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Abstract 
 

This paper considers a flexible flow shop scheduling problem, where at least one production stage is made up of 
unrelated parallel machines.  Moreover, sequence- and machine- dependent setup times are given. The objective is to 
find a schedule that minimizes a positively weighted convex sum of makespan and the number of tardy jobs in a static 
flexible flow shop environment.  For this problem, a 0-1 mixed integer program is formulated.  The problem is however 
a combinatorial optimization problem which is too difficult to be solved optimally for large problem sizes, and hence 
heuristics are used to obtain good solutions in a reasonable time.  The proposed constructive heuristics for sequencing 
the jobs start with the generation of the representatives of the operation time for each operation. Then some dispatching 
rules and flow shop makespan heuristics are developed. To improve the solutions obtained by the constructive 
algorithms, polynomial heuristic improvement algorithms based on shift moves and pairwise interchanges of jobs are 
applied.  In addition, metaheuristics are suggested, namely simulated annealing, tabu search and genetic algorithms.  
The basic parameters of each metaheuristic are briefly discussed in this paper. The performance of the heuristics is 
compared relative to each other on a set of test problems with up to 50 jobs and 20 stages and with an optimal solution 
for small-size problems.  We have found that among the constructive algorithms the insertion based approach is 
superior to the others, whereas the proposed simulated algorithms are better than tabu search and genetic algorithms 
among the iterative metaheuristic algorithms. 
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1. Introduction 
 
Production scheduling is a decision-making process in the operation level.  It can be defined as the 

allocation of available production resources to carry out certain tasks in an efficient manner. A frequently 
occurring scheduling problem is difficult to solve due its complex nature. 

This paper is primarily concerned with industrial scheduling problems, where one first has to assign jobs 
to limited resources and then to sequence the assigned jobs on each resource over time.  It is mainly 
concerned with processing industries that are established as multi-stage production facilities with multiple 
production units per stage (i.e., parallel machines), e.g. a textile industry (Karacapilidis and Pappis [1]), an 
automobile assembly plant (Agnetis et al. [2]), a printed circuit board manufacture (Alisantoso, Khoo and 
Jiang [3], and Hsieh, Chang and Hsu [4]), and so on.  In such industries, at some stages the facilities are 
duplicated in parallel to increase the overall capacities or to balance the capacities of the stages, or either to 
eliminate or to reduce the impact of bottleneck stages on the shop floor capacities. Due to the mixed 
character of such a production system, which lies between flow shop and parallel machines, it is known as a 
flexible or hybrid flow shop environment.  

An ordinary flow shop model is a multi-stage production process, where the jobs have to visit all stages in 
the same order string, whereas a flexible flow shop model, a generalization of the classical flow shop model, 
is more realistic, and it assumes that at least one stage must have multiple machines. Moreover, a machine 
can process at most one job at a time and a job can be processed by at most one machine at a time. 
Preemption of processing is not allowed. The problem consists of assigning the jobs to machines at each 
stage and sequencing the jobs assigned to the same machine so that some optimality criteria are minimized.  

Although the flexible flow shop problem has been widely studied in the literature, most of the studies 
related to flexible flow shop problems are concentrated on problems with identical processors, see for 
instance, Gupta, Krüger, Lauff, Werner and Sotskov [5], Alisantoso, Khoo and Jiang [3], Lin and Liao [6], 
and Wang and Hunsucker [7].  In a real world situation, it is common to find newer or more modern 
machines running side by side with older and less efficient machines. Even though the older machines are 
less efficient, they may be kept in the production lines because of their high replacement costs. The older 
machines may perform the same operations as the newer ones, but would generally require a longer 
operating time for the same operation. In this paper, the flexible flow shop problem with unrelated parallel 
machines is considered, i.e., there are different parallel machines at every stage and speeds of the machines 
are dependent on the jobs. Moreover, several industries encounter setup times which result in even more 
difficult scheduling problems. In this paper, both sequence- and machine-dependent setup time restrictions 
are taken into account as well.  

A detailed survey for the flexible flow shop problem has been given by Linn and Zhang [8] and Wang [9]. 
Most of the earlier literature has considered the simple case of only two stages. Arthanari and Ramamurthy 
[10] and Salvador [11] are among the first who define the flexible flow shop problem. They propose a 
branch and bound method to tackle the problem. Such a method is an exact solution technique which 
guarantees optimal solutions. However, the exact algorithm presented can only be applied to very small 
instances. Other exact approaches for the multi-stage flexible flow shop problem are proposed by many 
authors, e.g. branch and bound algorithms are given in Brah and Hunsucker [12] and Moursli and Pochet 
[13]. 

When an exact algorithm is applied to large flexible flow shop problems, such an approach can take hours 
or days to derive a solution. On the other hand, a heuristic approach is much faster but does not guarantee an 
optimum solution. Gupta [14] proposes heuristic techniques for a simplified flexible flow shop makespan 
problem with two stages and only one machine at stage two.  Sriskandarajah and Sethi [15] develop simple 
heuristic algorithms for the two-stage flexible flow shop problem. They discuss the worst and average case 
performance of algorithms for finding minimum makespan schedules. Their solutions are based on 
Johnson’s rule. Guinet, Solomon, Kedia and Dussauchoy [16] also propose a heuristic for the makespan 
problem in a two-stage flexible flow shop based on Johnson’s rule. They compare this heuristic with the 
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Shortest Processing Time (SPT) and the Longest Processing Time (LPT) dispatching rules. They conclude 
that the LPT rule gives good results for the two-stage makespan problem. Gupta and Tunc [17] consider the 
two-stage flow shop scheduling problem where there is one machine at stage one and the number of 
identical machines in parallel at stage two is less than the total number of jobs. The setup and removal times 
of each job at each stage are separated from the processing times. They propose heuristic algorithms that are 
empirically tested to determine the effectiveness in finding an optimal solution. Santos, Hunsucker and Deal 
[18] investigate scheduling procedures which seek to minimize the makespan in a static flow shop with 
multiple processors. Their method is to generate an initial permutation schedule based on the Palmer, CDS, 
Gupta and Dannenbring flow shop heuristics, and then it is followed by the application of the First in First 
out (FIFO) rule.  

To obtain a near-optimal solution, metaheuristic algorithms have also been proposed. Gourgand, 
Grangeon and Norre [19] present several simulated annealing (SA)-based algorithms for the flexible flow 
shop problem. A specific neighborhood is used and the authors apply the methods to a realistic industrial 
problem.  Jin, Yang and Ito [20] consider the flexible flow shop with identical parallel machines.  They 
propose two approaches to generate the initial job sequence and use a simulated annealing algorithm to 
improve it.  It can be seen that a simulated annealing algorithm has been successfully applied to various 
combinatorial optimization problems.  For an extensive survey of the theory and applications of the SA 
algorithm, see Koulamas, Antony and Jaen [21]. Furthermore, Nowicki and Smutnicki [22] propose a tabu 
search (TS) algorithm for the flexible flow shop makespan problem. A genetic algorithm has been widely 
used in many previous works for the flow shop makespan problem, see e.g. Werner [23], Reeves [24].  
Cheng, Gen and Tozawa [25] address the earliness/tardiness scheduling problem with identical parallel 
machines, and they apply a genetic algorithm to solve this problem. Ruiz, Maroto and Alcaraz [26] use a 
genetic algorithm to deal with the permutation flow shop scheduling problem with sequence-dependent 
setup times.  However, little research has been done for flexible flow shop scheduling problems, especially 
for the general case with unrelated parallel machines and setup times (see for instance the recent review on 
scheduling with setup times by Allahverdi, Ng, Cheng and Kovalyov [27]).   

In this paper, a flexible flow shop problem with unrelated parallel machines and setup times is studied.  
The goal is to seek a schedule which minimizes a positively weighted convex sum of makespan and the 
number of tardy jobs.  We will investigate how to apply constructive and improvement algorithms as well as 
metaheuristics to solve the flexible flow shop problem with unrelated parallel machines approximately. In 
particular, constructive heuristics based on dispatching rules and flow shop makespan heuristics are adapted 
and fast polynomial heuristic improvement algorithms are used to improve the quality of the solution.  
Metaheuristics, namely simulated annealing, tabu search and genetic algorithms are proposed. 

The rest of this paper is organized as follows: The problem considered is described in Section 2.  The 
mathematical model for this problem is introduced in Section 3.  The heuristic construction of a schedule 
and iterative algorithms are sketched in Section 4 and Section 5, respectively.  Computational results with 
the heuristics are briefly discussed in Section 6 and conclusions are given in Section 7. 

 
2. Problem description 

 
The flexible flow shop system is defined by a set O = {1,…, t,…, k} of k processing stages.  At each stage 

t, t ∈ O, there is a set Mt = {1,…, i,…, mt} of mt unrelated machines.  The set J = {1,…, j,…, n} of n 
independent jobs has to be processed on machines of the sets M1,…, Mk.  Each job j, j ∈ J, has its release 
date rj ≥ 0 and a due date dj ≥ 0. It has its fixed standard processing time for every stage t, t ∈ O.  Owing to 
the unrelated machines, the processing time t

ijp  of job j on machine i at stage t is equal to t
ij

t
j vps  , where 

t
jps  is the standard processing time of job j at stage t, and t

ijv   is the relative speed of job j which is 
processed by the machine i at stage t.   
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There are processing restrictions of the jobs as follows: (1) jobs are processed without preemptions on any 
machine; (2) every machine can process only one operation at a time; (3) operations of a job have to be 
realized sequentially, without overlapping between the stages; (4) job splitting is not permitted. 

Setup times considered in this problem are classified into two types, namely a machine-dependent setup 
time and a sequence-dependent setup time.  A setup time of a job is machine-dependent if it depends on the 
machine to which the job is assigned.  It is assumed to occur only when the job is the first job assigned to the 
machine. t

ijch  denotes the machine-dependent setup time (or changeover time) of job j if job j is the first job 
assigned to machine i at stage t. A sequence-dependent setup time is considered between successive jobs. A 
setup time of a job on a machine is sequence-dependent if it depends on the job just completed on that 
machine. t

ljs  denotes the time needed to changeover from job l to job j at stage t, where job l is processed 
directly before job j on the same machine.  All setup times are known and constant. Moreover, there is given 
a non-negative machine availability time for any machine of a particular stage.   

The scheduling problem under consideration has dual objectives, namely minimizing the makespan and 
the number of tardy jobs. Therefore, the objective function to be minimized is 

 

λCmax + ( 1 – λ)ηT (1) 
 

where Cmax is the makespan, which is equivalent to the completion time of the last job to leave the system,  
ηT is the total number of tardy jobs in the schedule, and λ  is the weight (or relative importance) given to 
Cmax and ηT  (0 ≤ λ ≤ 1). 
 
3. Mathematical model 

 
In this section, we provide a 0-1 mixed integer linear programming formulation for the problem under 

consideration. 
 

3.1. Notations 
 
t stage index, t = 1, 2, 3, . . . , k 
mt number of parallel machines at stage t 
i machine index, i = 1, 2, 3, . . . , mt

 
j, l job index, j, l = 1, 2, 3, . . . , n 
rj release date of job j  
dj due date of job j 

t
jls  setup time between job j and job l at stage t 

t
ijch  setup time of job j if job j is assigned to machine i at the first position at stage t  
t
jps  standard processing time of job j at stage t 

t
ijv  relative speed of machine i at stage t for job j 
t
ia  time when machine i at stage t becomes available 

t
ijlX  1 if job j is scheduled immediately before job l on machine i at stage t, and 0 otherwise 

t
jO  operating time of job j at stage t 
t
jC  completion time of job j at stage t 

Cmax makespan  
Uj a Boolean variable:  1 if job j is tardy, and 0 otherwise 
Tj tardiness of job j 
ηT total number of tardy jobs in the schedule 
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3.2. Mathematical formulation 
 
The problem can be formulated as follows.  
 

minimize   λCmax + ( 1 – λ)ηT (2) 
Subject to: 
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 In the above formulation, the objective is to determine a schedule that minimizes the makespan and the 

number of tardy jobs, see Equation (2). We have t
liX 0  = 1 if job l is sequenced as the first job on machine i 

at stage t, and t
nijX )1( +  = 1 if job j is sequenced as the last job on machine i at stage t. Constraints (3)–(9) 

ensure that the partial schedule on each machine at each stage is feasible. Constraint sets (3) and (4) ensure 
that only one job is assigned to each sequence position at each stage. Constraint sets (5) and (6) ensure that 
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only one job will be assigned to the first and last positions, respectively, on each machine at each stage. 
Constraint (7) assures that after the job has been finished at any stage, it cannot be reprocessed at the same 
stage. Constraint (8) forces to construct a consistent sequence at every stage. Constraint (9) specifies the 
decision variables t

ijlX  as binary variables. Constraint (10) determines the operating time of every job which 
is dependent on the machine. Constraints (11)–(15) find the completion time of every job. Constraint (11) is 
a set of disjunctive constraints. It states that, if jobs j and l are scheduled on the same machine at a particular 
stage with job j scheduled before job l, then job j must complete the processing before job l can begin. This 
constraint set forces job l to follow job j by at least the processing time of job l plus the setup time from j to l 
if job l is immediately scheduled after job j. The value of B is set to a very big constant, i.e., it is greater than 
the sum of all job processing times and setup times. Constraint (12) ensures that the completion time of 
every job at each stage is a non-negative value. Constraint (13) specifies the conjunctive precedence 
constraints for the jobs, which says that a job cannot start its processing at stage t + 1 before it finishes at 
stage t. Constraint (14) applies only to stage one, saying that a job cannot start its processing at stage one 
before its release date. Constraint (15) applies only to jobs that are assigned to the first sequence on each 
machine, that is, the job cannot start its processing before machine availability. Constraint set (16) links the 
makespan decision variable. Constraint sets (17) and (18) determine the correct value of the tardiness (Tj). 
Constraint set (17) determines the correct value of the lateness (Lj) and (18) specifies only the positive 
lateness as the tardiness (Tj = max {0, dC k

j − }). Constraint sets (19)–(22) link the decision variable of the 
number of tardy jobs, that is, if tardiness is greater than zero, the job is tardy; otherwise this job is not tardy. 

It is noted that an optimal solution can be obtained by running a commercial mathematical programming 
software, CPLEX 8.0.0 and AMPL, with an Intel Pentium 4 2.00 GHz CPU.  We have found that the 
mathematical model can be used for solving problems with up to seven jobs and four stages in acceptable 
time.   

 
4. Constructive algorithms 
 

Since the flexible flow shop scheduling problem is NP-hard, algorithms for finding an optimal solution in 
polynomial time are unlikely to exist. Thus, heuristic methods are studied to find approximate solutions. 
Most researchers develop existing heuristics for the classical flexible flow shop problem with identical 
machines by using a particular sequencing rule for the first stage. They follow the same scheme, see Santos, 
Hunsucker and Deal [18]. The algorithm is as follows: 

 
Algorithm 1. 
Step 1: Sequence the jobs by using a particular sequence rule (the first-stage sequence). 
Step 2: Assign the jobs to the machines at every stage using the job sequence from either the First-In-First-

Out (FIFO) rule or the Permutation rule. 
Step 3: Return the best solution. 
 

Firstly, a job sequence is determined according to a particular sequencing rule, and we will briefly discuss 
the modifications for the problem under consideration in the next section. Secondly, jobs are assigned as 
soon as possible to the machines at every stage using the job sequence determined for the first stage. There 
are basically two approaches for this subproblem. The first way is that for the other stages, i.e. from stage 
two to stage k, jobs are ordered according to their completion times at the previous stage. This means that 
the FIFO (First in First out) rule is used to find the job sequence for the next stage by means of the job 
sequence of the previous stage. The second way is to sequence the jobs for the other stages by using the 
same job sequence as for the first stage, called the permutation rule. 

Assume now that a job sequence for the first stage has already been determined. Then we have to solve 
the problem of scheduling n jobs on unrelated parallel machines with sequence- and machine-dependent 
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setup times using this given job sequence for the first stage. We apply a greedy algorithm which constructs a 
schedule for the n jobs at a particular stage provided that a certain job sequence for this stage is known 
(remind that the job sequence for this particular stage is derived either from the FIFO rule or from the 
permutation rule), where the objective is to minimize the flow time and the idle time of the machines. The 
idea is to balance evenly the workload in a heuristic way as much as possible. 

 
4.1. Constructive Heuristics 

 
In order to determine the job sequence for the first stage by some heuristics, we remind that the processing 

and setup times for every job are dependent on the machine and the previous job, respectively. This means 
that they are not fixed, until an assignment of jobs to machines for the corresponding stage has been done. 
Thus, for applying an algorithm for fixing the job sequence for stage one, an algorithm for finding the 
representatives of the machine speeds and the setup times is necessary.  

The representatives of machine speed t
ijv /  and setup time t

ljs /  for stage t, t=1,…k, use the minimum, 
maximum and average values of the data. Thus, the representative of the operating time of job j at stage t is 
the sum of the processing time t

ij
t
j vps /  plus the representative of the setup time t

ljs / . Nine combinations of 
relative speeds and setup times will be used in our algorithms. The job sequence for the first stage is then 
fixed as the job sequence with the best function value obtained by all combinations of the nine different 
relative speeds and setup times.  

For determining the job sequence for the first stage, we adapt and develop several basic dispatching rules 
and constructive algorithms for the flow shop makespan scheduling problem. Some of the dispatching rules 
are related to tardiness-based criteria, whereas others are used mainly for comparison purposes. The steps of 
the algorithm are as follows: 

 
Algorithm 2. 
Step 1: Select the representatives of relative speeds and setup times for every job and every stage by using 

the combinations of the minimum, maximum, and average data values. 
Step 2: Calculate the representatives of the operating time by using the term t

ij
t
j vps / + t

ljs / . 
Step 3: Use a particular dispatching rule or constructive algorithm to find the first-stage sequence based on 

the specific representatives of the operating time. 
Step 4: Apply the heuristic schedule construction (see Algorithm 1). 
Step 5: Return the best solution. 

 
The Shortest Processing Time (SPT) rule is a simple dispatching rule, in which the jobs are sequenced in 

non-decreasing order of the processing times, whereas the Longest Processing Time (LPT) rule orders the 
jobs in non-increasing order of their processing times. The Earliest Release Date first (ERD) rule is 
equivalent to the well-known first-in-first-out (FIFO) rule. The Earliest Due Date first (EDD) rule schedules 
the jobs according to non-decreasing due dates of the jobs. The Minimum Slack Time first (MST) rule is a 
variation of the EDD rule.  This rule concerns the remaining slack of each job, defined as its due date minus 
the processing time required to process it. The Slack time per Processing time (S/P) is similar to the MST 
rule, but its slack time is divided by the processing time required as well (Baker [28], and Pinedo and Chao 
[29]). 

The hybrid SPT and EDD (HSE) rule is developed to combine both SPT and EDD rules.  Firstly, consider 
the processing times of each job and determine the relative processing time compared to the maximum 
processing time required.  Secondly, determine the relative due date compared to the maximum due date.  
Next, calculate the priority value of each job by using the weight (or relative importance) given to Cmax and 
ηT for the relative processing time and relative due date.  
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Palmer’s heuristic [30] is a makespan heuristic denoted by PAL in an effort to use Johnson’s rule by 
proposing a slope order index to sequence the jobs on the machines based on the processing times. The idea 
is to give priority to jobs that have a tendency of progressing from short times to long times as they move 
through the stages. Campbell, Dudek and Smith [31] develop one of the most significant heuristic methods 
for the makespan problem known as CDS algorithm.  Its strength lies in two properties: (1) it uses Johnson’s 
rule in a heuristic fashion, and (2) it generally creates several schedules from which a “best” schedule can be 
chosen.  In so doing, k – 1 sub-problems are created and Johnson’s rule is applied to each of the sub-
problems.  Thus, k – 1 sequences are generated.  Since Johnson’s algorithm is a two-stage algorithm, a k-
stage problem must be collapsed into a two-stage problem.   

Gupta [32] provides an algorithm denoted by GUP, in a similar manner as algorithm PAL by using a 
different slope index and scheduling the jobs according to the slope order. Dannenbring [33] develops a 
method, denoted by DAN, by using Johnson’s algorithm as a foundation.  Furthermore, the CDS and PAL 
algorithms are also exhibited.  Dannenbring constructs only one two-stage problem, but the processing times 
for the constructed jobs reflect the behavior of PAL’s slope index.  Its purpose is to provide good and quick 
solutions. 

Nawaz, Enscore and Ham [34] develop a probably best constructive heuristic method for the permutation 
flow shop makespan problem, called the NEH algorithm. It is based on the idea that a job with a high total 
operating time on the machines should be placed first at an appropriate relative order in the sequence. Thus, 
jobs are sorted in non-increasing order of their total operating time requirements. The final sequence is built 
in a constructive way, adding a new job at each step and finding the best partial solution.  For example, the 
NEH algorithm inserts a third job into the previous partial solution of two jobs which gives the best 
objective function value under consideration (the relative position of the two previous jobs in the sequence 
remains fixed).  The algorithm repeats the process for the remaining jobs according to the initial ordering of 
the total operating time requirements. 

Again, to apply these algorithms to the flexible flow shop problem with unrelated parallel machines, the 
total operating times for calculating the job sequence for the first stage are calculated for the nine 
combinations of relative speeds of machines and setup times. 

 
4.2. Improvement Heuristics  

 
Unlike constructive algorithms, improvement heuristics start with an already built schedule and try to 

improve it by some given procedures. Their use is necessary since the constructive algorithms (especially 
some algorithms that are adapted from pure makespan heuristics and some dispatching rules such as the SPT 
and LPT rules) do not consider due dates (and therefore, they do not consider the minimization of the 
number of tardy jobs). In this section, some fast improvement heuristics will be investigated to improve the 
overall function value by concerning mainly the due date criterion. The iterative algorithms described in the 
following and in Section 5 are based on the shift move (SM) and the pairwise interchange (PI) 
neighborhoods.  

The SM neighborhood repositions a chosen job. This means that an arbitrary job πr at position r is shifted 
to position i, while leaving all other relative job orders unchanged.  If 1≤ r < i ≤ n, it is called a right shift 
and yields π′ = [π1,…, πr-1, πr+1, …, πi, πr, πi+1,…, πn].  If 1 < i < r <n, it is called a left shift and yields π′ = 
[π1,…, πi-1, πr, πi,…, πr-1, πr+1, …, πn]. For instance, assume that randomly one solution in the current 
generation is selected, say [4 9 8 7 3 1 6 2 5], and then randomly a couple of job positions for performing the 
shift is selected, e.g. positions 2 and 7 (in this case, it is a right shift). The new solution will be [4 8 7 3 1 6 9 
2 5].  However, if positions 7 and 2 are randomly selected (i.e. it is a left shift), the new solution will be [4 6 
9 8 7 3 1 2 5]. In the SM neighborhood, the current solution has (n–1)2 neighbors. 

The PI neighborhood exchanges a pair of arbitrary jobs πr, and πi, where 1 ≤ i, r  ≤ n and i ≠ r.  Such an 
operation swaps the jobs at positions r and i, which yields π′ = [π1,…, πr-1, πi, πr+1, …, πi-1, πr, πi+1,…, πn]. 
For example, assume that the current solution is [4 9 8 7 3 1 6 2 5], and then randomly the couple of job 
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positions to be exchanged is selected, e.g. positions 1 and 3. Thus, the new solution will be [8 9 4 7 3 1 6 2 
5]. In the PI neighborhood, the current solution has n×(n-1)/2 neighbors. 

In order to find a satisfactory solution of the due date problem, we apply fast polynomial heuristics by 
applying either the above shift move (SM) algorithm as an improvement mechanism based on the idea that 
we will consider the jobs that are tardy in a left-to-right scan and move each of them left and right, or the 
pairwise interchange (PI) algorithm, where a tardy job is selected and swapped to different job positions left 
and right, and either to two randomly determined positions (denoted by the number “2”) or to all n–1 
possible positions (denoted by the letter “A”). The best schedule among the generated neighbors is then 
taken as the result.  The algorithm is as follows: 

 
Algorithm 3. 
Step 1: Select the first tardy job in the job sequence. 
Step 2: Interchange (i.e. apply 2-PI or A-PI) or shift (i.e. apply 2-SM or A-SM) the chosen job and evaluate 

the objective function values. 
Step 3: Update the current job sequence. 
Step 4: Go to Step1 until all tardy jobs have been considered. 
Step 5: Return the best sequence solution. 
 

Since every tardy job in the job sequence is considered at most once, the complexity of the 2-PI and 2-SM 
procedures is O(n) and the complexity of the A-PI and A-SM procedures is O(n2). 

 
5. Iterative algorithms 

 
5.1. Simulated Annealing  

 
A simulated annealing (SA) algorithm is an iterative search method, in which an initial solution is 

repeatedly improved by making small local alterations until no such alteration yields a better solution.  It 
was developed by Kirkpatrick, Gelatt and Vecchi [35].  An SA algorithm simulates ideas and mechanisms 
found in the physical annealing of a solid.  The concept comes from the field of materials science in which a 
solid is first melted after heated in a high temperature, and then it is slowly cooled so that it reaches a 
thermodynamic equilibrium. 

In general, an SA algorithm is a stochastic optimization method for minimizing a function f over a discrete 
domain S.  Starting from an initial solution s∈ S, an SA algorithm generates a new solution s'∈ S in the 
neighborhood of the initial solution s by using a suitable operator. Concerning the neighborhood, we 
considered both a shift move (SM) neighborhood (i.e. a job at an arbitrary position is selected and reinserted 
at some other position) and a pairwise interchange (PI) neighborhood (i.e. two arbitrary jobs are selected and 
interchanged). This new point’s objective function value f(s') is then compared to the initial point’s value f(s) 
(remind that the objective function value of the full schedule generated from the job sequence for the first 
stage is taken). The change in the objective function value,  δ = f(s')–f(s), is calculated. If the objective 
function value decreases (δ < 0), it is automatically accepted and it becomes the point from which the search 
will continue. If the objective function value increases (δ ≥ 0), then higher values of the objective function 
may also be accepted with a probability, usually determined by a function, exp (–δ/T), where T ∈ ℜ is a 
control parameter of the SA algorithm called the temperature.  The role of the temperature T is significant in 
the operation of an SA algorithm. This temperature, which is simply a positive number, is periodically 
reduced every NT iterations, where NT denotes the epoch length, so that it moves gradually from a relatively 
high value to near zero as the algorithm progresses according to a function referred to as the cooling 
schedule. In our tests, we investigated in particular the influence of the chosen neighborhood and the cooling 
scheme for controlling the temperature. We used a geometric (i.e. Tnew = α×Told) and a Lundy-Mees 
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reduction [36] (i.e. Tnew = Told/(1+β×Told)) scheme and tested the parameters of these schemes (initial 
temperatures, temperature reductions and neighborhood structures).  

 
5.2. Tabu Search 

 
A tabu search (TS) algorithm, initially developed by Glover [37] is an iterative improvement approach 

designed to avoid terminating prematurely at a local optimum for solving combinatorial optimization 
problems. Similar to a simulating annealing algorithm, a TS algorithm is based on the idea of exploring the 
solution space of a problem by moving from one region of the search space to another in order to look for a 
better solution. The function transforming a solution into another solution is usually called a move.  For any 
solution s∈ S, a subset of moves applicable to it is defined.  This subset of moves generates the 
neighborhood ℵ(s) of s.  Starting from an initial solution s, the TS algorithm iteratively moves from the 
current solution s to the best solution s*∈ℵ(s) even though s* is worse than the current solution s, until 
some stopping criterion is satisfied. 

However, to escape from a local optimum, an SA algorithm accepts an inferior solution, which may lead 
to better solutions later by using an acceptance probability. In contrast, a TS algorithm allows the search to 
move to the best solution s* among a set of candidate moves ℵ(s) as defined by the neighborhood structure, 
although it can move to a neighbor with a worse objective function value. Nevertheless, subsequent 
iterations may cause the search to move repeatedly back to the same local optimum. In order to prevent 
cycling back to recently visited solutions, it should be forbidden or declared tabu for a certain number of 
iterations.  This is accomplished by keeping the attributes of the forbidden moves in a list, called the tabu 
list. The size of the tabu list, called the tabu tenure, must be large enough to prevent cycling, but small 
enough not to forbid too many moves.  

Additionally, an aspiration criterion is defined to deal with the case in which a move leading to a new best 
solution is tabu. If a current tabu move satisfies the aspiration criterion, its tabu status is canceled and it 
becomes an allowable move. The use of the aspiration criterion allows the TS algorithm to lift the 
restrictions and intensify the search into a particular solution region. 

 
5.3. Genetic Algorithm 

 
A genetic algorithm (GA) approach is an iterative heuristic based on Darwin’s evolutionary theory about 

“survival of the fittest and natural selection”. It belongs to the evolutionary class of artificial intelligent (AI) 
techniques.  It was invented by Holland [38] and then it has been applied to a large number of complex 
search problems. 

The GA approach is characterized by a parallel search of the state space in contrast to a point-by-point 
search by conventional techniques. The parallel search is achieved by keeping a set of possible solutions, 
called a population. An individual in the population is a string of symbols. The GA starts with the initial 
generation of artificial individuals which are often created randomly. Each symbol is called a gene and each 
string of genes is termed as a chromosome. The individuals in the population are evaluated by a measure 
called the fitness to describe quantitatively how well the individual masters its task. The initial population is 
then evolved into different populations over a number of generations through the use of two types of genetic 
operators: (1) unary operators such as mutation and inversion which change the genetic structure of a single 
chromosome, and (2) a higher-order operator, referred to as crossover which consists of obtaining new 
individual(s) by combining the genetic material from two selected parent chromosomes. When applying 
crossover, two individuals (parents) are selected from the population and new solution(s), called the 
offspring, is (are) created. Mutation creates a new solution by a random change on a selected individual. The 
genetic operators are applied to randomly selected parents to generate new offspring. Then the new 
population is selected out of the individuals of the current population and the new generated chromosomes.  
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The application of the GA approach requires the representation of a solution, the choice of genetic 
operators (crossover and mutation), an evaluation function, a selection mechanism and the determination of 
genetic parameters (population size as well as crossover and mutation rates). For the representation, 
consideration of a job permutation is straightforward and widely used in many previous works on the GA 
approach for the flow shop problem, see e.g. Werner (1984). Thus, in our GA approach, we apply a 
permutation-based code (or job code) using integers as the chromosome coding scheme.  For instance, one 
chromosome of an example with nine jobs can be coded as the job sequence [9 3 6 5 8 7 2 4 1].   As 
crossover operator, we tested a partially mapped crossover (PMX) and a hybrid order and position-based 
crossover (OPX). The mutations are based again either on a pairwise interchange of two jobs or on a shift of 
one chosen job.  

The PMX (partially mapped crossover) method may be the most popular crossover operator when 
operating with permutations.  Firstly, choose two parents P1 and P2, e.g. P1 = [1 2 3 4 5 6 7 8 9] and P2 = [9 
3 7 8 2 6 5 1 4], and two cutting sites along the string are randomly chosen, e.g. 3 and 7.  The substrings 
defined by the two cutpoints are called the mapping sections.  Secondly, exchange the two substrings 
between the parents to produce protochildren, and then they will be [1 2 3|8 2 6 5|8 9] and [9 3 7|4 5 6 7|1 4].  
It is clear that protochildren will often lead to infeasible solutions.  Then, one needs to determine the 
mapping relationship between the two mapping sections and finally, we legalize the offspring using this 
mapping relationship.  In the first protochild, we can map the two infeasible genes 2 and 8 outside the 
mapping section, by using the mapping swaps, for instance, 2 in the first protochild’s mapping section can 
be mapped to 5 in the second protochild’s mapping section corresponding to the position. It does however 
not finish, because 5 is in the first protochild’s mapping section as well.  Again, 5 in the first protochild can 
be mapped to 7 in a similar way. At last, 2 in the first protochild can be swapped to 7.  Similarly, 8 in the 
first protochild can be mapped to 4.  Consequently, the first offspring is [1 7 3| 8 2 6 5| 4 9].  Then, the 
second offspring is analogously created as [9 3 2| 4 5 6 7|1 8]. 

The OPX (combined order and position-based crossover) method may be a good crossover choice, in 
which it creates feasible solutions like PMX and combines the characteristics of OX and PBX as well.  We 
will create the first offspring based on OX, whereas the second offspring is characterized by PBX.  Again 
two parents P1 and P2 are randomly selected, and consider the same example as for PMX above.  Then, 
randomly select a substring from the first parent, e.g. [1 2 3|4 5 6 7|8 9].  Copy the substring into the first 
protochild corresponding to the first parent position, e.g. [_ _ _|4 5 6 7|_ _].  Then, delete all the symbols 
from the second parent which are already in the substring and place its symbols into the unfixed positions in 
the first protochild from left to right according to the second parent order, e.g. [9 3 8|4 5 6 7|2 1].  To create 
the second offspring, the second protochild is created by copying the symbols from the second parent, where 
the jobs are the same as the symbols in the substring in the corresponding position, e.g. [_ _ 7 _ _ 6 5 _ 4].  
Then, place the symbols form the first parent into the unfixed positions in the second protochild from left to 
right according to the order of the first parent regarding the substring symbols to produce the second 
offspring, [1 2 7 3 8 6 5 9 4]. 

In our tests, we investigated the influence of the choice of the initial generation, the choice of the 
population size, different crossover and mutation operators and the choice of probabilities for applying 
crossover and mutation. 

 
5.4. Choice of an initial solution 

 
To improve the quality of the solution finally obtained, we also investigated the influence of the choice of 

an appropriate initial solution for the SA and TS algorithms, and an initial population for the GA algorithm 
by using the heuristic constructive and improvement algorithms.   

To this end, we use one or several constructive algorithm(s) SPT, LPT, ERD, EDD, MST, S/P, HSE, 
PAL, CDS, GUP, DAN and NEH as well as the other selected polynomial improvement heuristics as initial 
solution(s), respectively (for the GA algorithm, the remaining initial solutions are still randomly generated).   
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Table 1: Average overall performance of the constructive and polynomial improvement heuristics 
λ Problem size CA 2-SM A-SM 2-PI A-PI 

10×5 
30×10 
50×20 

3.025a 

7.050 
9.567 

1.525 
3.933 
5.717 

1.192 
3.008 
4.575 

1.650 
4.267 
5.550 

1.200 
2.050 
2.192 0 

Sum 19.642 11.175 8.775 11.467 5.442 
10×5 
30×10 
50×20 

78.540b 

88.360 
35.280 

28.530 
36.950 
12.600 

19.060 
23.810 
12.180 

32.590 
36.840 
9.710 

21.360 
19.040 
5.500 0.001 

Sum 202.180 78.080 55.050 79.140 45.900 
10×5 
30×10 
50×20 

41.340 
40.100 
19.775 

15.070 
16.200 
8.748 

9.490 
10.620 
8.126 

17.900 
17.490 
8.416 

11.780 
8.740 
4.536 0.005 

Sum 101.215 40.018 28.236 43.806 25.056 
10×5 
30×10 
50×20 

29.640 
27.977 
15.136 

10.860 
12.313 
8.373 

6.910 
7.857 
7.512 

13.530 
14.122 
8.679 

8.430 
6.802 
5.397 0.01 

Sum 72.753 31.546 22.279 36.331 20.629 
10×5 
30×10 
50×20 

17.267 
16.803 
9.697 

6.292 
8.225 
5.697 

4.703 
6.185 
5.348 

8.344 
9.980 
6.533 

5.394 
5.019 
5.035 0.05 

Sum 43.767 20.214 16.236 24.857 15.448 
10×5 
30×10 
50×20 

15.783 
14.945 
9.162 

5.520 
6.759 
5.255 

4.187 
4.827 
5.128 

8.520 
8.614 
5.776 

4.847 
3.761 
4.766 0.1 

Sum 39.890 17.534 14.142 22.910 13.374 
10×5 
30×10 
50×20 

15.531 
14.780 
8.984 

5.675 
7.244 
5.269 

4.043 
5.583 
4.993 

7.762 
8.332 
6.602 

4.537 
4.340 
4.676 0.5 

Sum 39.295 18.188 14.619 22.696 13.553 
10×5 
30×10 
50×20 

15.832 
14.887 
8.879 

5.213 
7.070 
5.340 

4.338 
5.361 
4.862 

7.894 
9.309 
6.051 

4.617 
4.314 
4.632 1.0 

Sum 39.598 17.623 14.561 23.254 13.563 
a average absolute deviation for λ = 0, b average percentage deviation for λ>0 
 
6. Computational Results 

 
Firstly, constructive algorithms according to Algorithm 2 and different fast polynomial improvement 

heuristics according to Algorithm 3 are studied.  The constructive algorithms (denoted by the letter “CA”) 
are simple dispatching rules such as the SPT, LPT, ERD, EDD, MST, S/P, and HSE rules, and some flow 
shop makespan heuristics adapted such as the algorithms PAL, CDS, GUP, DAN, and NEH.  Then, we 
additionally applied the fast polynomial improvement heuristics based on the four cases stated above in 
Section 4.3 (denoted by 2-SM, A-SM, 2-PI, and A-PI, respectively).  We used problems with 10 jobs × 5 
stages, 30 jobs × 10 stages, and 50 jobs × 20 stages. For all problem sizes, we tested instances with λ ∈ {0, 
0.001, 0.005, 0.01 0.05, 0.1, 0.5, 1} in the objective function. Ten different instances for each problem size 
have been run.   

For our experiments with problems with unrelated parallel machines, we generated the standard 
processing times, relative machine speeds, setup times, release dates and due dates as follows.  The standard 
processing times are generated uniformly from the interval [10,100].  The relative speeds are distributed 
uniformly in the interval [0.7, 1.3].  The setup times, both sequence- and machine-dependent setup times, are 
generated uniformly from the interval [0, 50], whereas the release dates are generated uniformly from the 
interval between 0 and half of their total standard processing time mean.  The due date of a job is set in a 
way that is similar to the approach presented by Rajendaran and Ziegler [39] and is as follows: 
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dj    =     rj  + ∑
=

k

t

t
jps

1
+ total of mean setup time of a job on all stages +  

(n – 1) × (mean processing time of a job on one machine) ×U(0,1)  

 
 
(23) 

 
The results for the constructive algorithms and fast polynomial improvement heuristics are given in Table 

1. We give the average (absolute for λ = 0 resp. percentage for λ > 0) deviation of a particular algorithm 
from the best solution in these tests for the three problem sizes n×k. 

From these results it is obvious that the fast polynomial improvement heuristics can improve the quality 
of the constructive algorithms by about 60–70 percent.  In addition, we have found that for the problem size 
10 jobs × 5 stages the all-shift-move (A-SM) heuristic is slightly better than the others, whereas the all-
pairwise-interchange-based (A-PI) improvement heuristic is the best algorithm otherwise.  However, in 
general the all-pairwise-interchange algorithm should be selected as the improvement algorithm.  
Consequently, in this paper we use in the following only the all-pairwise-interchange-based improvement 
heuristics.  However, when comparing between the 2-SM and 2-PI algorithms whose CPU time is smaller 
than the CPU time of both the A-SM and A-PI algorithms, we have found that the 2-SM algorithm certainly 
become better than the 2-PI algorithm. 

 
Table 2: Average performance of the constructive algorithms of Group I & II 

  Group I Group II 

λ Problem  
size SPT LPT ERD EDD MST S/P HSE PAL CDS GUP DAN NEH 

10×5 3.000a 3.200 3.500 4.600 4.100 4.100 2.800 2.700 2.200 2.800 2.600 0.700 
30×10 6.900 7.900 7.700 7.900 8.400 7.900 7.200 7.700 6.100 7.300 7.800 1.800 
50×20 8.700 8.200 11.100 15.800 14.600 14.100 7.900 9.400 6.600 8.600 8.800 1.000 0 

Sum 18.600 19.300 22.300 28.300 27.100 26.100 17.900 19.800 14.900 18.700 19.200 3.500 
10×5 90.920b 94.290 87.880 102.460 91.560 90.930 90.910 73.220 61.630 77.800 70.370 10.470 
30×10 89.090 104.510 94.730 90.250 100.510 91.170 87.730 101.410 77.990 94.510 98.410 29.980 
50×20 31.830 34.420 42.570 49.770 45.600 43.960 30.970 37.030 27.000 34.620 35.200 10.320 0.001 

Sum 211.840 233.220 225.180 242.480 237.670 226.060 209.610 211.660 166.620 206.930 203.980 50.770 
10×5 45.290 44.130 44.710 58.240 52.180 52.520 45.250 38.870 31.010 41.540 36.150 6.250 
30×10 42.140 45.420 43.800 43.640 46.770 41.540 41.360 44.290 34.330 42.650 43.740 11.500 
50×20 18.812 18.338 23.140 28.685 26.281 25.233 18.798 20.046 15.791 18.867 18.902 4.411 0.005 

Sum 106.242 107.888 111.650 130.565 125.231 119.293 105.408 103.206 81.131 103.057 98.792 22.161 
10×5 33.300 30.430 31.040 41.170 36.990 37.630 33.270 28.570 22.230 30.560 25.780 4.710 
30×10 30.633 30.954 30.780 31.752 33.282 28.880 29.870 29.870 23.506 29.744 29.561 6.887 
50×20 14.895 14.199 17.734 21.330 19.445 18.625 14.996 15.440 12.655 14.646 14.514 3.160 

0.01 

Sum 78.828 75.583 79.554 94.252 89.717 85.135 78.136 73.880 58.391 74.950 69.855 14.757 
10×5 22.154 16.778 17.176 21.889 20.413 19.662 21.591 18.069 12.421 19.019 15.633 2.399 
30×10 20.477 17.413 19.306 21.227 21.110 16.986 19.431 16.766 13.394 17.207 15.928 2.386 
50×20 10.406 9.721 11.872 12.748 11.476 10.838 10.425 10.355 8.400 9.898 9.457 0.765 0.05 

Sum 53.037 43.912 48.354 55.864 52.999 47.486 51.447 45.190 34.215 46.124 41.018 5.550 
10×5 21.084 15.177 15.656 19.457 18.163 17.181 20.257 17.073 11.196 17.585 14.471 2.097 
30×10 18.691 15.309 17.482 19.453 19.007 15.058 17.658 14.637 11.722 15.071 13.784 1.470 
50×20 10.029 9.384 11.335 11.772 10.554 9.935 10.053 9.877 8.016 9.523 8.985 0.479 

0.1 

Sum 49.804 39.870 44.473 50.682 47.724 42.174 47.968 41.587 30.934 42.179 37.240 4.046 
10×5 21.203 14.852 15.456 18.446 17.310 16.114 20.073 17.373 11.176 17.221 14.448 2.700 
30×10 18.759 15.021 17.524 19.528 18.653 14.916 17.669 14.368 11.768 14.794 13.488 0.869 
50×20 9.985 9.394 11.181 11.244 10.068 9.446 10.011 9.754 7.933 9.489 8.866 0.436 

0.5 

Sum 49.947 39.267 44.161 49.218 46.031 40.476 47.753 41.495 30.877 41.504 36.802 4.005 
10×5 21.473 15.061 15.696 18.567 17.426 16.214 21.473 17.674 11.400 17.418 14.701 2.885 
30×10 18.793 15.018 17.551 19.567 18.630 14.923 18.793 14.367 11.785 14.780 13.477 0.964 
50×20 9.892 9.308 11.073 11.087 9.918 9.296 9.892 9.651 7.837 9.399 8.766 0.428 1.0 

Sum 50.158 39.387 44.320 49.221 45.974 40.433 50.158 41.692 31.022 41.597 36.944 4.277 
a average absolute deviation for λ = 0, b average percentage deviation for λ>0 
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Table 3: Average performance of the polynomial improvement algorithms of Group III & IV 
  Group III Group IV 

λ Problem 
size ISPT ILPT IERD IEDD IMST IS/P IHSE IPAL ICDS IGUP IDAN INEH 

10×5 1.400a 1.300 1.200 1.000 1.300 1.300 1.100 1.400 1.300 1.100 1.300 0.700 
30×10 2.100 2.500 2.400 1.500 1.200 1.800 2.100 2.500 2.300 2.100 2.300 1.800 
50×20 1.300 2.300 3.000 3.000 4.900 3.300 1.700 1.700 0.700 2.000 1.400 1.000 0 

Sum 4.800 6.100 6.600 5.500 7.400 6.400 4.900 5.600 4.300 5.200 5.000 3.500 
10×5 16.220b 24.020 12.550 13.710 18.940 18.870 23.880 35.200 23.980 35.630 22.840 10.470 
30×10 20.310 18.910 18.970 13.200 15.710 13.910 19.090 17.750 18.110 21.450 21.140 29.980 
50×20 6.730 5.150 7.690 5.010 4.040 6.960 2.990 8.750 2.640 3.260 2.460 10.320 0.001 

Sum 43.260 48.080 39.210 31.920 38.690 39.740 45.960 61.700 44.730 60.340 46.440 50.770 
10×5 10.000 13.410 8.170 8.650 11.990 11.740 14.840 13.980 14.060 15.260 12.970 6.250 
30×10 9.690 8.150 8.610 7.530 7.520 6.610 10.300 9.650 6.050 9.020 10.200 11.500 
50×20 3.924 5.228 5.514 6.051 3.554 5.631 3.922 5.453 3.306 3.734 3.703 4.411 0.005 

Sum 23.614 26.788 22.294 22.231 23.064 23.981 29.062 29.083 23.416 28.014 26.873 22.161 
10×5 8.890 9.450 7.030 6.640 7.690 9.540 9.080 8.460 9.810 10.130 9.770 4.710 
30×10 6.373 9.709 5.676 6.753 4.762 4.076 9.096 7.585 4.935 8.988 6.782 6.887 
50×20 4.699 6.427 5.749 6.264 6.890 6.583 5.198 6.183 4.934 3.431 5.251 3.160 0.01 

Sum 19.962 25.586 18.455 19.657 19.342 20.199 23.374 22.228 19.679 22.549 21.803 14.757 
10×5 5.476 5.281 4.900 6.629 5.643 5.620 7.194 6.322 4.229 5.675 5.365 2.399 
30×10 4.820 6.313 2.768 6.397 5.431 4.893 6.431 5.865 4.227 5.282 5.419 2.386 
50×20 4.778 5.247 5.438 7.221 6.010 6.711 5.028 5.486 3.139 5.538 5.064 0.765 

0.05 

Sum 15.074 16.841 13.106 20.247 17.084 17.224 18.653 17.673 11.595 16.495 15.848 5.550 
10×5 4.546 5.404 4.787 6.318 5.721 4.877 5.763 5.749 3.752 4.154 4.996 2.097 
30×10 3.255 4.743 1.718 5.523 4.957 5.033 4.619 4.193 2.241 3.848 3.537 1.470 
50×20 5.169 4.241 5.024 6.681 5.831 5.788 5.173 5.336 3.126 5.394 4.955 0.479 

0.1 

Sum 12.970 14.388 11.529 18.522 16.509 15.698 15.555 15.278 9.119 13.396 13.488 4.046 
10×5 4.969 4.932 5.195 5.707 6.287 4.629 5.414 4.327 2.790 4.147 3.346 2.700 
30×10 3.929 5.283 2.404 6.727 5.135 6.897 4.730 4.936 2.812 4.611 3.745 0.869 
50×20 5.453 4.244 5.090 6.215 5.900 4.725 5.406 5.163 3.450 5.125 4.906 0.436 0.5 

Sum 14.351 14.459 12.689 18.649 17.322 16.251 15.550 14.426 9.052 13.883 11.997 4.005 
10×5 5.018 5.073 5.268 5.741 5.935 4.840 5.018 4.527 3.195 4.378 3.531 2.885 
30×10 4.155 4.838 2.421 6.843 5.932 6.940 4.155 4.910 2.405 4.666 3.543 0.964 
50×20 5.346 4.147 5.107 6.079 5.731 4.523 5.346 5.044 3.808 5.046 4.976 0.428 1.0 

Sum 14.519 14.058 12.796 18.663 17.598 16.303 14.519 14.481 9.408 14.090 12.050 4.277 
a average absolute deviation for λ = 0, b average percentage deviation for λ 

 
Next, we present the results for the constructive and improvement algorithms that are separated into four 

main groups.  The first heuristic group includes the simple dispatching rules such as SPT, LPT, ERD, EDD, 
MST, S/P, and HSE.  The second heuristic group includes the flow shop makespan heuristics adapted such 
as PAL, CDS, GUP, DAN, and NEH.  The third and fourth heuristic groups are generated from the first two 
groups of heuristics where the solutions are improved by the selected polynomial improvement algorithm 
based on all-pairwise-interchange improvement heuristics, and they are denoted by the first letter “I” in front 
of the letters describing the heuristics of the first two groups.  

The results for the constructive and fast polynomial improvement algorithms are given in Table 2 and 
Table 3, respectively (the best variant in each group is given in italic underlined while the overall best 
variant is given in bold face underlined). From these results, it is obvious that the algorithms in the fourth 
heuristic group improved the pure makespan heuristics form the second heuristic group (i.e., PAL, CDS, 
GUP, DAN, and NEH), and they are better than the dispatching rules in the first heuristic group (i.e., SPT, 
LPT, ERD, EDD, MST, S/P, and HSE) as well as the third heuristic group improved from them.   

Among the simple dispatching rules (heuristic Group I), the SPT, LPT, ERD, and HSE rules are good 
dispatching rules.  However, in general the HSE rule outperforms the other dispatching rules for λ < 0.01, 
and the LPT rule is better than the other rules otherwise.  Among the adapted flow shop makespan heuristics 



 15

in heuristic Group II, the NEH algorithm is clearly the best algorithm among all studied constructive and 
improvement heuristics (but in fact, this algorithm takes the convex combination of both criteria into account 
when selecting partial sequences).  The CDS algorithm is certainly the algorithm on the second rank (but it 
is substantially worse than the NEH algorithm even if the makespan portion in the objective function value 
is dominant, i.e. for large λ values).   

When we apply a fast pairwise interchange algorithm (denoted by the letter “I” first) to the dispatching 
rules and adapted makespan heuristics, we have found that the quality of the solution can be improved by 
about 60 – 70 percent except for the NEH rule. It can be noted that the NEH rule is not improved by using 
the improvement heuristics of algorithm INEH because both algorithms use a very similar strategy.  
However, the improvement of the heuristics from the adapted pure makespan heuristics in the heuristic 
Group IV is better than the improvement of the heuristics derived from the dispatching rules in the heuristic 
Group III. These results are similar to the conclusions of Jungwattanakit, Reodecha, Chaovalitwongse and 
Werner [40] whose experiments compared the results for small problem sizes with the optimal solutions.       

 
Table 4: Tested Parameters for the SA, TS, and GA algorithms 
Algorithms Parameters Levels 

SA Initial temperature 2, 4, 6, 8, 10 through 100, in steps of 10 
 Neighborhood structures PI, SM 
 Cooling schedules   1 – 4 (geometric reduction with α ∈ {0.8, 0.85, 0.9, 0.95})  

5 – 13 (LM reduction with β: 0.01 through 0.09, in steps of 0.01) 
14 – 23 (LM reduction with β: 0.1 through 1.0, in steps of 0.1) 

TS Number of neighbors 10 through 50, in steps of 10 
 Neighborhood structures PI, SM 
 Sizes of tabu list 5, 10, 15, and 20 

GA Population sizes 10, 30, 50, 70 
 Crossover types PMX, OPX 
 Mutation types PI, SM 
 Crossover rates 0.1 through 0.9, in steps of 0.1 
 Mutation rates 0.1 through 0.9, in steps of 0.1 

 
Thirdly, we have studied the SA, TS, and GA algorithms with a random initial solution (or population).  

The purpose of this study is to determine the favorable parameters of the heuristics. From the preliminary 
tests, we set the time limit equal to one second for the problems with ten jobs, ten seconds for the problems 
with 30 jobs, and 30 seconds for the problems with 50 jobs. Again, for all tests we considered instances with 
λ  ∈ {0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, and 1}. Based on the preliminary tests, the tested parameters are 
shown in Table 4. 

From the full factorial experiment, we analyzed our results by means of a multi-factor Analysis of 
Variance (ANOVA) technique using a 5% significance level.  We give the average (absolute resp. 
percentage) deviation of a particular iterative algorithm from the best solution obtained by the iterative 
algorithms.  For the SA algorithm, we have found that for the neighborhood structure and the cooling 
schedule, there are statistically significant differences, whereas there are slightly statistically significant 
differences in the initial temperature. For the initial temperature, we observed that a lower initial temperature 
is effective for the problem.  However, not all the problem cases should use the same small initial 
temperature.  For the problems with λ < 0.5, the use of an initial temperature of two and of ten for the other 
problems can be recommended. It is clear that shift moves are better than pairwise interchange moves for λ 
> 0, especially for the problems whose makespan objective is dominant in comparison with the tardiness 
objective, whereas the pairwise interchange moves are slightly better than or nearly as good as the shift 
moves for the other values. Consequently, the neighborhood structures should be based on pairwise 
interchanges for λ  = 0 and on shifts of jobs otherwise, or it can also be recommended to use shift moves for 
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the whole range of λ.  For the cooling schedule, we have found that the performance of a geometric 
reduction is as good as the performance of the Lundy and Mees reduction only for problems with λ = 0, 
whereas the Lundy and Mees reduction becomes better when the value λ increases. Nevertheless, the 
parameter of the Lundy and Mees reduction depends on the value λ.  We have found that for the problems 
with λ < 0.5, the cooling rate of the Lundy and Mees reduction is suitable at a range from 0.5 through 1.0 
(we recommend 1.0), whereas for the other problems it is suitable at a range from 0.05 through 0.2 (we 
recommend 0.1). 

For the TS algorithm, 20 and 30 nontabu neighbors per iteration are good parameters, but 20 nontabu 
neighbors are still slightly better.  It is clear that pairwise interchange moves are better than shift moves for λ 
< 0.005, whereas for λ = 0.005 and the problem sizes  10 jobs × 5 stages and  50 jobs × 20 stages, there are 
not statistically significant differences in both neighborhood structures, but they are statistically significant 
for the problem size 30 jobs × 10 stages.  For the problem size 50 jobs × 20 stages and λ ≥ 0.1, although the 
average main effect of pairwise interchange moves is better than that of shift moves, it was found that there 
is a statistically significant interaction between the neighborhood structure and the number of neighbors, that 
is, for 20 nontabu neighbors the shift moves become better than pairwise interchange moves.  Hence, in 
general shift moves should be selected as the neighborhood structure for λ ≥ 0.005.  For the size of the tabu 
list, it can be seen that a size of 10 and 15 works best, but the size 10 of the tabu list is slightly superior. 

For the GA algorithm, we have found that for the population size, crossover types and mutation types as 
well as crossover and mutation rates, there are statistically significant differences.  The population sizes of 
30 and 50 are quite not statistically different, but in general a population size of 30 is slightly better than a 
population size of 50.  Considering the crossover types, the OPX crossover is obviously superior to the PMX 
crossover.  For the mutation type, it is clear that shift moves are better than pairwise interchange moves for λ 
≥ 0.01, whereas the pairwise interchange moves are mostly better than shift moves for the other values.  It 
means that the pairwise interchange moves are suitable for problems whose tardiness objective dominates 
the makespan objective. Consequently, the neighborhood structures should be based on pairwise 
interchanges for λ < 0.01 and on shifts of jobs otherwise.  Given the above selected GA parameters, we 
analyzed the crossover and mutation rates again.  There are no significant differences in these parameters.  
However, in general we recommend a crossover rate of 0.6 and a mutation rate of 0.3. 

Finally, we used the recommended SA, TS, and GA parameters to test the choice of an appropriate initial 
solution (or a part of the initial population for the GA approach). The letters before the letters SA (or TS, or 
GA) denote the heuristic rule as one initial solution for SA (or TS, or GA). For example, LPTSA means that 
the LPT rule is used as an initial solution for the SA algorithm, RNDTS means that an initial solution in TS 
is randomly generated, or NEHGA means that one initial solution of the initial population in the GA 
approach is generated by the NEH rule but the other initial solutions are still randomly generated.   

In Table 5, we compared the LPT, ILPT, NEH, and INEH rules as well as the iterative algorithms with 
random initial solution and population, respectively (denoted by RNDSA, RNDTS, and RNDGA).  We give 
the average (absolute resp. percentage) deviation of a particular algorithm from the best solution in these 
tests. We have found that iterative metaheuristic algorithms can improve the quality of the LPT rule by about 
90 percent or even more.  Among the iterative algorithms, the results show that for the RNDSA and RNDTS 
algorithms there are not statistically significant differences, but in general, the RNDSA algorithm is better 
than the RNDTS algorithm. 

In Table 6, we selected the SPT, LPT, S/P, HSE, ISPT, ILPT, IS/P, IHSE, PAL, CDS, NEH, IPAL, ICDS, 
and INEH rules as the initial solution under consideration. The letter CA denotes the whole group of 
constructive algorithms considered. The letter C before the letters SA, TS, and GA denote the SA, TS, and 
GA algorithms using the best of the constructive algorithms as an initial solution. In addition, for the GA 
approach, we used some selected algorithms in parallel as a part of the initial population.  Based on each 
heuristic group, we used all solutions in each heuristic group stated above as a part of the initial population 
(the other initial solutions are still randomly generated).  Consequently, we have four new choices of initial 
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populations tested (denoted by MIX1GA, MIX2GA, MIX3GA, and MIX4GA, respectively).  We have 
found that the SA-based algorithms are still good algorithms.  In addition, the GA-based algorithms can be 
improved by using a group of biased initial solutions as a part of the initial population instead of all 
randomly generated or only one biased initial solution. 

Concerning the choice of an initial solution, we only show the results for the recommended SA, TS, and 
GA parameters to test an appropriate selection of an initial solution in Table 7.  We have found that for the 
SA algorithm, there are no statistically significant differences when using different initial solutions. We have 
however found that the ILPTSA, NEHSA and INEHSA rules are slightly better than the others in general. 
Consequently, the ILPTSA, NEHSA and INEHSA algorithms are good choices for the SA algorithm with 
using a biased initial solution. However, our experiments have shown that there are slightly statistically 
significant differences for different initial solutions. The NEHTS, INEHTS, NEHGA and INEHGA rules are 
however still good solutions when compared within each group too. 

Finally, we present the results of some algorithms for small-size problems with a number of jobs ranging 
from three to seven. We give the average deviation from the optimal solution obtained by means of  the 0-1 
mixed linear integer programming formulation given in Section 3 using a commercial mathematical 
programming software, CPLEX 8.0.0 and AMPL, with an Intel Pentium 4 2.00GHz CPU.  However, the 
CPU time is limited to at most 2 hours. 
 
Table 5: Average performance of the constructive and iterative algorithms 

λ Problem  
Size LPT ILPT NEH INEH RNDSA RNDTS RNDGA 

10×5 3.200a 1.300 0.700 0.700 0.000 0.040 0.100 
30×10 8.400 3.000 2.300 2.300 0.300 0.260 0.680 
50×20 8.400 2.500 1.200 1.200 0.040 0.040 0.400 0 

Sum 20.000 6.800 4.200 4.200 0.340 0.340 1.180 
10×5 99.380b 26.900 13.320 13.320 0.030 0.060 3.430 

30×10 115.570 24.880 36.810 36.810 6.320 5.880 9.460 
50×20 35.302 5.650 10.921 10.921 0.748 0.917 1.694 0.001 

Sum 250.252 57.430 61.051 61.051 7.098 6.857 14.584 
10×5 46.353 15.036 7.862 7.862 0.031 0.946 1.067 

30×10 56.309 16.126 19.711 19.711 3.899 4.167 7.785 
50×20 19.539 6.237 5.427 5.427 0.946 1.617 2.512 0.005 

Sum 122.201 37.399 33.000 33.000 4.876 6.730 11.364 
10×5 31.949 10.704 5.944 5.944 0.160 0.565 1.359 

30×10 40.655 17.738 14.730 14.730 3.497 4.214 6.731 
50×20 15.380 7.504 4.199 4.199 0.923 1.669 2.079 0.01 

Sum 87.984 35.946 24.873 24.873 4.580 6.448 10.169 
10×5 17.358 5.831 2.936 2.936 0.015 0.039 0.701 

30×10 24.011 12.349 8.167 8.167 3.054 4.059 6.164 
50×20 11.311 6.766 2.218 2.218 0.806 2.187 2.650 0.05 

Sum 52.680 24.946 13.321 13.321 3.875 6.285 9.515 
10×5 15.885 6.054 2.720 2.720 0.082 0.077 0.747 

30×10 21.987 10.890 7.440 7.440 4.098 3.705 6.333 
50×20 10.779 5.565 1.755 1.755 1.099 1.880 2.266 0.1 

Sum 48.651 22.509 11.915 11.915 5.279 5.662 9.346 
10×5 15.493 5.523 3.284 3.284 0.013 0.052 0.630 

30×10 21.179 10.949 6.291 6.291 3.089 3.682 5.769 
50×20 10.547 5.337 1.492 1.492 0.888 2.076 2.432 0.5 

Sum 47.219 21.809 11.067 11.067 3.990 5.810 8.831 
10×5 15.486 5.474 3.279 3.279 0.041 0.075 0.607 

30×10 21.079 10.419 6.324 6.324 3.965 3.365 5.692 
50×20 10.591 5.365 1.605 1.605 1.021 2.012 2.666 1.0 

Sum 47.156 21.258 11.208 11.208 5.027 5.452 8.965 
a average absolute deviation for λ = 0, b average percentage deviation for λ 
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Table 6: Average performance of the iterative algorithms with biased initial solutions 
λ Problem  

size CA C-SA C-TS C-GA MIX1GA MIX3GA MIX2GA MIX4GA 

10×5 1.943a 0.001 0.006 0.089 0.120 0.040 0.100 0.060 
30×10 4.829 0.274 0.237 0.794 0.520 0.780 0.360 0.720 
50×20 5.050 0.014 0.056 0.474 0.460 0.160 0.200 0.080 0 

Sum 11.821 0.290 0.299 1.357 1.100 0.980 0.660 0.860 
10×5 51.554b 0.096 0.421 2.487 3.600 2.630 2.560 3.010 
30×10 59.438 5.719 4.909 9.640 8.270 10.540 3.080 8.710 
50×20 19.131 0.854 0.923 2.410 2.481 1.286 0.488 0.344 0.001 

Sum 130.123 6.668 6.253 14.537 14.351 14.456 6.128 12.064 
10×5 26.798 0.206 0.791 1.433 1.778 1.303 1.271 1.431 
30×10 32.128 4.198 3.834 7.380 6.433 6.990 4.945 6.122 
50×20 12.033 0.894 1.463 3.070 3.400 1.557 0.564 0.973 0.005 

Sum 70.958 5.298 6.088 11.883 11.611 9.850 6.780 8.526 
10×5 19.264 0.205 0.502 1.044 1.445 1.233 0.904 1.595 
30×10 24.923 3.781 4.030 7.693 6.412 8.697 5.147 6.042 
50×20 10.475 0.924 1.532 3.362 2.431 1.515 1.382 1.013 0.01 

Sum 54.662 4.910 6.064 12.099 10.288 11.445 7.433 8.650 
10×5 11.247 0.051 0.047 0.844 0.756 0.547 0.277 0.696 
30×10 16.360 3.745 4.100 6.521 6.499 4.872 5.042 4.525 
50×20 8.117 0.891 2.064 3.207 3.037 1.484 2.686 1.131 0.05 

Sum 35.725 4.687 6.210 10.572 10.292 6.903 8.005 6.352 
10×5 10.408 0.049 0.025 0.608 0.855 0.476 0.659 0.294 
30×10 14.940 4.107 3.868 5.762 6.160 4.527 4.905 4.647 
50×20 7.573 1.107 1.963 3.019 2.827 1.105 2.983 1.103 0.1 

Sum 32.921 5.263 5.856 9.389 9.842 6.108 8.547 6.044 
10×5 10.134 0.020 0.034 0.640 0.646 0.418 0.688 0.449 
30×10 14.625 3.316 3.636 5.808 5.941 3.647 4.942 3.724 
50×20 7.249 0.757 1.820 2.764 2.331 0.961 2.724 0.811 0.5 

Sum 32.008 4.093 5.490 9.212 8.918 5.026 8.354 4.984 
10×5 10.181 0.036 0.051 0.582 0.691 0.492 0.566 0.408 
30×10 14.565 3.764 3.554 5.696 5.292 3.732 4.530 3.255 
50×20 7.312 0.993 1.809 2.987 2.366 0.950 2.861 0.875 1.0 

Sum 32.058 4.792 5.414 9.264 8.349 5.174 7.957 4.538 
a average absolute deviation for λ = 0, b average percentage deviation for λ>0 

  
In the tests, we used again problems with the same generation of the data and  λ ∈ {0, 0.001, 0.005, 0.01 

0.05, 0.1, 0.5, 1} in the objective function. We considered the constructive algorithms LPT and NEH, the 
fast improvement algorithms ILPT and INEH, and the iterative metaheuristic algorithms RNDSA, NEHSA, 
RNDTS, NEHTS, RNDGA and NEHGA. 

From the results in Table 8, it can be observed that the ILPT improvement algorithm can improve the 
constructive LPT rule by about 50 – 70 percent in terms of the deviation from the optimal value.  The 
performance of the NEH and INEH rules as well as the ILPT rule are not significantly different.  As stated 
above for the large-size problems, the NEH rule has already embedded the improvement routine as used by 
the ILPT algorithm. However, in contrast to large-size problems it can be observed that the ILPT algorithm 
is slightly better than NEH and INEH for problems with 0.001 ≤ λ≤ 0.05. For the iterative algorithms such 
as RNDSA, RNDTS, and RNDGA, we have found that they can improve the quality of the solution of the 
constructive and fast improvement algorithms such as ILPT, NEH and INEH by about 50 – 70 percent.  
Similar to the large-size problems, the SA-based algorithms certainly outperform the other algorithms.  In 
addition, we have found that a biased initial solution for the iterative algorithm is slightly better than a 
random initial solution.  
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Table 7: Average performance of iterative algorithms with biased initial solutions 
  SA-Based Algorithms TS-Based Algorithms GA-Based Algorithms (1) GA-Based Algorithms (2)

λ Problem
size 
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10×5 0.000a 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.000 0.100 0.120 0.120 0.060 0.120 0.060 0.120 0.040 0.100 0.060
30×10 0.260 0.280 0.260 0.300 0.300 0.300 0.220 0.220 0.340 0.180 0.300 0.160 0.760 0.900 0.780 0.880 0.880 0.880 0.520 0.780 0.360 0.720
50×20 0.000 0.000 0.000 0.000 0.040 0.000 0.060 0.120 0.020 0.000 0.040 0.000 0.580 0.960 0.580 0.240 0.340 0.240 0.460 0.160 0.200 0.0800 

Sum 0.260 0.280 0.260 0.300 0.340 0.300 0.280 0.340 0.360 0.180 0.360 0.160 1.440 1.980 1.480 1.180 1.340 1.180 1.100 0.980 0.660 0.860
10×5 0.520b 0.010 0.030 0.020 0.510 0.030 0.090 0.570 0.100 0.170 1.060 0.530 2.160 2.990 2.480 2.070 3.660 2.070 3.600 2.630 2.560 3.010

30×10 5.380 6.050 5.600 5.870 5.220 5.880 5.470 4.640 4.520 4.220 5.760 4.220 10.680 9.310 8.230 10.340 8.430 10.340 8.270 10.540 3.080 8.710
50×20 0.954 0.778 0.831 0.844 0.802 0.940 1.211 1.287 0.817 0.615 0.652 0.622 1.839 3.610 1.933 1.323 2.114 1.259 2.481 1.286 0.488 0.344

0.001 

Sum 6.854 6.838 6.461 6.734 6.532 6.850 6.771 6.497 5.437 5.005 7.472 5.372 14.679 15.910 12.64313.73314.20413.66914.35114.456 6.128 12.064
10×5 0.115 0.236 0.531 0.041 0.060 0.259 0.984 1.279 1.179 1.076 1.103 0.721 1.134 1.275 1.437 1.374 1.899 1.374 1.778 1.303 1.271 1.431

30×10 3.999 4.203 4.249 4.264 4.727 4.320 3.897 3.785 3.687 4.075 4.051 4.183 8.038 7.726 7.481 7.055 6.482 7.055 6.433 6.990 4.945 6.122
50×20 0.969 0.866 0.799 0.888 0.923 0.917 1.524 2.046 1.175 0.838 0.975 0.842 2.464 4.560 2.157 1.426 3.183 1.426 3.400 1.557 0.564 0.9730.005 

Sum 5.083 5.305 5.579 5.193 5.710 5.496 6.405 7.110 6.041 5.989 6.129 5.746 11.636 13.561 11.075 9.855 11.564 9.855 11.611 9.850 6.780 8.526
10×5 0.084 0.163 0.212 0.382 0.086 0.324 0.551 0.481 0.779 0.664 0.387 0.706 1.283 1.111 0.859 0.873 1.273 0.873 1.445 1.233 0.904 1.595

30×10 3.701 3.957 3.450 4.103 4.064 4.104 4.389 4.172 3.677 3.892 3.934 3.819 7.098 8.423 7.383 8.586 7.142 8.586 6.412 8.697 5.147 6.042
50×20 0.965 0.969 0.895 0.936 0.933 0.957 1.245 2.171 1.767 0.931 1.517 0.931 2.706 5.873 2.239 1.498 4.247 1.498 2.431 1.515 1.382 1.0130.01 

Sum 4.750 5.089 4.557 5.421 5.083 5.385 6.185 6.824 6.223 5.487 5.838 5.456 11.087 15.407 10.48110.95712.66210.95710.28811.445 7.433 8.650
10×5 0.038 0.032 0.054 0.049 0.040 0.049 0.033 0.052 0.029 0.042 0.054 0.029 0.567 0.793 0.926 0.625 0.859 0.625 0.756 0.547 0.277 0.696

30×10 4.176 3.369 3.903 4.016 3.301 4.005 4.654 3.823 4.165 3.250 4.378 3.356 6.440 8.122 6.803 4.730 7.754 4.730 6.499 4.872 5.042 4.525
50×20 0.896 0.852 0.918 0.748 0.881 0.740 1.963 2.152 2.430 1.491 1.894 1.491 3.133 5.216 3.199 1.382 3.472 1.382 3.037 1.484 2.686 1.1310.05 

Sum 5.110 4.253 4.875 4.813 4.222 4.794 6.650 6.027 6.624 4.783 6.326 4.876 10.140 14.131 10.928 6.737 12.085 6.737 10.292 6.903 8.005 6.352
10×5 0.033 0.064 0.038 0.070 0.047 0.070 0.057 0.035 0.025 0.030 0.021 0.012 0.688 0.523 0.669 0.504 0.540 0.504 0.855 0.476 0.659 0.294

30×10 4.794 3.305 4.647 3.581 3.705 3.581 4.067 4.061 3.724 3.260 3.786 3.254 5.945 6.834 5.444 4.219 6.190 4.219 6.160 4.527 4.905 4.647
50×20 1.067 1.105 1.168 0.813 0.861 0.837 2.142 2.264 2.141 1.369 1.994 1.370 2.484 4.394 2.892 1.091 3.441 1.086 2.827 1.105 2.983 1.1030.1 

Sum 5.894 4.474 5.853 4.464 4.613 4.488 6.266 6.360 5.890 4.659 5.801 4.636 9.117 11.751 9.005 5.814 10.171 5.809 9.842 6.108 8.547 6.044
10×5 0.016 0.014 0.009 0.013 0.014 0.013 0.015 0.035 0.039 0.039 0.041 0.039 0.787 0.887 0.720 0.537 0.671 0.537 0.646 0.418 0.688 0.449

30×10 3.228 3.500 3.571 3.140 4.027 3.153 3.864 3.721 3.894 2.854 3.753 2.904 5.853 7.253 5.490 3.775 5.813 3.775 5.941 3.647 4.942 3.724
50×20 0.776 0.794 0.826 0.715 0.689 0.687 1.895 2.099 2.157 1.170 1.723 1.157 2.150 4.194 2.401 0.982 3.585 0.982 2.331 0.961 2.724 0.8110.5 

Sum 4.020 4.308 4.406 3.868 4.730 3.853 5.774 5.855 6.090 4.063 5.517 4.100 8.790 12.334 8.611 5.294 10.069 5.294 8.918 5.026 8.354 4.984
10×5 0.020 0.006 0.059 0.038 0.035 0.038 0.059 0.065 0.069 0.047 0.024 0.035 0.626 0.591 0.604 0.458 0.387 0.458 0.691 0.492 0.566 0.408

30×10 4.467 2.588 4.071 3.183 3.709 3.148 3.813 3.726 3.763 3.024 3.471 3.030 5.461 7.428 5.580 3.533 5.579 3.547 5.292 3.732 4.530 3.255
50×20 0.858 1.066 1.184 0.588 1.014 0.588 1.821 2.068 2.199 1.198 1.874 1.198 2.367 4.351 2.523 1.040 4.303 1.040 2.366 0.950 2.861 0.8751.0 

Sum 5.345 3.660 5.314 3.809 4.758 3.774 5.693 5.859 6.031 4.269 5.369 4.263 8.454 12.370 8.707 5.031 10.269 5.045 8.349 5.174 7.957 4.538
a average absolute deviation for λ = 0, b average percentage deviation for λ>0 
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Table 8: Average performance of the constructive, fast improvement and metaheuristic algorithms for small-
size problems 

λ Problem size LPT ILPT NEH INEH RNDSA NEHSA RNDTS NEHTS RNDGA NEHGA 
3 jobs 0.300 0.050 0.100 0.100 0.050 0.050 0.050 0.050 0.050 0.050 
4 jobs 0.750 0.250 0.250 0.250 0.150 0.150 0.150 0.150 0.150 0.150 
5 jobs 0.700 0.250 0.150 0.150 0.150 0.150 0.190 0.200 0.150 0.150 
6 jobs 1.200 0.400 0.450 0.450 0.150 0.150 0.150 0.150 0.150 0.150 
7 jobs 1.150 0.500 0.450 0.450 0.200 0.200 0.200 0.200 0.200 0.200 

0 

Sum 4.100 1.450 1.400 1.400 0.700 0.700 0.740 0.750 0.700 0.700 
3 jobs 45.270 5.180 8.610 8.610 4.950 4.950 4.950 4.950 4.950 4.950 
4 jobs 88.390 32.670 37.460 37.460 7.350 7.350 7.500 7.480 7.350 7.350 
5 jobs 23.570 2.320 5.700 5.700 1.870 1.870 2.270 2.320 1.870 1.870 
6 jobs 97.960 33.860 27.320 27.320 13.370 13.370 13.370 13.370 13.370 13.370 
7 jobs 23.960 7.140 7.200 7.200 0.970 0.970 0.970 0.970 0.970 0.970 

0.001 

Sum 279.150 81.170 86.290 86.290 28.510 28.510 29.060 29.090 28.510 28.510 
3 jobs 14.218 3.797 5.367 5.367 3.569 3.569 3.771 4.111 3.569 3.569 
4 jobs 29.860 9.370 12.480 12.480 4.400 4.400 4.410 4.420 4.400 4.400 
5 jobs 15.182 2.383 3.756 3.756 1.627 1.627 1.627 1.627 1.627 1.627 
6 jobs 31.400 8.990 9.070 9.070 3.440 3.440 3.480 3.480 3.440 3.440 
7 jobs 14.180 4.960 4.970 4.970 2.240 2.240 2.240 2.240 2.240 2.240 

0.005 

Sum 104.840 29.500 35.643 35.643 15.276 15.276 15.528 15.878 15.276 15.276 
3 jobs 9.820 3.371 4.379 4.379 3.143 3.143 3.550 3.550 3.143 3.143 
4 jobs 20.475 5.812 8.182 8.182 3.350 3.350 3.423 3.370 3.350 3.350 
5 jobs 11.884 2.334 2.899 2.899 1.450 1.450 1.450 1.450 1.450 1.450 
6 jobs 20.018 5.542 5.677 5.677 2.154 2.154 2.165 2.154 2.164 2.155 
7 jobs 10.528 2.917 2.903 2.903 1.096 1.096 1.096 1.096 1.102 1.096 

0.01 

Sum 72.725 19.976 24.040 24.040 11.193 11.193 11.684 11.620 11.209 11.194 
3 jobs 7.048 3.388 3.267 3.267 2.887 2.887 3.046 2.934 2.887 2.887 
4 jobs 12.651 3.366 4.521 4.521 2.084 2.084 2.084 2.084 2.084 2.084 
5 jobs 8.846 2.576 1.778 1.778 0.899 0.899 0.899 0.899 0.899 0.899 
6 jobs 9.344 2.516 3.256 3.256 1.042 1.042 1.042 1.042 1.047 1.047 
7 jobs 6.291 0.960 0.650 0.650 0.192 0.192 0.192 0.192 0.229 0.192 

0.05 

Sum 44.180 12.806 13.472 13.472 7.104 7.104 7.263 7.151 7.146 7.109 
3 jobs 6.828 3.343 3.149 3.149 2.929 2.929 3.011 3.011 2.929 2.929 
4 jobs 12.301 3.529 4.315 4.315 2.059 2.059 2.059 2.059 2.059 2.059 
5 jobs 8.705 2.417 1.574 1.574 0.889 0.889 0.889 0.889 0.889 0.889 
6 jobs 9.172 2.656 2.186 2.186 0.949 0.949 0.949 0.949 0.949 0.949 
7 jobs 5.906 0.615 0.335 0.335 0.146 0.146 0.146 0.146 0.184 0.155 

0.1 

Sum 42.912 12.560 11.559 11.559 6.972 6.972 7.054 7.054 7.010 6.981 
3 jobs 6.760 3.475 3.237 3.237 3.123 3.123 3.295 3.360 3.123 3.123 
4 jobs 12.063 2.776 4.137 4.137 1.921 1.921 1.945 1.921 1.921 1.921 
5 jobs 8.531 2.215 1.548 1.548 0.745 0.745 0.745 0.745 0.745 0.745 
6 jobs 8.607 2.620 2.514 2.514 1.238 1.238 1.238 1.238 1.269 1.238 
7 jobs 6.840 1.581 0.391 0.391 0.113 0.113 0.113 0.113 0.149 0.113 

0.5 

Sum 42.801 12.667 11.827 11.827 7.140 7.140 7.336 7.377 7.207 7.140 
3 jobs 6.750 3.492 3.247 3.247 3.142 3.142 3.182 3.191 3.142 3.142 
4 jobs 12.038 2.745 4.107 4.107 1.877 1.877 1.877 1.877 1.877 1.877 
5 jobs 9.458 3.192 2.441 2.441 1.712 1.712 1.712 1.712 1.712 1.712 
6 jobs 9.368 2.811 2.747 2.747 1.518 1.518 1.518 1.518 1.545 1.531 
7 jobs 7.834 2.139 0.843 0.843 0.297 0.297 0.332 0.297 0.315 0.306 

1.0 

Sum 45.448 14.379 13.385 13.385 8.546 8.546 8.621 8.595 8.591 8.568 
a average absolute deviation for λ = 0, b average percentage deviation for λ> 0 
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7. Conclusions 
 
In this paper, we have investigated both constructive and iterative (SA, TS, and GA-based algorithms) 

approaches for minimizing a convex combination of makespan and the number of tardy jobs for the flexible 
flow shop problem with unrelated parallel machines and setup times, which is often occurring e.g. in the 
textile industry.  All algorithms are based on the list scheduling principle by developing job sequences for 
the first stage and assigning and sequencing the remaining stages by both the permutation and FIFO 
approaches.  The constructive algorithms are compared to each other.  It is shown that the NEH algorithm is 
an excellent constructive algorithm for minimizing the objective function considered. In particular, the NEH 
algorithm is most superior to the other constructive algorithms.  When applying a fast polynomial 
improvement algorithm, we have found that the all-pairwise-interchange algorithm is a good improvement 
algorithm.  

Moreover, we used SA-based algorithms as iterative algorithms.  We tested the SA parameters, i.e., initial 
temperatures, neighborhood structures, and cooling schedules.  We have found that a low initial temperature 
is slightly preferable (we recommend two for λ < 0.5 and ten otherwise).  The neighborhood structures 
should be based on pairwise interchanges for λ = 0 and on shifts of jobs otherwise. The Lundy and Mees 
cooling scheme Tnew = Told/(1+β×Told) is recommended.  In the TS algorithm, we studied the TS parameters, 
i.e., neighborhood structures, size of the tabu list, and the number of generated neighbors per iteration.  
Similar to the SA algorithm, the pairwise interchange neighborhood is better for λ < 0.005, whereas the shift 
neighborhood becomes better otherwise. We can recommend a tabu list size of 10 and the generation of a 
constant number of 20 nontabu neighbors in each iteration. For the GA algorithm, we have found that the 
OPX crossover is clearly superior to the PMX crossover, whereas we recommend that the SM neighborhood 
should be selected as the mutation operator for problems with λ ≥ 0.01, and the PI neighborhood otherwise.  
We have fixed the crossover and mutation rates at 0.6 and 0.3, respectively.  

For the recommended SA, TS, and GA parameters, we investigated the performance of these algorithms 
RNDSA, RNDTA, and RNDGA.  We have found that the RNDSA algorithm outperforms the other 
algorithms. Then, we studied the influence of the initial solution on these algorithms. The results have 
shown that the SA-based algorithms are still good algorithms.  However, among the SA-, TS- and GA- 
based algorithms, the NEH and INEH rules are a good choice of an initial solution in general.   

Further research can be done to use other iterative algorithms such as ant colony algorithms.  The choice 
of good parameters for them should be tested.  In addition, the influence of the starting solution should be 
investigated.  Moreover, hybrid algorithms should be developed by using a local search algorithm within a 
GA. This means that, after generating an offspring, this solution should be improved by applying for 
instance tabu search or simulated annealing before applying the selection criterion of GA. 
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