
MATHEMATICS OF COMPUTATION, VOLUME 25, NUMBER 116, OCTOBER, 1971

Algorithms for Hermite and Smith Normal Matrices
and Linear Diophantine Equations

By Gordon H. Bradley

Abstract. New algorithms for constructing the Hermite normal form (triangular) and
Smith normal form (diagonal) of an integer matrix are presented. A new algorithm for
determining the set of solutions to a system of linear diophantine equations is presented.
A modification of the Hermite algorithm gives an integer-preserving algorithm for solving
linear equations with real-valued variables. Rough bounds for the number of operations
are cubic polynomials involving the order of the matrix and the determinant of the matrix.
The algorithms are valid if the elements of the matrix are in a principal ideal domain.

1. Introduction. Hermite [16] showed that a nonsingular integer matrix could be
transformed to a triangular matrix using elementary column operations over the ring
of integers. Smith [26] showed that elementary row and column operations can
diagonalize an integer matrix. The constructions are valid if the elements of the matrix
are in a principal ideal domain, see [18, pp. 79-84]. The constructions have application
to many problems in pure and applied mathematics: for example, constructive proof
of the basis theorem for finitely generated Abelian groups [28, pp. 106-113], [25]; in-
variant polynomials and elementary divisors of polynomial matrices [13, pp.
137-139], [27, pp. 23-25], [29, pp. 222-225]; triangular bases for lattices in the geometry
of numbers [10, pp. 9-13]; modules in mathematical system theory [19, pp. 325-331],
[29, pp. 222-225]; integer linear programming [6], [9], [14], [17, pp. 317-354], [24]; and
solving systems of linear diophantine equations [3], [6], [15, pp. 67-76].

The algorithms developed in [6], [9], [14], [17], [24] for computing optimal solutions
to integer linear programs involve the construction of the Hermite normal form or the
Smith normal form of an integer matrix. Since the matrices associated with integer
linear programming problems are often large, there is current interest in developing
more efficient algorithms for constructing the Hermite and Smith normal forms.

The calculations are basically Gaussian elimination over a Euclidean ring with
greatest common divisor calculations replacing division. The new algorithms compute
the gcd's by means of a new algorithm [7], [8] for computing the gcd of k integers and
multipliers for which the amount of computation and storage space required is linear
in k. For the new Hermite algorithm, the number of arithmetic operations is roughly
bounded by the order of the matrix cubed. A bound for the Smith algorithm involves
the order of the matrix and the determinant. A bound for the diophantine equation

Received June 19, 1970, revised December 21, 1970.
AMS 1970 subject classifications. Primary 10B05, 10C05, 10C99, 65F05; Secondary 15A06,

15A36, 90C10.
Key words and phrases. Hermite normal form, Smith normal form, linear diophantine equations,

integer-preserving Gaussian elimination, integer matrix algorithm.

Copyright © 1971, American Mathematical Society

897

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

898 GORDON H. BRADLEY

algorithm is a cubic polynomial in the number of variables and the number of con-
straints.

Related to calculations over integral domains is the problem of solving, error-free,
systems of linear equations with real-valued variables. Methods for this problem in-
clude the classical technique of cross multiplying [11, pp. 82-87], [4]; methods related
to greatest common divisor calculations [23]; congruence methods [5], [22]; and
multistep Gaussian elimination [1]. A modification of the new Hermite algorithm
presented here gives an integer-preserving Gaussian elimination method that is
related to the algorithm presented in [23].

2. Hermite Normal Form. A nonsingular integer matrix with integer inverse is
called a unimodular matrix. An integer matrix is unimodular if and only if its deter-
minant is equal to plus one or minus one. Postmultiplying a matrix by a unimodular
matrix is equivalent to a series of elementary column operations over the ring of
integers, that is, (1) adding an integer multiple of one column to another column, (2)
multiplying a column by minus one, and (3) interchanging columns.

Theorem (Hermite [16]). Given a nonsingular (n) X («) integer matrix C, there
exists an (n) X (n) unimodular matrix K such that CK is lower triangular with positive
diagonal elements. Further, each off-diagonal element of CK is nonpositive and strictly
less in absolute value than the diagonal element in its row.

CK is called the Hermite normal form of C. Let _x] denote the greatest integer
less than or equal to x and let Vx~\ denote the least integer greater than or equal to x.
Let sgn[x] be — 1, 0 or 1 according to whether x is negative, zero or positive.

The new algorithms differ from the previously published algorithms only in the
way that elementary column operations are used to construct the diagonal elements
of the matrix. It will be convenient to define subroutines to perform this operation and
then to describe the common operations of the new and previously published al-
gorithms in a single algorithm.

Subroutine-Row (C, i, n, m). Elementary column operations are performed on the
rth, (/' + l)th, • • • , nth columns of C until c, divides cti, j = / + 1, ■ ■ ■ , n. Assume
not all Cij,j = i, i + 1, • • • , n, are equal to zero. The column operations involve rows i
to m of C.

1. Determine k (k = /, i + 1, ••• , n) such that 0 < |c,*| g |c¿,|,
j = i, i + 1, • • • , n.

2. For j = i, i + 1, • • • , m, do
a. c,t = sgn[Cik]Cik,
b. exchange cit and cfi.

3. If Cu | en, j = i + 1, • • • , n, return.
4. If Cu does not divide cik, let d = _cik/cu].
5. For j = i, i + 1, • • • , m, do

a. Cf% = Cjk — den,
b. exchange cik and c,-,-.

6. Go to 3.
Proof We need to show that the loop consisting of steps 3-4-5-6 can be repeated

only a finite number of times. At the completion of step 5, the new c,¿ is positive and
strictly less than the old c<¡ (since the old Cu did not divide the old c« and since
0 ^ cik — _Cik/cu]Cii < c.i). Clearly, this can happen only a finite number of
times. D

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

HERMITE AND SMITH NORMAL MATRICES 899

The previously published algorithms for constructing the Hermite normal form of
an integer matrix can be described as follows.

Algorithm H [2].
I. Triangular Form. The matrix is transformed row by row. Begin with / = 1.
1. If d, = 0, for j = /, i + 1, • • • , n, go to 4.
2. Call subroutine-row (C, i, n, n).
3. For j = i + 1, / + 2, • • • , n, do

a. d = Cu/cu,
h. cki = cki - dcki, for k = i, i + 1, • • • , n.

A. If /' < n — 1, replace / by /' + 1 and go to 1.
5. c„n = sgn(c„n)cnn.
If any diagonal element is zero, then the matrix C is singular and the Hermite

normal form, as defined above, does not exist. If C is nonsingular, proceed to II.
II. Reduction of Off-Diagonal Elements. The elements are reduced row by row.

Begin with /' = 2.
6. For j = I, 2, • -, i — I, do

a. d = [Cii/cu~\,
h. ckj = ckj — dcki, for k — i, i •+• 1, • ■ • , n.

7. If i < n, replace i by / + 1 and go to 6. Otherwise, stop.
The calculations of subroutine-row are equivalent to the positive remainder

version of the Euclidean algorithm for the greatest common divisor of n integers. If
subroutine-row involves k¡ iterations of step 5, then algorithm H requires
n3/2 + nki + (n — l)k2 + • ■ ■ -f- 2/c„_1 multiplications. (For the algorithms, we
will count the number of multiplications, in all cases there is an equal number of
additions. Divisions, comparisons and exchanges of columns can be ignored.) Since
the ki may be arbitrarily large, it is impossible to develop a bound for the number of
multiplications that does not involve the k¡*

The new subroutine-row utilizes a new version of the Euclidean algorithm (EA)
[7], [8] for computing the gcd of n integers and multipliers x¿ such that gcd =
22l-i XiOi. If k is the number of iterations of the Euclidean algorithm, then EA
requires at most 2k + 3(n — 1) multiplications, 2/c + n — 1 additions and k + n — 1
divisions.

New Subroutine-Row (C, i, n, m). Elementary column operations are performed on
the rth, (i + l)th, ■ ■ • , nth columns of C until c¡¡ divides c,,-, j = i + 1, • • • , n.
Assume not all cti, j = i,i + I, • ■ • , n, are equal to zero. Column operations involve
rows i to m of C.

1. Determine k (k = i, / + 1, ••• , n) such that 0 < |c,t| á |c¡,|,
j = i, i + 1, • • • , n for Ci j ?¿ 0.

2. For j = i, i -+• lj • • • » m, do
a. cik = sgn[Cik]cik,
h. exchange cjk and c,¡.

3. Via EA calculate multipliers such that gcd(c¿,, cii<+i, ■ ■ • , cia) = 22%i xicn-
A. If for some k, xk = I or ck = 0, go to 12.
5. If for some k,xk= — 1, then let cjk = — cik for j = i, i + 1, • • • , m. Go to 12.

* In [7], a bound for the number of iterations for computing the gcd of n integers is given in terms
of the integer with the smallest nonzero absolute value, but this bound is useful only for ki since the
magnitude of the numbers that result after row 1 has been cleared cannot, in general, be predicted.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

900 GORDON H. BRADLEY

6. If for some k (k = i + I, ■ ■ • , n) Cu divides cik, let x, = x¿ — clk/eit. Go
to 12.

7. If for some k, xk = 0, let d = c,t/gcd(c,,, c,,,+i, • • • , c,„). Let x¡ = (1 — d)x¡
for j = i, i + 1, • • • , n. Go to 12.

8. Via EA calculate gcd(c,,, c,,,+i)and multipliers.^, y2 such that gcd(c¡,, c,,i+i)
= y%cti + y^i.n-i.

9. Let zx = — Ci,i+1/gcd(cu, c,,i+i). Let z2 = c,,/gcd(c,i, c,.,+i).
10. For j = /, i + 1, • • • , m, do

a. d = yxCji + JVf.i+t,
b. c,-,<+i = ^iC,¿ + z2Cj,i+i,
c. c,; = d.

11. Go to 3.
12. For j = i, / -f 1, • • • , n, j ¿¿ k, do

a. c4i = cM - XfCht for n = /', i + 1, • • • , m.
13. Exchange c(i and c,t for / = i, / + 1, • • • , m.
14. Return.
Proof. The new algorithm is finite since step 10 places a zero in element c,, i+i and

hence the condition of step 4 will hold with k *• i + 1. The construction of step 10 is
valid since

.Vl z,

v2 z2

is unimodular. In step 6 it is assumed that xk = 0; since Cu divides cik, EA (and every
other gcd algorithm known to the author) will construct multipliers with xk = 0. □

Note. After exit from step 11 to step 3, only the multipliers Xi and x2 need be re-
calculated. New x2 = 0 and new xx can be immediately recovered from the working
storage of EA ([7, p. 434] Section 3, step 2.2, new xx = y'3).

New algorithm H is algorithm H with new subroutine-row replacing subroutine-
row. For new subroutine-row, let/?; be the number of times an integer multiple of one
column is added to another column in constructing row /'. Then Pi is equal to the
number of nonzero x, (step 12) plus, if step 10 is executed, the number of nonzero
integers among yx, y2, zx, z2. Hence/?, g n — i + 4. Recall that k¡ is the number of
times an integer multiple of one column is added to another column in subroutine-row
for row i. Except for an unlikely special case,** /?,■ g kf. Usually/?, is much less than
ki. For example, for the row (13, 26, 47, 50),/?; = 2 and fc, = 5.

It is possible to compare the new algorithm and the previously published al-
gorithms by noting that k¡ is the number of iterations for calculating the greatest
common divisor of Cu, ci¡i+1, • • • , cin by means of the positive remainder version of
the Euclidean algorithm. For a row with two nonzero integers c,,, c,,<+i where
lc.il Û \Ci.i+i\, the expected value of k{ is 1.9405 log10 |c,i| [20, pp. 320-333]; for the
new algorithm,/?¡ g 2 for / < n — 1 andp¡ ^ 4 for / = n — 1. For n nonzero integers,
h > 2, where |c,i| g jc,-,-], j = i, ■ • ■ , i + h — I, a bound for ki is log^o |cü| [7, p.
435] (the expected value is not known but is certainly greater than the expected value

** For a special case that may arise when step 10 is executed, p¡ = ki + 1. Although the special
case can be detected and the new algorithm can be modified so that p¡ = k¡, the extra effort does not
seem to be justified because the case is unlikely.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

HERMITE AND SMITH NORMAL MATRICES 901

for h = 2). For the new algorithm, p{ ^ min(n, log2 \cu\) for i ^ n — h and/?i g
min(n + 3, log2 |cü|) for i = n — h + I.

Although the bound on p¡ (p{ g n — / + 4) is sharp, the expected value of /?¿ is
much less than the bound. The bound assumes that the greatest common divisor of
Cu, Ci,i+i, • • • , c,„ involves n — i + 1 multipliers, none of which is equal to —1,0
or 1. It should be expected that the gcd of some small subset of the c's will equal the
gcd of all the ct ,'s and hence there will be only a small number of nonzero multipliers.
This claim is supported by the result of Cesaro, see [20, p. 301], that shows that the
gcd of two randomly chosen integers is 1 with probability 6/x2 (6/ir2 > .6).
If gcd(Ci,, Ci,i+1) = 1, then/?i = 2. Thus, under the hypothesis that c¡¡, c,-,,+1 may be
viewed as random integers, the expected value of/?, is less than (.6)2 + (.4Xn — i + A)
= 2.8 + (.4)(n - i).

In many practical applications, particularly integer linear programming it is very
desirable to have bounds for the amount of computation in terms of n. The new
algorithm is bounded by n3 + 2(ki + • • • + fe»_j). Ignoring the k{, the number of
operations is bounded by n3 which is only twice the number of operations for Gaussian
elimination over the field of real numbers.

3. Smith Normal Form.
Theorem (Smith [26]). Given a nonsingular (n) X (n) integer matrix C, there exist

(n) X (n) unimodular matrices E, F such that D = ECF is a diagonal matrix with
positive diagonal elements such that dxx \d22\ • • ■ \dnn.

Define subroutine-column (C, i, n, m) and new subroutine-column (C, i, n, m) to be
the column analogs subroutine-row (C, i, n, m) and new subroutine-row (C, i, n, m).
That is, the column subroutines perform elementary row operations on the rth,
(i + l)th, • • • , nth rows of C until cti divides c,-,-, j = i + 1, • • • , n, where row
operations involve columns i to m.

The following algorithm due to D. A. Smith [25] and Hu [17, pp. 377-381] is an
improvement of previous algorithms, see for example [12], [13, pp. 137-139], [18, pp.
79-84], [21, pp. 226-235], [28, pp. 106-109], [29, pp. 222-224].

Algorithm S [17], [25].
I. Diagonal Form. The diagonal form is constructed row by row. Begin with / = 1.

1. If da = 0, for j = i,i + I, ■■■ , n, go to 9.
2. Call subroutine-row (D, i, n, ri).
3. If da divides d,■,, j = i + I, i + 2, ■ ■ • , n, go to 7.
4. Call subroutine-column (D, i, n, n).
5. If da divides d(i, j = i + I, i + 2, • • ■ , n, go to 7.
6. Go to 2.
7. For j = i + 1, i + 2, • • • , n, do

a. c = du/du,
h. dki = dki - cdki, for k = i, i + l, • • ■ , n.

8. Set du = 0, for j = i + 1, / + 2, • ■ • , n.
9. If i < n — 1, replace i by / + 1 and go to 1.

10. dnn = sgn(dn„)dnn. Stop.
If any diagonal element is zero, the matrix is singular and the Smith normal form,

as defined above, does not exist. If D is nonsingular, proceed to part II.
II. dxl \d22\ ■ ■ ■ \d„n. The construction proceeds row by row. Begin with i = 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

902 GORDON H. BRADLEY

11. If du divides du, for j = i + 1, i + 2, • • • , n, go to 15.
12. If di i does not divide dkk, calculate gcd(í/¡,, dkk) via EA. Let c = gcd(i/,,, dkk).
13. Letdkk = dudkk/c. Let di i = c.
14. Goto 11.
15. If i < n — 1, replace / by i + 1 and go to 11. Otherwise stop.
Proof. Part I is finite because each time subroutine-row (D, i, n, n) or subroutine-

column (D, i, n, n) is called, c¡¡ is strictly decreased while remaining positive. Part II is
finite because du is strictly decreased by step 13 while remaining positive. Let xu x2
he such that c = -XiC.i + x2ckk. Step 13 is valid because it can be accomplished by the
following elementary row and column operations: (1) add xx times row / to row k,
(2) add x2 times column k to column i, (3) exchange row i and row k, (4) add —dkk/c
times column / to column k, (5) add —du/c times row i to row k and multiply column k
by minus one. D

The new algorithm S is formed from algorithm S by replacing the subroutines
with the new subroutines. Unfortunately, it is not possible to bound the number of
multiplications in terms of n alone. It is not possible to bound the number of times the
loop consisting of steps 2-3-4-5-6 is repeated without additional information. In order
to bound the calculations, it is necessary to have information about the magnitude of
the integers as the algorithm proceeds. When constructing the rth diagonal element,
let q¡ he equal to the magnitude of the element in row / with the smallest nonzero
absolute value. Then the 2-3-4-5-6 loop will require at most (n — i + 1) log2 q¡ multi-
plications (each column multiplication in the subroutines reduces c,, to less than one
half its previous value).

It is possible to develop a bound in terms of n and the determinant of C. After
new subroutine-row has been called for the first time for row /, c,-, is not greater than
|det(C)| (if the matrix is triangulated by algorithm H, the product of c,, and the other
diagonal elements is |det(C)|). Hence, (n — i + l)(log2 |det(C)| + n — i + 4) is a
bound for the number of multiplications in the 2-3-4-5-6 loop. A rough bound for the
number of multiplications in part I of the new algorithm S is then

n2(log2 |det (0| + 3)/2 + 2«3/3.

Part II will, in general, require only a small number of multiplications. If the value of
det(C) is not known, a theorem due to Hadamard gives the bound

n / » \l/2

|det(C)|á nilX-l •
; -1 \ i■ -1 /

In general, for row i (i <JC n), Cu will equal 1 after new subroutine-row (C, i, n, ri) has
been called for the first time; hence, a good approximate bound is 3n2/2 + 2n3/3.

Some applications of the Smith construction to integer linear programming
involve matrices with elements that are integers mod k. Thus, each number in the
matrix may be reduced to a number strictly less than k and bounds for new algorithm S
can be developed in terms of log2 k.

4. Linear Diophantine Equations. Given a system of linear diophantine
equations

(1) Ax = b; x integer,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

HERMITE AND SMITH NORMAL MATRICES 903

where A is an (m) X (n) integer matrix and b is an integer m-vector, it is possible to
calculate the set of all solutions to (1) or to show that no solution exists, see for example
[3], [15, pp. 67-76], [20, pp. 303-304]. The algorithm of [3], [15] involves the calculations
of algorithm H. Form the matrix

C = A -b

I 0 .

C is (m + n) X (n -f- 1). In order to avoid some notational complications when rank A
< m, the algorithm below includes an operation "delete row i" which means delete
row / of the matrix and relabel the number of each row accordingly.

Algorithm DE [3]. Transform the matrix row by row. Begin with i = 1.
1. If c¡j = 0, for j = i, / + 1, • • • , n + 1, go to 10.
2. If cti = 0, for j = /, i + 1, • • • , n, and ct,m+1 ̂ 0, then (1) has no solution.

Stop.
3.
4.
5.

Call subroutine-row (C, i, n, n + m).
If C;, does not divide c4>»+1, then (1) has no solution. Stop.
For j = i + 1, / + 2, • • • , n + 1, do
a. d = Cu/cu,
h. cki = cki — dcki, for k = i, i + 1, ■ ■ ■ , m + n.
If i < m, replace / by i + 1. Otherwise stop.
If / á n, go to 1.

8. If Ck.n+i = 0 for k = n + 1, n + 2, • • • , m, then delete rows
n + 1, n + 2, ■ • • , m and stop.

9. If ckfn+i ?* 0, for some n + 1 ^ k ^ m, then (1) has no solution. Stop.
10. Delete row i, replace m with m — 1. If / ^ m, go to 1, otherwise stop.
If the algorithm does not indicate that (1) has no solution, then the algorithm

constructs the matrix

6.
7.

K,

<f> 0
K2 L

where T is an (/?) X (/?) lower triangular matrix with positive diagonal elements
(/? is rank of A), K2 is (n) X (n — p) and / is an n-vector. The vector / is a solution to
(1) and the set of all solutions to (1) is given by {x: x — f + K2z, z integer). K2 has
rank n — p, thus the set of solutions to (1) is either void or has dimension n — p.
Note that if/? = n, then / is the unique solution to (1).

To see why the algorithm constructs the set of solutions to (1), let

(2) [*i K2]
./J

+ /•

Since only elementary column operations have been used in the algorithm, [Kx K2] is
unimodular and therefore (2) defines a 1-1 mapping of the integers in Rn onto them-
selves. Substitute (2) into (1) and delete the rows deleted by the algorithm, the result is
Ty1 — 0. Since T is triangular with positive diagonal elements, (2) defines a solution
to (1) if and only if y1 = 0. A similar argument shows that if the algorithm terminates
at steps 2, 4 or 9, then (1) has no solution.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

904 GORDON H. BRADLEY

New algorithm DE is algorithm DE with new subroutine-row (C, i, n, m). Ignoring
the two multiplications per iteration of the Euclidean algorithm, the number of
multiplications for the new algorithm DE is bounded by a cubic polynomial in m
and n.

5. Integer-Preserving Gaussian Elimination. Given a system of linear equa-
tions with integer coefficients in real-valued variables,

(3) Ax = b
where A is (m) X (n), it is sometimes necessary to calculate the solution (or set of
solutions) error-free. For digital computers this means the solution technique cannot
produce fractions. A modification of algorithm H gives an integer preserving Gaus-
sian elimination method that is similar to the approach of [23]. The algorithm pre-
sented here seeks to minimize the number of operations and the amount of storage;
the algorithm in [23], which was developed in 1952 for calculating machines, seeks to
limit the size of the integers in order to minimize the amount of human time.

Form the matrix C = [A b]; the row analog of algorithm H together with the
operation of interchanging any of the first n columns of C can reduce C to

T S di

<b 4> d2

where T is an (/?) X (/?) upper triangular matrix with positive diagonal elements
(/? is the rank of A), S is an (/?) X (n — /?) matrix, dx is an/?-vector and d2 is an (m — /?)-
vector. Then (3) has a solution if and only if d2 = 0.

Partition x in an obvious manner to get

(4) Tx = di - Sx2.

Let 5 = IIi_i tu. Multiply each element of dx and S by 5; this is equivalent to the
substitution xl = z1/5. It is then possible to do the back-substitution without produc-
ing fractions. The result is

(5) z1 = / + Rx2 (or) xl = (1/5)/ + (l/5)Rx2.

The set of solutions to (3) is given by

(l/ô)/ + (l/Ô)Rx2, x2 arbitraryl

where /, R and S are integer.
The number of operations for the integer-preserving algorithm is bounded roughly

by a cubic polynomial in m and n. The cross multiply algorithm has the same bound.
However, the algorithm presented here should, in general, take fewer iterations
than the bound would indicate and so should be expected to be better than the cross
multiply method. Recently, Bareiss [1] has proposed a multistep integer-preserving
Gaussian elimination algorithm which is a major improvement over the cross multiply
algorithm (which is a single step Gaussian elimination). The bounds for the multistep
Gaussian elimination algorithms are better than the bounds for the algorithm pre-
sented here; computer testing would be necessary to compare the actual number of
operations for the two algorithms.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

HERMITE AND SMITH NORMAL MATRICES 905

The algorithm of this section can solve (1) when rank A = n; in this case the
algorithm of this section should be used since it involves fewer operations than
algorithm DE. An obvious generalization of the algorithm presented here can be used
to compute the inverse of an integer matrix error-free.

6. Numerical Example. The following matrix will be converted to Hermite nor-
mal form by means of new algorithm H. Steps of the algorithm will be noted with
primes indicating the steps of new subroutine-row (step 7' of new subroutine-row is
deleted for reasons discussed below in Section 7).

C =

13

10

1

21

20

3

7 -1

Step 3' constructs multipliers xx

(3', 4', 12') ->

0

15

2

-1

■37

0

1

0_

5, X2 == 3j X3

(Steps 1,2, l',2').

13

10

1

7

21

20

3

-1

1

5

9

-62

x4 = 0. At step 4', k = 3.
-37-1

1 0

5 -85

9 -186
-62 1301

0

1

0,

0
-55

-116

(13', 3)

0

185

334

813 -2294

Step 3' constructs multipliers x2 = — 2, x3 = 3, xt = 0. The conditions of steps A',
5', 6' are not met; steps 8' and 9' calculate gcd(—85, —55) = 5; yi = —2,yt = 3,
zx = \\,z2 — —17.

(10')

1

5

9

-62

0 0

5 0

24 -74

0

185

334
(11', 3').

163 490 -2294_

Step 3' constructs multipliers x2 = 1, x3 = xt = 0. At step 4', k = 2.

10 0 0

5 5 0 0

9 24-74 -554
-62 -163 490 3737_

Step 3' constructs multipliers x3 = —15, xt = 2. The conditions of steps A', 5', 6' are

(12', 3) (4, 1,2, l',2',3').

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

906 GORDON H. BRADLEY

not met; step 8' calculates gcd(—74, —554)
zx = 277, z2 = —37.

2; yx = -15, y2 = 2,

(10')

1

5

9

.-62
The final Hermite normal form is

1

0
-1

0 0 0

5 0 0

24 2 0

163 124 -2539.

0 0

0 0

2 0
-1570 -1651 -2415 2539J

7. Numerical Considerations. The possible increase in the magnitude of the
elements of the matrix as the algorithm proceeds is a serious computational considera-
tion (especially if the determinant of the matrix is large), see [2], [23] and [25]. The
magnitudes of the gcd multipliers constructed by EA for new algorithms H, S and DE
are, in general, large, relative to the magnitude of the integers (the same multipliers
are implicitly constructed in the previously published algorithms). A minor modifica-
tion of EA which is described in [7, p. 435] will construct "minimal multipliers." The
minimal multipliers are smaller in magnitude and will include, in general, fewer non-
zero integers than the multipliers constructed by the unmodified version of EA. The
amount of additional computation needed to construct minimal multipliers is linear
in n.

Step 7 of new subroutine-row (C, i, n, m) will increase the size of the numbers if d
is large. The elimination of 7 does not change the bounds for the algorithms but may
involve 3 or 4 extra column multiplications.

A FORTRAN implementation of new algorithm H is available from the author.
The program was used for the integer linear programming test problems reported
in [9].

8. Acknowledgment. The author would like to thank Professors John D.
Murchland and Ellis Horowitz for valuable suggestions and references. Comments by
a referee aided the development of the integer-preserving algorithm for linear
equations. Suggestions by a referee greatly improved the exposition.

Administrative Sciences Department
Yale University
New Haven, Connecticut 06520

1. E. H. Bareiss, "Sylvester's identity and multistep integer-preserving Gaussian elimi-
nation," Math. Comp., v. 22, 1968, pp. 565-578. MR 37 #2416.

2. W. A. Blankinship, "Algorithm 287, matrix triangulation with integer arithmetic
[Fl]," Comm. ACM, v. 9, 1966, p. 513.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

HERMITE AND SMITH NORMAL MATRICES 907

3. W. A. Blankinship, "Algorithm 288, solution of simultaneous linear diophantine
equations [F4]," Comm. ACM, v. 9, 1966, p. 514.

4. J. Boothroyd, "Algorithm 290, linear equations, exact solutions," Comm. ACM, v.
9, 1966, pp. 383-384.

5. I. Borosh & A. S. Fraenkel, "Exact solutions of linear equations with rational
coefficients by congruence techniques," Math. Comp., v. 20, 1966, pp. 107-112. MR 32 #4831.

6. G. H. Bradley, "Equivalent integer programs and canonical problems," Manage-
ment Sei., v. 16, 1970, pp. 354-366.

7. G. H. Bradley, "Algorithm and bound for the greastest common divisor of n in-
tegers," Comm. ACM, v. 13, 1970, pp. 433-436.

8. G. H. Bradley, "Algorithm 386, greatest common divisor of n integers and multi-
pliers [Al]," Comm. ACM, v. 13, 1970, p. 447.

9. G. H. Bradley & P. N. Wahi, An Algorithm for Integer Linear Programming: A
Combined Algebraic and Enumeration Approach, Report #29, Administrative Sciences Dept.,
Yale University, New Haven, Conn., 1969.

10. J. W. S. Cassels, An Introduction to the Geometry of Numbers, Die Grundlehren
der math. Wissenschaften, Band 99, Springer-Verlag, Berlin, 1959. MR 28 #1175.

11. L. Fox, An Introduction to Numerical Linear Algebra, Monographs on Numerical
Anal., Clarendon Press, Oxford, 1964. MR 29 #1733.

12. C.-E. Fröberg & A. Sundström, "Contribution no. 20, Smith's normal form,"
Nordisk Tidskr. Informations-Behandling (BIT), v. 7, 1967, pp. 163-169.

13. F. R. Gantmaher, The Theory of Matrices, GITTL, Moscow, 1953; English transi.,
Chelsea, New York, 1959. MR 16, 438.

14. R. E. Gomory, "On the relation between integer and noninteger solutions to linear
programs," Proc. NaL Acad. Sei. U.S.A., v. 53, 1965, pp. 260-265. MR 31 #6677.

15. R. H. Gonzalez-Zubieta, On Some Aspects of Integer Linear Programming, Tech-
nical Report #16, Center for Operations Res., M.I.T., Cambridge, Mass., 1965.

16. C. Hermite, "Sur l'introduction des variables continues dans la théorie des nom-
bres," /. Reine Angew. Math., v. 41, 1851, pp. 191-216.

17. T. C. Hu, Integer Programming and Network Flows, Addison-Wesley, Reading,
Mass., 1969.

18. N. Jacobson, Lectures in Abstract Algebra. Vol. II. Linear Algebra, Van Nostrand,
Princeton, N. J., 1953. MR 14, 837.

19. R. E. Kallman, P. L. Falb & M. A. Arbib, Topics in Mathematical System Theory,
McGraw-Hill, New York, 1969.

20. D. E. Knuth, The Art of Computer Programming: Vol. II. Seminumerical Al-
gorithms, Addison-Wesley, Reading, Mass., 1969.

21. C. C. MacDuffee, An Introduction to Abstract Algebra, Wiley, New York, 1940.
MR 2, 241.

22. M. Newman, "Solving equations exactly," /. Res. Nat. Bur. Standards Sect. B, v. 71,
1967, pp. 171-179. MR 37 #2421.

23. J. B. Rosser, "A method of computing exact inverses of matrices with integer coef-
ficients," /. Res. Nat. Bur. Standards, v. 49, 1952, pp. 349-358. MR 14, 1128.

24. J. F. Shapiro, "Dynamic programming algorithms for the integer programming
problem—I. The integer programming problem viewed as a knapsack problem," Operations
Res., v. 16, 1968, pp. 103-121. MR 38 #921.

25. D. A. Smith, "A basis algorithm for finitely generated abelian groups," Math.
Algorithms, v. 1, 1966, pp. 13-26. MR 4« #4367.

26. H. J. S. Smith, "On systems of linear indeterminate equations and congruences,"
Philos. Trans. Roy. Soc. London Ser. A, v. 151, 1861, pp. 293-326.

27. H. W. Turnbull & A. C. Aitken, An Introduction to the Theory of Canonical
Matrices, Blackie, London, 1932.

28. B. L. van der Waerden, Moderne Algebra. Vol. 2, Springer, Berlin, 1931; English
transi., Ungar, New York, 1950.

29. L. A. Zadeh & E. Polak, Systems Theory, McGraw-Hill, New York, 1969.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

