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Abstract. Given disjoint sets PI, P2 . . . . .  Pd in R a with n points in total, a ham- 

sandwich cut is a hyperplane that simultaneously bisects the Pi. We present algorithms 

for finding ham-sandwich cuts in every dimension d > 1. When d = 2, the algorithm 

is optimal, having complexity O(n). For dimension d > 2, the bound on the running 

time is proportional to the worst-case time needed for constructing a level in an 

arrangement of n hyperplanes in dimension d - 1. This, in turn, is related to the 

number of k-sets in R d- ~. With the current estimates, we get complexity close to 

O(n 3/2) for d = 3, roughly O(n s/3) for d = 4, and O(n d- 1 -atd~) for some a(d) > 0 (going 

to zero as d increases) for larger d. We also give a linear-time algorithm for 

ham-sandwich cuts in R 3 when the three sets are suitably separated. 

1. Introduction and Summary 

A hype rp l ane  h is said to  bisect a set P o f  n po in t s  in R d if no  m o r e  than  n/2 po in t s  

o f  P lie in e i the r  of  the  o p e n  half -spaces  def ined by h. It is no  loss o f  genera l i ty  
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by J. Matou~ek was done while he was visiting the School of Mathematics, Georgia Institute of 

Technology, Atlanta, and part of his work on this paper was supported by a Humboldt Research 

Fellowship. W. Steiger expresses gratitude to the NSF DIMACS Center at Rutgers, and his research 

was supported in part by NSF Grants CCR-8902522 and CCR-9111491. 
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to assume n odd since otherwise we may delete any point, x, and observe that any 

hyperplane that bisects P\{x}  also bisects P. 

If P is a disjoint union of d sets P~ . . . . .  Pd, a ham-sandwich cut is a hyperplane 

that simultaneously bisects all the Pi. The ham-sandwich theorem (see, for 

example, [12]) guarantees the existence of such a cut. Here we focus on the 

algorithmic question, which asks for efficient procedures for computing a cut, and 

for bounds on the complexity of this task. Throughout, we use a model of 

computation where any arithmetic operation or comparison is charged unit cost 

(the real RAM model). 

In two dimensions a ham-sandwich cut is a line h that bisects P1 and P2. For 

the linearly separated case, where the convex hulls of P1 and P2 do not intersect, 

Megiddo [21] gave an algorithm to compute h that runs in O(n) steps. Megiddo's 

algorithm gives an optimal solution to a partitioning problem posed by Willard 

[24]; namely, to find lines lx and 12 that separate n given points into "quadrants" 

containing at most n/4 points each. The first line may be any (say horizontal) line 

11 partitioning the points evenly, easily obtained in O(n) steps. The second line is 

a ham-sandwich cut for the points P~ (above 11) and P2 (below l~), obtained in 

linear time by Megiddo's algorithm. 

Edelsbrunner and Waupotitsch [14] modified Megiddo's method for the 

general planar case. Their algorithm can compute h in time O(nlogn). 

Earlier, Cole et al. [9] had described a procedure that may now be seen to have 

the same complexity, in view of the existence of a logarithmic depth sorting 

network [2]. 

In this paper we prove the following result (see also [17]). 

Proposition 1. Given two sets of points P1 and P2 in R z, [PI[ + IPz I=n ,  a 

ham-sandwich cut can be computed in O(n) time. 

The proof consists of an optimal linear-time algorithm which thus settles the 

complexity question for two-dimensional ham-sandwich cuts. 

In three and higher dimensions much less was known. The brute-force approach 

has complexity O(n a§ 1); the odd cardinality assumption forces a cut to contain a 

point from each Pi, and we can check the hyperplane corresponding to each 

possible d-tuple in linear time. It is also not too difficult to give an O(n a) algorithm, 

by constructing the arrangements of hyperplanes dual to the points of P (see 

Section 2 for the dual formulation of the problem). 

Edelsbrunner [13] described a related problem of finding two planes that 

simultaneously divide each of two given sets of points in R 3 into four equal-sized 

subsets; the points were required to satisfy a special separation condition. He gives 

an algorithm with running time O(t(n)(log n)2), where t(n) denotes the maximal 

number of (n/2)-sets possessed by any set of n points in R 3 (see also Section 2). 

In Section 4 we show how to generalize the ideas used in Proposition 1 to 

dimension d > 2 and describe an algorithm that has complexity O(na-1). The 

running time can be further decreased using (relatively complicated) ray-shooting 

methods for the construction of levels in hyperplane arrangements. We prove the 

following: 
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Proposition 2. Given n points in R d which are partitioned into d sets Pt ,  . - . ,  Pd in 

R d, a ham-sandwich cut can be computed in time proportional to the (worst-case) 

time needed to construct a given level in the arrangement o f  n given hyperplanes in 

R d- 1. The latter problem 

(i) requires at least D(n d- 2) time, 

(ii) is easy to solve in O(n d- l) time, and 

(iii) can be solved within the following bounds: 

O(n a/2 log z n/log* n) 

0(n8/3 +~) 

O(n ~- 1 -,~d)) 

f o r d  = 3, 

f o r d  = 4, 

with certain (small) constant a(d) > 0 for d >_ 5. 

Finally, for the case d = 3, if the sets are suitably separated,  the general 

algori thm can be modified so that  it finds a ham-sandwich  cut in linear time. This 

extends Megiddo's  result to R 3. 

2. Preliminaries and Notation 

We denote by S the coordinate  hyperplane x d = 0 (i.e., the x-axis for d = 2). For  

a subset X _ S we denote by V(X) the vertical "cyl inder"  erected through X, i.e., 

V(X) = {(xl ,  x2 . . . . .  x~); x~ ~ R,  (x ,  . . . . .  xa_  1, 0) ~ X} .  

It is easier to look at a dual version of the ham-sandwich problem. We use the 

duality transform which maps  the point p = (x 1 . . . . .  xd) to the (nonvertical) hyper-  

plane H = {(w 1 . . . .  , w~): Wd = 2XlWl + "'" + 2Xd- lWd- 1 -- Xd} (see [12] for prop-  

erties). The ham-sandwich cut problem then becomes the following: 

Given a set H of hyperplanes  in R a, part i t ioned into d classes H 1 . . . . .  H a, 

[Hil odd, find a point  x which, for each i = 1 . . . . .  d, has no more  than 

IHil/2 of the hyperplanes  of  H~ below it, and no more  than IHd/2 

hyperplanes above. 

To  simplify our  considerations,  we make  some general position assumptions.  

We suppose that  every d-tuple of  hyperplanes of H meets in a unique point (vertex) 

and that  no point in R a is incident with more  than d of  the hyperplanes.  Also we 

assume that  the vertical direction (the direction of the xa-axis) is a "gener ic"  one, 

i.e., that  the vertical projections of all vertices on the coordinate  hyperplane Xd = 0 

are all distinct. This is no loss of generality, as some variant  of simulation of  

simplicity (see [12]) m a y  be used to handle the general case. 

Given a set H of hyperplanes  in R d, they part i t ion the space into a complex of 

convex cells, called the arrangement of H and denoted by ~a. An impor tan t  concept  

for us is the p-level in the a r rangement  of H, denoted by Lp(H). This is defined as 
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the closure of the set of all points which lie on a unique hyperplane of the 

arrangement and have exactly p -  1 hyperplanes below it. In dimension 2 the 

p-level is a continuous, piecewise linear function whose segments always coincide 

with one of the lines in the arrangement. In higher dimensions the p-level also 

coincides with one of the hyperplanes of ~ ,  and it is a piecewise linear hypersurface 

in R a. 

When p = [_([H[ + 1)/2 ], the Lp(H) is called the median level of the arrangement. 

The dual version of the ham-sandwich cut problem may be restated as follows: 

Given a set H = {n 1 . . . . .  ;rn} of hyperplanes in R a, partitioned into d 

classes H 1 . . . . .  Ha, IHil odd, find an intersection point of the median 

levels of the arrangements of H 1 . . . . .  Ha. 

Such an intersection point will be a vertex in ~ ,  whose d defining hyperplanes 

contain precisely one hyperplane of each H i. 

A key feature used by our algorithms is the odd intersection property. A set 

X ~_ S has the odd intersection property with respect to levels 21 -= Lp,(H~) if 

1(21 n ' "  c~ ha) c~ V(X)[ is odd; (2.1) 

i.e., the levels intersect an odd number of times in the cylinder erected through'X 

(note that the set 21 ~ ... ~ 2 a is finite by our general position assumption). 

The running time of our algorithm will depend on the time needed for the 

construction of levels in arrangements of hyperplanes; this time in turn depends 

on the combinatorial complexity of these levels. We review the known results. 

Let ea(n, k) denote the maximum possible number of vertices of the k-level in 

an arrangement of n hyperplanes in R a, and let ea(n) = max{ea(n, k); k = 1, . . . ,  n}. 

It is well known that ed(n, k) is proportional to the maximum number of k-sets of 

an n point set in R a. The k-set problem has been extensively studied (see [7], [10], 

[12], and [22]). 

It is known that ea(n) = ~(n d- 1 log n) and it is conjectured that this bound is 

close to the truth. The known upper bounds seem much weaker, however. It was 

shown that e2(n ) = O(n3/2/log * n) [22], that ea(n ) = O(n 8/3) [5], [10], and in general 

ed(n) = O(n a-6ta)) for some (small) positive constant 6(d) [4], [25]. 

Efficient output-sensitive algorithms for level construction are known in dimen- 

sions 2 and 3: a level of complexity b can be constructed in time O(n log n + b log z n) 

for d = 2 [15] and in time O(n 1+~ + bn ~) for d = 3, where e is an arbitrarily small 

positive constant [1]. For d > 3 the efficiency of the algorithm of [1] gets worse; 

it guarantees that if the complexity of the level is O(n a-~ta)) for some 6(d) > 0, then 

the level can be constructed in O(n a-~tdJta/td+ 1~1+~) time. 

3. The Planar Case 

To elucidate the ideas used in our algorithms, we begin by explaining the planar 

case, and then show how these ideas may be extended to higher dimensions. To 

prove Proposition 1, namely, that the planar ham-sandwich problem has linear 



Algorithms for Ham-Sandwich Cuts 437 

complexity, we present an algorithm for the task using the dual setting introduced 

in the previous section. Therefore we have two sets H 1 and H 2 of lines, and we 

want  to find an intersection of the median levels/1 a (of the lines in HI) and lz z. 

We suppose that both n I = [H1P and n 2 = [H2J are odd, and n = n~ + n 2. 

In this situation and with our general position assumptions we have: 

Lemma 3.1. The median level of H a and the median level o f  H 2 intersect in an odd 

number of points. 

Proof This conclusion may be deduced from a well-known elementary proof  of 

the existence of the ham-sandwich cut in the plane. Here we give an elementary 

geometric proof. First we observe that the left unbounded  ray and the right 

unbounded  ray of the median level of  H~ lies on the same line hi ~H~ (the one 

with the median slope). Similarly, the unbounded  rays of the median level of H2 

are parts of some line h2 e H2. One of these lines, say hi, has smaller slope. This 

means that, for small enough x, #~(x) >/~2(x), the median level of H I is above the 

median level of H 2, and, for large enough x, it is below the median level of H2. 

By continuity, the median levels intersect an odd number  of times. [ ]  

Remark.  The lemma says that the whole x-axis has the odd intersection property 

with respect to the median levels of H 1 and H2. In general, let 2 i = Lp,(Hi) denote 

the Pl level in the arrangement of the lines in Hi. Then an interval T = (1, r) has 

the odd intersection property with respect to ),1, 22 if and only if 

(21(/) -- 22(l))(2a(r) -- 22(r)) < 0, (3.1) 

where (t, 2(0) denotes the point on the level 2 at x = t. 

Our  algorithm works in phases, and it discards a constant  fraction of the lines 

in each phase, until it reaches a situation with a small (constant) number  of lines, 

where the ham-sandwich cut vertex can be found directly. Each phase takes time 

linear in the current number  of  lines, and since the number  of lines decreases 

geometrically, the total running time is also linear. 

At the beginning of each phase the algorithm has the following data:  

�9 an open interval T on the x-axis, 

�9 current sets Ga, G2 of  lines, G i ~ Hi, IGil = ml, 

�9 integers Pl, P2, 1 < Pi < mi, 

and the following invariant holds: 

The levels 21 = Lw(G 0 and 22 = Lv2(G2) have an odd number  of inter- 

sections within V(T), and each such intersection is an intersection of the 

median levels of the original sets HI ,  H2 of lines, a 

In fact these intersections are the only ham-sandwich vertices in V(T). 
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At the end of the phase, lines have been discarded so we now have new sets 

G'i ~- Gi, IG'i[ = m~, integers P'i < re'i, and a new interval T '  ~ T on which the 

invariant  holds for the new data. To  start  the algori thm, T is the whole x-axis, 

G1 = HI ,  G2 = H2, p~ = [_(nl + 1)/2_J, and P2 = L(n2 + 1)/2/. The invariant  will be 

satisfied in view of L e m m a  3.1. 

Clearly, the assertion of Proposi t ion  1 holds if we can prove 

L e m m a  3.2. Let T, G1, G2, Pl, P2 be as above and satisfy the conditions o f  the 

invariant. Then in time O(m 1 + m2), we can compute new T' ~ T, G' l ~_ G1, G'2 ~- G2, 

P'x < Pl, P'2 < P2, again satisfying the conditions o f  the invariant, and with the new 

value o f  m' = I G'~] + I ahl < 3m/4; i.e., in linear time at least a quarter o f  the lines 

G 1 u G 2 that begin a phase may be discarded. 

Proof  We first give an outline of the algori thm, and then we fill in the details. 

We suppose that  m~ > m2 (renumbering the sets if necessary). The algori thm 

performs the following steps (the time for each step is indicated in square brackets): 

1. Divide the interval T into a constant  number  of  subintervals Tx . . . . .  To such 

that  no V(T/) contains more  than a prescribed (constant) fraction of the 

vertices of the a r rangement  of G~ [O(ml)]. 

2. Find one subinterval T~ with the odd intersection proper ty  [O(ma + m2)]. 

3. Construct  a t rapezoid T c V(T3, such that:  

21 c~ V(T/) c z. (3.2) 

At most  half of the lines of  G1 intersect (3.3) 

[O(ma)]. 
4. Discard all the lines of  G1 which do not  intersect z (at least raft2 > 

(ml + m2)/4 lines), and update  p~ accordingly (P'I ~ Pl - b, b denoting the 

number  of discarded lines of  G 1 lying completely  below z). Then T~ becomes 

the new T, and we are ready for the next phase of the a lgor i thm [O(m~ + m2)]. 

N o w  we discuss the steps in greater  details. The  first result pertains to step 1. 

L e m m a  3.3. Let H be a set o f  n lines in the plane in general position, let ~ < 1 be 

a prescribed positive constant, and let T be an interval on the x-axis. In O(n) time 

T can be subdivided into subintervals T1, T 2 . . . . .  T c (C = C(~) a constant), such that 

each V(Ti) contains at most teN of  the 

vertices o f  the arrangement o f  H. 
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Proof. We apply a theorem of [18] on approx imate  selection of the kth leftmost 

intersection (which in turn uses a technique developed in [8]). Let tl < ""  < tN 

denote the x-coordinates  of  the vertices of H, in order. It  is proved in [18] that  

given a positive constant  v < 1 and a number  k, 1 < k < N, then in linear time 

two lines of H whose intersection lies between t k_ vN and tk+ ~N can be found. 

Using this selection procedure,  we divide the x-axis into intervals guaranteed 

to contain no more  than a N  intersections each, as follows. Taking  v = ~/4 and 

k = Fi(ct/2)N-] we get, in linear time, an intersection with x-coordinate  u~ that  lies 

between tr ._ 1/2)(~/2)N~ and tr(i+Jt2)t~/2)N q. Carrying out  such approximat ions  for 

i =  1 . . . . .  [_2/ctJ we obtain intervals T'~ = (u i_1, ul) and the nonempty  intervals 

T~ = T ~ T~ have the asserted properties (note that  C(~) < 2/~). []  

At the end of this section we discuss more  practical aspects of the algori thm 

and there we suggest ano ther  approach  for construct ing the subdivision in step 1. 

A third possibility is to specialize the construct ion we use when subdividing in 

higher dimensions. 

L e m m a  3.3 shows how to do step 1 in linear time. We apply it to the ml lines 

in G1. The value of ~ will be fixed later. For  step 2 (subinterval selection), we need 

the following lemma:  

L e m m a  3.4. Given an interval T =  (l,r), the odd-intersection property for 

levels )~1 = Lp~(G1) and 22 = Lp2(G2) may be tested in linear time; i.e., in time 

O(IGll  + IG21) we can find the parity ofl21 n 22 c~ V(T)I. 

Proof. Suppose T is finite. The parity is odd iff the vertical order of  the 

intersections of 21 and 22 with the line x = l is opposi te  to the order of the 

intersections with x = r; i.e., (3.1) must  hold on T = (l, r). The intersection of the 

pl-level with a vertical line x = v can be found in O(ml) time, by comput ing  the 

y-coordinates  of  the intersections of all lines of GI with x = v and selecting the 

p i th  smallest of these numbers ,  using a linear-time selection algori thm. If v = - oo 

(v --- ~ ) ,  the pl-level is the line with the p i th  smallest (largest) slope and, again, 

the ordering of levels is determined by two linear-time selections, this time of slopes 

in GI. []  

Since T has the odd-intersection property,  so will at least one of the subintervals 

Tj from the subdivision. Testing them sequentially, we are guaranteed by L e m m a  

3.4 that  in linear time we will discover a suitable subinterval T~ = (l, r) with the 

odd-intersection property.  We now describe the construct ion of the t rapezoid r 

ment ioned in step 3 and verify its properties. Suppose T is bounded.  Let Dr- and 

D~ + be the intersections of  the vertical line x = l with the levels Lvl_~,,,(G1) and 

L~, + ~,,,(G1), respectively; similarly, we define Dr-, D~ +. These four points define the 

t rapezoid z = Di-D~-D,+D; -. With appropr ia te  choice of e it has the desired 

propert ies  in view of: 

L e m m a  3.5. Let e = ~ and ~ = ~ .  Then (3.2) and (3.3) hold for z; i.e., at most half 

o f  the lines in GI meet z, and within the strip V(TI), the level Lp,(G1) remains within z. 
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Proof. The proof very much resembles the proof of a similar lemma in [18]. 

Consider the top of ~, the segment tr = D~-D, +. The lines of G~ that meet a are 

partitioned into two classes, 6e, the lines with slope smaller than that of tr, and 

.~, those with larger slope. Traversing a from left to right, we keep count of the 

number of G~ lines below. At the start, there are Pl + eml lines below. When we 

meet a line in 6e, the count increases by one, and when we meet an ~-l ine,  it 

decreases by one. At the end there are again pl + em~ lines below. Hence 

16el = ILel. 

Each 6e-line intersects each ~- l ine  within the vertical strip V(T 0. Since this 

strip contains at most 

ct < - ~ -  

intersections, by the construction in Lemma 3.3, we have 

I~1  ~ = I ~ l l ~ l  < 2 ' 

so [Sfl = I ~ r  < (x//~2)ml �9 Since a is em 1 lines above the p : leve l  at both endpoints 

of the interval T~, the pl-level remains below a as long as 

The same argument will show that the p : leve l  never breaks below the bottom ofz. 

Now we count intersections of G~ lines with the boundary of z. There are 

exactly 2eml such intersections on each of the vertical sides DTD~" and DfD, +, by 

definition. Also, we have shown that at most 2 ( x / ~ ) m  1 lines of G, meet the top 

side of ~; similarly the bot tom side contributes at most 2(x//-~2)m~ intersections. 

The total is at most 4em~ + 4(x /~)ra  ~ intersections which, using the above 

inequality, is less than 8~ml. Since each G1 line that meets z intersects two sides, 

at most 4emx lines can meet the trapezoid. So if e = ~ at least half the lines in GI 

miss z as required by (3.3). If we now take 7 = ~ ,  (3.2) is satisfied because the 

inequality, above, is. This finishes the proof of Lemma 3.5. [] 

If Ti is unbounded, e.g., if I = - ~ ,  we take z to be the unbounded region to 

the left of x = r, below the line through D~ + having slope equal to the (Pl + eml)th 

smallest slope (among the GI lines), and above the line through D,- with slope 

equal to the (Pl - eml)th smallest slope in G1. The statement of Lemma 3.5 is 

easily seen to hold for this ~, and since the other unbounded case is similar, the 

proof of Proposition 1 is complete. []  
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We conclude this section by a remark concerning a practical implementation 

of the planar ham-sandwich cut algorithm. There are 2/~ = 64 subintervals in the 

subdivision. In practice it is wasteful to construct all of them and test them for the 

odd-intersection property sequentially (although the asymptotic complexity is not 

affected). Instead, a binary search may be performed: start with T as the current 

interval, and select an intersection approximately in the middle among the 

intersections of the Gl-lines in the current interval. Subdivide the current interval 

into two subintervals by the selected intersection. At least one of them has the 

odd-intersection property (one application of Lemma 3.4 suffices to determine 

which one) and it can be used as the current interval in the next step. This "halving" 

is repeated until the number of intersections within the current interval becomes 

small enough, then z is constructed and the G~-lines are discarded, as described 

above. A relatively easy way to select an intersection approximately in the middle 

of the current interval is to choose a random intersection within the interval. For 

this purpose, a modification of an algorithm for counting inversions of a permuta- 

tion can be used (or its approximate version, if one wants to stay within the asserted 

asymptotically linear time), see [8], [20], or [11]. With these modifications, the 

algorithm becomes relatively simple and practical. Details of an implementation 

along these lines are described in [23]. 

4. The General Case 

In this section we describe a generalization of the planar algorithm to an 

arbitrary fixed dimension, and prove the complexity assertions made in 

Proposition 2. 

Proof of Proposition 2. We again consider the dual version of the problem. The 

presentation is analogous to the one for the planar case. Let #i denote the median 

level of H r  Let us call every point of #1 n . . .  n Pd a ham-sandwich vertex (with 

our general position assumptions, there are finitely many points in the intersection, 

each being a vertex of the arrangement of H = Ht  u ... u Ha). 

We begin with an analogue of Lemma 3.1 which shows that the odd intersection 

property (2.1) holds for the whole coordinate hyperplane S with respect to median 

levels. 

Lemma 4.1. The total number of ham-sandwich vertices is odd. 

Proof. This is, essentially, what is proved when establishing the existence of a 

ham-sandwich cut by topological arguments (from the Borsuk-Ulam theorem). A 

direct proof of showing the oddness of the number of ham-sandwich cuts along 

these lines was shown to us by Imre B~ir/my. Here we give a somewhat different 

geometric proof, whose parts will also be useful later. 

Using Lemma 3.1 as the base case in an induction we suppose the statement 
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of L e m m a  4.1 is true for d imensions  smaller  than  d. Let  oW denote  the a r rangement  

of  the n given hyperplanes.  Cons ider  the 

dist inct  1-fiats (lines) de te rmined  by (d - 1)-tuples of hyperplanes  of  H and project  

each of these 1-fiats vert ically on to  the coord ina te  hyperp lane  S (the general  

pos i t ion  assumpt ion  guarantees  that  no intersect ion projects  to a point). Choose  

a unit  vector  6 e S, not  o r thogona l  to any of the N projections.  We can find two 

vertical  hyperplanes  nleft and  TEright , bo th  with no rma l  6 such that  all the vertices 

of  ~,~ lie between them. By the choice of 6 each of the given hyperplanes  of  H 

meets ~left and  nright. The intersect ions of the hyperp lanes  in H 2 . . . . .  Ha with 7heft 

satisfy the induct ion  hypothes is  with d - 1  and therefore #2 n . . . n  ILa meets 

7tleft in an odd  number  of vertices (ham-sandwich vertices in ~left)" Call  them 

11 . . . . .  12,,+ 1. Similar ly  there are an odd number  of/~2 n . . .  n/~d vertices in 7trigh,; 

call them r~, . . . ,  rzk + ~. 

TO comple te  the  p roo f  we describe the skeleton 

(Y = /2 2 n ' " ~ f l a ,  

the intersect ion of the median  levels of the H z . . . . .  Ha hyperplanes.  I t  consists of 

vertices connected  by edges. A vertex is a po in t  of the form 

v = h2 n . - .  n hd n a '  = (x 1 . . . . .  xa), 

where h i ~ H i is in #i at  (x 1 . . . . .  xd-  1) and,  for some q e {2 . . . . .  d}, a'  ~ hq is also 

in #q. The intersect ions 

e = h 2 n . . .  n hq-1 c~ h ~ n  hq+ 1 n . . -  n ha 

and  

e' = h 2 ~ " "  n hq_ 1 c~ a '  n h~ + 1 n ' "  n h a 

are bo th  edges (1-flats) incident  with v. The general  pos i t ion  assumpt ion  guarantees  

that  vertices have degree exact ly  two. Each vertex v ~ a is in a connected  

c o m p o n e n t  which is ei ther  a chain v o . . . . .  v . . . . .  vt of  dist inct  vertices or  a cycle 

v o . . . . .  v . . . .  , v, of  dist inct  vertices, except that  Vo = v,. The te rminal  vertices v 0 

and  vt in a chain are  each incident  with one edge which is an infinite half-line. If 

u and  v are  vertices on a chain and  bo th  above  (with respect  to the xa coordinate)  

or  bo th  below/~x,  the chain determines  an even number  of  ham-sandwich  cuts 

between u and  v; otherwise it determines  an odd  number .  Clearly,  cycles de termine  

an even number  of  cuts. 
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Since all vertices of ~ are between 7[left and ~right ,  n o  cycle of a can meet either 

of these hyperplanes. On  the other hand, both terminal half-lines of each chain 

must meet one of these hyperplanes, by the choice of ft. Thus each l~ ~ nleft and 

rj ~ nr~ght is the intersection with a terminal half-line of some chain of a. 

In fact each Ii is naturally matched with a unique rj. Consider the line p 

containing the half-line meeting 7~left at l~. The part  of p to the left of n~eft is in a. 

Between 7Zleft and nrlght, p meets each of the n - d + 1 hyperplanes in which it is 

not  contained, and to the right of n~ight, p has no vertices. Therefore the n - d + 1 

hyperplanes each reverse their "above/be low" relation with p between 7~left and 

7[right. This means that the part  of p to the right of 7[right is also in ]-~2 t'~ " ' "  t'~ /2d, 

SO it intersects 7[right at some rj. This establishes two facts: first, 2m + 1, the number  

of lj's, also equals the number  of ri's; second, amongst  the li's and rj's, exactly half 

(or 2m + 1) are below #1- N o w  we are finished, because each chain has two terminal 

half-lines that are either both  above/~1, both below it, or one of each. However, 

since an odd number  of the li and r i are below #1, an odd number  of chains can 

have one terminal half-line above #1 and the other below it, and this proves the 

lemma. []  

Our  algorithm uses simplices in the coordinate hyperplane S analogous to the 

intervals T in the planar algorithm. It again works in phases, discarding a constant  

fraction of the hyperplanes in each phase. 

At the beginning of each phase the algorithm has the following data:  

�9 An open simplex T in the coordinate hyperplane S. 

�9 Current  sets G l, G2 . . . . .  Gd of hyperplanes, Gi ~ Hi, ]Gil = mi, m = ml + "'" 

+ m d. 

�9 Integers Pl, P 2 , " ' , P d ,  1 < Pl < ml. 

The invariant is as follows: 

There are an odd number  of intersections of 21 r~.. .  r~ 2 d (2i = Lp,(G~)) 

in V(T). These intersections are the ham-sandwich vertices in V(T) for 

the original sets H 1 . . . . .  Hd of hyperplanes. 

In the beginning we let T be the whole coordinate hyperplane S = {Xd = 0} (the 

word "simplex" is to be interpreted as an intersection of at most  d + 1 half-spaces), 

G~ = Hi, and p~ = [_(n~ + 1)/2_]. The invariant is then satisfied because of Lemma 

4.1. 

To establish Proposi t ion 2, we prove the following analogue of Lemma 3.2: 

Lemma 4.2. Let T, Gi, Pi be as above and satisfy the conditions o f  the invariant. 

New T'  c T, G'i ~ Gi, p~ < Pl (i = 1 . . . . .  d), again satisfying the conditions o f  the 

invariant, and with the new size m' = IG'~I + ""  + IG~L < (1 - 1/2d)m, can be com- 

puted. The running time is at most proportional to the worst-case running time needed 

to construct one level in a given arrangement o f  m hyperplanes in R d- 1. 

We again suppose that  m 1 > m 2 . . . . .  md. The outline of the algorithm is almost 
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identical to the planar case: 

1. Partition the simplex T into simplices T 1 . . . . .  T c (C = C(d) a constant) with 

suitable properties (to be described later). 

2. Find one simplex T~ with the odd-intersection property; i.e., 

. 

121 n ' - -  n 2d n V(TI)I 

is odd. 

Construct a region r c V(T/), such that 

21 n V(T/) c r. (4.1) 

At most half of the hyperplanes of G1 intersect r. (4.2) 

4. Discard all the hyperplanes of G~ which do not intersect x (at least 

m~/2 > m/(2d)) and update p~ accordingly (p'~ ~ p ~ -  b, where b is the 

number of G1 planes lying below T). Then T~ becomes the new T, and we are 

ready for the next phase of the algorithm. 

To define the subdivision of T in step 1 we need the notion of t-approximation. 

Let H be a collection of hyperplanes in R a, and consider the set system (H, ~), 

where ~ consists of all subsets of H definable by segments; i.e., of the form 

{h ~ H: h n s r ~} ,  where s is a segment in RC Given a parameter e > 0, an 

e-approximation for (H, ~)  is a subset A _ H of hyperplanes with the property that 

IA Rt IRI[ < e (4.3) 

Ihl In l  I 

for every R E ~.  The following lemma is a particular case of a result of [19]: 

L e m m a  4.3 [18]. Given a set H of  n hyperplanes in R d and e > 0 ,  an e- 

approximation for  (H, ~t) o f  size O(e -2 log I/t) can be computed in time O(f(e)n), 

where f (e)  is a factor depending on e (and d) only; in particular, the running time is 

O(n) for  a f ixed e. 

Let us remark that a random sample A of size Ce - 2  log 1/e (for a suitable 

constant C) will, with high probability, be an t-approximation for (H, ~). This 

again suggests a possible simplification for an implementation of the algorithm. 

The partition in step 1 of the algorithm is performed as follows: We let e > 0 

be a small enough constant (to be fixed later), and let A be an t-approximation 

for the hyperplanes in G 1. We project all pairwise intersections of the hyperplanes 

of A into the coordinate hyperplane S, obtaining a set I-I of 

projections (which are (d - 2)-dimensional hyperplanes in S). Note that the size 

of A and thus also K are bounded by a constant, as e is a constant. We form the 
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arrangement of H (within S) and triangulate the part  of it within T, obtaining the 

simplices T 1 . . . . .  T c (this partit ioning procedure, which may look rather myster- 

ious, is substantiated when discussing step 3 of the algorithm). 

The following lemma deals with step 2 (selecting the appropriate  simplex). This 

step will dominate the running time, as all other steps can be performed in linear 

time. 

Lemma 4.4. Given a simplex T c S, the parity o f  121 c~ ... c~2ac~ V(T)[ can 

be determined in time proportional to the (worst-case) time needed to construct one 

given level for  a collection o f  at most m hyperplanes in R a- 1 

Proof. We assume that T is bounded. The modifications required for the 

unbounded  case are straightforward, as in Lemma 3.4. 

In each vertical face F of the infinite prism V(T) consider the (d - 1)-dimen- 

sional arrangement  d F of the hyperplanes of G = Gx w ' "  w Gd intersected with '  

F. We call a vertex v ~ s~r e good if it is in tr = 22 c~ ... c~ ,~,d and below 21. 

First, we claim that the parity of 121 n ... c~ ;~a c~ V(T)I is the same as the parity 

of the total number  of good  vertices within all faces F of V(T). The argument  is 

similar to the one used in Lemma 4.1. Consider a chain v o . . . . .  v~ in tr and traverse 

it continuously from the infinite half-line leading to v o, along edges vivi+l, and 

then through the infinite half-line leading from v,. It meets faces of V(T) an even 

number  of  times, say at points ul, u 2 , . . . ,  U2k, each point alternately an entrance 

and an exit of V(T)  (i.e., uz j -  1, Uaj denotes a part  of the chain in V(T) and Uzk, 

U2* + 1 a part  not in). Each ui is a vertex in ~r for some face of  V(T). If u2~_ 1 and u2j 

are both good or both  bad, then the chain has an even number  of  ham-sandwich 

cuts in V between these points, and if one of them is good and the other bad, then 

there are an odd number  of cuts. This proves that, for each chain in a, among 

its intersections with faces of  V(T), the parity of those which are good vertices is 

the same as the parity of  its intersections in V(T) with 21. Obviously the same 

argument  can be made for any cycle v o . . . . .  v t, v 0 = v t in tr. This establishes our 

claim and it suffices now to describe how the parity of the number  of good  vertices 

is found. 

An easy way of counting the good vertices is to construct the arrangement ~r 

traverse its vertices, and count  the good ones. This requies O(m ~- 1) time for each 

face F. However, we can do better using level construction algorithms. Let n r be 

the vertical hyperplane containing F, and let us put (~i = {g c~ nr; g ~ G~}, 2 i = 

Lp,((7~) = 2~ n rrv. The problem is now to count  the points of  F c~ (].2 n . . .  n i'd) 

lying below 21- 

For  each point of  ).~, we know that  the number  of hyperplanes of d i below it 

is Pl. Hence each point (vertex) of  # = ].2 c~.-.c~ ].d is a vertex of the level 

L 2 = Lp2 +... +pd(G2 w ' " u  Gd). If we have a suitable combinatorial  representation 

of L2, we can thus traverse it in time proport ional  to its complexity and find all 

the vertices of #. 

It remains to decide which vertices of  t~ are below 21. An obvious method is 

to locate each vertex v of  # in a projection of ]-1 onto a horizontal ( d -  2)- 

dimensional hyperplane. However,  reasonably efficient point-location structures 
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in convex subdivisions are only known for dimensions at most 3 (which means 

d < 5). We outline an alternative method that works for any d. 

We determine the position of all vertices of the above-defined level L2 with 

respect to ,~ by traversing the 1-skeleton of L 2 (by a depth-first graph traversal, 

say). During this traversal, we remember whether we are below or above 2~, and 

we update this information as we traverse an edge crossing 21. To this end, we 

need to detect all intersections of the edges of L 2 with '~1. We observe that each 

such intersection is a vertex of the level L1 = Lp, + .  § pd(G1 U "" w Ga). Hence all 

such intersections can be constructed in advance by constructing and traversing 

L 1. Knowing these intersections, we associate and store them along with the edges 

of L 2. With a suitable implementation of the traversal of the levels, the running 

time is dominated by the time needed to construct the levels L 1 and L 2. []  

In step 3 we define the polyhedron z and establish its properties. Let c > 0 be 

a constant to be specified later. For each vertex vj of the simplex T~ = S, we define 

the points D 7, Dj + as follows: 

D; = Lp,_ .... (G1) c~ V(vj) 

and 

O~ + = L . ,+  . . . .  (61) c~ V(vj); 

i.e., Df  (resp. Di +) is the intersection of the Pl - ceml (resp. Pl + ceres) level of the 

G1 hyperplanes with the vertical line through vj (these points can be found in 

O(ml) time by linear-time selection). Then we define z as the convex hull of 

{D~-, D~ . . . . .  D~-, Dr}. It remains to prove that  the constants c, e can be chosen 

in such a way that  ~ has the required properties (4.1) and (4.2). 

Lemma 4.5 Choose c < 3(d - 1)/2 and e = 1/(6(d - 1) + 4c). Then (4.1) and (4.2) 

hold for z; i.e., at most half of the hyperplanes in G1 meet z, and, within the prism 

V(Ti), the level Lp,(G1) remains within ~. 

Proof. Consider a pair Dj +, D~ of vertices of T. We bound the number of 

hyperplanes of GI that intersect the segment DSD ~. The levels of Dj + and D~- in 

the arrangement of GI are equal, and A being the e-approximation for the GI 

hyperplanes, their levels in the arrangement of A differ by at most 2elAI. 

Suppose that there are more than 2elAI of the A hyperplanes intersecting the 

segment D~D~. It is easy to argue that there must be two hyperplanes of A 

intersecting inside the two-dimensional vertical strip erected through the segment 

D~D~ (the argument is similar to the planar case). If  we project the intersection 

of two such hyperplanes into S, we get a hyperplane (within S) belonging to the 

set H. However, T~ was a simplex from a triangulation of the arrangement of H, 

so its edge cannot be intersected by a hyperplane of H. This contradiction shows 

that the segment Df D~ is intersected by no more  than 2elA[ of the A-hyperplanes, 

and thus by at most  3era 1 of the G 1 hyperplanes, by the e-approximation property. 
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Since the top and bot tom faces of z have a total of d(d - 1) edges, there are at 

most 3d(d - 1)era1 intersections of hyperplanes in G~ with edges in the top or 

bot tom of z. By the definition of D]- and D +, each of the d vertical edges of z 

accounts for 2cem~ intersections with hyperplanes in G~, giving a total of at most 

(3d(d - 1) + 2cd)eml intersections. Because each hyperplane meeting z intersects 

at least d edges, at most (3(d - 1) + 2c)em~ of the hyperplanes in G~ can meet z. 

Whatever c is, we take e < 1/(6(d - 1) + 4c) and satisfy (4.2). To fix e, we already 

showed that there are at most 3d(d - 1)eml/2 intersections of hyperplanes in G~ 

with edges in the top face of z. The choice of c > 3(d - 1)/2 guarantees that the 

top face of z meets at most cem~ hyperplanes in G1. This means that the level of 

each point in the top face differs from the (common) level of the vertices D + by 

at most ceres, and, in particular, it is not smaller than p~. This implies that 2~, the 

p~-level of G~, can never get above the top of z. The argument for the bot tom is 

the same. This finishes the proof of Lemma 4.5 and therefore of Proposition 2 as 

well. []  

5. A Separated Case in R 3 

Suppose we have three disjoint sets Px, P2, P3 in R 3. A line I is a transversal if it 

meets all three convex hulls conv(P 0, conv(P2), conv(P3). Our separation condition 

is that the sets have no transversal. For this case we generalize Megiddo's result 

[21] and prove that the complexity of the separated ham-sandwich problem in 

R 3 is O(n). Specifically, we show that the separation condition allows a modifica- 

tion of the general algorithm so it runs in linear time. In step 2 of the algor- 

i t h m - t h e  only one requiring more than linear t ime--we will be able to replace 

level construction in a two-dimensional vertical face by planar ham-sandwich 

computations and a few other linear-time operations. 

Let us begin with two equivalent formulations of the transversal condition. 

Lemma 5.1. The following statements about three convex sets A1, A2, A3 c R 3 

are equivalent: 

(i) Aa, A2, A3 have no line transversal. 

(ii) For every permutation (i,j, k) of( l ,  2, 3), A i can be separated from Aj u A k 

by a plane. 

(iii) For any plane p, at least one pair o f  sets among the orthogonal projections 

o f  A~, A 2, A 3 on p has an empty intersection. 

Proof. ( i)~(i i)  It suffices to show that conv((A 1 u A 2 ) c ~ A 3 ) =  ~ .  Any point 

xeconv(A  1 u A z )  lies on a segment ala2 with a l e A ~  and a 2 e A 2 ,  so if x e A 3  

also, then the line l through al, x, and a2 is a transversal. 

(ii) ~ (iii) Let ai denote a plane separating Ai from the union of the other two 

sets (i = 1, 2, 3). For  simplicity assume that ~r~, ~r2, tr3 are in general position; place 

the origin of coordinates at the point tr~ c~ a 2 c~ a 3 and let a + denote the half-space 

bounded by tzl and containing A t, and oF the opposite half-space. We have 
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A 1 c try- n o" 2 n 0"3, and similarly for A2, A 3. Let p be a projection plane and let 

r be its normal. We place the vector r at the origin and discuss the position of its 

endpoint R with respect to the ai's. If R belongs, for instance, to tri- n a2, then 

the plane passing through R and through the line at n a2 separates A 1 from A 2, 

and it projects to a line in p separating the projection of A1 from the projection 

of A 2. Similarly for R e a;- n a~-, and generally we get a separating line for some 

pair of projections whenever the signs of the half-spaces containing R for some 

two indices coincide. However, this is the case for any R. 

(iii) ~ (i) The projection to a plane orthogonal to a line transversal l violates 

condition (iii). [] 

Note that condition (ii) can be tested in O(n) time (using a linear-time linear 

programming algorithm in dimension 3). 

A dual formulation of (iii) yields the condition we need in the algorithm. 

Lemma 5.2. Let Pt, P2, P3 be point sets satisfying the separation condition, and 

let H1, H2, H a be the dual sets of planes. Let zt be a vertical plane. A pair of indices 

(i,j)e {(1, 2), (2, 3), (3, 1)} exists such that if 2i is some level of H i and 2j some level 

of Hi, then '~i and 2j have a unique intersection within r~. Given x, such a pair of 

indices can be determined in O(n) time. 

Proof Let n be described by the equation cx + dy + e = 0. The duality transform 

maps a point x ~ n to a plane ~(x) parallel to the direction r = (2c, 2d, - e ) ,  so 

the points in n correspond to lines in a plane p orthogonal to r. If another plane 

h intersects n in a line l, then the points of l dualize to planes parallel to r and 

passing through the point ~(h) dual to h. Hence the corresponding lines in p all 

pass through the projection of ~(h) on p, so a line in n corresponds to a point in 

p. It is not difficult to verify that the point in p does not depend on the choice of 

h, and that this correspondence between points and lines in n and lines and points 

in p has the properties of a duality transform. 

Returning to our situation, we find (according to Lemma 5.1(iii)) a pair (i,j) of 

indices such that the projections of the (primal) sets Pi and Pj into the above- 

defined plane p are linearly separated (this can be done in linear time by linear 

programming). The proof is concluded by showing that when P~, Pj are the linearly 

separated projections in the plane p, then any level of the arrangement of lines 

dual to Pg (in the plane n, under the above-discussed dual correspondence between 

p and n) intersects any level of the arrangement of lines dual to /~j in a unique 

point. This is essentially a result of Megiddo. He proved the uniqueness of the 

ham-sandwich cut for linearly separated sets, but the idea applies to any pair of 

levels. Choose the system of coordinates in the primal plane so that the separating 

line is the y-axis, and take the coordinates in the dual plane so that the duality is the 

"usual" one (introduced in Section 2). Then all the lines dual to /~ have (say) 

positive slopes while the ones dual to Pj have negative slopes, and the claim 

follows. [] 
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Step 2 of the a lgori thm tests a triangle T~ for the odd-intersection proper ty  by 

comput ing  the pari ty of  good vertices in the vertical faces of V(T~). In the 

general case we constructed the relevant levels in a face and counted the good 

vertices. Using the separat ion condition, we may  deduce the pari ty without  

construct ing the levels. 

L e m m a  5.3. Given n lines in general position in R 2, partitioned into sets H1, 

H2, H3, let 2i denote a level in the arrangement of  H i lines. Suppose that (i,j) is 

a given pair of  indices such that 121 c~ 2j[ = 1. Then in time O(n) we can compute 

the parity of  good vertices in a strip V = V((l, r)) = {(x, y): I < x < r} (a vertex 

V = (X, y) ~: ~2 ~ ~'3 is good if 21(x) > y). 

Proof. First suppose that  the order of intersections of 2i and )~j with the vertical 

line x = l is the same as the one for the vertical line x = r, that  is, 

( ,~,(0 - , ~ ( 0 ) ( , ~ , ( 0  - ' ~ F ) )  -> o .  (5.1) 

Then 21 and 2j have an even number  of intersections within V, and since this 

number  is at most  1 at the same time, they are disjoint within V. So if {i,j} = {2, 3} 

there are no good vertices and we are done. Otherwise, by symmetry,  we may  

suppose i = 1, j = 2. In this case either all vertices of 22 c~ 2 3 in V are good (if 22 

is below 21 within V) or none is (if 22 is above 21). In the former case the pari ty 

of 122 n 2a c~ VI can be deduced from the ordering of the intersections of 22 and 

23 with the verticals bounding V. 

It remains to deal with the case when (5.1) does not hold. In this case we know 

that  the (unique) intersection of 2~ and 2j is contained in V, and we can find it in 

O(n) t ime by the a lgori thm of Section 3; let c be its x-coordinate.  We then replace 

the interval T = (l, r) by two intervals T'  = (l, c) and T" = (c, r) and observe that  

(5.1) already holds for bo th  of them. Thus we can determine the pari ty of good 

vertices within V(T'), within V(T"), and account  appropr ia te ly  for the potential  

good vertices lying on the vertical line x = c (for (i,j) = (2, 3)). [ ]  

Using the algori thm from the previous section with d = 3, we consider a triangle 

T = PQR in the plane x 3 = 0. L e m m a  5.2 shows that  in the vertical plane 

containing one of its sides (say PQ) at least one pair of the considered levels has 

a unique intersection, and that  we can find such a pair in linear time. L e m m a  5.3 

then shows that  the par i ty  of good  vertices in the vertical strip V(PQ) may  be 

found in linear time. This shows that  step 2 of the a lgori thm has linear complexity 

and proves 

Proposition 3. Given n points in R 3 partitioned into sets P1, P2, Pa having no 

transversal, a ham-sandwich cut can be found in O(n) time. 
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Approximation 

In some applications of the ham-sandwich cut construction an exact bisection of 

every set is not really needed, only an approximate bisection. Let us say that a 

hyperplane h is an e-approximate ham-sandwich cut for sets PI . . . . .  Pd if there are 

no more than (e + 1/2)lP~r points of P~ in either of the open half-spaces defined 

by h, i - 1 . . . . .  d. For  a fixed e > 0, we can obtain such an approximate ham- 

sandwich cut in linear time, in any fixed dimension. First we compute A~, an 

e-approximation for P~ with respect to half-spaces, this means that, for every 

half-space y, 

I lPinV[ IAinv[ I 
< 

I 
e. 

IPil IAil 

Such an Ai of size depending on d and e only can be computed deterministically 

and in O([P~[) time, see 1-19]. Then we compute a ham-sandwich cut for A~ . . . . .  Ad 
by some algorithm; since the size of Ai is bounded by a constant, this only takes 

a constant time. It is easy to see that a ham-sandwich cut for A~ . . . . .  Ad is also 

an e-approximate ham-sandwich cut for P1 . . . . .  Pal. In paractice, random samples 

of suitable size for the Ai's may be taken, and finding an e-approximate ham- 

sandwich cut with probability close to 1 is guaranteed. 

Applications 

Willard's partitioning problem, initially solved by Cole et al. [9], admitted an 

optimal solution when Megiddo's ham-sandwich algorithm for the separated case 

was applied. There are some other problems to which the algorithms of the present 

paper may be applied so the current solutions can be improved. For example, 

Atallah I-6] considered the problem of matching n given red points r 1 . . . . .  r~ in 

the plane with n given blue points, bl . . . . .  bn in such a way that the segments 

joining matched pairs do not intersect. He gave an O(n(log n) 2) algorithm for this 

task. If we used the ham-sandwich algorithm of Section 2 for the divide step of a 

recursive algorithm, after O(log n) levels we would have n trivial matching 

problems, each with one red and one blue point, and the segments will not intersect. 

This gives an extremely simple O(n log n) solution to the matching problem which, 

by reduction to sorting, is easily seen to be optimal (the red points are (i, 1) . . . . .  

(1, n); the blue points are (0, al) . . . . .  (0, am), the ai being the inputs to the sorting 

problem; the matching gives the ranks of the ai's). The approach easily extends 

to a higher-dimensional version where, with d sets of n points each (each set of a 

certain color), the matching is an assignment of each point to a distinct, multi- 

colored d-simplex; the geometric requirement is that the n simplies are pairwise 
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d is jo in t .  T h e  a l g o r i t h m  we d e s c r i b e d  he re  c a n  be  used  to  f ind  s u c h  a m a t c h i n g  in 

O(n d-  1- r )  t ime.  Th i s  m a t c h i n g  p r o b l e m  w as  d i s cus sed  by  A k i y a m a  a n d  A l o n  [3]  

b u t  n o  a l g o r i t h m  was  m e n t i o n e d .  
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