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Abstract

We consider the problem of reconstructing near-perfect phylogenetic trees using binary character

states (referred to as BNPP). A perfect phylogeny assumes that every character mutates at most once in

the evolutionary tree, yielding an algorithm for binary character states that is computationally efficient

but not robust to imperfections in real data. A near-perfect phylogeny relaxes the perfect phylogeny

assumption by allowing at most a constant number of additional mutations. We develop two algorithms

for constructing optimal near-perfect phylogenies and provide empirical evidence of their performance.

The first simple algorithm is fixed parameter tractable when the number of additional mutations and

the number of characters that share four gametes with some other character are constants. The sec-

ond, more involved algorithm for the problem is fixed parameter tractable when only the number of

additional mutations is fixed. We have implemented both algorithms and shown them to be extremely

efficient in practice on biologically significant data sets. This work proves the BNPP problem fixed

parameter tractable and provides the first practical phylogenetic tree reconstruction algorithms that find

guaranteed optimal solutions while being easily implemented and computationally feasible for data sets

of biologically meaningful size and complexity.

Index Terms

computations on discrete structures, trees, biology and genetics

I. INTRODUCTION

Reconstruction of evolutionary trees is a classical computational biology problem [15], [24].

In the maximum parsimony (MP) model of this problem one seeks the smallest tree to explain a

set of observed organisms. Parsimony is a particularly appropriate metric for trees representing

short time scales, which makes it a good choice for inferring evolutionary relationships among

individuals within a single species or a few closely related species. The intraspecific phylogeny

problem has become especially important in studies of human genetics now that large-scale

genotyping and the availability of complete human genome sequences have made it possible to

identify millions of single nucleotide polymorphisms (SNPs) [26], sites at which a single DNA

base takes on two common variants.

Minimizing the length of a phylogeny is the problem of finding the most parsimonious tree,

a well known NP-complete problem [12]. Researchers have thus focused on either sophisticated

heuristics or solving optimally for special cases (e.g. fixed parameter variants [1], [8], [20]).
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Previous attempts at such solutions for the general parsimony problem have only produced

theoretical results, yielding algorithms too complicated for practical implementation. A large

number of related works have been published, but it is impossible to mention all of them here.

In this work, we focus on the the case when the set of character states is binary. In this

setting, the input is often represented as an n×m matrix I . The n rows of the matrix (taxa) can

be viewed as points on an m-cube. Therefore, the problem is equivalent to finding the Steiner

minimum tree in a hypercube. In the binary state case, a phylogeny is called perfect if its length

equals m. Gusfield showed that such phylogenies can be reconstructed in linear time [14].

If there exists no perfect phylogeny for input I , then one option is to slightly modify I so

that a perfect phylogeny can be constructed for the resulting input. Upper bounds and negative

results have been established for such problems. For instance, Day and Sankoff [7], showed

that finding the maximum subset of characters containing a perfect phylogeny is NP-complete

while Damaschke [8] showed fixed parameter tractability for the same problem. The problem

of reconstructing the most parsimonious tree without modifying the input I seems significantly

harder.

Fernandez-Baca and Lagergren recently considered the problem of reconstructing optimal near-

perfect phylogenies [11], which assume that the size of the optimal phylogeny is at most q larger

than that of a perfect phylogeny for the same input size. They developed an algorithm to find

the most parsimonious tree in time nmO(q)2O(q2s2), where s is the number of states per character,

n is the number of taxa and m is the number of characters. This bound may be impractical for

sizes of m to be expected from SNP data, even for moderate q. Given the importance of SNP

data, it would therefore be valuable to develop methods able to handle large m for the special

case of s = 2, a problem we call Binary Near Perfect Phylogenetic tree reconstruction (BNPP).

A. Our Work

Algorithm 1: We first present theoretical and practical results on the optimal solution of the

BNPP problem. We completely describe and analyze an intuitive algorithm for the BNPP problem

that has running time O((72κ)qnm+nm2), where κ is the number of characters that violate the

four gamete condition, a test of perfectness of a data set explained below. Since κ ≤ m, this result

significantly improves the prior running time. Furthermore, the complexity of the previous work

would make practical implementation daunting; to our knowledge no implementation of it has

January 24, 2007 DRAFT



4

ever been attempted. Our results thus describe the first practical phylogenetic tree reconstruction

algorithm that finds guaranteed optimal solutions while being computationally feasible for data

sets of biologically relevant complexity. A preliminary paper on this algorithm appeared as

Sridhar et al. [23].

Algorithm 2: We then present a more involved algorithm that runs in time O(21q + 8qnm2).

Fernandez-Baca and Lagergren [11] in concluding remarks state that the most important open

problem in the area is to develop a parameterized algorithm or prove W [t] hardness for the

near-perfect phylogeny problem. We make progress on this open problem by showing for the

first time that BNPP is fixed parameter tractable (FPT). To achieve this, we use a divide and

conquer algorithm. Each divide step involves performing a ‘guess’ (or enumeration) with cost

exponential in q. Finding the Steiner minimum tree on a q-cube dominates the run-time when

the algorithm bottoms out. The present work substantially improves on the time bounds derived

for a preliminary version of this algorithm, which was first presented in Blelloch et al. [2].

We further implement variants of both algorithms and demonstrate them on a selection of

real mitochondrial, Y-chromosome and bacterial data sets. The results demonstrate that both

algorithms substantially outperform their worst-case time-bounds, yielding optimal trees with

high efficiency on real data sets typical of those for which such algorithms would be used in

practice.

II. PRELIMINARIES

In defining formal models for parsimony-based phylogeny construction, we borrow definitions

and notations from a couple of previous works [11], [24]. The input to a phylogeny problem is an

n×m binary matrix I where rows R(I) represent input taxa and are binary strings. The column

numbers C = {1, · · · , m} are referred to as characters. In a phylogenetic tree, or phylogeny,

each vertex v corresponds to a taxon (not necessarily in the input) and has an associated label

l(v) ∈ {0, 1}m.

The following are equivalent definitions of a phylogeny, both of which have been used in

prior literature:

Definition 1: A phylogeny T for matrix I is:

1) a tree T (V, E) with the following properties R(I) ⊆ l(V (T )) and for all (u, v) ∈ E(T ),

H(l(u), l(v)) = 1 where H is the Hamming distance.
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2) a tree T (V, E) with the following properties: R(I) ⊆ l(V (T )) and l({v ∈ V (T )|degree(v) ≤

2}) ⊆ R(I). That is, every input taxon appears in T and every leaf or degree-2 vertex is

an input taxon.

The following two definitions provide some useful terminology when discussing either defi-

nition of a phylogeny:

Definition 2: A vertex v of phylogeny T is terminal if l(v) ∈ R(I) and Steiner otherwise.

Definition 3: For a phylogeny T , length(T ) =
∑

(u,v)∈E(T ) d(l(u), l(v)), where d is the

Hamming distance.

A phylogeny is called an optimum phylogeny if its length is minimized. We will assume that

both states 0, 1 are present in all characters. Therefore the length of an optimum phylogeny is

at least m. This leads to the following two definitions:

Definition 4: For a phylogeny T on input I , penalty(T ) = length(T )−m; penalty(I) =

penalty(T opt), where T opt is any optimum phylogeny on I .

Definition 5: A phylogeny T is called q-near-perfect if penalty(T ) = q and perfect if

penalty(T ) = 0.

Note that in an optimum phylogeny, no two vertices share the same label. Therefore, we can

equivalently define an edge of a phylogeny as (t1, t2) where ti ∈ {0, 1}m. Since we will always

be dealing with optimum phylogenies, we will drop the label function l(v) and use v to refer to

both a vertex and the taxon it represents in a phylogeny.

With the above definitions, we are now prepared to define our central computational problem:

The BNPP problem: Given an integer q and an n×m binary input matrix I , if penalty(I) ≤ q,

then return an optimum phylogeny T , else declare NIL. The problem is equivalent to finding the

minimum Steiner tree on an m-cube if the optimum tree is at most q larger than the number of

dimensions m or declaring NIL otherwise. The problem is fundamental and therefore expected

to have diverse applications besides phylogenies.

Definition 6: We define the following notations:

• r[i] ∈ {0, 1}: the state in character i of taxon r

• µ(e) : E(T ) → 2C : the set of all characters corresponding to edge e = (u, v) with the

property for any i ∈ µ(e), u[i] 6= v[i]. Note that for the first definition of a phylogeny

µ(e) : E(T ) → C.
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• for a set of taxa M , we use T ∗
M to denote an optimum phylogeny on M

We say that an edge e mutates character i if i ∈ µ(e). We will use the following well known

definition and lemma on phylogenies.

Definition 7: Given matrix I , the set of gametes Gi,j for characters i, j is defined as: Gi,j =

{(r[i], r[j])|r ∈ R(I)}. Two characters i, j share t gametes in I i.f.f. |Gi,j| = t.

In other words, the set of gametes Gi,j is a projection on the i, j dimensions.

Lemma 2.1: [14] An optimum phylogeny for input I is not perfect i.f.f. there exists two

characters i, j that share (all) four gametes in I .

Definition 8: (Conflict Graph [17]): A conflict graph G for matrix I with character set C

is defined as follows. Every vertex v of G corresponds to unique character c(v) ∈ C. An edge

(u, v) is added to G i.f.f. c(u), c(v) share all four gametes in I . Such a pair of characters are

defined to be in conflict.

Note that if the conflict graph G contains no edges, then a perfect phylogeny can be constructed

for I . Gusfield [14] provided an efficient algorithm to reconstruct a perfect phylogeny in such

cases.

Simplifications: We assume that the all zeros taxon is present in the input. If not, using our

freedom of labeling, we convert the data into an equivalent input containing the all zeros taxon

(see section 2.2 of Eskin et al [9] for details). We also remove any character that contains only

one state. Such characters do not mutate in the whole phylogeny and are therefore useless in

any phylogeny reconstruction. The BNPP problem asks for the reconstruction of an unrooted

tree. For the sake of analysis, we will however assume that all the phylogenies are rooted at the

all zeros taxon.

III. SIMPLE ALGORITHM

This section describes a simple algorithm for the reconstruction of a binary near-perfect

phylogenetic tree. Throughout this section, we will use the first definition of a phylogeny

(Definition 1).

We begin by performing the following pre-processing step. For every pair of characters c′, c′′

if |Gc′,c′′| = 2, we (arbitrarily) remove character c′′. After repeatedly performing the above step,

we have the following lemma:

Lemma 3.1: For every pair of characters c′, c′′, |Gc′,c′′| ≥ 3.
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(a)

(b)

Fig. 1. (a) Phylogeny T and skeleton s(T, C′), C′ = {3, 4}. Edges are labeled with characters that mutate µ and super nodes

with tags t. (b) Transform to remove a degree 2 Steiner root from a super node. Note: the size of the phylogeny is unchanged.

We will assume that the above lemma holds on the input matrix for the rest of the paper.

Note that such characters c′, c′′ are identical (after possibly relabeling one character) and are

usually referred to as non-informative. It is not hard to show that this preprocessing step does

not change the correctness or running time of our algorithm.

The following additional defintions are required for the description and analysis of the simple

algorithm:

Definition 9: For any phylogeny T and set of characters C ′ ⊆ C:

• a super node is a maximal connected subtree T ′ of T s.t. for all edges e ∈ T ′, µ(e) /∈ C ′

• the skeleton of T , s(T, C ′), is the tree that results when all super nodes are contracted to

a vertex. The vertex set of s(T, C ′) is the set of super nodes. For all edges e ∈ s(T, C ′),

µ(e) ∈ C ′.

Definition 10: A tag t(u) ∈ {0, 1}m of super node u in s(T, C ′) has the property that t(u)[c′] =

v[c′] for all c′ ∈ C ′, vertices v ∈ u; t[u][i] = 0 for all i /∈ C ′.

Throughout this paper, we will assume without loss of generality that we are working with

phylogenies and skeletons that are rooted at the all zeros taxon and tag respectively. Furthermore,

the skeletons used in this work themselves form a perfect phylogeny in the sense that no character

mutates more than once in the skeleton. Note that in such skeletons, tag t(u)[i] = 1 if and only

if character i mutates exactly once in the path from the root to u. Figure 1(a) shows an example

of a skeleton of a phylogeny. We will use the term sub-phylogeny to refer to a subtree of a

phylogeny.
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function buildNPP ( binary matrix I , integer q )

1) let G(V, E) be the conflict graph of I

2) let Vnis ⊆ V be the set of non-isolated vertices

3) for all M ∈ 2c(Vnis), |M | ≤ q

a) construct rooted perfect phylogeny PP(VPP , EPP ) on

characters C \ M

b) define λ : R 7→ VPP s.t. λ(r) = u i.f.f. for all i ∈ C\M ,

r[i] = t(u)[i]

c) Tf := linkTrees (PP)

d) if penalty(Tf ) ≤ q then return Tf

4) return NIL

Fig. 2. Pseudo-code to find the skeleton.

Throughout the analysis, we fix an optimal phylogeny T ∗ and show that our algorithm finds

it. We assume that both Topt and its skeleton is rooted at the all zeros label and tag respectively.

The high level idea of our algorithm is to first guess the characters that mutate more than once

in Topt. The algorithm then finds a perfect phylogeny on the remaining characters. Finally, it

adds back the imperfect components by solving a Steiner tree problem. The algorithm is divided

into two functions, buildNPP and linkTrees, whose pseudo-code is provided in Figures 2

and 3.

Function buildNPP starts by determining the set of characters c(Vnis) that corresponds to

the non-isolated vertices of the conflict graph in Step 2. From set c(Vnis), the algorithm then

selects by brute-force the set of characters M that mutate more than once in Topt. Only characters

corresponding to non-isolated vertices can mutate more than once in any optimal phylogeny (a

simple proof follows from Buneman graphs [24]). Since all characters of C \M mutate exactly

once, the algorithm constructs a perfect phylogeny on this character set using Gusfield’s linear

time algorithm [14]. The perfect phylogeny is unique because of Lemma 3.1. Note that PP is

the skeleton s(Topt, C \ M). Since the tags of the skeleton are unique, the algorithm can now

determine the super node where every taxon resides as defined by function λ in Step 3b. This

rooted skeleton PP is then passed into function linkTrees to complete the phylogeny.
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function linkTrees ( skeleton Sk(Vs, Es) )

1) let S := root(Sk)

2) let RS := {s ∈ R|λ(s) = S}

3) for all children Si of S

a) let Ski be subtree of Sk rooted at Si

b) (ri, ci) := linkTrees(Ski)

4) let cost :=
∑

i ci

5) for all i, let li := µ(S, ci)

6) for all i, define pi ∈ {0, 1}m s.t. pi[li] 6= ri[li] and for all

j 6= li, pi[j] = ri[j]

7) let τ := RS ∪ (∪i{pi})

8) let D ⊆ C be the set of characters where taxa in τ differ

9) guess root taxon of S, rS ∈ {0, 1}m s.t. ∀i ∈ C \ D, ∀u ∈

τ, rS[i] = u[i]

10) let cS be the size of the optimal Steiner tree of τ ∪ {rS}

11) return (rS, cost + cS)

Fig. 3. Pseudo-code to construct and link imperfect phylogenies

Function linkTrees takes a rooted skeleton Sk (sub-skeleton of PP ) as argument and

returns a tuple (r, c). The goal of function linkTrees is to convert skeleton Sk into a

phylogeny for the taxa that reside in Sk by adding edges that mutate M . Notice that using

function λ, we know the set of taxa that reside in skeleton Sk. The phylogeny for Sk is built

bottom-up by first solving the phylogenies on the sub-skeleton rooted at children super nodes of

Sk. Tuple (r, c) returned by function call to linkTrees(Sk) represents the cost c of the optimal

phylogeny when the label of the root vertex in the root super node of Sk is r. Let S = root(Sk)

represent the root super node of skeleton Sk. RS is the set of input taxa that map to super node

S under function λ. Let its children super nodes be S1, S2, . . .. Assume that recursive calls to

linkTrees(Si) return (ri, ci). Notice that the parents of the set of roots ri all reside in super

node S. The parents of ri are denoted by pi and are identical to ri except in the character that

mutates in the edge connecting Si to S. Set τ is the union of pi and RS , and forms the set of
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vertices inferred to be in S. Set D is the set of characters on which the labels of τ differ i.e.

for all i ∈ D, ∃r1, r2 ∈ τ, r1[i] 6= r2[i]. In Step 9, we guess the root rS of super node S. This

guess is ‘correct’ if it is identical to the label of the root vertex of S in Topt. Notice that we are

only guessing |D| bits of rS . Corollary 3.3 of Lemma 3.2 along with optimality requires that

the label of the root vertex of Topt is identical to τ in all the characters C \ D:

Lemma 3.2: There exists an optimal phylogeny Topt that does not contain any degree 2 Steiner

roots in any super node.

Proof: Figure 1(b) shows how to transform a phylogeny that violates the property into one

that doesn’t. Root 10 is degree 2 Steiner and is moved into parent supernode as 01. Since 10

was Steiner, the transformed tree contains all input.

Corollary 3.3: In Topt, the LCA of the set τ is the root of super node S.

In step 10, the algorithm finds the cost of the optimum Steiner tree for the terminal set of

taxa τ ∪ {rS}. We use Dreyfus-Wagner recursion [22] to compute this minimum Steiner tree.

The function now returns rS along with the cost of the phylogeny rooted in S which is obtained

by adding the cost of the optimum Steiner tree in S to the cost of the phylogenies rooted at ci.

The following Lemma bounds the running time of our algorithm and completes the analysis:

Lemma 3.4: The algorithm described above runs in time O((18κ)qnm+nm2) and solves the

BNPP problem with probability at least 2−2q. The algorithm can be easily derandomized to run

in time O((72κ)qnm + nm2).

Proof: The probability of a correct guess at Step 9 in function linkTrees is exactly 2−|D|.

Notice that the Steiner tree in super node S has at least |D| edges. Since penalty(Topt) ≤ q,

we know that there are at most 2q edges that can be added in all of the recursive calls to

linkTrees. Therefore, the probability that all guesses at Step 9 are correct is at least 2−2q. The

time to construct the optimum Steiner tree in step 10 is O(3|τ |2|D|). Assuming that all guesses are

correct, the total time spent in Step 10 over all recursive calls is O(32q2q). Therefore, the overall

running time of the randomized algorithm is O((18κ)qnm+nm2). To implement the randomized

algorithm, since we do not know if the guesses are correct, we can simply run the algorithm

for the above time, and if we do not have a solution, then we restart. Although presented as

a randomized algorithm for ease of exposition, it is not hard to see that the algorithm can be

derandomized by exploring all possible roots at Step 9. The derandomized algorithm has total

running time O((72κ)qnm + nm2).
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IV. FIXED PARAMETER TRACTABLE ALGORITHM

This section deals with the complete description and analysis of our fixed parameter tractable

algorithm for the BNPP problem. Throughout this section we will use the second definition of

a phylogeny (Definition 1). For ease of exposition, we first describe a randomized algorithm for

the BNPP problem that runs in time O(18q + qnm2) and returns an optimum phylogeny with

probability at least 8−q. We later show how to derandomize it. In sub-section IV-A, we first

provide the complete pseudo-code and describe it. In sub-section IV-B, we prove the correctness

of the algorithm. In sub-section IV-C, we upper-bound the running time for the randomized and

derandomized algorithms and the probability that the randomized algorithm returns an optimum

phylogeny. The above work follows that presented in a preliminary paper on the topic [2]. Finally,

in sub-section IV-D, we show how to tighten the above bounds on the derandomized algorithm

to achieve our final result of O(21q + 8qnm2) run time.

A. Description

We begin with a high-level description of our randomized algorithm. The algorithm iteratively

finds a set of edges E that decomposes an optimum phylogeny T ∗
I into at most q components.

An optimum phylogeny for each component is then constructed using a simple method and

returned along with edges E as an optimum phylogeny for I .

We can alternatively think of the algorithm as a recursive, divide and conquer procedure. Each

recursive call to the algorithm attempts to reconstruct an optimum phylogeny for an input matrix

M . The algorithm identifies a character c s.t. there exists an optimum phylogeny T ∗
M in which

c mutates exactly once. Therefore, there is exactly one edge e ∈ T ∗
M for which c ∈ µ(e). The

algorithm, then guesses the vertices that are adjacent to e as r, p. The matrix M can now be

partitioned into matrices M0 and M1 based on the state at character c. Clearly all the taxa in

M1 reside on one side of e and all the taxa in M0 reside on the other side. The algorithm

adds r to M1, p to M0 and recursively computes the optimum phylogeny for M0 and M1. An

optimum phylogeny for M can be reconstructed as the union of any optimum phylogeny for M0

and M1 along with the edge (r, p). We require at most q recursive calls. When the recursion

bottoms out, we use a simple method to solve for the optimum phylogeny.

We describe and analyze the iterative method which flattens the above recursion to simplify

the analysis. For the sake of simplicity, we also define the following notations:
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buildNPP(input matrix I)

1) let L := {I}, E := ∅

2) while | ∪Mi∈L N(Mi)| > q

a) guess vertex v from ∪Mi∈LN(Mi), let

v ∈ N(Mj)

b) let M0 := Mj(c(v), 0) and M1 := Mj(c(v), 1)

c) guess taxa r and p

d) add r to M1, p to M0 and (r, p) to E

e) remove Mj from L, add M0 and M1 to L

3) for each Mi ∈ L compute an optimum phylogeny

Ti

4) return E ∪ (∪iTi)

Fig. 4. Pseudo-code to solve the BNPP problem. For all Mi ∈ L, N(Mi) is the set of non-isolated vertices in the conflict

graph of Mi. Guess at Step 2a is correct i.f.f. there exists T ∗

Mj
where c(v) mutates exactly once. Guess at Step 2c is correct

i.f.f. there exists T ∗

Mj
where c(v) mutates exactly once and edge (r, p) ∈ T ∗

Mj
with r[c(v)] = 1, p[c(v)] = 0. Implementation

details for Steps 2a, 2c and 3 are provided in Section IV-C.

• For the set of taxa M , M(i, s) refers to the subset of taxa that contains state s at character

i.

• For a phylogeny T and character i that mutates exactly once in T , T (i, s) refers to the

maximal subtree of T that contains state s on character i.

The pseudo-code for the above described algorithm is provided in Figure 4. The algorithm

performs ‘guesses’ at Steps 2a and 2c. If all the guesses performed by the algorithm are ‘correct’

then it returns an optimum phylogeny. The guess at Step 2a is correct if and only if there exists

T ∗
Mj

where c(v) mutates exactly once. The guess at Step 2c is correct if and only if there

exists T ∗
Mj

where c(v) mutates exactly once and edge (r, p) ∈ T ∗
Mj

with r[c(v)] = 1, p[c(v)] =

0. Implementation details for Steps 2a, 2c and 3 are provided in Section IV-C. An example

illustrating the reconstruction is provided in Figure 5.
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Fig. 5. Example illustrating the reconstruction. Underlying phylogeny is T ∗

I ; taxa r and p (both could be Steiner) are guessed

to create E = {(10000, 10100), (01000, 01010)}; E induces three components in T ∗

I . When all taxa in T ∗

I are considered,

character 3 conflicts with 1, 2 and 5 and character 4 conflicts with 1 and 2; two components are perfect (penalty 0) and one

has penalty 2; penalty(I) =def penalty(T ∗

I ) = 7.

B. Correctness

We will now prove the correctness of the pseudo-code under the assumption that all the guesses

performed by our algorithm are correct. Specifically, we will show that if penalty(I) ≤ q then

function buildNPP returns an optimum phylogeny. The following lemma proves the correctness

of our algorithm.

Lemma 4.1: At any point in execution of the algorithm, an optimum phylogeny for I can be

constructed as E ∪ (∪iTi), where Ti is any optimum phylogeny for Mi ∈ L.

Proof: We prove the lemma using induction. The lemma is clearly true at the beginning of

the routine when L = {I}, E = ∅. As inductive hypothesis, assume that the above property is true

right before an execution of Step 2e. Consider any optimum phylogeny T ∗
Mj

where c(v) mutates

exactly once and on the edge (r, p). Phylogeny T ∗
Mj

can be decomposed into T ∗
Mj

(c(v), 0) ∪

T ∗
Mj

(c(v), 1) ∪ (r, p) with length l = length(T ∗
Mj

(c(v), 0)) + length(T ∗
Mj

(c(v), 1)) + d(r, p).

Again, since c(v) mutates exactly once in T ∗
Mj

, all the taxa in M0 and M1 are also in T ∗
Mj

(c(v), 0)

and T ∗
Mj

(c(v), 1) respectively. Let T ′, T ′′ be arbitrary optimum phylogenies for M0 and M1

respectively. Since p ∈ M0 and r ∈ M1 we know that T ′ ∪ T ′′ ∪ (r, p) is a phylogeny for Mj

with cost length(T ′)+length(T ′′)+d(r, p) ≤ l. By the inductive hypothesis, we know that an

optimum phylogeny for I can be constructed using any optimum phylogeny for Mj . We have

now shown that using any optimum phylogeny for M0 and M1 and adding edge (r, p) we can
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construct an optimum phylogeny for Mj . Therefore the proof follows by induction.

C. Initial Bounds

In this sub-section we bound the probability of correct guesses, analyze the running time

and show how to derandomize the algorithm. We perform two guesses at Steps 2a and 2c.

Lemmas 4.2 and 4.6 bound the probability that all the guesses performed at these steps are

correct throughout the execution of the algorithm.

Lemma 4.2: The probability that all guesses performed at Step 2a are correct is at least 4−q.

Proof: Implementation: The guess at Step 2a is implemented by selecting v uniformly at

random from ∪iN(Mi).

To prove the lemma, we first show that the number of iterations of the while loop (step

2) is at most q. Consider any one iteration of the while loop. Since v is a non-isolated vertex

of the conflict graph, c(v) shares all four gametes with some other character c′ in some Mj .

Therefore, in every optimum phylogeny T ∗
Mj

that mutates c(v) exactly once, there exists a path

P starting with edge e1 and ending with e3 both mutating c′, and containing edge e2 mutating

c(v). Furthermore, the path P contains no other mutations of c(v) or c′. At the end of the current

iteration, Mj is replaced with M0 and M1. Both subtrees of T ∗
Mj

containing M0 and M1 contain

(at least) one mutation of c′ each. Therefore, penalty(M0) + penalty(M1) < penalty(Mj).

Since penalty(I) ≤ q, there can be at most q iterations of the while loop.

We now bound the probability. Intuitively, if | ∪i N(Mi)| is very large, then the probability

of a correct guess is large, since at most q out of | ∪i N(Mi)| characters can mutate multiple

times in T ∗
Mj

. On the other hand if | ∪i N(Mi)| = q then we terminate the loop. Formally, at

each iteration | ∪i N(Mi)| reduces by at least 1 (guessed vertex v is no longer in ∪iN(Mi)).

Therefore, in the worst case (to minimize the probability of correct guesses), we can have q

iterations of the loop, with q + 1 non-isolated vertices in the last iteration and 2q in the first

iteration. The probability in such a case that all guesses are correct is at least

(
q

2q
) × (

q − 1

2q − 1
) × . . . × (

1

q + 1
) =

1
(

2q

q

) ≥ 2−2q
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Application of Buneman Graphs: We now show that r, p can be found efficiently. To prove

this we need some tools from the theory of Buneman graphs [24]. Let M be a set of taxa

defined by character set C of size m. A Buneman graph F for M is a vertex induced subgraph

of the m-cube. Graph F contains vertices v if and only if for every pair of characters i, j ∈ C,

(v[i], v[j]) ∈ Gi,j . Recall that Gi,j is the set of gametes (or projection of M on dimensions i, j).

Each edge of the Buneman graph is labeled with the character at which the adjacent vertices

differ.

We will use the Buneman graph to show how to incrementally extend a set of taxa M by

adding characters that share exactly two gametes with some existing character. As before, we

can assume without loss of generality that the all zeros taxon is present in M . Therefore if a

pair of characters share exactly two gametes then they are identical. Assume that we want to add

character i to M and i′ ∈ M is identical to i. We extend M to M ′ by first adding the states on

character i′ for all taxa. For the rest of the discussion let Gi,j be the set of gametes shared between

characters i, j in matrix M ′. We extend M ′ to M ′′ by adding a taxon t s.t. t[i] = 0, t[i′] = 1 and

for all other characters j, if (0, 1) /∈ Gj,i then t[j] = 1 else t[j] = 0. Since we introduced a new

gamete on i, i′, no pair of characters share exactly two gametes in M ′′. Therefore a Buneman

graph G′′ for M ′′ can be constructed as before. A Buneman graph is a median graph [24] and

clearly a subgraph of the m + 1-cube, where m + 1 is the number of characters in M ′′. Every

taxon in M ′ is present in G′′ by construction. Using the two properties, we have the following

lemma.

Lemma 4.3: Every optimum phylogeny for the taxa in M ′ defined over the m + 1 characters

is contained in G′′(See Section 5.5, [24] for more details).

We now show the following important property on the extended matrix M ′′.

Lemma 4.4: If a pair of characters c, c′ conflict in M ′′ then they conflict in M ′.

Proof: For the sake of contradiction, assume not. Clearly i, i′ share exactly three gametes

in M ′′. Now consider any character j and assume that j, i shared exactly three gametes in M ′.

For the newly introduced taxon t, t[i] = 0. If t[j] = 1, then j, i cannot share (0, 1) gamete in M ′′

and therefore they do not conflict. If t[j] = 0, then the newly introduced taxon creates the (0, 0)

gamete which should be present in all pairs of characters. Now consider the pair of characters

(j, i′). If t[j] = 1, then in any taxon t′ of M ′, if t′[j] = 1 then t′[i] = 1 and therefore t[i] = 1

(since i, i′ are identical on all taxa except t) and therefore (1, 1) cannot be a newly introduced
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gamete. If t[j] = 0, then there exists some taxon t′ for which t′[j] = 0 and t′[i] = 1 and therefore

t′[i′] = 1 and again (0, 1) cannot be a newly introduced gamete. Finally consider any pair of

characters j, j′. If taxon t introduces gamete (0, 1), then there exists some taxon t′ with t′[j] = 0

and t′[i] = 1 If t′[j′] = 1, then (0, 1) cannot be a new gamete. If t′[j′] = 0, then t[j′] = 0 and

not 1. The case when (1, 0) is introduced by t is symmetric. Finally if t introduces (1, 1) then

consider any taxon t′ with t′[i] = 1. It has to be the case that t′[j] = t′[j′] = 1, and therefore

(1, 1) cannot be a newly introduced gamete.

We now have the following lemma.

Lemma 4.5: In every optimum phylogeny T ∗
M , the conflict graph on the set of taxa in T ∗

M

(Steiner vertices included) is the same as the conflict graph on M .

Proof: We say that a subgraph F ′ of F is the same as an edge labeled tree T if F ′ is a tree

and T can be obtained from F ′ by suppressing degree-two vertices. A phylogeny T is contained

in a graph F if there exists an edge-labeled subgraph F ′ that is the same as the edge labeled (by

function µ) phylogeny T . We know from Lemma 4.3 that all optimum phylogenies T ∗
M for M

is contained in the (extended) Buneman graph of M . Lemma 4.4 shows that the conflict graph

on M ′′ (and therefore on the extended Buneman graph of M ′′) is the same as the conflict graph

of M .

Lemma 4.6: The probability that all guesses performed at Step 2c are correct is at least 2−q.

Proof: Implementation: We first show how to perform the guess efficiently. For every

character i, we perform the following steps in order.

1) if all taxa in M0 contain the same state s in i, then fix r[i] = s

2) if all taxa in M1 contain the same state s in i, then fix r[i] = s

3) if r[i] is unfixed then guess r[i] uniformly at random from {0, 1}

Assuming that the guess at Step 2a (Figure 4) is correct, we know that there exists an optimum

phylogeny T ∗
Mj

on Mj where c(v) mutates exactly once. Let e ∈ T ∗
Mj

s.t. c(v) ∈ µ(e). Let r′

be an end point of e s.t. r′[c(v)] = 1 and p′ be the other end point. If the first two conditions

hold with the same state s, then character i does not mutate in Mj . In such a case, we know

that r′[i] = s, since T ∗
Mj

is optimal and the above method ensures that r[i] = s. Notice that

if both conditions are satisfied simultaneously with different values of s then i and c(v) share

exactly two gametes in Mj and therefore i, c(v) ∈ µ(e). Hence, r′[i] = r[i]. We now consider

the remaining cases when exactly one of the above conditions hold. We show that if r[i] is fixed
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to s then r′[i] = s. Note that in such a case at least one of M0, M1 contain both the states on

i and i, c(v) share at least 3 gametes in Mj . The proof can be split into two symmetric cases

based on whether r is fixed on condition 1 or 2. One case is presented below:

Taxon r[i] is fixed based on condition 1: In this case, all the taxa in M0 contain the same

state s on i. Therefore, the taxa in M1 should contain both states on i. Hence i mutates in

T ∗
Mj

(c(v), 1). For the sake of contradiction, assume that r′[i] 6= s. If i /∈ µ(e) then p′[i] 6= s.

However, all the taxa in M0 contain state s. This implies that i mutates in T ∗
Mj

(c(v), 0) as well.

Therefore i and c(v) share all four gametes on T ∗
Mj

. However i and c(v) share at most 3 gametes

in Mj - one in M0 and at most two in M1. This leads to a contradiction to Lemma 4.5. Once r

is guessed correctly, p can be computed since it is is identical to r in all characters except c(v)

and those that share two gametes with c(v) in Mj . We make a note here that we are assuming

that e does not mutate any character that does not share two gametes with c(v) in Mj . This

creates a small problem that although the length of the tree constructed is optimal, r and p could

be degree-two Steiner vertices. If after constructing the optimum phylogenies for M0 and M1,

we realize that this is the case, then we simply add the mutation adjacent to r and p to the edge

(r, p) and return the resulting phylogeny where both r and p are not degree-two Steiner vertices.

The above implementation therefore requires only guessing states corresponding to the re-

maining unfixed characters of r. If a character i violates the first two conditions, then i mutates

once in T ∗
Mj

(i, 0) and once in T ∗
Mj

(i, 1). If r[i] has not been fixed, then we can associate a pair

of mutations of the same character i with it. At the end of the current iteration Mj is replaced

with M0 and M1 and each contains exactly one of the two associated mutations. Therefore

if q′ characters are unfixed then penalty(M0) + penalty(M1) ≤ penalty(Mj) − q′. Since

penalty(I) ≤ q, throughout the execution of the algorithm there are q unfixed states. Therefore

the probability of all the guesses being correct is 2−q.

This completes our analysis for upper bounding the probability that the algorithm returns an

optimum phylogeny. We now analyze the running time. We use the following lemma to show

that we can efficiently construct optimum phylogenies at Step 3 in the pseudo-code:

Lemma 4.7: For a set of taxa M , if the number of non-isolated vertices of the associated

conflict graph is t, then an optimum phylogeny T ∗
M can be constructed in time O(3s6t + nm2),

where s = penalty(M).
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Proof: We use the approach described by Gusfield and Bansal (see Section 7 of [16])

that relies on the Decomposition Optimality Theorem for recurrent mutations. We first construct

the conflict graph and identify the non-trivial connected components of it in time O(nm2). Let

κi be the set of characters associated with component i. We compute the Steiner minimum

tree Ti for character set κi. The remaining conflict-free characters in C \ ∪iκi can be added

by contracting each Ti to vertices and solving the perfect phylogeny problem using Gusfield’s

linear time algorithm [14].

Since penalty(M) = s, there are at most s + t + 1 distinct bit strings defined over character

set ∪iκi. The Steiner space is bounded by 2t, since | ∪i κi| = t. Using the Dreyfus-Wagner

recursion [22] the total run-time for solving all Steiner tree instances is O(3s+t2t).

Lemma 4.8: The algorithm described solves the BNPP problem in time O(18q + qnm2) with

probability at least 8−q.

Proof: For a set of taxa Mi ∈ L (Step 3, Figure 4), using Lemma 4.7 an optimum

phylogeny can be constructed in time O(3si6ti + nm2) where si = penalty(Mi) and ti is the

number of non-isolated vertices in the conflict graph of Mi. We know that
∑

i si ≤ q (since

penalty(I) ≤ q) and
∑

i ti ≤ q (stopping condition of the while loop). Therefore, the total

time to reconstruct optimum phylogenies for all Mi ∈ L is bounded by O(18q + nm2). The

running time for the while loop is bounded by O(qnm2). Therefore the total running time of

the algorithm is O(18q + qnm2). Combining Lemmas 4.2 and 4.6, the total probability that all

guesses performed by the algorithm is correct is at least 8−q.

Lemma 4.9: The algorithm described above can be derandomized to run in time O(72q +

8qnm2).

Proof: It is easy to see that Step 2c can be derandomized by exploring all possible states

for the unfixed characters. Since there are at most q unfixed characters throughout the execution,

there are 2q possibilities for the states.

However, Step 2a cannot be derandomized naively. We use the technique of bounded search

tree [6] to derandomize it efficiently. We select an arbitrary vertex v from ∪iN(Mi). We explore

both the possibilities on whether v mutates once or multiple times. We can associate a search

(binary) tree with the execution of the algorithm, where each node of the tree represents a

selection v from ∪iN(Mi). One child edge represents the execution of the algorithm assuming v

mutates once and the other assuming v mutates multiple times. In the execution where v mutates
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multiple times, we select a different vertex from ∪iN(Mi) and again explore both paths. The

height of this search tree can be bounded by 2q because at most q characters can mutate multiple

times. The path of height 2q in the search tree is an interleaving of q characters that mutate once

and q characters that mutate multiple times. Therefore, the size of the search tree is bounded by

4q.

Combining the two results, the algorithm can be derandomized by solving at most 8q different

instances of Step 3 while traversing the while loop 8q times for a total running time of O(144q +

8qnm2). This is, however, an over-estimate. Consider any iteration of the while loop when Mj

is replaced with M0 and M1. If a state in character c is unfixed and therefore guessed, we know

that there are two associated mutations of character c in both M0 and M1. Therefore at iteration

i, if q′i states are unfixed, then penalty(M0)+ penalty(M1) ≤ penalty(Mj)− q′i. At the end

of the iteration we can reduce the value of q used in Step 2 by q′i, since the penalty has reduced

by q′i. Intuitively this implies that if we perform a total of q′ guesses (or enumerations) at Step

2c, then at Step 3 we only need to solve Steiner trees on q − q′ characters. The additional cost

2q′ that we incur results in reducing the running time of Step 3 to O(18q−q′ + qnm2). Therefore

the total running time is O(72q + 8qnm2).

D. Improving the Run Time Bounds

In Lemma 4.9, we showed that the guesses performed at Step 2c of the pseudo-code in Figure 4

do not affect the overall running time. We can also establish a trade-off along similar lines for

Step 2a that can reduce the theoretical run-time bounds. We now analyze the details of such a

trade-off in the following lemma:

Lemma 4.10: The algorithm presented above runs in time O(21q + 8qnm2).

Proof:

For the sake of this analysis, we can declare each character to be in either a ‘marked’ state

or an ‘unmarked’ state. At the beginning of the algorithm, all the characters are ‘unmarked’.

As the algorithm proceeds, we will mark characters to indicate that the algorithm has identified

them as mutating more than once in T ∗

We will then examine two parameters, ρ and γ, which specify the progress made by the de-

randomized algorithm in either identifying multiply mutating characters or reducing the problem

to sub-problems of lower total penalty. Consider the set of characters S such that for all c ∈ S,
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character c is unmarked and there exists matrix Mi such that c mutates more than once in T ∗
Mi

. We

define parameter ρ to be |S|. Parameter ρ, intuitively, refers to the number of characters mutating

more than once (within trees T ∗
Mi

) that have not been identified yet. Parameter γ denotes the

sum of the penalties of the remaining matrices Mi, γ =
∑

i penalty(Mi).

Consider Step 2a of Figure 4, when the algorithm selects character c(v). After selecting c(v),

the algorithm proceeds to explore both cases when c(v) either mutates once or multiple times

in T ∗
Mj

. In the first case, penalty(T ∗
Mj

) decreases by at least 1. Therefore, γ decreases by at

least 1. In the second case, the algorithm has successfully identified a multiple mutant. We now

proceed to mark character c(v), which reduces ρ by 1 and leaves γ unchanged.

If the main loop at Step 3 terminates, then the algorithm finds optimal Steiner trees using

the Dreyfus-Wagner recursion and the run-time is bounded by 18γ using Lemma 4.7 as before.

Therefore, the running time of this portion of our algorithm can be expressed as:

T (γ, ρ) ≤ max{18γ, T (γ − 1, ρ) + T (γ, ρ − 1) + 1}

Function T (γ, ρ) can be upper-bounded by 18γ+1(19/17)ρ+1. We can verify this by induction.

The right-side of the above equation is:

max{18γ, 18γ(19/17)ρ+1 + 18γ+1(19/17)ρ + 1}

= max{18γ, 18γ(19/17)ρ(19/17 + 18) + 1}

≤ max{18γ, 18γ(19/17)ρ(19/17 + 19)}

= 18γ+1(19/17)ρ+1

Since we know that γ ≤ q and ρ ≤ q, we can bound T (q, q) = O(20.12q). Therefore, we can

improve the run-time bound for the complete algorithm to O(20.12q + 8qnm2).

We note that further improvements may be achievable in practice for moderate q by pre-

processing possible Steiner tree instances. If all Steiner tree problem instances on the q-cube

are solved in a pre-processing step, then our running time would depend only on the number of

iterations of the while loop, which is O(8qnm2). Such pre-processing would be impossible to

perform with previous methods. Alternate algorithms for solving Steiner trees may be faster in

practice as well.
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V. EXPERIMENTS

We tested both algorithms using a selection of non-recombining DNA sequences. These include

mitochondrial DNA samples from two human populations [28] and a chimpanzee population [27],

Y chromosome samples from human [19] and chimpanzee populations [27], and a bacterial DNA

sample [21]. Such non-recombining data sources provide a good test of the algorithms’ ability to

perform inferences in situations where recurrent mutation is the probable source of any deviation

from the perfect phylogeny assumption.

We implemented variants of both algorithms. The simple algorithm was derandomized and

used along with a standard implementation of the Dreyfus-Wagner routine. For the FPT algo-

rithm, we implemented the randomized variant described above using an optimized Dreyfus-

Wagner routine. The randomized algorithm takes two parameters, q and p, where q is the

imperfectness and p is the maximum probability that the algorithm has failed to find an optimal

solution of imperfectness q. On each random trial, the algorithm tallies the probability of failure

of each random guess, allowing it to calculate an upper bound on the probability that that trial

failed to find an optimal solution. It repeats random trials until the accumulated failure probability

across all trials is below the threshold p. An error threshold of 1% was used for the present

study.

The results are summarized in Table I. Successive columns of the table list the source of

the data, the input size, the optimal penalty q, the parsimony score of the resulting tree, the

run times of both of our algorithms in seconds, and the number of trials the randomized FPT

algorithm needed to reach a 1% error bound. All run times reported are based on execution

on a 2.4 GHz Intel P4 computer with 1 Gb of RAM. One data point, the human mtDNA

sample from the Buddhist population, was omitted from the results of the simple algorithm

because it failed to terminate after 20 minutes of execution. All other instances were solved

optimally by the simple algorithm and all were solved by the randomized FPT algorithm. The

randomized variant of the FPT algorithm in all but one case significantly outperformed the

derandomized simple algorithm in run time. This result that may reflect the superior asymptotic

performance of the FPT algorithm in general, the performance advantage of the randomized

versus the deterministic variants, and the advantage of a more highly optimized Dreyfus-Wagner

subroutine. The randomized algorithm also generally needed far fewer trials to reach a high
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probability of success than would be expected from the theoretical error bounds, suggesting that

those bounds are quite pessimistic for realistic data sets. Both implementations, however, appear

efficient for biologically realistic data sets with moderate imperfection.

We can compare the quality of our solutions to those produced on the same data sets by other

methods. Our methods produced trees of identical parsimony score to those derived by the pars

program from the PHYLIP package [10]. However while we can guarantee optimality of the

returned results, pars does not provide any guarantee on the quality of the tree. (Note that our

preliminary paper [23] incorrectly stated that pars produced an inferior tree on the chimpanzee

mtDNA data set.) Our methods also yielded identical output for the chimpanzee Y chromosome

data to a branch-and-bound method used in the paper in which that data was published [27].

TABLE I

EMPIRICAL RESULTS ON A COLLECTION OF REAL SNP VARIATION DATA SETS

Description Rows

× Cols

q Pars.

Score

Run

time –

Simple

(secs)

Run

time

– FPT

(secs)

trials

mtDNA, genus

Pan [27]

24×1041 2 63 0.59 0.14 25

chr Y, genus Pan

[27]

15×98 1 99 0.33 0.02 12

Bacterial DNA

sequence [21]

17×1510 7 96 0.47 4.61 262

HapMap chr Y,

4 ethnic groups

[19]

150×49 1 16 0.3 0.02 16

mtDNA, Humans

(Muslims) [28]

13×48 3 30 0.61 0.28 117

mtDNA, Humans

(Buddhists) [28]

26×48 7 43 —- 18.44 1026

VI. CONCLUSIONS

We have presented two new algorithms for inferring optimal near-perfect binary phylogenies.

The algorithms substantially improve on the running times of any previous methods for the
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BNPP problem. This problem is of considerable practical interest for phylogeny reconstruction

from SNP data. Furthermore, our algorithms are easily implemented, unlike previous theoretical

algorithms for this problem. The algorithms can also provide guaranteed optimal solutions in

their derandomized variants, unlike popular fast heuristics for phylogeny construction. Exper-

iments on several non-recombining variation data sets have further shown the methods to be

generally extremely fast on real-world data sets typical of those for which one would apply the

BNPP problem in practice. Our algorithms perform in practice substantially better than would

be expected from their worst case run time bounds, with both proving practical for at least

some problems with q as high as seven. The FPT algorithm in its randomized variant shows

generally superior practical performance to the simple algorithm. In addition, the randomized

algorithm appears to find optimal solutions for these data sets in far fewer trials than would be

predicted from the worst-case theoretical bounds. Even the deterministic variant of the simple

algorithm, though, finds optimal solutions in under one second for all but one example. The

algorithms presented here thus represent the first practical methods for provably optimal near-

perfect phylogeny inference from biallelic variation data.
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