
Artif Intell Rev (2019) 52:2603–2621

https://doi.org/10.1007/s10462-018-9629-z

Algorithms for frequent itemset mining: a literature

review

Chin-Hoong Chee1
· Jafreezal Jaafar1

· Izzatdin Abdul Aziz1
·

Mohd Hilmi Hasan1
· William Yeoh2

Published online: 24 March 2018

© The Author(s) 2018

Abstract Data Analytics plays an important role in the decision making process. Insights

from such pattern analysis offer vast benefits, including increased revenue, cost cutting,

and improved competitive advantage. However, the hidden patterns of the frequent itemsets

become more time consuming to be mined when the amount of data increases over the

time. Moreover, significant memory consumption is needed in mining the hidden patterns of

the frequent itemsets due to a heavy computation by the algorithm. Therefore, an efficient

algorithm is required to mine the hidden patterns of the frequent itemsets within a shorter run

time and with less memory consumption while the volume of data increases over the time

period. This paper reviews and presents a comparison of different algorithms for Frequent

Pattern Mining (FPM) so that a more efficient FPM algorithm can be developed.

Keywords Data analytics · Data mining · Frequent Pattern Mining (FPM) · Frequent

itemset mining (FIM)

B Chin-Hoong Chee

timothychee@gmail.com

Jafreezal Jaafar

jafreez@utp.edu.my

Izzatdin Abdul Aziz

izzatdin@utp.edu.my

Mohd Hilmi Hasan

mhilmi_hasan@utp.edu.my

William Yeoh

william.yeoh@deakin.edu.au

1 Center for Research in Data Sciences, Universiti Teknologi PETRONAS, Tronoh, Perak, Malaysia

2 Department of Information Systems and Business Analytics, Deakin University, Melbourne, Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-018-9629-z&domain=pdf


2604 C.-H. Chee et al.

1 Introduction

According to a global CIOs survey conducted by Gartner, data analytics has been ranked as the

top technologies priority (King 2016). This is because data analytics enables the stakeholders

of a company to make informed decision for their business when actionable information

can be extracted from the large volume of data available in the entire organization (Chee

et al. 2016). When the company stakeholders are able to make fact-based decision using

the capability of data analytics, the company will have a greater likelihood of increased

revenue, cost-cutting, and improved competitive advantage. To date, data analytics has been

widely adopted to support the operations in many businesses or industries like healthcare

(McGlothlin and Khan 2013), electricity supply (Qiu et al. 2013), manufacturing (Jesus and

Bernardino 2014), railway safety management (Lira et al. 2014), financial service (Chang

2014), tourism (Rebón et al. 2015), education (Haupt et al. 2015), monitoring of quality

for web services (Hasan et al. 2014), monitoring for quality-of-experience in high-density

wireless network (Qaiyum et al. 2016) and even not-for-profit organizations (Oakley et al.

2015).

Figure 1 depicts the entire implementation process of a typical data analytics practice

(Gullo 2015). First, the data is selected from its original source into the target data sets

for pre-processing and transformation. Then, it is mined into significant patterns that can

be interpreted or evaluated into useful knowledge. Among the various phases, data mining

plays an important role in discovering significant patterns that may exist frequently in the

transformed data. This is because identifying the hidden patterns of a data set enables users

to make the appropriate decision and action especially in a critical situation. In the midst

of diverse techniques of data mining, Frequent Pattern Mining (FPM) is one of the most

important techniques because of its ability to locate the repeating relationships between

different items in a data set and represent them in the form of association rules.

FPM issues has been extensively studied by many researchers because of its abundant

applications to a range of data mining tasks like classification, clustering, and outlier anal-

ysis (Aggarwal 2014). To improve the method for classifying or clustering a set of data,

and detecting the outliers or anomalies set of data, FPM plays an important role in perform-

ing many tasks for data mining. Apart from this, FPM has various applications in different

domains like spatiotemporal data analysis, biological data analysis, and software bug detec-

tion (Aggarwal 2014). It is the fundamental step to identify the hidden patterns that exist

frequently in a data set for generating association rules to be used in data analysis.

Many algorithms have been proposed by different researchers to enhance the technique in

FPM. However, improvements are still required to be done towards the performance of the

existing FPM algorithms because most of the current algorithms are not suitable for mining

Fig. 1 Process of knowledge discovery in databases (KDD). Reproduced with permission from (Gullo 2015)

123



Algorithms for frequent itemset mining: a literature review 2605

a huge data set with an increasingly large number of data. The two major challenges faced

by most of the FPM algorithms are: lengthy run time and huge consumption of memory

space in executing the algorithm to mine all the hidden frequent patterns (Jamsheela 2015).

Therefore, the aim of this research is to construct an algorithm that is able to mine all the

significant frequent patterns within a data set in an efficient manner while the amount of data

can increase continuously from time to time. The objective of this paper is to review the

advantages and disadvantages of some significant and recent FPM algorithms so that a more

efficient FPM algorithm can be developed.

2 Literature review

Analyzing all the data that is collected in the data store or warehouse is definitely a necessity

for every enterprise because a more proper decision can be made considering all data sets.

In order to provide users with information that is more useful for data analysis and decision

making, it is important to mine and identify all the significant hidden patterns that exist fre-

quently in a data set. Therefore, this paper analyzes a number of FPM algorithms to provide

an overview of the FPM state-of-the-art. The previous works done on FPM algorithms are

presented in Sects. 2.1 to 2.10, while Sect. 2.11 presents a table which provides a compar-

ison of the fundamental and significant FPM algorithms that have been proposed by other

researchers.

2.1 Apriori algorithm

Apriori (Agrawal and Srikant 1994) is an algorithm that mines frequent itemsets for gener-

ating Boolean association rules. It uses an iterative level-wise search technique to discover

(k + 1)-itemsets from k-itemsets. A sample of transactional data that consists of product items

being purchased at different transactions is shown in Table 1. First, the database is scanned

to identify all the frequent 1-itemsets by counting each of them and capturing those that

satisfy the minimum support threshold. The identification of each frequent itemset requires

of scanning the entire database until no more frequent k-itemsets is possible to be identified.

According to Fig. 2, the minimum support threshold used is 2. Therefore, only the records

that fulfill a minimum support count of 2 will be included into the next cycle of algorithm

processing.

Table 1 Sample of transactional

data. Reproduced with

permission from (Han et al. 2012)

TID List of item_IDs

T100 I1, I2, I5

T200 I2, I4

T300 I2, I3

T400 I1, I2, I4

T500 I1, I3

T600 I2, I3

T700 I1, I3

T800 I1, I2, I3, I5

T900 I1, I2, I3

123



2606 C.-H. Chee et al.

Fig. 2 Generation of candidate itemsets and frequent itemsets. Reproduced with permission from (Han et al.

2012)

In many cases, the Apriori algorithm reduces the size of candidate itemsets significantly

and provides a good performance gain. However, it is still suffering from two critical lim-

itations (Han et al. 2012). First, a large number of candidate itemsets may still need to be

generated if the total count of a frequent k-itemsets increases. Then, the entire database is

required to be scanned repeatedly and a huge set of candidate items are required to be verified

using the technique of pattern matching.

2.2 FP-Growth algorithm

Frequent Pattern Growth (FP-Growth) (Han et al. 2000) is an algorithm that mines frequent

itemsets without a costly candidate generation process. It implements a divide-and-conquer

technique to compress the frequent items into a Frequent Pattern Tree (FP-Tree) that retains

the association information of the frequent items. The FP-Tree is further divided into a set

of Conditional FP-Trees for each frequent item so that they can be mined separately. An

example of the FP-Tree that represents the frequent items is shown in Fig. 3.

The FP-Growth algorithm solves the problem of identifying long frequent patterns by

searching through smaller Conditional FP-Trees repeatedly. An example of the Conditional

FP-Tree associated with node I3 is shown in Fig. 4, and the details of all the Conditional FP-

Trees found in Fig. 3 are shown in Table 2. The Conditional Pattern Base is a “sub-database”

which consists of every prefix path in the FP-Tree that co-occurs with every frequent length-1

item. It is used to construct the Conditional FP-Tree and generate all the frequent patterns

123



Algorithms for frequent itemset mining: a literature review 2607

Fig. 3 Frequent pattern tree (FP-Tree). Reproduced with permission from (Han et al. 2012)

Fig. 4 Conditional FP-Tree associated with Node I3. Reproduced with permission from (Han et al. 2012)

Table 2 Conditional Pattern Base and conditional FP-Tree. Reproduced with permission from (Han et al.

2012)

Item Conditional pattern base Conditional FP-tree Frequent patterns

generated

I5 {{I2, I1: 1}, {I2, I1, I3:

1}}

{I2: 2, I1: 2} {I2, I5: 2}, {I1, I5: 2},

{I2, I1, I5: 2}

I4 {{I2, I1: 1}, {I2: 1}} {I2: 2} {I2, I4: 2}

I3 {{I2, I1: 2}, {I2: 2}, {I1:

2}}

{I2: 4, I1: 2}, {I1: 2} {I2, I3: 4}, {I1, I3: 4},

{I2, I1, I3: 2}

I1 {{I2: 4}} {I2: 4} {I2, I1: 4}

related to every frequent length-1 item. In this way, the cost of searching for the frequent

patterns is substantially reduced. However, constructing the FP-Tree is time consuming if

the data set is very large (Meenakshi 2015).

2.3 EClaT algorithm

Equivalence Class Transformation (EClaT) (Zaki 2000) is an algorithm that mines frequent

itemsets efficiently using the vertical data format as shown in Table 3. In this method of

data representation, all the transactions that contain a particular itemset are grouped into the

same record. First, the EClaT algorithm transforms data from the horizontal format into the

123



2608 C.-H. Chee et al.

Table 3 Transactional data in

vertical data format. Reproduced

with permission from (Han et al.

2012)

itemset TID_set

I1 {T100, T400, T500, T700, T800,

T900}

I2 {T100, T200, T300, T400, T600,

T800, T900}

I3 {T300, T500, T600, T700, T800,

T900}

I4 {T200, T400}

I5 {T100, T800}

Table 4 2-Itemsets in vertical

data format. Reproduced with

permission from (Han et al. 2012)

itemset TID_set

{I1, I2} {T100, T400, T800, T900}

{I1, I3} {T500, T700, T800, T900}

{I1, I4} {T400}

{I1, I5} {T100, T800}

{I2, I3} {T300, T600, T800, T900}

{I2, I4) {T200, T400)

{I2, I5} {T100, T800}

{I3, I5} {T800}

Table 5 3-itemsets in vertical data format. Reproduced with permission from (Han et al. 2012)

itemset TID_set

{I1, I2, I3} {T800, T900}

{I1, I2, I5} {T100, T800}

vertical format by scanning the database once. The frequent (k + 1)-itemsets are generated

by intersecting the transactions of the frequent k-itemsets. This process repeats until all the

frequent itemsets are intersected with one another and no frequent itemsets can be found as

shown in Tables 4 and 5.

For the EClaT algorithm, the database is not required to be scanned multiple times in order

to identify the (k + 1)-itemsets. The database is only scanned once to transform data from

the horizontal format into the vertical format. After scanning the database once, the (k + 1)-

itemsets are discovered by just intersecting the k-itemsets with one another. Apart from this,

the database is also not required to be scanned multiple times in order to identify the support

count of every frequent itemset because the support count of every itemset is simply the total

count of transactions that contain the particular itemset. However, the transactions involved

in an itemset can be quite a lot, making it to take extensive memory space and processing

time for intersecting the itemsets.

2.4 TreeProjection algorithm

TreeProjection (Agarwal et al. 2001) is an algorithm that mines frequent itemsets through

a few different searching techniques for constructing a lexicographic tree, such as breadth-

123



Algorithms for frequent itemset mining: a literature review 2609

Fig. 5 Lexicographic Tree. Reproduced with permission from (Agarwal et al. 2001)

first, depth-first, or a mixture of the two. In this algorithm, the support of each frequent

itemset in every transaction is counted and projected onto the lexicographic tree as a node.

This greatly improves the performance of calculating the total transactions that contain a

particular frequent itemset. An example of the lexicographic tree that represents the frequent

items is shown in Fig. 5.

In the hierarchical structure of a lexicographic tree, only the subset of transactions that can

probably hold the frequent itemsets will be searched by the algorithm. The search is performed

by traversing the lexicographic tree with a top-down approach. Apart from the lexicographic

tree, a matrix structure is used to provide a more efficient method for calculating the frequent

itemsets that have very low level of support count. In this way, cache implementations can

be made available efficiently for the execution of the algorithm. However, the main problem

faced by this algorithm is that different representations of the lexicographic tree present

different limitations in terms of efficiency at memory consumption (Aggarwal et al. 2014).

2.5 COFI algorithm

Co-Occurrence Frequent Itemset (COFI) (El-Hajj and Zaiane 2003) is an algorithm that mines

frequent itemsets using a pruning method that reduces the use of memory space significantly.

Its intelligent pruning method constructs relatively small trees from the FP-Tree on the fly,

and it is based on a special property that is derived from the top-down approach mining

technique of the algorithm. Some examples of the COFI-Trees are shown in Fig. 6.

Comparing to the FP-Growth algorithm, the COFI algorithm is better mainly in terms

of memory consumption and occasionally in terms of execution runtime. This is because

of the following two implementations: (1) A non-recursive method is used during the pro-

cess of mining to traverse through the COFI-Trees in order to generate the entire set of

123



2610 C.-H. Chee et al.

Fig. 6 COFI-Trees. Reproduced with permission from (El-Hajj and Zaiane 2003)

frequent patterns. (2) The pruning method implemented in the algorithm has removed all the

non-frequent patterns, so only frequent patterns are left in the COFI-Trees. However, if the

threshold value of the minimum support is low, the performance of the algorithm degrades

in a sparse database (Gupta and Garg 2011).

2.6 TM algorithm

Transaction Mapping (TM) (Song and Rajasekaran 2006) is an algorithm that mines frequent

itemsets using the vertical data representation like the EClaT algorithm. In this algorithm,

the transaction IDs of every itemset are transformed and mapped into a list of transaction

intervals at another location. Then, intersection will be performed between the transaction

intervals in a depth-first search order throughout the lexicographic tree to count the itemsets.

An example of the transaction mapping technique is shown in Fig. 7.

123



Algorithms for frequent itemset mining: a literature review 2611

Fig. 7 Example of transaction

mapping. Reproduced with

permission from (Song and

Rajasekaran 2006)

When the value of minimum support is high, the transaction mapping technique is able to

compress the transaction IDs into the continuous transaction intervals significantly. As the

itemsets are compressed into a list of transaction intervals, the intersection time is greatly

saved. The TM algorithm is proven to be able to gain better performance over the FP-Growth

and dEClaT algorithms on data sets that contain short frequent patterns. Even though it is so,

the TM algorithm is still slower in terms of processing speed compared to the FP-Growth*

algorithm.

2.7 P-Mine algorithm

P-Mine (Baralis et al. 2013) is an algorithm that mines frequent itemsets using a parallel

disk-based approach on a multi-core processor. It decreases the time required to produce a

dense version of the data set on disk using the VLDBMine data structure. A Hybrid-Tree

(HY-Tree) is used in the VLDBMine data structure to store the entire data set and other

information required to support the data retrieval process. To enhance the efficiency for disk

access, a pre-fetching technique has been implemented to load multiple projections of the

data set into different processor cores for mining the frequent itemsets. Finally, the results

are gathered from each processor core and merged in order to construct the entire frequent

itemsets. The architecture of the P-Mine algorithm is shown in Fig. 8.

As the data set is represented in the VLDBMine data structure, the performance and

scalability of frequent itemset mining are further improved. This is because the HY-Tree

of the VLDBMine data structure enables the data to be selectively accessed in order to

effectively support the data-intensive loading process with a minimized cost. Apart from

this, when the process of frequent itemset mining is executed across different processor

cores in parallel at the same time, the performance is optimized locally on every node.

However, the algorithm can only be optimized to the maximum level when multiple cores

are available in the processor.

2.8 LP-Growth algorithm

Linear Prefix Growth (LP-Growth) (Pyun et al. 2014) is an algorithm that mines frequent

itemsets using arrays in a linear structure. It minimizes the information required in the data

mining process by constructing a Linear Prefix Tree (LP-Tree) that is composed of arrays

instead of pointers. With this implementation, the efficiency in memory usage is increased

since the information of connection between different nodes is reduced significantly. A struc-

ture of the Linear Prefix Nodes (LPNs) in the LP-Tree is shown in Fig. 9. One LP-Tree is

composed of multiple LPNs in a linear structure. Every set of frequent items is stored into dif-

123



2612 C.-H. Chee et al.

Fig. 8 Architecture of the P-Mine Algorithm. Reproduced with permission from (Baralis et al. 2013)

ferent nodes that are composed of multiple arrays. In order to link all the arrays together, every

array consists of a header in its first location to indicate its parent array. If the LPN is the first

node to be inserted in the LP-Tree, the header of that LPN indicates the root of the LP-Tree.

The LP-Growth algorithm is able to generate the LP-Tree in a faster manner compared

to the FP-Growth algorithm. This is because a series of array operations are used in the LP-

Growth algorithm to create multiple nodes at the same time, while the FP-Growth algorithm

creates the nodes one at a time. As the nodes are saved in the form of arrays, any parent or

child nodes are accessible without using any pointers while searching through the LP-Tree.

In addition, it is also possible to traverse through the LP-Tree in a faster manner because

the corresponding memory locations can be directly accessed when all the nodes are stored

using the array structure. Apart from this, when pointers are not utilized to link up all the

nodes, the memory usage for every node becomes comparatively less as well. However, the

LP-Growth algorithm has a limitation in the insertion process of nodes because the items

123



Algorithms for frequent itemset mining: a literature review 2613

Fig. 9 Structure of linear prefix nodes (LPNs). Reproduced with permission from (Pyun et al. 2014)

from a transaction may be saved in various LPNs (Jamsheela and Raju 2015). Therefore, to

insert a transaction into the LP-Tree successfully, the memory needs to be freed continuously.

2.9 Can-Mining algorithm

Can-Mining (Hoseini et al. 2015) is an algorithm that mines frequent itemsets from a

Canonical-Order Tree (Can-Tree) in an incremental manner. Similar to the FP-Growth algo-

rithm, a header table that contains information of all the database items is used in the

algorithm. The header table consists of the frequency of each item and its pointers to the

first and last nodes that contain the item in the Can-Tree. In order to extract frequent pat-

terns from the Can-Tree, a list of frequent items is required for the algorithm to perform the

mining operation. The Can-Mining algorithm is able to reduce the time of mining in nested

Can-Trees because only frequent items are appended into the trees in a predefined order.

When the minimum support has a high threshold value, the Can-Mining algorithm is able

to outperform the FP-Growth algorithm. However, if the threshold value of the minimum

support is much lower, the FP-Growth algorithm is more efficient. The architecture of the

Can-Mining algorithm is shown in Fig. 10.

2.10 EXTRACT algorithm

EXTRACT (Feddaoui et al. 2016) is an algorithm that mines frequent itemsets using the

mathematical concept of Galois lattice. The architecture of the EXTRACT algorithm is shown

123



2614 C.-H. Chee et al.

Fig. 10 Architecture of the Can-mining algorithm. Reproduced with permission from (Hoseini et al. 2015)

in Fig. 11. It is partitioned into four functions for calculating the support count, combining

the itemsets, eliminating the itemsets that are repeated, and extracting association rules from

the frequent itemsets.

First, EXTRACT calculates the support count of each frequent 1-itemset that satisfied the

minimum support. All frequent 1-itemset that did not satisfy the minimum support will be

removed from the calculation. Then, it will combine the itemsets to discover all the possible

combinations of frequent itemsets. After identifying them, the combinations of frequent

itemsets that are redundant will be eliminated. Once all the unique frequent itemsets are

mined, the association rules that satisfied the minimum confidence will be generated. All

association rules that did not satisfy the minimum confidence will be removed from the rule

discovery process. EXTRACT outperforms the Apriori algorithm for mining more than 300

objects and 10 attributes with an execution time that does not exceed 1200 ms. However,

since the frequent itemsets that have been mined are not stored in any disk or database, the

algorithm is required to be executed again in order to mine the new set of frequent itemsets

if there is a change in the data set.

2.11 Classification and comparison of Frequent Pattern Mining algorithms

In general, the algorithms for Frequent Pattern Mining (FPM) can be classified into three

main categories (Aggarwal et al. 2014), namely Join-Based, Tree-Based, and Pattern Growth

as shown in Fig. 12. First, the Join-Based algorithms apply a bottom-up approach to identify

frequent items in a data set and expand them into larger itemsets as long as those itemsets

appear more than a minimum threshold value defined by the user in the database. Then, the

123



Algorithms for frequent itemset mining: a literature review 2615

Fig. 11 Architecture of the

EXTRACT algorithm.

Reproduced with permission

from (Feddaoui et al. 2016)

Fig. 12 Classification of Frequent Pattern Mining algorithms

Tree-Based algorithms use set-enumeration concepts to solve the problem of frequent itemset

generation by constructing a lexicographic tree that enables the items to be mined through

a variety of ways like the breadth-first or depth-first order. Finally, the Pattern Growth algo-

rithms implement a divide-and-conquer method to partition and project databases depending

on the presently identified frequent patterns and expand them into longer ones in the pro-

jected databases. The advantages and disadvantages of various significant FPM algorithms

are summarized in Table 6.

123



2616 C.-H. Chee et al.

Table 6 Comparison of Frequent Pattern Mining algorithms

FPM algorithm Advantages Disadvantages

Apriori (Agrawal and Srikant

1994)

Uses an iterative level-wise search

technique to discover

(k + 1)-itemsets from k-itemsets

Has to produce a lot of candidate

sets if k-itemsets is more in

numbers

Has to scan the database

repeatedly to determine the

support count of the itemsets

FP-Growth (Han and Pei 2000) Preserves the association

information of all itemsets

Shrinks the amount of data to be

searched

Constructing the FP-Tree is time

consuming if the data set is very

large

EClaT (Zaki 2000) Scanning the database to find the

support count of (k + 1)-itemsets

is not required

More memory space and

processing time are required for

intersecting long TID sets

TreeProjection (Agarwal et al.

2001)

Identifies the frequent itemsets in

a fast manner because only the

subset of transactions that can

probably hold the frequent

itemsets is searched by the

algorithm

Different representations of the

lexicographic tree present

different limitations in terms of

efficiency for memory

consumption

COFI (El-Hajj and Zaiane 2003) Uses a pruning method to reduce

the use of memory space

significantly by constructing

smaller COFI-Trees while

mining for the frequent itemsets

The performance of the algorithm

degrades in a sparse database if

the threshold value of the

minimum support is low

TM (Song and Rajasekaran 2006) Compresses the itemsets into a

list of transaction intervals in

order to greatly save the

intersection time for mining the

frequent itemsets

Still slower in terms of processing

speed compared to the

FP-Growth* algorithm

P-Mine (Baralis et al. 2013) Optimizes performance and

scalability by executing the

mining of frequent itemsets in

parallel with multiple processor

cores

The algorithm can only be

optimized to the maximum level

when multiple cores are

available in the processor

LP-Growth (Pyun et al. 2014) Generates the LP-Tree in a faster

manner as a series of array

operations are used to create

multiple nodes together

Memory needs to be freed

continuously as the items from a

transaction may be saved in

various LPNs

Can-Mining (Hoseini et al. 2015) Outperforms the FP-Growth

algorithm when the minimum

support has a high threshold

value

Mining time is longer if the

threshold value of the minimum

support is much lower

EXTRACT (Feddaoui et al. 2016) Mines more than 300 objects and

10 attributes with an execution

time that does not exceed

1200 ms

The algorithm needs to be

executed again in order to mine

the new set of frequent itemsets

if there is a change in the data

set

123



Algorithms for frequent itemset mining: a literature review 2617

Fig. 13 Runtime of different horizontal layout algorithms. Reproduced with permission from (Meenakshi

2015)

Amongst the existing Pattern Growth algorithms, most of them are evolved from the FP-

Growth algorithm. This is because FP-Growth generates all the frequent patterns using only

two scans for the data set, representing the entire data set with a compressed tree structure,

and decreases the execution time by removing the need to generate the candidate itemsets

(Mittal et al. 2015). Although the existing FPM algorithms are able to mine the frequent

patterns in a data set by identifying the association between different data items, a lengthy

processing time and a large consumption of memory space are still the two major problems

faced by FPM especially when the amount of data increases in a data set. Therefore, a more

robust FPM algorithm needs to be developed for identifying the significant frequent patterns

of an increasing data set that performs in a more efficient manner.

3 Result and discussion

Many experimental testings have been done by different researchers for the performance

of Frequent Pattern Mining (FPM) algorithms from the aspects of execution run time and

memory consumption in mining the frequent itemsets from a data set. The execution run time

of some algorithms for horizontal layout data are presented in Fig. 13 and Table 7. According

to the experimental results, the average execution run time for mining the frequent itemsets

with an average transaction size of 15 in the horizontal layout data is 30.87 s. This shows

that the time required to mine the frequent itemsets will surely rise sharply when the data

increases to a larger amount.

The execution run time of some algorithms for vertical layout data are presented in Fig. 14

and Table 8. For an average transaction size of 28 in the vertical layout data, an average

execution run time of 34.01 s is required to mine the frequent itemsets. Similarly, this indicates

that the time required to mine the frequent itemsets will also rise sharply when the data

increases to a larger amount even though the data is stored in the vertical layout format.

The memory usage of some algorithms is presented in Fig. 15 and Table 9. According

to the experimental results, an average of 37.63 megabytes (MB) of memory is required to

mine the frequent itemsets with an average transaction size of 15. Likewise, this shows that

the memory consumption for mining the frequent itemsets will definitely rise a lot as well

when the data increases to a larger amount.

123



2618 C.-H. Chee et al.

Table 7 Runtime of different horizontal layout algorithms. Reproduced with permission from (Meenakshi

2015)

Algorithm Transaction size Threshold Execution time (s)

Apriori 10 1.5 5.3

SETM 5 1 19

Apriori TID 20 1.5 100

Apriori Hybrid 10 0.75 7.5

FPGROWTH 20 3 20.936

PP-Mine 10 1.18 11.437

COFI 20 3.11 12.563

DynGrowth 30 5 8.23

PRICES 10 5 150

TFP 20 3 2.797

SSR 10 1 1.766

Fig. 14 Runtime of different vertical layout algorithms. Reproduced with permission from (Meenakshi 2015)

4 Future work

After conducting a study to compare the different algorithms for Frequent Pattern Mining

(FPM), the next step of our research is to construct a more efficient FPM algorithm. The

algorithm will be designed to mine the data from a data warehouse in order to identify the

patterns that exist frequently and being hidden from the normal view of users. All the frequent

patterns that have been mined from the data warehouse will be stored in a Frequent Pattern

Database (FP-DB) using the technology of Not-Only Structure Query Language (NoSQL)

(Gupta et al. 2017). The FP-DB will be updated continuously so that the hidden patterns of

data can be mined within a shorter run time using less memory consumption even when the

amount of data increases over the time.

123



Algorithms for frequent itemset mining: a literature review 2619

Table 8 Runtime of different vertical layout algorithms. Reproduced with permission from (Meenakshi 2015)

Algorithm Transaction size Threshold Execution time (s)

MAXMINER 30 1.2 8

VIPER 10 1.5 100

ECLAT 40 1.4 90

MAFIA 10 0.14 9

DECLAT 40 1.4 15

CHARM 30 1 12

DIFFSET 20 0.1 31

GENMAX 40 1.5 40

TM 25 2 1.109

Fig. 15 Memory usage of existing FPM algorithms. Reproduced with permission from (Meenakshi 2015)

Table 9 Memory usage of existing FPM algorithms. Reproduced with permission from (Meenakshi 2015)

Algorithm Transaction size Threshold Memory size (MB)

FPGROWTH 20 3 75

PP-Mine 10 3.11 60

TFP 20 3 15

SSR 10 1 0.5

5 Conclusion

The objective of this study is to review the strengths and weaknesses of the important and

recent algorithms in Frequent Pattern Mining (FPM) so that a more efficient FPM algorithm

can be developed. In summary, two major problems in FPM have been identified in this

research. First, the hidden patterns that exist frequently in a data set become more time con-

123



2620 C.-H. Chee et al.

suming to be mined when the amount of data increases. It causes large memory consumption

as a result of heavy computation by the mining algorithm. In order to solve these problems,

the next stage of the research aims to: (1) formulate an FPM algorithm that efficiently mines

the hidden patterns within a shorter run time; (2) formulate the FPM algorithm to consume

less memory in mining the hidden patterns; (3) evaluate the proposed FPM algorithm with

some existing algorithms in order to ensure that it is able to mine an increased data set within

a shorter run time with less memory consumption. By implementing the proposed FPM algo-

rithm, users will be able to reduce the time of decision making, improve the performance

and operation, and increase the profit of their organizations.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license, and indicate if changes were made.

References

Agarwal RC, Aggarwal CC, Prasad VVV (2001) A tree projection algorithm for generation of frequent item

sets. J Parallel Distrib Comput 61(3):350–371

Aggarwal CC (2014) An introduction to Frequent Pattern Mining. In: Aggarwal CC, Han J (eds) Frequent

Pattern Mining. Springer, Basel, pp 1–14

Aggarwal CC, Bhuiyan MA, Hasan MA (2014) Frequent Pattern Mining algorithms: a survey. In: Aggarwal

CC, Han J (eds) Frequent Pattern Mining. Springer, Basel, pp 19–64

Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Paper presented at the proceedings

of the 20th international conference on very large data bases, Santiago

Baralis E, Cerquitelli T, Chiusano S, Grand A (2013) P-Mine: parallel itemset mining on large datasets. In:

Paper presented at the 2013 IEEE 29th international conference on data engineering workshops (ICDEW),

Brisbane

Chang V (2014) The business intelligence as a service in the cloud. Future Gener Comput Syst 37:512–534

Chee C-H, Yeoh W, Tan H-K, Ee M-S (2016) Supporting business intelligence usage: an integrated framework

with automatic weighting. J Comput Inf Syst 56(4):301–312

El-Hajj M, Zaiane OR (2003) COFI-Tree mining—a new approach to pattern growth with reduced candidacy

generation. In: Paper presented at the workshop on frequent itemset mining implementations (FIMI’03)

in conjunction with IEEE-ICDM, Melbourne

Feddaoui I, Felhi F, Akaichi J (2016) EXTRACT: new extraction algorithm of association rules from frequent

itemsets. In: Paper presented at the 2016 IEEE/ACM international conference on advances in social

networks analysis and mining (ASONAM), San Francisco

Gullo F (2015) From patterns in data to knowledge discovery: what data mining can do. Phys Proc 62:18–22

Gupta B, Garg D (2011) FP-tree based algorithms analysis FPGrowth, COFI-Tree and CT-PRO. Int J Comput

Sci Eng 3(7):2691–2699

Gupta A, Tyagi S, Panwar N, Sachdeva S (2017) NoSQL databases: critical analysis and comparison. In: Paper

presented at the 2017 international conference on computing and communication technologies for smart

nation (IC3TSN), Gurgaon

Han J, Pei J (2000) Mining frequent patterns by pattern-growth: methodology and implications. ACM SIGKDD

Explor Newsl: Special issue on “Scalable Data Mining Algorithms”, 2(2): 14–20

Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. ACM SIGMOD Rec

29(2):1–12

Han J, Kamber M, Pei J (2012) Data mining concepts and techniques. Elsevier, Atlanta

Hasan MH, Jaafar J, Hassan MF (2014) Monitoring web services’ quality of service: a literature review. Artif

Intell Rev 42(4):835–850

Haupt R, Scholtz B, Calitz A (2015) Using business intelligence to support strategic sustainability information

management. In: Paper presented at the 2015 annual research conference on South African institute of

computer scientists and information technologists, Stellenbosch

Hoseini MS, Shahraki MN, Neysiani BS (2015) A new algorithm for mining frequent patterns in CanTree. In:

Paper presented at the international conference on knowledge-based engineering and innovation, Tehran

123

http://creativecommons.org/licenses/by/4.0/


Algorithms for frequent itemset mining: a literature review 2621

Jamsheela O, Raju G (2015) Frequent itemset mining algorithms: a literature survey. In: Paper presented at

the 2015 IEEE international advance computing conference (IACC), Banglore

Jesus E, Bernardino J (2014) Open source business intelligence in manufacturing. In: Paper presented at the

18th international database engineering and applications symposium, Porto

King T (2016) Gartner: BI and analytics top priority for CIOs in 2016. Retrieved from https://solutionsreview.

com/business-intelligence/gartner-bi-analytics-top-priority-for-cios-in-2016/ Accessed 5 May 2017

Lira WP, Alves R, Costa JMR, Pessin G, Galvão L, Cardoso AC, de Souza CRB (2014) A visual-analytics

system for railway safety management. IEEE Comput Graphics Appl 34(5):52–57

McGlothlin JP, Khan L (2013) Managing evolving code sets and integration of multiple data sources in health

care analytics. In: Paper presented at the 2013 international workshop on data management and analytics

for healthcare, San Francisco

Meenakshi A (2015) Survey of Frequent Pattern Mining algorithms in horizontal and vertical data layouts. Int

J Adv Comput Sci Technol 4(4):48–58

Mittal A, Nagar A, Gupta K, Nahar R (2015) Comparative study of various Frequent Pattern Mining algorithms.

Int J Adv Res Comput Commun Eng 4(4):550–553

Oakley RL, Iyer L, Salam AF (2015) Examining the role of business intelligence in non-profit organizations to

support strategic social goals. In: Paper presented at the 48th Hawaii international conference on system

sciences, Kauai

Pyun G, Yun U, Ryu KH (2014) Efficient Frequent Pattern Mining based on linear prefix tree. Knowl-Based

Syst 55:125–139

Qaiyum S, Aziz IA, Jaafar J (2016) Analysis of big data and quality-of-experience in high-density wireless

network. In: Paper presented at the 2016 3rd international conference on computer and information

sciences (ICCOINS), Kuala Lumpur

Qiu Q, Fleeman JA, Ball DR, Rackliffe G, Hou J, Cheim L (2013) Managing critical transmission infrastructure

with advanced analytics and smart sensors. In: Paper presented at the 2013 IEEE power and energy society

general meeting, Vancouver

Rebón F, Ocariz G, Gerrikagoitia JK, Alzua-Sorzabal A (2015) Discovering insights within a Blue Ocean based

on business intelligence. In: Paper presented at the 3rd international conference on strategic innovative

marketing, Madrid

Song M, Rajasekaran S (2006) A transaction mapping algorithm for frequent itemsets mining. IEEE Trans

Knowl Data Eng 18(4):472–481

Zaki MJ (2000) Scalable algorithms for association mining. IEEE Trans Knowl Data Eng 12(3):372–390

123

https://solutionsreview.com/business-intelligence/gartner-bi-analytics-top-priority-for-cios-in-2016/

	Algorithms for frequent itemset mining: a literature review
	Abstract
	1 Introduction
	2 Literature review
	2.1 Apriori algorithm
	2.2 FP-Growth algorithm
	2.3 EClaT algorithm
	2.4 TreeProjection algorithm
	2.5 COFI algorithm
	2.6 TM algorithm
	2.7 P-Mine algorithm
	2.8 LP-Growth algorithm
	2.9 Can-Mining algorithm
	2.10 EXTRACT algorithm
	2.11 Classification and comparison of Frequent Pattern Mining algorithms

	3 Result and discussion
	4 Future work
	5 Conclusion
	References


