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A generalized fractional programming problem is specified as a nonlinear program where a nonlinear 
function defined as the maximum over several ratios of functions is to be minimized on a feasible domain 
of ~n. The purpose of this paper is to outline basic approaches and basic types of algorithms available 
to deal with this problem and to review their convergence analysis. The conclusion includes results and 
comments on the numerical efficiency of these algorithms. 

I. Introduction 

A generalized fractional programming prob lem is specified as a non l i ne a r  program 

(P) h = x~x ( max { f i (x ) /g i (x )}}  

where X is a n o n e m p t y  subset  of ~ ' ,  f and  gi are con t inuous  on an  open  set -~ in  

Nn inc lud ing  c l (X)  (the closure of X) ,  and  gi(x) > 0 for all x ~ X, 1 ~ i <~ m. 

W h e n  m = 1, then (P)  reduces to a classical fractional programming prob lem 

which has been  extensively invest igated in the last two decades. M a n y  of the results 

in f ract ional  p rog ramming  are reviewed in [20] and  an extensive b ib l iography  can 

be found  in  [19]. This type of p rob lem occurs f requent ly  in  models  where some 

k ind  of  efficiency measure  expressed as a ratio is to be optimized.  In  numer ica l  

analysis  the e igenvalue p rob lem is formula ted  as a fract ional  program. Frac t ional  

programs are also exhibi ted in  stochastic p rogramming .  These appl ica t ions  and  

others are discussed in Schaible [20] where appropr ia te  references are given. 

This research was supported by NSERC (grant A8312) and Cooperation franco-qu6b6coise (projet 
20-02-13). Paper presented at "Workshop on Mathematical Programming" Catholic University of Rio 
de Janeiro, Brazil, October 10-14, 1988. 
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An early application of generalized fractional programming (m > 1) is found 
in the Von Neumann's model of an expanding economy [23]. The best rational 
approximation problem [1] is another manifestation of generalized fractional pro- 
gramming. Furthermore, goal programming and multicriteria optimization where 
several ratios are considered and Chebychev's norm is used give rise to generalized 
fractional programming. More specific applications are given in [9, 15, 18, 20]. 

The purpose of this paper is to outline the basic approaches and the basic types 
of algorithms to deal with generalized fractional programming and to review their 
convergence analysis. Note that other major developments related to duality theory 
for (P) [9, 16] are not included. 

The algorithms reviewed here can be seen as generalizations of the approach 
proposed by Dinkelbach [10] for the case m = 1 to determine the root of the equation 
F(A) = 0, where F(A) is the optimal value of the parametric program 

(P~) F ( A ) =  i n f /  } x~:,  t m a x  { f ~ ( x ) -  Ag~(x)} . 

The general properties of F and the equivalence between the two problems studied 
in [8, 9, 13, 16] are reviewed in Section 2. Dinkelbach's algorithm for the case m = 1 
is first formulated as a Newton procedure to determine the root of the equation 
F(A) = 0 and then generalized for problems with arbitrary finite values of m. Section 
3 is dedicated to the convergence analysis. In Section 4, referring to Robinson's 
method to deal with the Von Neumann problem, the Dinkelbach-type algorithm is 
formulated as a partial linearization procedure to deal with (P). Interval-type 
algorithms to determine the root of the equation FOX)= 0 are derived in  Section 5 
as a consequence of the graphical interpretation of the Dinkelbach-type algorithm. 
In Section 6, we analyse the linear case where f ,  g~ are affine and X is a polyhedral 
convex set. Finally, in the conclusion, we review the numerical efficiency of these 
algorithms as reported in [2, 4, 11]. 

2. Dinkelbach-type algorithm 

The equivalence between the generalized fractional programming problem (P) and 
the problem of finding the root of the equation F ( A ) =  0 is a consequence of the 
following result. 

Proposition 2.1 [8, Proposition 2.1]. 
(a) F(A) < + ~ since X is nonempty; F is nonincreasing and upper semicontinuous. 

(b) F ( A ) < 0  i f  and only i r A > A ;  hence F(A)~O.  
(c) I f  (P) has an optimal solution, then F(A) = O. 
(d) I fF (A)  = O, then programs (P) and (P~) have the same set o f  optimal solutions 

(which may be empty). [] 
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Whenever X is compact ,  these results can be strengthened as follows. 
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Proposit ion 2.2 [8, Theorem 4.1]. Assume  that X is compact. Then: 

(a) F ( X ) <  + oo, F is decreasing and continuous. 

(b) (P)  and (P~) always have optimal solutions. 

(c) h is finite and F(Tt) = O. 

(d) F ( A ) = O  implies h =X. [] 

Notice that properties of  F were already studied for the linear case in [9] where 

they are used to establish duality relations for (P).  

2.1. Original Dinkelbach's  procedure 

The function F was first introduced in the case where m -- 1 (see [10, 14, 21]), and 

Dinkelbach's  procedure can be seen as a method to identify a root of  the equation 

F(A) = 0, where F(A) reduces to 

F(A):= i n f { f ( x )  - )tg(x)}. (2.1) 

Since the function ( f ( x ) - ; t g ( x ) )  is affine in A, it follows that F(,X)= 

i n f x ~ x { f ( x ) - A g ( x ) }  is concave in h on R. Now, let hk ~ R and assume that x k is 

an optimal solution of 

inf {f (x)  - hkg (X)}. (2.2) 
xcX 

It is easy to verify that g ( x  k) is a subgradient of  - F  at hk. Indeed, for any h c R, 

F(A ) <~ f (  x k) - hg(  x k), 

F(A ) ~< [ f ( x  k) - .~kg(xk)] -- g ( x k ) ( h  -- Ak), (2.3) 

- F ( A )  >1 - F ( h k )  + g (xk ) (A  -- hk). 

Relying on this result and since subgradients generalize derivatives for convex 
funct ions ,  a N e w t o n  m e t h o d  can be used to identify a root o f  F ( h )  = O. Hence  the 

following sequence {Ak} is generated where 

F(Ak) -- + f ( x k )  -- - - f ( x k )  (2.4) i 
Ak+'l~'Ak __g(Xk------- ~ Ak g ( x  k) Ak g (xk )  " 

Of course, it is implicitly assumed that, for all Ak of the sequence, an optimal 
solution x k of (2.2) exists. 

It is interesting to note that the original Dinkelbach's  procedure is precisely the 
Newton method outlined above. For the sake of completeness, the procedure is 
summarized as follows: 

Step O. Let x° ~ X ,  ha = f ( x ° ) / g ( x ° ) ,  and k =  1. 
Step 1. Determine an optimal solution x k of  

inf { f (x)  - Akg (x)}. xGX 
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Step 2. If F(Ak) = 0, x k is an optimal solution of (P) and Ak is the optimal value, 
and STOP. 

Step 3. Let Ak+a = f ( x k ) / g ( x k ) .  Replace k by k +  1 and repeat Step 1. 

The convergence analysis of this procedure is summarized in the following result. 

Proposit ion 2.3. Assume that X is compact. Denote by M the set of  optimal solutions 
of  (P), X * = s u p { g ( x ) : x c M }  and N = { x c M :  g(x)=A*}.  Then M and N are 

nonempty and compact. The sequences {Ak}, {g(xk)} and {f(xk)} decrease and converge 
to )t, ~* and X~*, respectively. Furthermore each convergent subsequence of  {x k} 

converges to a point in N and the following relation holds: 

0 ~< Ak+l -- X ~< (ak - X)(1 - X*/g(xk)) .  

It follows that the convergence of  {ak} to St is superlinear. 

Proof .  The convergence of {Ak} to X is a consequence of the convergence of the 
Newton method for convex functions. Let 0 = -F .  The 0 is convex and increasing, 
and by construction 

o(a~) = (Ak - a~+i)g(x~).  (2.5) 

Since g(x k) ~ a0(ak) (where a0(ak) is the set of  subgradients of 0 at ak), 

0 = O(X) >! O(ak) + (X -- Ak)g(xk). (2.6) 

Combining (2.5) and (2.6), we obtain that for all k, 

/~k+l /> )t~ 

Now, denote 

0(Ak) >/0, ak/> ak+l. (2.7) 

o ( a ) - 0 ( X )  
0"(X) = lim 

x+x+ 3. - ~  

Then 0 <  0~_(~.)~ 60(7t), and 

o(ak) />  0(~) + (ak - X ) < ( X )  = (a~ - ~)o~(X). (2.8) 

Using (2.5) and (2.8), it follows that 

_ 0~_(X)'~ (2.9) (Ak+I--X) ~< (Xk--X) ( 1 g(xk)/"  

Referring to (2.7), it follows from the monotonicity of the subgradients that 

O'(X ) <~ g(x  k+l) <~ g(x  k) <-" • • <<- g(xl).  (2.10) 

Then clearly {Ak} converges at least linearly to ~. Furthermore, since the subgradient 
is uppersemicontinuous and {Ak}--> ~, then {g(xk)}-+ 0"(~.). Hence the convergence 
of {ak} is superlinear and f ( x  k) decreases to X0~_(Tt) since f ( x  k) = ak+,g(xk). 



J.-P. Crouzeix, J.A. Ferland / Generalized fractional programming 195 

Now, let ~ be the limit point of a convergent subsequence of  {xk}. Then f (~ )  -- 
hg(~), and consequently £ ~ M. But from (2.10) it follows that 0~_(X)~< g(~), and 

h e n c e ~ c N .  [] 

When M or N reduces to a singleton {~}, then the whole sequence {x k} converges 
to ~. Furthermore, if 0 happens to be twice differentiable at h, then the sequence 
{hk} converges quadratically to ~. However, even if 0 is not differentiable in general, 
the rate of  convergence can be made equal to 1.618 or even 2 under appropriate 
regularity conditions. This point is discussed in Section 3.2 for generalized fractional 
programming. 

Remark. Recently, Sniedovich [22] has derived the Dinkelbach parametric 

approach using the theory of classical first order necessary and sufficient optimality 
conditions. As such, the Dinkelbach procedure can also be regarded as a classical 
method of  mathematical programming. 

2.2. Extension with several ratios 

When (P)  includes several ratio the preceding procedure can be extended by 
modifying the selection of  hk+l as follows: 

hk+l= m a x  {fi(xk)/gi(xk)}. 
l<~i<<_m 

The Dinkelbach-type procedure DT-1 to deal with problem (P) (by finding a root 
of  the equation F ( A ) =  0) is summarized as follows: 

Step O. 
Step 1. 

(Pak) 

Step 2. 

Let x °e  X, hi = maxl<_i<_,,{fi(x°)/gi(x°)}, and k = 1. 
Determine an optimal solution x k of  

{ 
If  F(hg) = O, x k is an optimal solution of (P) and hk is the optimal value, 

and STOP. 

Step 3. Let 

hg+l = max {fi(xk)/gi(xk)}.  
l ~ i ~ r n  

Replace k by k +  1 and repeat Step 1. 

The sequence {Ak} generated has interesting properties: 
(i) For all k/> 1, 

max 

since x k ~ X. Hence referring to Proposition 2.1(b), F(Ag) ~ O. 
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(ii) The sequence {Ak} is monotone decreasing. Indeed, let 1 ~< r ~< m denote the 
index used to specify Ak+l, i.e. 

Ak+l = max { f ( xk ) /g i ( xk ) }  =fi(Xk)/g~(xk).  
l<~i<~m 

Then 

Hence 

since 

F(hk)  = max { f ( x  k) - a~gi(xk)}, 
l ~ i ~ r n  

F(Ak) >~ f i ( x  k) -- Akg,~( Xk), 

F ( / ~ - k )  ~ (/~/c+1 - -  a k ) g , ( x k )  • 

Ak+l -- Ak ~< F ( Ak ) / g~( x k) < 0 

g~(xk)>O and F(Ak)<O. 

These properties are important  to show the convergence of the algorithm. 

Remark. Furthermore, it is interesting to note that, in general, (Pak) is easier to 

deal with than (P). Indeed, if, for instance, the functions f and gi are linear, and 

if X is a polytope, then (PAk) reduces to a linear program. Similarly, if the functions 

f are convex and gi are concave, then (Pak) reduces to a convex program. 

3. Convergence of Dinkelbach-type algorithm 

The convergence analysis of  the algorithm in the case with several ratios is not as 

straightforward as it was when m = 1. Furthermore, the rate of  convergence decreases. 

Proposition 3.1 [8, Theorem 4.1]. Assume that X is compact. The sequence {Ak} 

generated by the Dinkelbach-type procedure DT-1, /f  not finite, converges linearly to 
•, and each convergent subsequence of  {x k} converges to an optimal solution of  (P). [] 

This loss of  power of the procedure with respect to the case m = 1 can be explained 

by the fact that the subgradient inequality (2.3) is not verified when m > 1. Indeed, 
relation (2.3) can only be replaced by two less powerful relations derived in the 
following result. 

Proposition 3.2 [8, Proposition 2,2]. Let Ak C ~ and assume that x k is an optimal 
solution of  ( PAk)" Then 

F(A)<~ F(Ak)--_g(xk)(A --Ak) /fA > Ak, 

F(A)<~F(Ak)- -~(xk)(A--Ak)  /fA <Ak, (3.1) 

where 

g(x  k) = rain {gi(xk)} and ¢(x k) = max {gi(xk)}. 
-- l ~ i ~ m  l ~ i ~ m  
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Proof. For any h c R, 

F(A) = inf I max {f / (x)-hgi(x)}~ <<- max {fi(x k) --hgi(xk)}. (3.2) 
x c X  ~ l<~i~m J l ~ i ~ m  

If  the max in (3.2) is attained at 1 <~ ik <- m, then 

F(A ) ~f~k (xk) - Agik (xk), 

F(A ) ~ f/k (x g) - Akgik (X k) -- gik(Xk)(A -- Ak), 

F(A ) <~ F(hk)  -- gik (Xk)( h -- Ak). 

Hence the result in (3.2) follows directly from the definitions o f g ( x  k) and g(xk) .  [] 

3.1. Superlinear rate of  convergence 

Now, assume that X is an optimal solution of (P). Of course, (P) can be written as 

X= inf I max ~fi(x)/gi(Y~)'~'{ 
x~x l ~ m  [ g i ( x ) /  g~(g)J J" 

Denote (/~) the parametric program corresponding to this formulation of (P): 

(/5) P ( h ) =  i n f / m a x  ~ f d x ! - , X g , ( x ) ~  (3.3) 
x E X  ~ l ~ i ~ m  ( g i ( x )  JJ"  

Referring to Proposition 3.2, it follows that 

P ( h ) ~ < P ( h ) - p ( ~ ) ( h - X )  i f h > X ,  

f ( h ) < ~ / ~ ( h ) - # ( ~ ) ( h - } , )  ifA <A, 

where 

p(#) = min {gi(#)/g,(.g)} = 1 = max {g i (x ) /g , (x )}  = #(x) .  
-- l<~i.~m l~i<~m 

Hence at X we recover the subgradient inequality (2.3). Thus, by analogy with the 
case m = 1, the Dinkelbach-type procedure reduces to a Newton method in the 
neighborhood of X and the rate of convergence should be at least superlinear. 

But in general ~ is not known a priori. Nevertheless, this argument suggests 
another Dinkelbach-type procedure DT-2 obtained by replacing Step 1 in DT-1 by 
the following: 

Step 1'. Determine X k a n  optimal solution of 

f [f~(x)--Akg,(x)]) 
(Qxk) Fk(hk) = inf max ~ . (3.4) 

Note that gi(x) in (3.3) is approximated by gi(x k-l) in (3.4) where x k-~ is the 
optimal solution obtained by solving (Qak-,) at the preceding iteration. This modified 
version DT-2 has a better rate of convergence. 



198 J.-P. Crouzeix, J.A. Ferland / Generalized fractional programming 

Proposition 3.3 [7, Theorems 2.1 and 2.2]. Assume that X is compact. 

(a) I f  Fk(Ak)= O, then Ak = ~t and x k is an optimal solution o f  (P) .  

(b) The sequence {Ak} generated by DT-2, /f not finite, converges at least linearly 

to 7t, and each convergent subsequence o f  {x k} converges to an optimal solution o f  ( P).  

(c) Furthermore, when {kk} is not finite, i f  the sequence {x k} converges to ~, then 
{hk} converges superlinearly to 7t. [] 

The differential correction algorithm due to Cheney and Loeb [6] and used by 
Barrodale et al. [1] to solve the rational approximation problem is the specialization 
of DT-2 to deal with a specific linear form of (P). Furthermore under additional 
assumptions, Barrodale et al. [ 1 ] show that the rate of convergence of their algorithm 
is at least quadratic. 

3.2. Higher rate o f  convergence 

As expected, the rate of convergence of DT-2 can be improved at the expense of 
more restrictive assumptions. Borde and Crouzeix [5] derived their results using 
sensitivity analysis based on the implicit function theorem as proposed by Fiacco 
in [12]. Flachs' results [13] are derived by generalizing the differential correction 
approach of Cheney and Loeb [6]. 

The analysis in [5] requires that the following specific assumptions hold. 
(H1) For 1<~ i ~  < m, gi is concave differentiable and positive on J~, f is convex 

differentiable on J~ and non-negative whenever gi is not affine. 
(H2) X is a compact set defined by X = {x c Rn: hi(x) <~ O, 1 <~j <~ q} where func- 

tions hj are convex and differentiable on )¢. 
(H3) (Slater's condition.) There exists ~ E R n such that hj(~)< 0, 1 ~<j~< q. 
(H4) For 1 <~ i <~ m, 1 <~j ~< q, functions f ,  g~, h~ are twice continuously differenti- 

able in a neighborhood of if, an optimal solution of (P). 
(H5) Denote by /2~ and ~j the optimal multipliers associated with the optimal 

solution ff of the problem 

inf t 

subject to f ( x )  - kgi(x)  - tg~(~) <~ O, 1 <~ i <~ m, 

hj(x)<~O, l<~j<~q, 

and let the set of active constraints be 

= {1 <~ i ~  < m: f ( £ )  - ~g i  ( £ )  : 0}, 

Y={I~<j~< q: hi(X) = 0}. 

The following conditions are satisfied: 
(a) (Strict complementary slackness.) 

/2~>0 i f i c ~  Oj>0 i f i c J .  

(b) (Regularity condition.) The vectors [(7f(X)-7~Vgi(~)) T, _g~(~)]T, i c 
and [7hj(~) T, 0] a', j ~ ~ are linearly independent. 
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(C) (Augmentability condition.) Denote by F the Hessian matrix of the 
function ~%1 t z ~ ( f ( x ) -  Agi(x))+Y~q=l vjhj(x) with respect to x evaluated at ~, ~,/2, 
~. Mso denote b y / )  the matrix having its columns equal to V f ( 2 ) -  ~Vgi(~), i ~ / ,  
by/~ the matrix having its columns equal to Vhj(~), j ~ ~ and by ~ the vector having 
its components equal to g~(~), i ~/ .  

Then there exists a scalar to > 0 such that 

F -~- to (~j~-.~T ~_ JD(I - (~T~)-I~T)/~T) 

is positive definite (where I is the identity matrix). 

Combining sensitivity analysis applied to problem (Qx) and Flach's result [13, 
Theorem 1], Borde and Crouzeix obtain a convergence rate at least equal to 1.618. 

Theorem 3.4 [5. Theorem 4.1]. Assume that (H1) to (H5) hold. Then ~ is the unique 
optimal solution of (P) and the rate of convergence of the sequences {x k} and {A k} 
is at least equal to 1.618. [] 

Furthermore, introducing two additional assumptions, they obtain quadratic rate 
of  convergence. 

(H6) For 1 ~ i ~< m, 1 <~j ~< q, f ,  gi, hj are three times differentiable on X. 
(H7) The system 

~Vz~ = 0, 

has a solution which is unique. Here fi is the vector having its components equal 
to fii, i ~ i~ and/~ is the matrix having its column equal to Vg~(~), i ~ 

Theorem 3.5 [5, Theorem 5.1]. Assume that (H1) to (H7) hold. The rate of  conver- 
gence of the sequences {x k} and {A k} is quadratic. [] 

4. Partial linearization procedure 

In Section 2 Dinkelbach-type algorithms are derived as some kind of Newton 
procedures to identify a root of  the equation F ( A ) = 0 .  Extending Robinson's 
approach [17] to deal with the irreducible Von Neumann economic model, DT-2 
can be derived as a partial linearization procedure to solve (P) [3]. 

Rewrite (P)  as follows: 

min t 

subject to f ( x )  - tg,(x) <~ O, 1 <~ i ~< m, 

x ~ X .  
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For 1 ~< i <~ m, denote the ith constraint 

Hi(x, t) = f ( x )  - tgi(x), 

and consider the following partial linearization of Hi with respect to t at a point 
(x k-l, tk): 

H~k(X , t )=  Hi(x, tk) + ( t - - t k )V ,Hi (x  k-l, tk). 

Using these, a partial linear approximation of (P) is specified and solved at each 
iteration of the procedure: 

(Lk) min t 

subject to  f(x)--tkgi(x)--(t--tk)gi(xk-1)~O, l <-i<-m, 

x ~ X .  

Hence the procedure obtained is summarized as follows: 

Step O. Let x ° ~ X  and t l=maxl~i~m { f ( x ° ) /g i ( x ° ) } .  (Note that t l=  
inf{t: Hi(x  °, t) <- O, 1 <<- i <- m} and that (x °, tl) is feasible for (P)).  Let k = 1. 

Step 1. Determine an optimal solution (x k, tk) of (Lk). 
Step 2. If  tk = tk, then x k is an optimal solution of (P) and tk is the optimal value, 

and STOP. 
Step 3. Let 

tk + l = lmaXm{fi( x k )  / gi( x k) } : inf{t: H i ( t  , x k) ~ 0 ,  1 ~< i ~  < m}. 

Replace k by (k + 1) and repeat Step 1. 

The sequence of points {(x k, tk+l)} is generated by solving (Lk) to obtain x k and 
by solving (P) with x = x k to obtain tk+l. It is easy to verify that this sequence is 
identical to the one generated by procedure DT-2 (in Section 3) since the constraints 
in (Lk) can be written as 

f ( x )  - tkgi(x) -< ( t -  tk). 
gi (x  ~ 1) 

Hence replacing A = ( t - t k ) ,  it follows that (Lk) and (Qak) are equivalent 

5. Interval-type algorithms 

This type of  algorithms to determine the root of  the equation F ( A ) =  0 is a con- 
sequence of the graphical interpretation of the Dinkelbach-type algorithm. Indeed, 
referring to Step 3 of procedure DT-1, 

Ak+, = max { f (Xk ) /g i ( xk ) }  = f , ( x k ) / g , ( x k ) .  
l~ i~m 
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Fig. 5.1. 
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Hence "~k+l can be interpreted as the root of 

L~(A ) =f~(x k ) - Ag.,(x k) 

where L~ is regarded as an approximation of F near Ak. This is illustrated in Figure 
5.1. 

Now, instead of L~ suppose that we use another approximation L k of F near Ak 
to determine the next iterate where 

Lzk(A) = fk  ( x k ) - Agik (x k) 

and 1 ~< ik <~ m is an index where the max is attained when F(Ak) is determined; i.e. 

: 

At first glance,, L~ may seem more appropriate than L~ to determine the next iterate 
since 

(i) L~(Ak) = F(Ak) while L~(Ak) <~ F(hk); 

(ii) f~(xh) /g ik (X k) <~ max ~ ( X k ) / g i ( x k ) }  = f i ( X k ) / g d x  k) (5.1) 

and hence f k ( xk ) /g i k (X  k) is closer to h whenever f k ( xk ) /g i~ (x  k) >t A (as illustrated 
in Figure 5.2). 

Unfortunately nothing prevents f~ (xk ) /g i~(x  k) from being smaller than h (as 
illustrated in Figure 5.3). Recall that this is never the case in DT-1 algorithm since 
/~k+l = f , ( x k ) / g ~ ( x  k) = maxq<.i~m {f i (xk)/gi(xg)}  >t h because x k c X. 

As mentioned in Section 2, the convergence proof  of DT-1 algorithm relies heavily 
on the monotonicity if the sequence {Ak}, i.e. h <~ Ak+l ~< Ak. Even if monotonicity 
of the iterates is lost when L k is used, some trend toward X is observed as 
follows [ 11 ]: 

(i) if Ak > h(i.e. F(hk) < 0), then 

O> F ( A k ) / g ~ ( x  k) = f~ (xk ) /g ,~ (x  k) - Ak 
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FO,) 

Fig. 5,2. 

/ . ~ ( ~  Lf(~,) =f~(x k) - ~.g~(x k) 

Fig. 5.3. 

f~ (x k)/ g,~ (X k) < Ak ; 

(ii) if Ak < A(i.e. F(Ak) > 0), then 

0 < F(Ak)/gik(x g) =f~ (xk)/g,~(X k) -- Ak 

and 

f,~(xk)/g,~(x ") > ,~. 

Nevertheless, f~(xk)/gi~(X k) may be very far to the left or to the right of A, and 
an interval [BIk, BSk] including X has to be used to limit the distance between 
and the next iterate. The procedure is to determine /~k+l as  follows: 

~fk(xk)/g,k(X k) i f fk(xk)/g,k(X k) C [BIk, BSk], 
Ak+l ----- (a  point in [BIk, BSk] otherwise. 
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Several different algorithms are derived according to the way the point is selected 

in the interval (BIk, BSk] (see [11]). 

At each iteration BIk and BSk are updated in such a way that the length of the 
interval (BSk - BIk), is a non-increasing function of k. The bounds BSg and BIk can 
be derived from the upper envelope Gk(h ) and the lower envelope Tg(A) illustrated 
in Figure 5.4. 

The upper envelope G k of F at hk is defined by 

Gk(h) = max {f(x  k) --hg,(xk)}. 
l~i<~m 

Hence 

Gk(hk) = max {fdx  k) -- hkg,(xk)} = F(hk) 
l"~--~i~m 

and for all h, 

inf { maxm{f(x)-hgi(x)}l = F(h ). Gk(A) = 1<-i~mmaX { f ( x  k) --hgi(xk)} >- x~x l 

It follows that the root sk of  the equation G k ( h ) = 0  is an upper bound on h. 
Furthermore, it is easy to verify that 

ff,(x )l 
s k = m a x  ~ - - 7 - - ~ t  • 

F(~ 

Gk0.) 

B/  

TkO.) 

st: = BS 

~ k 

I 

Fig.  5.4. 
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Hence, if Ak > X, Sk is equal to the next iterate in DT-1 algorithm. Finally, 

BSk = min{BSk_l, Sk}. 
TO define the lower envelope Tk of F at Ak, we have to introduce the scalar w 

and W where 

0 <  w<~minxcx lmin(gi(x)}}' 

O<maxlmax(gi(x)}l<~ W. 
xcX [ l ~ i ~ m  J 

Now, since 

fi(x) - igi(x) = f/(x)  - Akgi(x) + (Xk -- 1)g,(x) ,  

it follows that 

F(X)>~F(lk)+(lk-1)w ifA <~Ak 

and 

Hence 

F ( l ) ) F ( A k ) + ( t k - 1 ) W  ifA~>Ik. 

Tk(h)=~[F(hk)+Ikw]-hw i f l  ~<tk, 
[ [ F ( t k ) + t k W ] - I W  i f1  > I ~ .  

The root rk of  the equation Tk(1) =0  is a lower bound on ft and 

BIk = max{BIk_t, rk}. 

Referring to the definitions of w and W, we may expect the lower bound to be 
less tight than the upper bound. This observation is confirmed in the numerical 

results, and hence we take the next iterate Ik+1 closer to BSk whenever 
fk(xk)/gik(X k) ~ [BIk, BSk] (see [4]). 

The detailed steps of the algorithm referred to as IT-1 are given in [4] where 
convergence is also analyzed. Since the sequence {Ik} includes elements on both 
sides of X, we use an approach like Ibaraki's in [14] for studying variants of 
Dinkelbach's algorithm for fractional programming (m = 1). Hence consider the 
following subsequences: 

where 
(i) Ik ~ {t~} if and only if ik > X and Ik+~ > X; 

(ii) Ik e {I~} if and only if Ik < X; 
(iii) {I °} = {Ik} - {t~} u {I~}. 
In [4, Lemma 4.1] it is shown that {12 °-} does not include too many elements. 

Furthermore, if not finite, {1~} and {1~} converge at least linearly to X (see [4, 
Theorems 4.2 and 4.3]). 

As for the Dinkelbach-type algorithms, the rates of convergence for subsequence 
{1 d} can be improved if subproblems (Qxk) are used instead of (P~k) to obtain IT-2 
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algorithm. In [4] it is shown that {h d} converges as fast as the sequence {hk} generated 
by DT-2 under the same hypothesis. 

6. Linear case 

Assume that f~, gi are affine and X is a polyhedral convex set (possibly unbounded):  

f ( x )  = ai.x + a,, g i (x)= bi.x + fii, 

X = { x c N " :  Cx<~ 3,,x>O}, 

where a~.(b~.) denote the ith row of m x n matrix A(B), a = [aa, a 2 , . . . ,  am] T, 
/3 = [/31, f12 , . . . ,  /3,,]T, C a q x n matrix, and 3' ~ R q. In [5, 8] the authors make the 
following assumptions: 

(A1) (Feasibility assumption.) There exists ~ i> 0 such that C~ ~< 3'. 
(A2) (Positivity assumption.) B > 0, 13 > 0. 
They also introduce the following dual program of (P): 

(D) O= sup f " f TU--3'T  . faSu+c  111 
(u,~)-~s]mln~ ~ - u  , m i n i  - ~ - ~ , , ,  

l~j<<-, ( b.ju J J J  
r r l  

where S = { u ~ W ' , l , c ~ q : ~ = ~ u ~ = l , u > ~ O , , ~ > O }  and a.j (b.j) denotes the j th  
column of A (B). Finally they verify that h = 0 whenever (A1) and (A2) hold. 

Theorem 6.1 [5, Remark 5.3]. I f X  is a polytope, and (A1), (A2) and (H5) hold, 
then DT-2 algorithm applied to (P) where f~, g~ are affine generate sequences {xk}, 
{hk} converging quadratically to ~ and Yr. [] 

Even if X is not bounded,  the feasible domain S of (D) is at least bounded in 
u. Hence it makes sense to apply DT-2 to deal with (D) since the sequences {u k, u k} 
and {Ok} converges. 

Theorem 6.2 [8, Theorem 5.1] and [5, Theorem 6.1]. Assume that (A1) and (A2) 
hold. 

(i) I f  not finite, the sequence {Ok} converges linearly to 0 and each convergent 
subsequence of  {u k, u k} converges to an optimal solution of  (D).  

(ii) I f  (D)  ,has a unique solution ~, ~, then {u k, ~,k} converges to u, u and {Ok} 
converges superlinearly to O. [] 

Furthermore, referring to the sensitivity analysis in Section 3, Borde and Crouzeix 
[5, Theorem 6.2] show quadratic rate of convergence for sequence {u k, u k} and {Ok} 
if the following additional assumptions are verified: 

(A3) The parametric subproblem 

(D~) sup ( m i n (  ( a+f f f l )Tu-yT~ '  min { ( a ' j + o b q ) T u + c T v l l l  
~u,o~st l /3hi ',-~j~ ~ JJJ 

has an unique optimal solution. 
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(A4) The gradient of the active constraints of (Do) at the optimal solution are 
linearly independent. 

(A5) The strict complementary slackness holds at the optimal solution of (Do). 
Finally, when X is a polytope, Interval-type algorithms can be applied to (P) 

where f and gi are affine. Now, referring to (D) and weak duality theory, Ferland 
and Potvin [11] generate a lower bound 

BIo = min Y~ ai fli, min ai; b~ 
i 1 l~ j~n  l.i=l i 1 

using u = [1/m, 1/m,.. . ,  1/m] v and v = [ 0 , 0 , . . . , 0 ]  T. 

Other lower bounds are easily obtained (see [3]) by taking u = [0, 0 , . . . ,  1 , . . . ,  0] T 
and v = [ 0 , 0 , . . . , 0 ]  "r in (D): 

min{ ai/ fl~, lmin { ai;/ b~} }. 

7. Conclusion 

Numerical results are reported in [4, 11] for the linear case. They confirm the 
advantage of using subproblem (Q~k) instead of (P,k) in both Dinkelbach-type and 
Interval-type algorithms to increase the convergence rate. Indeed, the execution 
time of DT-1 (IT-l) is roughly equal to 1.8 time the execution time of DT-2 (IT-2) 
on the average. 

The Dinkelbach-type algorithm DT-2 is almost as efficient as the Interval-type 
algorithm IT-2. Indeed the execution time of DT-2 is roughly equal to 1.07 time 
the execution time of IT-2. This result indicates that even if some elements of {Ak} 
generated by IT-2 are on the left of 5, this is compensated by the fact that the 
elements of {Ak} on the fight of • are closer to ~, than those generated by DT-2 (see 
(5.1)). 

Remark. More recently, Benadada [2] has tested similar procedures on problems 
having quadratic functions f .  The numerical results indicate similar relative efficiency 
among the different algorithms. 
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