)|) vs. execution time for GoI algorithm. (middle)
Distance (k) vs. execution time for GoI algorithm. (bottom) Shortest length vs. execution time of shortest-path algorithm.

BMC Bioinformatics 2009, 10:376 http://www.biomedcentral.com/1471-2105/10/376

Page 7 of 16

(page number not for citation purposes)

case. Figure 6 plots the shortest path length versus the exe-
cution time for the shortest path algorithm, where node
sets S and T of varying sizes (chosen from set {1, 3, 5, 10,
15, 20, 25, 50}) were picked randomly. The details of this
analysis may be found in Additional file 2.

Discussion
Imagine a researcher who observes a certain gene's expres-
sion level oscillating in a manner that can be best
described with a feedback loop. Figuring out which
molecular interactions caused this behavior might require
a review of many research articles and the integration of
information across various sources. A review article or a
pathway diagram can be immensely helpful, but only if it
completely contains the path in question. In the case of a
single gene, this analysis is time-consuming and painstak-
ing. When using high-throughput data, for which one
needs to consider multiple entities in a much broader
scope, it becomes virtually impossible.

To face this challenge, hundreds of pathway databases
were developed [23], and efforts to form an integrated
map of cellular events are underway [24]. However, we
also need to be able to automatically construct "path-
ways" by extracting relevant portions of the underlying
network, based on the biological question we are asking.
Compared to static pathway diagrams, such "dynamic"
queries can provide a more complete picture, and can
help manage complexity by removing portions that are
not of interest. The algorithms and framework presented
here provide such facilities for an elementary set of bio-
logical questions.

One can extend this basic set by adding algorithms that
perform advanced queries, such as flux balance analysis
[25], isomorphic graph matching [6], and differential
expression analysis [26]. To complement advances in
pathway databases and tools, we expect algorithms such
as these to become commonplace in biological research.
Towards this goal, we hope to make this framework and
basic set of operations available as a public library, ready
to accept pathway models in standard formats such as
BioPAX.

Methods
We first explain how certain special pathway structures,
namely compound structures and ubiquitous entities, are
to be handled. Then, we define a number of graph-theo-
retic problems along with associated algorithms.

Compound structures

All the query operations described later, make use of
traversals over a pathway knowledge base to compute the
desired sub-graph of interest. The traversal over pathway
objects represented by some sort of a compound structure

(e.g., regular abstractions or molecular complexes as
defined by the PATIKA ontology) calls for a special mecha-
nism. Take as an example a breadth-first traversal, starting
with node n3 over the compound graph in Figure 2. When
the traversal reaches the compound node c1, should it also
visit its member nodes n4 and n5? Or if it reaches its mem-
ber n5, should it also visit its sibling n4, and continue its
downstream towards n1?

The answer depends on the context. If an underlying
"equivalence relation" exists between a compound node
and its members, a traversal reaching a node in an equiv-
alence set should also reach and visit other nodes in this
set. For instance, when a traversal reaches a gene that is a
member of a homology abstraction (i.e., it is inside a com-
pound structure along with its homologous genes), it
should also be considered to have reached its siblings (i.e.,
its homologous genes). On the other hand, reaching a
member of a regular abstraction should rarely be inter-
preted as reaching all the other members of that abstrac-
tion. Thus, it is best to let the user decide how the
traversals over compound structures should be configured
for each type of such structures.

This problem may be addressed by using traversal options
that define how the traversal continues upon reaching a
compound structure or a member of the compound struc-
ture. Note, however, that we need two flags per type of
compound structure, as they might be set to be different:

• Link a compound structure and its members: For
instance, should reaching a homology state be inter-
preted as also reaching its members (i.e., the genes
that are homologous) and vice versa?

• Link members of a compound structure: For instance,
should reaching a member of a molecular complex be
interpreted as reaching all members of this complex
(thus the traversal should be able to continue from
other members as in Figure 7)?

For the ontology that we assume, there are six distinct
types of compound structures: five types of abstractions
(homology states and transitions, incomplete states and
transitions, and regular abstractions) and molecular com-
plexes. Once such a set of options is defined, the modifi-
cation needed in a query algorithm to support compound
structures is rather straightforward. When a compound
node or a member of a compound is visited during a
traversal, the algorithm forms a set of "equivalent" nodes,
and continues the traversal from these equivalent nodes
as well as from the visited node. In other words, the algo-
rithm acts as if it's not only this node that is a neighbor of
the previously visited node but also its equivalent nodes.

BMC Bioinformatics 2009, 10:376 http://www.biomedcentral.com/1471-2105/10/376

Page 8 of 16

(page number not for citation purposes)

More formally, node x is called equivalent for traversal with
node y if and only if

• x and y are members of the same compound node,
and the user defined flag for linking members of this
type of compound structure is true, or

• one is a compound and parent node (possibly an
indirect parent through multiple levels of nesting) of
the other, and the user defined flag for linking this
type of compound structure and its members is true.

Notice that equivalence for traversal is a binary relation-
ship that is not transitive.

Thus, node x is called a compound neighbor of y if and only
if {x, y} ∈ E or y is equivalent for traversal with some node
z with {x, z} ∈ E. Furthermore, a compound path between
two nodes n0 and nk is a non-empty graph P = (V', E'),
where

Edges outside E do not count towards the length of com-
pound paths.

For instance, a breadth-first traversal over a compound
graph can be sketched as follows:

algorithm COMPOUNDBFS(root)

1 Q := {root}

2 while Q ≠ ∅ do

3 n1 := Q. DEQUEUE()

4 N := n1. COMPOUNDNEIGHBORS()

5 for n2 ∈ N do

6 if n2.VISITED ≠ true then

7 Q.ENQUEUE(n2)

8 //process n1

9 n1.VISITED := true

The only difference from the regular breadth-first traver-
sal, here, is line 4. The neighbors of the currently proc-
essed node n1 are identified not only based on the
downstream nodes of n1, but also on the nodes equivalent
to these downstream nodes with respect to compound
structures. This simple difference makes it easier to mod-
ify existing graph-theoretic algorithms to add support for
compound structures.

Ubiquitous entities

Another type of biological object that requires special
attention is ubiquitous molecules, which typically partici-
pate in many different biological activities, have relatively
constant concentration and do not transmit a signal. For
instance, a ubiquitous molecule such as ATP might be
involved in hundreds if not thousands of reactions at the
mechanistic level. Thus, one might prefer not to link two
reactions whose only common actors are these kinds of
molecules. Therefore, traversal over ubiquitous molecules
should also be able to be controlled by customized
options. Figure 7 explains this with an example. Modifica-
tion needed in graph algorithms to handle ubiquitous
molecules is rather straightforward.

Algorithms
A careful requirements analysis has yielded the following
graph-theoretic problems and associated algorithms that
might be useful in querying cellular pathway databases.
This list is by no means exhaustive and can easily be

′ = ′ = ⊇

∈

−

+

V n n n E n n n n n n E

n n E

k k k

i i

{ , , , }, { , , , } ,0 1 0 1 1 2 1

1

K K

 or nodee is equivalent for traversal with for n n i ki i+ = −1 0 1, , ,K and

 for n n E n n E i ki i i i+ + +∉ ⇒ ∈ = −1 1 2 0 2, , .K

Example traversals of complexes and ubiquitous moleculesFigure 7
Example traversals of complexes and ubiquitous molecules. (left) The traversal reaching complex "c1" from the left
transition will continue to the right transition only if the "Link Members of Complex" option is true. (right) Whether or not
protein states "a" and "b" are in the 4-neighborhood (yellow) of state "c" (green) depends on whether traversal over ubiquitous
molecules ("ubique X") is allowed. In this case, it was allowed.

BMC Bioinformatics 2009, 10:376 http://www.biomedcentral.com/1471-2105/10/376

Page 9 of 16

(page number not for citation purposes)

extended. Unless otherwise stated, all algorithms have
both directed and undirected versions.

Neighborhood of entities

A simple yet powerful operation for exploring pathways is
finding the neighbors of a specified source entity or node
within a certain distance (Figure 8). Most pathway visual-
ization tools [18,27,28] provide a way to expand or high-
light the neighborhood of selected nodes. Pathway
databases [24,29] generate on the fly views based on
neighborhoods. Formally, k-neighborhood of a node set S
can be defined as

Upstream or downstream of entities

k upstream (downstream) of an entity a is composed of the
entities on the incoming (outgoing) compound paths to a
with length at most k. The positive (negative) upstream of

an entity a is composed of the entities on the incoming
compound path that activates (inhibits) (in the case of a
mechanistic pathway, the preceding transition of) entity a.
For instance, k positive upstream of a node a can be
defined formally as

A node b might be in both the positive and negative up or
downstream of another node a, making the effects of
those streams (or associated positive and negative com-
pound paths) ambiguous. Those nodes in the upstream
(downstream) of a node a that lead to (are reached from)
node a with only positive compound paths form the unam-
biguous positive upstream (downstream) of node a (Figure
9).

algorithm STREAM(v, length, maxLength, sign, desired-
Sign, dir)

NB is on a compound path

 is an

(,) { | | | }

{ |

S k S x x S P P k

e e

= − ∧ ≤U U

 edge on a compound path S P P k− ∧ ≤| | }.

ST-up is on a positive incoming compound path +
=(,) { |a k x x P of a P k∧ ≤| | }.

NeighborhoodFigure 8
Neighborhood. 2-neighborhood (yellow) of phosphorylated Emi1 (Ser 182) (green) in a partial pathway in nucleus. Com-
pound nodes with dashed borders represent homologies, whereas compound nodes with solid borders represent molecular
complexes.

BMC Bioinformatics 2009, 10:376 http://www.biomedcentral.com/1471-2105/10/376

Page 10 of 16

(page number not for citation purposes)

1 v.AVAILABLE := false

2 if length < maxLength then

3 for w ∈ v.COMPOUNDNEIGHBORS(dir) do

4 if w is an inhibitor then sign := -sign //change sign
of running path

5 if sign = desiredSign then R := R ∪ {w}

6 else A := A ∪ {w}

7 if w.AVAILABLE = true then //prevents infinite loop

8 STREAM(v, length + 1, maxLength, sign, desiredSign,
dir)

9 v.AVAILABLE:= true

10 return R, A

The algorithm performs a brute-force traversing of all the
nodes in the k-neighborhood of the source node. It is
based on a depth-first search. However, after the recursive
processing of a node finishes, that node is marked as
"unvisited" again, potentially leading to multiple visits of
nodes and edges. More specifically, every node and edge
is processed as many times as the number of distinct ways
they can be reached from the source node. In other words,
every possible compound path with a length limit from
the source node is examined to determine if it makes a
valid stream.

Naturally, the worst-case time complexity of this algo-
rithm is exponential in the size of the k-neighborhood of

the source node. Experiments show, however, that the
execution time should be acceptable for most interactive
applications for small values of k (for instance, up to 10).

Common targets or regulators

There are already a number of algorithms for inferring
highly connected or co-regulated subnetworks of cellular
interactions and processes often called modules or path-
ways [30-32]. When analyzing these modules, we often
want to know if there is a process or gene that is upstream
of the genes in the module, which can provide a causal
explanation for the co-regulation, and ultimately a way to
control the module. Similarly, two pathways affecting the
same mechanism in the cell is interesting since it suggests
that a specific phenotype can have more than one molec-
ular cause. For instance, Engelman et al. [33] discuss that
drug resistance in lung cancer is related to an alternative
pathway that leads to PI3K activation. Searching for com-
mon targets of signaling proteins can help to develop
alternative treatment strategies.

Common downstream (upstream) of a source entity set S
is the set of potential common target (regulator) entities
that are in the downstream (upstream) of all entities in S.
More formally, the common downstream, CD(S, k), of a
source node set S with path length limit k is defined as

The common upstream CU(S, k) of a set S can be defined
similarly. Figure 10 shows an example of this operation.
Below is the pseudocode of this algorithm. The input
parameter dir specifies whether we are asking for potential
targets or regulators, requiring a forward or reverse BFS,
respectively. Algorithm CU-COMPOUNDBFS simply
increases the reached count of nodes in the k-neighbor-
hood of seed node n1. The nodes reached during such

CD is a compound path from to (,) { | (| |S k x a S P P a x P= ∀ ∈ ∃ ∧ ≤ kk)}.

UpstreamFigure 9
Upstream. (left) Up (green) and down (cyan) stream of protein "a" (yellow) in a partial mechanistic pathway. (right) Unam-
biguous positive upstream of node "a" (yellow) contains node "c" (green) only, as node "b" is on both positive and negative
paths leading to node "a".

BMC Bioinformatics 2009, 10:376 http://www.biomedcentral.com/1471-2105/10/376

Page 11 of 16

(page number not for citation purposes)

searches are combined in a candidate set. Only the nodes
in the candidate set that are reached from all source nodes
are selected to form a result set.

algorithm COMMONUPSTREAM(S, k, dir)

1 C := R:= ∅ //candidate and result sets, respectively

2 for n1 ∈ S do

3 C := C ∪ CU-COMPOUNDBFS(n1, k, dir)

4 for n2 ∈ C do

5 if n2.LABEL(reached) = |S| then R := R ∪ {n2}

6 return R

This operation takes O(|S|·|NB(S, k)|) time, as a BFS is
performed for each node in S.

In addition, one might require such paths leading to
potential targets or originating from potential regulators
to be positive or negative. For instance, the common
downstream of source nodes S reached by positive com-
pound paths of length up to k only, denoted by CD+(S, k),
might be of interest. However, we conjecture that the
complexity of such an operation is asymptotically higher.

Network of interest

A problem that arises frequently in high-throughput stud-
ies is gene/protein selection. For example, new high-
throughput sequencing technologies enabled scanning
for mutations in a large number of samples. With the cur-
rent technology, the feasible number of genes that can be
sequenced is in the order of tens to hundreds [34]. One
way to select new genes for sequencing is to search within
the vicinity of the genes that are already implied in that
cancer. Particularly, genes that connect one or more of
these usual suspects via a signaling path are more likely to
be critical for the disease.

Given a graph G and a set of entities of interest S (e.g.,
genes of interest), network or graph of interest finds in G
all compound paths of length at most k between any two
entities of a specified entity set. The subgraph of G
induced by the nodes of the resulting set gives the graph
of interest. More formally,

As the name suggests, this operation is aimed at finding a
"maximal" subgraph comprising all the nodes of interest
complemented by the "missing links" among these nodes;
the parameter k defines how long the paths, which link
nodes of interest to form a graph of interest, are allowed
to be. Figure 11 explains this operation with an example.
Below is the pseudocode for this operation. Here, two sep-
arate BFS are to be run in forward and reverse directions,
and combined to form a candidate set. The nodes in this
candidate set satisfying the maximum path length con-
straint are put in a result set, which is "purified" by a post-
processing phase, during which degree 1 nodes that do
not lie on paths between source set nodes (effectively,
subgraphs that are trees in the result, coinciding with the
source set only at their roots) are pruned iteratively.

The following algorithm can handle directed compound
pathways. It could, however, be simplified for undirected
pathways by removing a redundant call to GOI-COM-

POUNDBFS.

algorithm GRAPHOFINTEREST(S, k)

1 C := GOI-COMPOUNDBFS(S, k, fwd) ∪ GOI-COMPOUND-
BFS(S, k, rev)

2 for q ∈ C do

3 if q.LABEL(fwd) + q.LABEL(rev) ≤ k then R := R ∪ {q}

4 R := PURIFY(S, R)

GoI and is on a compound path (,) [], { | | |S k G B B x x S S P P= = − ∧ ≤ kk}.

Common regulatorFigure 10
Common regulator. The common upstream, with a path
limit of 2, of small molecules containing the word "lauro" in
their name (cyan) in this partial mechanistic pathway turns
out to be a single node representing a molecular complex
(green). The paths from the potential common regulator to
the target nodes are highlighted (yellow).

BMC Bioinformatics 2009, 10:376 http://www.biomedcentral.com/1471-2105/10/376

Page 12 of 16

(page number not for citation purposes)

5 return R

algorithm GOI-COMPOUNDBFS(S, k, dir)

1 Add all the nodes in set S to queue Q

2 Initialize dir labels of all the nodes in S to zero

3 T:= ∅

4 while Q ≠ ∅ do

5 n1 := Q.DEQUEUE()

6 for e ∈ n1.INCIDENTEDGES(dir) do

7 if dir = fwd then e.LABEL(dir):= n1.LABEL(dir) +1

8 else e.LABEL(dir):= n1.LABEL(dir)

9 for n2 ∈ e.COMPOUNDOTHEREND(n1) do

10 T := T ∪ {e, n2}

11 if n2.LABEL(dir) > n1.LABEL(dir) +1 then

12 n2.LABEL(dir) := n1.LABEL(dir) +1

13 if n2.LABEL(dir) < k and n2 ∉ S then
Q.ENQUEUE(n2)

14 return T

The complexity of this operation is clearly O(|NB(S, k)|);
that is, linear in the number of nodes and edges in the k-
neighborhood of nodes of interest.

The Paths-of-Interest (PoI) query, on the other hand, per-
forms the same operation but in a constrained manner,
from a specified set of source molecules to a specified set of
target molecules. More formally,

PoI where is on an path (, ,) [], { | | | }.S T k G B B x x S T P P k= = − ∧ ≤

Graph of interestFigure 11
Graph of interest. (left) A PPI network with proteins of interest CRK and CRKL (green); (middle) Graph of interest (yel-
low) formed by using paths of length up to 3 (k = 3) between nodes of interest (green); (right) Graph of interest with k = 2 (k
= 1 returns no results).

BMC Bioinformatics 2009, 10:376 http://www.biomedcentral.com/1471-2105/10/376

Page 13 of 16

(page number not for citation purposes)

Shortest paths between entities

Finding shortest paths between a single or all pairs of ver-
tices in a graph is a commonly used graph operation [35].
This query is a more general version of this operation,
where we find and list all shortest paths between source
and target sets S and T. This operation might be con-
strained by a parameter denoting the maximum length of
such paths. In addition, a parameter for "relaxing" the
shortest requirement might be useful. Thus, for instance,
the shortest compound paths between two node sets S
and T with maximum length k and "further distance" d
can be defined formally as

Figures 12 and 13 illustrate this query with examples.
Below, is the pseudocode for finding SP(S, T, k, d), where
mod specifies whether edges are to be treated as directed or
undirected.

algorithm SHORTESTPATHS(S, T, k, d, mod)

1 R := SP-COMPOUNDBFS(S, T, k, d, mod)

2 return BUILDUPANDENUMPATHS(S, T, R)

algorithm BUILDUPANDENUMPATHS(S, T, R)

1 for n ∈ R do

2 Construct a new path p for n

3 Add all nodes in set R to queue Q

4 W:= ∅

5 while Q ≠ ∅ do

6 n1 := Q.DEQUEUE()

7 for n2 ∈ n1.COMPOUNDNEIGHBORS(mod) do

8 if n2.LABEL() = n1.LABEL()-1 then

9 W := W ∪ {(n1, n2) }

10 if n2 ∉ W and n2.LABEL() ≠ 0 then

11 W := W ∪ {n2}

12 Q.ENQUEUE(n2)

13 if n2 is the first neighbor then Concatenate n2

to paths of n1

14 else Clone all the paths of n1 and add them to
paths of n2

15 Update path list of n2

16 Update sign of paths of n2 with edge (n1, n2)

SP is a compound path

 i

(, , ,) { |

| | min(,)

S T k d P P S T

P l d k l

= − ∧

≤ + ∧ ss the length of a shortest compound path}.

Shortest pathsFigure 12
Shortest paths. Shortest paths (yellow) between bioentities whose names start with "PPA" (cyan) and those whose names
contain "ESR" (green) with (left) d = 0 and (right) d = 2. Notice that the length of a shortest path between these two node
sets is 1.

BMC Bioinformatics 2009, 10:376 http://www.biomedcentral.com/1471-2105/10/376

Page 14 of 16

(page number not for citation purposes)

17 return W, paths

Here, SP-COMPOUNDBFS runs a BFS, starting with nodes in
set S in provided mod, up to maximum depth k or shortest
compound path length plus d, whichever is smaller, and
returns the reached nodes in T while labeling each node
with its distance from source. The overall complexity of
the algorithm is O(l + |NB(S, k)|), where l is the total
length of the paths enumerated. Here, l can be exponen-
tial in the size of the graph, in the worst case. Notice that

the above algorithm enumerates all shortest compound
paths. If it suffces to find all the nodes and edges on such
paths, rather than listing individual paths, BUILDUPANDE-
NUMPATHS may be simplified, resulting in a theoretically
faster operation.

In the context of pathways, one might also be interested
in only positive, SP+(S, T, k, d), or negative shortest com-
pound A-B paths in a given pathway graph. Another use-
ful type of operation is to find first k shortest compound

Shortest pathsFigure 13
Shortest paths. Shortest path (yellow) between Cdc25C (green) and CKI (cyan) in nucleus. Compound nodes with dashed
borders represent homologies, whereas compound nodes with solid borders represent molecular complexes.

BMC Bioinformatics 2009, 10:376 http://www.biomedcentral.com/1471-2105/10/376

Page 15 of 16

(page number not for citation purposes)

paths (not necessarily unique!) between specified node
sets. More formally,

Where

Feedback of an entity

Inferring causal relationships between biological entities
[36,37] is both critically important and difficult. One
problem stems from feedback loops abundant in biologi-
cal systems. When analyzing the results of these algo-
rithms or methods, one often wants to check if there exists
a known feedback loop to flag the inferences that are
potentially false.

This operation results in a list of positive or negative com-
pound cycles that contain a specified entity. It is useful for
finding feedback signals and metabolic cycles in a net-
work. Positive feedback of a node s with maximum length
k is defined as

Figure 14 illustrates this with an example. Our algorithm
is based on generating all cycles starting from a given set
of source nodes in a directed graph, as described in [38].

The algorithm starts at source s, and builds a directed path
sn1n2n3�nk in a depth-first manner. A cycle is found if the
next vertex nk+1 equals s. After generating this cycle, the
next edge going out of nk is explored. If all edges going out
from nk have been explored or the maximum length is
exceeded, the algorithm backs up to the previous vertex nk-

1, and continues. This process continues until we try to
back up past the source node s. At that point, all cycles
involving s have been discovered, so s can be removed
from the graph, and the process can be repeated until the
source set becomes empty.

To prevent traversing cycles originating at a vertex ni dur-
ing the search rooted at s, all vertices on the current path
are marked as "unavailable" extensions of that path. For
this, a flag is maintained, which is set to false as soon as n
is appended to the current path. That node will remain
unavailable until the algorithm backs up past n to its pre-
vious vertex on the graph. If the current path up to n does
not lead to a cycle, it will remain unavailable, even if the
algorithm backs up past it. This prevents redundant dead-

end searches. Vertex n will, however, be marked available
if a cycle could not be found due to cycle length limit,
because it is possible for a shorter path to form a cycle by
going through n.

Similar to the basis operation given in [38], this algorithm
is of O(|NB(S, k)|·(c + 1)) time complexity, where c is the
total number of cycles (positive and negative) discovered.

Authors' contributions
All authors participated in the design of the framework
and the algorithms. UD directed the research and devel-
opment. AC implemented most algorithms. ED and OB
helped with implementation. All authors read and
approved the final manuscript.

Additional material

k-SP+
=(, ,) { , , , },A B k P P Pk1 2 L

P i k A B

P

i

i

, , , ,

| |

= −1 L is a positive compound path and

 is miniimum over all compound path sets of size k
i

k
.

=∑ 1

FB is a positive compound cycle is on +
= ∧ ∧ ≤(,) { | | |s k C C s C C k}}.

Additional file 1
A querying scenario. A sample session in which subsequent queries and

complexity management operations are performed to form a model that

might be of use to a PATIKAweb user.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-376-S1.PDF]

Additional file 2
Detailed analysis of shortest path length versus execution time. Illus-

trates the effect of source and target set sizes in execution time for shortest

path query.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-376-S2.PDF]

Positive feedbackFigure 14
Positive feedback. Positive feedback (yellow) of a specified
Citrate state in mitochondria (green) with up to length 10.
The result contains two metabolic cycles; one in mitochon-
dria (of length 10) and one through cytoplasm (of length 8).

http://www.biomedcentral.com/content/supplementary/1471-2105-10-376-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-10-376-S2.PDF

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for

disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:

http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Bioinformatics 2009, 10:376 http://www.biomedcentral.com/1471-2105/10/376

Page 16 of 16

(page number not for citation purposes)

Acknowledgements
The authors thank the rest of the Patikans (especially S. Tekin and H.

Kucuk) for their contributions. This work was supported in part by

TUBITAK (grant 104E049).

References
1. Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B,

Garapati P, Hemish J, Hermjakob H, Jassal B, Kanapin A, Lewis S,
Mahajan S, May B, Schmidt E, Vastrik I, Wu G, Birney E, Stein L, D'Eus-
tachio P: Reactome knowledgebase of human biological path-
ways and processes. Nucleic Acids Res 2009:D619-22.

2. Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Laten-
dresse M, Paley S, Rhee SY, Shearer AG, Tissier C, Walk TC, Zhang
P, Karp PD: The MetaCyc Database of metabolic pathways
and enzymes and the BioCyc collection of Pathway/Genome
Databases. Nucleic Acids Res 2008:D623-31.

3. Okuda S, Yamada T, Hamajima M, Itoh M, Katayama T, Bork P, Goto
S, Kanehisa M: KEGG Atlas mapping for global analysis of met-
abolic pathways. Nucleic Acids Res 2008:W423-6.

4. Demir E, Babur O, Dogrusoz U, Gursoy A, Ayaz A, Gulesir G, Nisanci
G, Cetin-Atalay R: An Ontology for Collaborative Construc-
tion and Analysis of Cellular Pathways. Bioinformatics 2004,
20(3):349-356.

5. Bondy JA, Murty USR: Graph Theory with Applications Great Britain:
The McMillan Press Ltd; 1976.

6. Aittokallio T, Schwikowski B: Graph-based methods for analys-
ing networks in cell biology. Briefings in Bioinformatics 2006,
7(3):243-255.

7. Reddy VN, Mavrovouniotis ML, Liebman MN: Petri Net Represen-
tations in Metabolic Pathways. 1st International Conference on
Intelligent Systems for Molecular Biology 1993:328-336.

8. Hofestädt R, Thelen S: Qualitative modeling of biochemical
networks. In Silico Biology 1998, 1:39-53.

9. Fukuda K, Takagi T: Knowledge representation of signal trans-
duction pathways. Bioinformatics 2001, 17(9):829-837.

10. Tian Y, McEachin RC, Santos C, States DJ, Patel JM: SAGA: a sub-
graph matching tool for biological graphs. Bioinformatics 2007,
23(2):232-239.

11. Yip KY, Yu H, Kim PM, Schultz M, Gerstein M: The tYNA platform
for comparative interactomics: a web tool for managing,
comparing and mining multiple networks. Bioinformatics 2006,
22(23):2968-2970.

12. Shlomi T, Segal D, Ruppin E, Sharan R: QPath: a method for que-
rying pathways in a protein-protein interaction network.
BMC Bioinformatics 2006, 7:199.

13. Sharan R, Ideker T: Modeling cellular machinery through bio-
logical network comparison. Nature Biotechnology 2006,
24(4):427-433.

14. Gting R: GraphDB: Modeling and Querying Graphs in Data-
bases. Proc 20th Int Conf on Very Large Databases, Santiago, Chile
1994:297-308 [http://portal.acm.org/citation.cfm?id=672980].

15. Leser U: A query language for biological networks. Bioinformat-
ics 2005, 21(2):33-39.

16. Croes D, Couche F, Wodak SJ, van Helden J: Metabolic PathFind-
ing: inferring relevant pathways in biochemical networks.
Nucleic Acids Research 2005, 33:W326.

17. Baitaluk M, Sedova M, Ray A, Gupta A: BiologicalNetworks: visu-
alization and analysis tool for systems biology. Nucleic Acids
Research 2006:466-471.

18. Dogrusoz U, Erson E, Giral E, Demir E, Babur O, Cetintas A, Colak
R: PATIKAweb: a Web interface for analyzing biological path-
ways through advanced querying and visualization. Bioinfor-
matics 2006, 22(3):374-375.

19. BioPAX: Biological Pathways Exchange. 2007 [http://www.bio
pax.org].

20. SBGN: Systems Biology Graphical Notation. 2007 [http://
www.sbgn.org].

21. Dogrusoz U, Feng Q, Madden B, Doorley M, Frick A: Graph Visual-
ization Toolkits. IEEE Computer Graphics and Applications 2002,
22:30-37.

22. Barabasi AL, Oltvai ZN: Network biology: understanding the
cell's functional organization. Nat Rev Genet 2004, 5(2101-113
[http://dx.doi.org/10.1038/nrg1272].

23. Bader G, Cary M, Sander C: Pathguide: a pathway resource list.
Nucleic Acids Research 2006:D504-6.

24. Pathway Commons: Pathway Commons. 2007 [http://www.path
waycommons.org].

25. Bonarius HPJ, Schmid G, Tramper J: Flux analysis of underdeter-
mined metabolic networks: The quest for the missing con-
straints. Trends in Biotechnology 1997, 15:308-314.

26. Babur O, Demir E, Ayaz A, Dogrusoz U, Sakarya O: Microarray
Data Analysis and Pathway Activity Inference in PATIKA.
2004.

27. Yeung N, Cline MS, Kuchinsky A, Smoot ME, Bader GD: Exploring
biological networks with Cytoscape software. Curr Protoc Bio-
informatics 2008, Chapter 8(Unit 8.13):.

28. Funahashi A, Matsuoka Y, Jouraku A, Morohashi M, Kikuchi N, Kitano
H: CellDesigner 3.5: A Versatile Modeling Tool for Biochem-
ical Networks. Proceedings of the IEEE 2008, 96(8):1254-1265.

29. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S,
Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A,
Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian
A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK,
Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S,
Ranganathan P, Ramabadran S, Chaerkady R, Pandey A: Human Pro-
tein Reference Database-2009 update. Nucleic Acids Res 2009,
37:D767-772.

30. Brohe S, van Helden J: Evaluation of clustering algorithms for
protein-protein interaction networks. BMC Bioinformatics 2006,
7:488.

31. Wong DJ, Nuyten DS, Regev A, Lin M, Adler AS, Segal E, Vijver MJ
van de, Chang HY: Revealing targeted therapy for human can-
cer by gene module maps. Cancer Res 2008, 68:369-378.

32. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, Joshi MB, Har-
pole D, Lancaster JM, Berchuck A, Olson JA, Marks JR, Dressman HK,
West M, Nevins JR: Oncogenic pathway signatures in human
cancers as a guide to targeted therapies. Nature 2006,
439:353-357.

33. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO,
Lindeman N, Gale CM, Zhao X, Christensen J, Kosaka T, Holmes AJ,
Rogers AM, Cappuzzo F, Mok T, Lee C, Johnson BE, Cantley LC, Jnne
PA: MET amplification leads to gefitinib resistance in lung
cancer by activating ERBB3 signaling. Science 2007,
316:1039-1043.

34. The Cancer Genome Atlas Research Network: Comprehensive
genomic characterization defines human glioblastoma genes
and core pathways. Nature 2008, 455:1061-1068.

35. Cormen TH, Leiserson CE, Rivest RL: Introduction to Algorithms Cam-
bridge: McGraw-Hill; 1985.

36. Wang K, Alvarez MJ, Bisikirska BC, Linding R, Basso K, Dalla Favera
R, Califano A: Dissecting the interface between signaling and
transcriptional regulation in human B cells. Pac Symp Biocom-
put 2009, 20:264-275.

37. Danos V, Feret J, Fontana W, Harmer R, Krivine J: Rule-based mod-
elling of cellular signalling. In CONCUR'07 Springer Berlin;
2007:17-41.

38. Reingold EM, Nievergelt J, Deo N: Combinatorial Algorithms: Theory and
Practice Englewood Cliffs, NJ: Prentice-Hall; 1977.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18981052
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18981052
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17965431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17965431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17965431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18477636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18477636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16880171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16880171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11471241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11471241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11590099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11590099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17110368
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17110368
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17021160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17021160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17021160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16606460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16606460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16601728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16601728
http://portal.acm.org/citation.cfm?id=672980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16287939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16287939
http://www.biopax.org
http://www.biopax.org
http://www.sbgn.org
http://www.sbgn.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14735121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14735121
http://dx.doi.org/10.1038/nrg1272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381921
http://www.pathwaycommons.org
http://www.pathwaycommons.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18819078
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18819078
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18988627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18988627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17087821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17087821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18199530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18199530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16273092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16273092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17463250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17463250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18772890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18772890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18772890
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Definitions
	Ontology

	Results
	Query interface of PATIKAweb
	Experiments

	Discussion
	Methods
	Compound structures
	Ubiquitous entities

	Algorithms
	Neighborhood of entities
	Upstream or downstream of entities
	Common targets or regulators
	Network of interest
	Shortest paths between entities
	Feedback of an entity

	Authors' contributions
	Additional material
	Acknowledgements
	References

