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Abstract

Background: Attenuation correction in positron emission tomography remains

challenging in the absence of measured transmission data. Scattered emission data

may contribute missing information, but quantitative scatter-to-attenuation (S2A)

reconstruction needs to input the reconstructed activity image. Here, we study S2A

reconstruction as a building block for joint estimation of activity and attenuation.

Methods: We study two S2A reconstruction algorithms, maximum-likelihood

expectation maximization (MLEM) with one-step-late attenuation (MLEM-OSL) and a

maximum-likelihood gradient ascent (MLGA). We study theoretical properties of these

algorithms with a focus on convergence and convergence speed and compare

convergence speeds and the impact of object size in simulations using different spatial

scale factors. Then, we propose joint estimation of activity and attenuation from

scattered and nonscattered (true) emission data, combining MLEM-OSL or MLGA with

scatter-MLEM as well as trues-MLEM and the maximum-likelihood transmission (MLTR)

algorithm.

Results: Shortcomings of MLEM-OSL inhibit convergence to the true solution with

high attenuation; these shortcomings are related to the linearization of a nonlinear

measurement equation and can be linked to a new numerical criterion allowing

geometrical interpretations in terms of low and high attenuation. Comparisons using

simulated data confirm that while MLGA converges largely independent of the

attenuation scale, MLEM-OSL converges if low-attenuation data dominate, but not with

high attenuation. Convergence of MLEM-OSL can be improved by isolating data

satisfying the aforementioned low-attenuation criterion. In joint estimation of activity

and attenuation, scattered data helps avoid local minima that nonscattered data alone

cannot. Combining MLEM-OSL with trues-MLEM may be sufficient for low-attenuation

objects, while MLGA, scatter-MLEM, and MLTR may additionally be needed with higher

attenuation.

Conclusions: The performance of S2A algorithms depends on spatial scales. MLGA

provides lower computational complexity and convergence in more diverse setups

than MLEM-OSL. Finally, scattered data may provide additional information to joint

estimation of activity and attenuation through S2A reconstruction.

Keywords: Positron emission tomography, Image reconstruction, Attenuation

correction, Compton scattering
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Introduction

Positron emission tomography (PET) is an important noninvasive medical imaging

modality for clinical and research applications [1], with particular strengths in sensitive

detection of photon pairs emitted by a radiotracer and quantitative reconstruction of the

radiotracer activity image λ. PET image reconstruction is usually based on linear models,

involving the Radon transformRλ in the analytic case or discrete mappings of a vector �λ

in the numerical case, respectively.

For quantitative reconstruction of the activity image, attenuation correction (AC) is

essential, compensating for a lack of detected photon pairs along lines of response (LORs)

due to the photoelectric effect and Compton scattering in the patient. A complementary

step, scatter correction (SC), computes an estimate of extraneous photon pairs along

broken LORs, which are generated through Compton scattering. Both corrections usually

input the spatial distribution of the electron density ρ in the form of a map of linear

attenuation coefficients μ or, for AC purposes, the so-called attenuation sinogram Rμ.

Given μ, both AC and SC are state of the art using well-validated algorithms [2, 3], but

vast research efforts had to be—and still are—directed to the determination of μ.

Determination of an attenuation map

Depending on the level of integration of PET with other modalities (standalone or

multi-modality PET), information from radionuclide transmission sources [4, 5], X-ray

computed tomography (CT) [6], or magnetic resonance imaging (MRI) [7] can be used.

However, radionuclide transmission data suffer from low signal-to-noise ratio, necessi-

tating segmentation to prevent noise in the transmission data from impacting activity

images. In PET/CT, 4-D attenuation correction of PET data acquired from a moving sub-

ject remains limited due to concerns over radiation doses induced by cine CT imaging.

In PET/MRI outside of the head/neck area, MRI is often incapable of distinguishing bone

from air in reasonable scan times [8].

More universal approaches to determine μ do not depend on multi-modality infor-

mation. Popularized through maximum-likelihood reconstruction of attenuation and

activity (MLAA, [9–11]), these algorithms use only PET emission data, replacing the

optimization problem in λ by a joint problem in (λ,μ). A recently proposed group of

algorithms jointly estimate the activity image and the attenuation sinogram Rμ, either

using alternation [12, 13] or simultaneous updates [14].

Time-of-flight (TOF) PET emission data determine the attenuation sinogram Rμ, but

only on LORs with activity (Rλ > 0) and only up to an unknown offset [15]. The for-

mer limitation is not a severe issue for AC, where other values of Rμ are not needed.

However, it complicates reconstruction of μ fromRμ and therefore is a problem for SC,

where an image-space μ-map is usually required. The latter limitation translates into an

unknown scaling factor in the reconstructed λ. For these reasons, AC and SC using only

PET emission data are still impractical [16].

Another type of available data is low-energy, object-scattered PET emission data, which

may contain enough additional information to address both aforementioned limitations

[17]: particularly, in a joint reconstruction scheme [18]. Similar opportunities arise in

single-photon emission computed tomography [19–22]. Unfortunately, the model of the

measured PET scatter data is neither based on the regular Radon transform nor linear

in μ. A maximum-likelihood gradient ascent algorithm for scatter-to-attenuation (S2A)
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reconstruction has therefore been proposed [23, 24] but, so far, not been used in joint esti-

mation. Most recently, a Broyden–Fletcher–Goldfarb–Shanno (BFGS)-based algorithm

has been proposed for attenuation reconstruction from coincidences in a lower energy

window [25, 26].

The problem of estimating attenuation from scattered PET photons shares similarities

with Compton scatter imaging, in which external Gamma sources are used to probe an

object’s electron density for medical [27] or industrial [28] applications. While it is known

from the latter that the nonlinearity of the problem favors thin, low-density objects, the

impact of object size in scatter-based PET attenuation correction remains to be studied.

Objectives

This paper is thus concerned with characterizing S2A reconstruction as a building

block in joint estimation of activity and attenuation (joint estimation). We follow three

objectives: (1) further understand fundamental properties impacting convergence and

convergence speed of S2A algorithms; (2) compare S2A algorithms using simulated data,

specifically, in terms of convergence speed, the impact of object size, and improved

performance of one algorithm by reducing its input data; and (3) study joint estima-

tion, which implies dropping the assumption of known radiotracer activity images in

S2A reconstruction [17, 24]. Therefore, we integrate scatter data into joint estimation by

interleaving S2A reconstruction with trues-to-activity reconstruction, as proposed before

[18, 29], as well as with trues-to-attenuation and scatter-to-activity reconstruction.

In this algorithmically oriented proof of concept, studies are carried out using 2-D

digital phantoms and simulations restricted to single scattering without TOF informa-

tion. Furthermore, we assume perfect energy resolution that enables ideal separation of

scattered and nonscattered events and noise-free data.

After statement of the problem, introducing required imaging models for use in S2A

reconstruction and joint estimation, we summarize and propose algorithms for both and

describe the evaluation data used and the experiments carried out, before presenting and

discussing our results.

Problem statement

This section summarizes notation and models for scattered and unscattered data.

Scattered data for S2A reconstruction

Scatter-to-attenuation reconstruction requires a model of the low-energy, scattered

data. Therefore, we identify the coincident detection of two photons along an LOR

by the involved detector pair. If exactly one of two detected photons has been object-

scattered exactly once, the coincidence is said to be single-scattered and the energy

of that photon is denoted E. We denote the respective detector ds (scattered) and

the other dn (nonscattered). Thus, a tuple i = (ds, dn,E) comprises all properties

of a single-scattered coincidence used in this work; l = (ds, dn) denotes a regular

LOR.

The trajectory of both photons is a broken LOR as shown in Fig. 1, connecting

a scattering location �xs with both detector locations. Unfortunately, many different

broken LORs, in particular, having different scattering locations, yield the same appar-

ent LOR l, so that the photon trajectory, and in particular, the scattering location,
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Fig. 1 Front, side, top, and oblique views of SORs for coincidences detected in opposite detector elements

on a detector surface (gray) for three different energies of the scattered photon: 460 keV (innermost, darkest),

358 keV (middle), and 307 keV (outermost, lightest). Assuming the scattered photon in the left detector, one

potential broken LOR is indicated, with the solid part indicating potential activity source locations. Each

broken LOR runs inside its SOR, touching it only at the detectors and one potential scattering location.

Adapted, with permission, from ([17], Figure 2). © 2014 American Association of Physicists in Medicine

cannot be determined from l. It is known, however, that the true �xs lies on an

American-football-shaped surface of revolution, with the pointed ends in the detec-

tor locations and the radius determined by E. We use i to denote this surface of

response (SOR), comprising all possible scattering locations for a single-scattered coin-

cidence1. For each scattering location �xs in SOR i, (i, s) describes one potential broken

LOR.

In list-mode acquisition, the raw scatter data is a sequence (i1, i2, . . . ); after histogram-

ming, the data is the number of detected single-scattered coincidences for each possible

i. Here, yi denotes the simulated or measured data on SOR i, while ȳi is used for the

expected data. The dimension of the data space is Ni ≤ N2
d × NE , with Nd detectors and

NE energy bins (or equivalently, energy windows)2.

Voxels are indexed according to their physical roles using e (emitting), s (scattering),

and t (transmitting). A 2-D matrix Aλ (with entries ais) describes the sensitivity of the

PET camera on SOR i for radiation scattered in a voxel s in the absence of attenuation;

it integrates both normalized camera sensitivity (scatter geometry, photon detection effi-

ciency) and the object’s source density λ, as detailed in the Appendix. A 3-D tensor K

(with entries kis,t) represents the attenuating path length of that radiation through a voxel

t, independent of the object.

The expected number of low-energy scatter coincidences �̄y, which is linear in the

activity �λ, is modeled according to a discretized variant of the scatter-measurement

equation (23), a generalization of the single scatter simulation (SSS) equation [3]. Using

the notation in Table 1, we write the discrete measurement equation as:

ȳi =
∑

s

(

∑

e

bis,eλ
e

)

exp

(

−
∑

t

kis,tρ
t

)

ρs =
∑

s

ais exp

(

−
∑

t

kis,tρ
t

)

ρs (1)

or, in matrix notation, denoting the element-wise operations by ⊙ and
◦

exp:

�̄y(�λ, �ρ) =
(

Aλ ⊙
◦

exp(−K �ρ)
)

�ρ. (2)

The above expressions are equivalent to (41) and (42), respectively. Their derivation is

subject to the following assumptions:

1SORs are single-scatter analogs of LORs, which comprise potential emission locations of nonscattered coincidences.
2While energy bin may be a more appropriate term for list-mode data with energy information, and energy window more
appropriate for list-mode data without energy information or histogrammed data, we use these terms interchangeably as
we are only concerned with the maximum granularity of the energy information that can be obtained from the data.



Berker et al. EJNMMI Physics            (2019) 6:18 Page 5 of 30

Table 1 Notation used for mathematics, image space, measurement space, and physics

Symbol Description

T ,M, �v, �1[·] Rank-3 tensor, matrix, vector, vector composed of ones

⊗; ⊙,⊘,
◦

exp Outer product; element-wise multiplication, division, exp,

�λ, �μ, �ρ Spatial distribution of activity, linear attenuation coefficient, electron density

j, e, s, t Indices of all, emitting, scattering, transmitting voxels

�y, �̄y; �z, �̄z Measured/simulated, expected scatter (y) or trues (z) data

ds , dn Detectors of scattered, nonscattered photons of a single-scatter coincidence

E, θ Energy of scattered photon, associated scattering angle

l = (ds , dn), index of an LOR

i = (ds , dn , E), index of an SOR

(i, s) = (ds , dn , E, s), index of a broken LOR

Nd ,NE ,Nl ,Ni Numbers of detectors, energy bins, LORs, SORs

A,Aω , Ã SOR system matrices: (Aω , function of parameters;a Ã with attenuation)

U , Ũρ LOR system matrices (as above)

B, bis,e Probability that radiation emitted in e is detected along the broken LOR (i, s), disregarding
attenuation, per unit electron density in s, per unit activity in e

L, lis,t Effective intersection length of photon path along the broken LOR (i, s)with the transmit-
ting (or attenuating) voxel t, taking photon energy into account

K , kis,t = lis,t · μt/ρt , effective intersection length times LAC–electron-density ratio

Ly(•) Poisson log-likelihood (LL) given the measured data �y

S(•, �x true) Normalized mean squared error (NMSE) with respect to a reference �x true

aThese parameters are assumed to be constant within one iteration, but can be updated between iterations

ki,es,t = kis,t Effective attenuation lengths of a voxel t seen by photons along a broken LOR

(i, s) are independent of the point of emission e along that broken LOR: this is a common

assumption in PET that has been fundamental in showing that TOF PET data determine

the attenuation sinogram up to a constant [15].

μ ∝ ρ The linear attenuation coefficient μ is proportional to the electron density ρ:

approximately, this is true because in biological (low-Z) materials at PET energies,

Compton scattering is the dominant interaction preventing gamma photon pairs from

being detected. At fixed energy, the ratio μ/ρ can be formulated to depend on the mass

attenuation coefficient (μ/ρm) and the quotient of mass density and electron density

(ρm/ρ). The former is fairly constant across human tissues at PET energies ([30], Fig. 3),

and the latter is almost perfectly constant for materials less dense than water and deviates

a maximum of 10% for materials three times as dense ([31], Fig. 1). Note that μ/ρ may

well depend on the photon energy; no assumption about the energy dependence of μ is

implied (see the discussion around (35)).

If we assume that the electron density �ρ is known accurately enough to approximate

attenuation effects, as we will for one algorithm, we can simplify (2) further. That is, with

an estimate �ρ est and using the abbreviation Ãλ,ρ := Aλ ⊙
◦

exp(−K �ρ), we find the linear

mapping:

�̄y′ = Ãλ,ρ est �ρ ⇐⇒ ȳ′i =
∑

j

ãijρ
j. (3)

We denote attenuated system matrices by a tilde (see Table 1; ã for components) and

refer to (3) as the linearization of the scatter measurement equation.
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Unscattered data for joint estimation

Our joint estimation approach requires, additionally, a model of the nonscattered data

and three well-known algorithms. We assume the LOR model with:

�̄z = (U�λ) ⊙ exp(−U �ρ) = Ũρ
�λ

⇐⇒ z̄l =

⎛

⎝

∑

j

uljλ
j

⎞

⎠ exp

⎛

⎝−
∑

j

uljρ
j

⎞

⎠ =
∑

j

ũljλ
j,

(4)

where �̄z is the expected nonscattered data, U is the LOR system matrix without attenua-

tion, i.e., the usual systemmatrix applied for the usual PET reconstruction (see Appendix),

and Ũρ the attenuated one; ulj and ũ
l
j represent entries ofU and Ũρ , respectively, for LOR

l and voxel j.

These nonscattered (true) data are used by maximum-likelihood expectation-

maximization [32], which we refer to as trues-MLEM:

�λnew = �λ ⊙
(

Ũ
⊤
ρ

(

�z ⊘ �̄z
))

⊘
(

Ũ
⊤
ρ

�1[l]

)

, (5)

and by the relaxed maximum-likelihood transmission algorithm [33] (trues-MLTR):

�ρnew = �ρ + η ·
(

1 −
(

U
⊤�z

)

⊘
(

U
⊤�̄z

))

. (6)

In addition, scatter-MLEM [34] will be used, of which a brief derivation is given in the

Appendix. This algorithm’s update equation reads:

�λnew = �λ ⊙
(

Ã
⊤
ρ

(

�y ⊘ �̄y
))

⊘
(

Ã
⊤
ρ

�1[i]

)

. (7)

Methods andmaterials

In this section, we summarize two recent S2A algorithms and then look at fundamental

differences between them. We then propose two novel joint estimation approaches using

these algorithms and present our evaluation strategy.

Gradient-based algorithms for S2A reconstruction

In previous work, we introduced the two-branch back-projection (2BP) algorithm [17]

which chooses between a positive and a negative update of ρ in a binary random-walk

fashion. Since we found this algorithm to be impractical for most applications [24], we

focus on two gradient-ascent-based algorithms here.

The Poisson log-likelihood (LL) of some expected data �̄y, given the data �y and omitting

terms that do not depend on �̄y, reads:

Ly(�̄y) =
∑

i

(

yi log ȳi − ȳi
)

, (8)

with its gradient with respect to a vector �ρ

�∇ �ρLy =
(

�∇ �ρ ⊗ �̄y
) (

�y ⊘ �̄y − �1[i]

)

⇐⇒
∂Ly

∂ρ j
=

∑

i

∂ ȳi

∂ρ j

(
yi

ȳi
− 1

)

. (9)

For the linearization (3), since Ãλ,ρ est does not depend on �ρ, we find the gradient of the

expected data to be:

�∇ �ρ ⊗ �̄y = Ã
⊤
λ,ρ est ⇐⇒

∂ ȳi

∂ρ j
= ãij . (10)
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By contrast, observing the double dependence of (2) on �ρ, one finds:

�∇ �ρ ⊗ �̄y =
[

Aλ ⊙
◦

exp(−K �ρ) − �ρ⊤
{

K ⊙
([

Aλ ⊙
◦

exp(−K �ρ)
]

⊗ �1[t]

)}]⊤
(11a)

=
[

Ãλ,ρ − �ρ⊤
{

K ⊙
(

Ãλ,ρ ⊗ �1[t]

)}]⊤
(11b)

instead, which simplifies to (10) only under �ρ = 0 or K = 0 (nonscattering or nonatten-

uating object) and �ρ est = �ρ. This vectorial expression lends itself particularly well to an

implementation inMATLAB (TheMathWorks, Natick, MA); note that the multiplication

with �ρ⊤ (from the left) denotes a summation over the scattering voxels s, as indicated in

the component-wise expression:

∂ ȳi

∂ρ j
= aij exp

(

−
∑

t

kij,tρ
t

)

−
∑

s

ρskis,ja
i
s exp

(

−
∑

t

kis,tρ
t

)

(12a)

= ãij −
∑

s

ρskis,jã
i
s. (12b)

Scatter-to-attenuationMLEMwith one-step-late attenuation (MLEM-OSL)

This algorithm, called MLEM by its authors [18], is based on subsuming attenuation

effects under the system matrix in the linearized measurement equation (3), yielding the

MLEM update [32]:

�ρnew = �ρ ⊙
(

Ã
⊤
λ,ρ

(

�y ⊘ �̄y
))

⊘
(

Ã
⊤
λ,ρ

�1[i]

)

⇐⇒ ρnew,j = ρj

∑

i ã
i
jy
i/ȳi

∑

i ã
i
j

. (13)

However, this update ignores the fact that Ãλ,ρ depends on �ρ, and Ãλ,ρ has to be

updated after every iteration: Eq. (13) follows the spirit of the so-called one-step-late

(OSL) algorithms [35], and we will refer to it as MLEM-OSL here.

Maximum-likelihood gradient ascent (MLGA)

The MLEM(-OSL) update (13) can be written as a scaled gradient ascent, with the

gradient given by Eqs. (9 and 10) and a vector-valued step size [36]:

�ρnew = �ρ + �ρ ⊘
(

Ã
⊤
λ,ρ

�1[i]

)

︸ ︷︷ ︸

step size

⊙�∇ �ρLy ⇐⇒ ρnew,j = ρj +
ρj

∑

i ã
i
j

︸ ︷︷ ︸

step size

∂Ly

∂ρ j
(14a)

= �ρ + �s ⊙ �∇ �ρLy = ρj + sj
∂Ly

∂ρ j
. (14b)

The closed-form expression of MLGA [23, 24] is obtained from (14b) by inserting the

full log-likelihood gradient (9 and 11) and choosing a step size. In this work, we focus on

a step size inspired by the MLEM update equation (14a):

�s = γ · �ρ ⊘
(

Ã
⊤
λ,ρ

�1[i]

)

⇐⇒ sj = γ
ρj

∑

i ã
i
j

. (15)

In addition to this MLEM-like step size, two additional step sizes have been tested: the

constant step size, proposed before [24], and the scaled nonuniform step size:

�s′ = α · �1[j] and �s′′ = β · �ρ. (16)

Step-size constants α,β , and γ have been optimized empirically for fastest, yet stable

convergence with our data.
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Validity of linearizing the scatter measurement equation

The amount of scatter as a function of electron density may not be sufficiently well

represented by a linearized measurement equation, and (2) may require more careful

treatment. To explore the limits of the linearization, we derive a geometrical interpreta-

tion as well as a numerical criterion. This criterion is used to distinguish data that can

be used for algorithms based on linearization (here, MLEM-OSL) from data that cannot;

further, it is linked to the log-likelihood gradient (11).

The most basic, one-dimensional (1-D) simplification of (2):

ȳ = aλ exp(−kρ est)ρ (aλ, k, ρ
est, ρ > 0), (17)

confirms that no possible linearization in the form of (3):

ȳ′ = aλ,ρ estρ, (18)

reflects the behavior of (17) with high attenuation (see Fig. 2): in particular, the deriva-

tive of (18) misrepresents the sign of the derivative of (17) for kρ > 1. This may have

drastic implications for gradient-based algorithms using the linearization to compute the

gradient: in particular, if ρn > ρ true > 1/k, an iteration of MLEM-OSL yields ρn+1 > ρn

regardless of the value of ρ est.

Comparison of the gradient of the linearization (10) with the full gradient (11) reveals

the advantage of MLGA over MLEM-OSL; the difference term −�ρ⊤{K⊙[ . . . ] } reverses

the direction of the full gradient (only) with high attenuation, all components of �ρ and K

being nonnegative3.

A multi-voxel interpretation of the high-attenuation situation is presented in the

Appendix: it is of importance in patients with great attenuation-length–electron-density

products �ρ⊤
K

4. One conclusion from the arguments in the Appendix is that it is not

straightforward to downsample (or downsize) S2A experiments, as that can transform

low attenuation into high attenuation (by downsampling), or vice versa (by downsizing)5.

For MLEM-OSL, the linearization of the measurement equation may only be appro-

priate whenever attenuation effects do not reverse the sign of ∂ ȳi/∂ρ j. Since this may be

true for some SORs i, but not for others, it may be appropriate to remove the latter from

the data and apply MLEM-OSL to the reduced data set: (46) represents an approximate

inclusion criterion used later.

n-algorithms for joint estimation

Up to this point, we have focused on dedicated S2A reconstruction algorithms, assum-

ing knowledge of the activity distribution; in this section, we drop this assumption and

extend our studies to joint estimation of activity and attenuation using scattered as well

as nonscattered data. The added value of combining scattered and nonscattered data is

visualized in the Appendix (Fig. 16).

We use five building blocks: the aforementioned MLGA with MLEM-like step size

for S2A reconstruction, henceforth referred to as scatter-MLGA; scatter-MLEM-OSL

as an alternative; scatter-MLEM for scatter-to-activity reconstruction; trues-MLEM for

3This update using both terms is also responsible for vastly improved performance of MLGA compared to 2BP [24]: the
full gradient of the data (11) is effectively a weighted sum of the 2BP update branches, where the weights ensure
maximization of the log-likelihood.
4The use of an elliptical phantom with relatively short, 12 and 15 cm long axes may have prevented this behavior from
manifesting in an earlier study [18].
5By contrast, downsampling or downsizing activity reconstruction is possible without such considerations.
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Fig. 2 The function ȳ = aλ exp(−kρ)ρ (A), its derivative (B), and linearizations ȳ′ with kρ est ∈ {0, 2} (C, D)

trues-to-activity reconstruction; and trues-MLTR for trues-to-attenuation reconstruc-

tion. Combinations of n individual algorithms form n-algorithms.

As for S2A reconstruction, we distinguish two main cases: low and high attenuation.

The general data flow per iteration is similar for both cases and is visualized in Fig. 3;

radiotracer activity distribution λ and electron density ρ are repeatedly updated using

the current estimate of the respective other quantity. For both cases, we re-optimized the

MLGA step sizes to achieve stability.

2-algorithms for low attenuation

The idea of this subsection has been presented before [18, 29]. For low attenuation sit-

uations (e.g., with a spatial scale factor of 0.2 in Fig. 4), we interleave trues-MLEM with

scatter-MLGA. The data flow in this part is similar to that proposed earlier [18]. We

start with initial guesses for ρ and λ. In each iteration, plugging the current electron-

density estimate �ρ into Ũρ , we use trues-MLEM to update the current activity estimate

Fig. 3 One iteration of joint estimation: an electron density estimate is used for attenuation correction in

MLEM scatter-to-activity (step 1) and subsequent trues-to-activity (step 2) updates. Then, the activity

distribution estimate is used as a source term in MLGA scatter-to-attenuation (step 3) and MLTR

trues-to-attenuation (step 4) updates. In low-attenuation cases, only steps 2 and 3 are used in each iteration,

while all steps are used in high-attenuation cases



Berker et al. EJNMMI Physics            (2019) 6:18 Page 10 of 30

Fig. 4 18 × 18-voxel simulation setup: a indices of detectors and voxels at their respective locations; b true

and c initial μ-maps, respectively, in 1/cm; d true and e initial activity distributions, respectively, in arbitrary

units; the initial activity distribution is used only for joint estimation (see the “n-algorithms for joint estimation”

section). Human-sized phantom, axes scaled in cm

�λ using the nonscattered data �z; then, we use the updated activity estimate to compute

scatter-MLGA updates of �ρ.

In this part of the study, we aim to minimize the number of computationally expensive

updates of the systemmatrix Ãλ. Therefore, we run 10 iterations of attenuation-corrected

(using the current �ρ) trues-OSEM (with 4 data subsets) at a time, followed by 10

iterations of scatter-MLGA with 4 data subsets (the use of subsets in scatter-MLGA

being studied in detail elsewhere [24]). This low-attenuation 2-algorithm is summarized

as (trues-OSEM10
4 ) + (scatter-MLGA10

4 ), with a total of 20 sub-iterations per itera-

tion. Since MLEM-OSL can replace scatter-MLGA for low attenuation, we also run

(trues-OSEM10
4 ) + (MLEM-OSL10) on the same data for comparison.

4-algorithms for low or high attenuation

For high attenuation (e.g., Fig. 4 at the original, that is, human spatial scale), we find it

necessary to further consider activity information contained in scattered coincidences, as

well as attenuation information contained in true coincidences. The former is achieved

by the scatter-MLEM algorithm, the latter with the trues-MLTR algorithm with a relax-

ation factor of η = 0.03. Iterations of different algorithms updating the same quantity

are considered as one sub-iteration; all updates are applied subsequently (e.g., the trues-

MLEM update used the estimate of λ as updated by the previous scatter-MLEM update;

see Algorithm 1).

Not using any subsets, the high-attenuation 4-algorithm is noted (scatter-MLEM +

trues-MLEM) + (scatter-MLGA + trues-MLTR), with two sub-iterations per iteration.

Evaluation strategy

Evaluation data

We simulate data based on an 18 × 18-voxel version (high resolution, Fig. 4) of the human-

sized chest cross-section phantom used previously [24], as well as the original one (9 × 9

voxels, low resolution, Fig. 14a). For the former, the voxel size is 25 × 25 mm2 and the

radius of the 2-D PET scanner used to simulate a PET acquisition is 40 cm. For a rat-sized

field of view (FOV), the phantom (and the scanner geometry) are uniformly scaled down
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Algorithm 1 The joint 4-algorithm with updates in simplified notation

1: λ ← λinit,μ ← μinit //Initialization (Fig. 4(c) and 4(e))

2: for each iteration do

3: λ ← λ × (A(y/ȳ))/(A1) //Sub-iteration 1: scatter-MLEM (7)

4: λ ← λ × (U(z/z̄))/(U1) //Sub-iteration 1: trues-MLEM (5)

5: ρ ← ρ+γρ((A−ρKA)(y/ȳ−1))/(A1) //Sub-iteration 2: scatter-MLGA (14)

6: ρ ← ρ + η(1 − (Uz)/(Uz̄)) //Sub-iteration 2: trues-MLTR (6)

by a factor of 0.2, all size relations remaining identical (5 × 5 mm2 pixel size, 8-cm detec-

tor radius)6. An intermediate, rabbit-sized FOV is obtained using a linear downscaling

factor of 0.35. At all scales, the scanner is equipped with Nd = 64 equidistant detectors

having NE = 10 energy bins, of which 7 are effectively used: (511 keV, 460 keV] down to

(204 keV, 153 keV].

Single-scattered data is simulated by evaluating (2). Nonscattered data is simulated by

(4) using a system matrix U , each column j of which is constructed from the result of the

MATLAB radon function [37] for a unity point source in j.

For all algorithms, the initial guess of ρ generously bounds the true object and is filled

with the equivalent of μ = 0.07/cm (Fig. 4c): this value ensures approximately correct

attenuation correction factors for the first iteration of trues-to-activity reconstruction.

For joint estimation, the initial activity is homogeneous throughout the FOV (Fig. 4e).

S2A reconstruction

The first part of this comparison of MLGA and MLEM-OSL is along the lines of earlier

work comparingMLGAwith 2BP [24], using additional simulation data with higher num-

bers of voxels than before. Therefore, both algorithms are applied to the (low and high

resolution) data described above. Due to the small number of voxels, specific features

of reconstructed images are of less interest; for the agreement between reconstructed

images �x with their respective references �x true, we therefore report normalized mean

squared errors (NMSE):

S(�x, �x true) =
∑

i

(

xi − x true,i
)2

/ ∑

i

(

x true,i
)2

. (19)

FOV size variations Both algorithms are applied to the data simulated at all three spatial

scales (human: scale 1; rabbit: scale 0.35; rat: scale 0.2).

Reduced data For MLEM-OSL, data is reduced by separating SORs into useful and less

useful ones based on the aforementioned criterion, useful ones fulfilling:

max
j

∑

s

ρskis,j ≤ 1. (20)

This criterion is evaluated using the current estimate of �ρ in every iteration. SORs i

which are to be left out are removed both from the data �y (removing single data points)

and the system matrix Aλ (removing whole rows), and all computations are carried out

with these reduced variables when working with reduced data.

6This spatial scaling is identical, up to a global factor in the measurement data, to scaling the μ-map intensities by the
same factor while maintaining all spatial dimensions—hence the interpretation in terms of high and low attenuation.
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Computational complexity and sparsity Computational complexity of both algorithms

is assessed bymeasuring run times on a consumer-grade laptop (Intel Core 2 Duo 2.8 GHz

processor, 4 GB memory). Therefore, the simulation parameters are varied in two ways.

First, with the number of voxels fixed at low resolution, we vary the number of detectors

following Nd = 2n with n ∈ {1, . . . , 7}. Second, with the number of detectors fixed (at

Nd = 32), we vary the number of voxels following 2n × 2n with n ∈ {1, . . . , 5}; in terms

of vector lengths, that corresponds to Ne = Ns = Nt = 4n. When varying the number

of voxels, the voxel dimensions are adapted to maintain a constant spatial extent of the

phantom.

For this part of the study, we choose constant activity and attenuation distributions

(λj = 1,μj = 0.1/cm), with an initial μj = 0.05/cm. Since this choice implies a maximum

population of the system matrix Aλ, we also determine what we term the geometrical

density (fraction of non-null entries with flat activity) of Aλ and K , respectively, which

represent upper bounds for cases with less extended activity distributions.

Joint estimation

In joint estimation, in addition to computing NMSEs, we are interested in the evolu-

tion of several likelihood values. Attenuation- and activity-reconstruction algorithms are

designed to maximize likelihoods given the true value of all other quantities. For scattered

data, these are:

L
att
scatt

(

ρ est
)

= Ly

(

�̄y
(

λ true, ρ est
)
)

(21a)

L
act
scatt

(

λ est
)

= Ly

(

�̄y
(

λ est, ρ true
)
)

. (21b)

However, in a joint-estimation setting, λ true and ρ true are generally not available. For the

scattered and the true data, respectively, we therefore also track the apparent likelihoods,

which are the quantities as seen by the optimization algorithms:

L
app
scatt = Ly

(

�̄y
(

λ est, ρ est
)
)

(22a)

L
app
trues = Lz

(

�̄z
(

λ est, ρ est
)
)

. (22b)

We then study the following combinations of data and algorithms.

2-algorithms for low attenuation We apply
(

trues-OSEM10
4

)

+
(

scatter-MLGA10
4

)

to

the high-resolution, low-attenuation data. To verify that MLEM-OSL can replace MLGA,

we also apply
(

trues-OSEM10
4

)

+
(

MLEM-OSL10
)

to the same data.

4-algorithms for low and high attenuation We first compare the 4-algorithm,

(scatter-MLEM+ trues-MLEM) + (scatter-MLGA+ trues-MLTR), to the 2-algorithm in

terms of performance on the high-resolution, low-attenuation data; then, we apply only

the 4-algorithm to high-resolution, high-attenuation data.

4-algorithm to resolve MLAA crosstalk During initial studies with a low-resolution

object at the human scale (Fig. 14a), traditional MLAA (trues-MLEM1
1 + trues-MLTR1

1)

converged to an apparent local maximum of the likelihood (Fig. 14c). Therefore, we use

the values of ρ and λ at this point to initialize the 4-algorithm.
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Implementation

All algorithms are implemented in MATLAB (R2019a; The MathWorks, Natick, MA,

USA). The Appendix describes the use of sparse matrices in evaluating likelihoods and

gradients. In trues- and scatter-to-attenuation algorithms, instead of adding nonnegativ-

ity constraints, we set ρ j ← max{0, ρ j} after each update.

Results

S2A reconstruction

In this section, we verify the theoretical findings using NMSEs of reconstructed ρ-maps,

of which we present some examples in Fig. 5.

Figure 6a shows the NMSEs of ρ for the human-sized phantom and system, for both

low and higher resolution. All variants of MLGA converge to the correct solution as all

NMSE curves tend to zero, while MLEM-OSL does not; MLGA with the MLEM-like step

size is the fastest algorithm in both cases.

FOV size variations

Figure 6b and c show the data for the same phantom and system at rabbit and rat sizes,

respectively. In these cases, all algorithms converge to the correct solution; generally,

MLGA with the MLEM-like step size is among the fastest.

As summarized in Fig. 7a, MLEM-OSL converges well with a rat-sized FOV, less rapidly

(and nonmonotonously) so with a rabbit-sized FOV, and not at all with a human-sized

FOV despite otherwise identical simulations. This dependence of convergence, and con-

vergence rates, on the spatial scale of the simulated phantom is less pronounced with

MLGA which, even with a constant step size as an example, converges faster than

MLEM-OSL in most cases.

Reduced data

Figure 7b verifies the hypothesis that MLEM-OSL scale dependence (and hence conver-

gence) is improved by ignoring high-attenuation SORs in the data and the system matrix

using (20). In fact, decreasing the dimensionality of the problem in this way leads to an

increase in convergence speed for MLEM-OSL.

Computational complexity and sparsity

Figure 8 visualizes the run times per iteration of all algorithms in the fully popu-

lated geometry as a function of the number of detectors Nd and the number of voxels

Nj, respectively. The figure legends also include fitted power laws
(

Na
dN

b
j

)

. While

Fig. 5 Estimated 18 × 18-voxel ρ-maps at rat scale (see Fig. 6c, right) and their NMSEs after 50 iterations of

four S2A reconstruction algorithms, respectively: aMLGA, MLEM-like step size, bMLEM-OSL, cMLGA,

constant step size., dMLGA, scaled step size
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Fig. 6 Comparison of algorithms, with the same phantom at a human size, b rabbit size, c rat size. NMSE of ρ

in the image domain as a function of iteration number for different algorithms. Left, 9 × 9 voxels; right,

18 × 18 voxels. Note the quick divergence of MLEM-OSL towards infinity at human scale; see Fig. 7a for an

extended vertical plot range

Fig. 7 Influence of FOV scale and reduced data. NMSE of ρ in the image domain as a function of iteration

number for aMLEM-OSL vs. MLGA with a constant step size in FOVs of various sizes and bMLEM-OSL with

full vs. reduced data (rabbit-sized and rat-sized FOV). Left, 9 × 9 voxels; right, 18 × 18 voxels
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Fig. 8 Computational complexity: run times per iteration of each algorithm using the fully populated

phantom, with NE = 4 and a Nj = 9 × 9, as a function of Nd from 16 to 128, b Nd = 32, as a function of Nj

between 4 × 4 and 16 × 16

most algorithms show O
(

N2
d

)

behavior, in terms of Nj, the exponents range from 1.40

(MLEM-OSL) to 1.85 (MLGA, MLEM-like step size).

Tables 2 and 3 summarize the density of K and Aλ for the experiments shown in Fig. 8.

Generally, the fraction of nonzero entries in both quantities decreases with increasing

numbers of detectors or voxels.

Joint estimation

2-algorithms for low attenuation

The resulting images of the 2-algorithm for the low-attenuation phantom are shown after

100 and 1000 sub-iterations, respectively, in Fig. 9a and b. For the evolution of true and

apparent likelihoods, we refer to Fig. 10: this plot shows the NMSE of μ and λ as a func-

tion of sub-iterations, indicating the alternating updates of activity and attenuation, and

similarly, the ideal log-likelihoods (LL) using the current estimate of one quantity and the

true value of the respective other quantity, respectively. Finally, the apparent LLs of scat-

tered and nonscattered data, based on both estimated activity and estimated attenuation,

are plotted.

In summary, the 2-algorithm converges towards the true activity and attenuation, even

though true NMSE and apparent LL curves are nonmonotonous in parts. Figure 11 con-

firms that MLEM-OSL can replace scatter-MLGA in joint estimation, at low-attenuation

and at the cost of reduced convergence speed.

4-algorithm for low or high attenuation

Figure 12 shows the results for the 4-algorithm in the low-attenuation case. Due to the fact

that each iteration consists of only 2 sub-iterations (2 updates each), the LL and NMSE

curves appear smoother than the same curves for the 2-algorithm.

Applied to the same phantom at high attenuation, the 4-algorithm converges slower,

but in a similarly smooth way as for low attenuation to the true activity and attenuation

Table 2 Geometrical density (in %) of K and Aλ with Nj = 9 × 9,NE = 4

Nd 2 4 8 16 32 64 128

K 4.30 4.30 3.80 3.16 2.78 2.15 1.42

Aλ 33.6 34.5 26.8 22.1 18.9 14.3 9.19

Flat activity sources λ covering the complete FOV were used for Aλ to establish an upper bound
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Table 3 Geometrical density as in Table 2 for Nd = 32 and NE = 4

Nj 2 × 2 4 × 4 8 × 8 9 × 9 16 × 16

K 1.31 2.41 2.79 2.78 1.85

Aλ 2.25 7.76 17.4 18.9 23.0

(Figs. 9c, d and 13): some nonmonotonicity remains, both at the sub-iteration level (for

apparent LLs) and at the scale of dozens of sub-iterations (e.g., the true-activity LL early

on or the true-attenuation LL, for which we note that it increases for later sub-iterations).

4-algorithm to resolveMLAA crosstalk

Finally, Fig. 14 shows the results of the crosstalk study. While the MLAA 2-algorithm is

stuck in an apparent local maximum (Fig. 14c),7 the proposed 4-algorithm is able to not

only avoid, but escape from this local maximum and converges towards the true solution

(Fig. 14d).

Discussion

We have studied reconstruction of attenuation information from scattered coincidences

in PET. Unlike other problems regarding reconstruction of activity or attenuation from

nonscattered or scattered coincidences, the problem at hand is unique in that the

reconstructed quantity appears twice in the measurement equation (2). The problem is

therefore nonlinear, with the degree of nonlinearity depending on attenuation, which in

mostly water-like objects implies spatial scale6.

S2A reconstruction

We have interpreted a recent take on the problem [18] as MLEM with a one-step-

late update of the attenuated system matrix. MLEM-OSL, ignoring the dependence of

Ãλ,ρ on ρ in computing a new estimate, has been derived by linearizing the nonlinear

measurement equation; however, the fact that MLEM-OSL thus relies on a linear rela-

tionship between electron density and scattered coincidences impacts performance with

high attenuation (Fig. 7a). An important result is therefore the characterization of the

spatial-scale problem, which is complementary to the intensity-scale problem described

earlier for joint estimation of activity and attenuation from only nonscattered data [15,

39]. Another result is a potential nonuniqueness of the isolated S2A problem indicated

in Fig. 16: fortunately, the same figure indicates that combined scattered and nonscat-

tered data do not necessarily feature the same nonuniqueness. Also, we hypothesize that

additional voxels and detectors help further resolve nonuniqueness.

We have studied a maximum-likelihood gradient-ascent method for attenuation-map

reconstruction based on the full, nonlinear data log-likelihood. Since the step size ignores

the dependence of Ãλ,ρ on ρ, MLGA does not feature the provable monotonicity of the

likelihood that MLEM offers in activity reconstruction from nonscattered coincidences.

However,MLGAhas advantages overMLEM-OSL, where ignoring said dependence leads

to a wrong direction of the update and results in instabilities: the impact on MLGA is

noticeably smaller.

7Note that neither the true solution nor the limit distribution are radially symmetric; the existence of nonradial
nonuniqueness in 2D non-TOF PET has recently been proven [38] and may represent a practical problem.
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Fig. 9 Joint estimation results for low-attenuation (rat-sized, left) and high-attenuation (human-sized, right)

phantoms (as in Fig. 4). Reconstructed electron density maps (top) and activity images (bottom) after (a) 100

sub-iterations (5 iterations) of the 2-algorithm; (b) 1000 sub-iterations (50 iterations) of the 2-algorithm; (c) 100

sub-iterations (50 iterations) of the 4-algorithm; (d) 1000 sub-iterations (500 iterations) of the 4-algorithm

Application to simulated data confirmed that in larger objects, MLGA outperforms

MLEM-OSL. Nonetheless, MLEM-OSL is a simple and fast algorithm for rabbit- or

rat-sized objects, while MLGA may require additional speedup [24].

By characterizing high attenuation, we have found a criterion to separate low- from

high-attenuation data and improve MLEM-OSL convergence speed (Fig. 7b). Thus, one

strategy to decrease the size of systemmatrices and tensors, and thus computational com-

plexity, lies in choosing the most useful SORs from the full data. Here, we only briefly

Fig. 10 2-algorithm at low attenuation: log-likelihoods (LL) of (μ, λ) (with respect to the scattered and true

data), and normalizedmean square errors (NMSE) ofμ and λ, respectively, during the first 100 sub-iterations (5

iterations) of the low-attenuation 2-algorithm. Note that the trues-MLEM activity updates [sub-iterations 0 to

10, 20 to 30, etc.] are supposed to increase the trues LL, explaining decreases in the scatter LLs, and vice versa
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Fig. 11 2-algorithm at low attenuation, as in Fig. 10, with MLEM-OSL replacing scatter-MLGA

mention the possibilities of optimizing lower and upper energy photon thresholds in

the detectors, redefining the detector’s transaxial acceptance angle, or selecting SORs

intersecting specific parts of the subject [17, 24].

While MLGA converges, we find it to be more computationally complex than MLEM-

OSL (Fig. 8). Also, MLEM-OSL with reduced data is more complex than using the full

data: this could be remedied by stopping to re-evaluate (20) after some iterations.

Fig. 12 4-algorithm at low attenuation, as in Fig. 10, the 100 sub-iterations shown representing 50 iterations

of the 4-algorithm
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Fig. 13 4-algorithm at high-attenuation as in Fig. 12

Joint estimation

MLGA, or MLEM-OSL, are not primarily meant as stand-alone algorithms, as they

assume knowledge of the unknown λ, mandating a joint (λ, ρ) estimation scheme. This

scheme is similar to traditional MLAA for estimation of (λ,μ) from nonscattered coin-

cidences, where knowledge of λ is assumed by MLTR. Along the same lines, we have

focused on using MLGA in joint n-algorithms. Just as MLAA iterates back and forth

betweenMLEM andMLTR, reconstructing one quantity (λ or μ) while keeping the other

(μ or λ, respectively) fixed, our proposed 2-algorithm iterates back and forth between

trues-MLEM and scatter-MLGA. Another viable scheme encompassing all available

data has been presented in the form of the scatter-MLEM/trues-MLEM/MLGA/MLTR

Fig. 14 Crosstalk study of a low-resolution, high-attenuation (human-sized) phantom (as in Fig. 4): a true

activity and attenuation; b activity and attenuation used to initialize MLAA; c activity and attenuation after

apparent MLAA convergence, used to initialize the 4-algorithm; and d activity and attenuation after 1000

sub-iterations (500 iterations) of the 4-algorithm
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4-algorithm, using both true and scattered coincidences for estimation of both λ

and ρ.

For low-attenuation data, the simple 2-algorithmmay be sufficient: in this case, MLEM-

OSLmay serve as a drop-in replacement forMLGA, however with decreased convergence

speed (compare Figs. 10 and 11). This result is compatible with the results for S2A recon-

struction (Fig. 6b and c). Themore sophisticated 4-algorithm enables joint reconstruction

with high-attenuation as well as low-attenuation data. In addition, this 4-algorithm can

employ the scatter information to escape from a nonoptimal fix point ofMLAA (Fig. 14d).

The plots of apparent (using estimated activity and attenuation) and ideal likelihoods

indicate several nonmonotonicities that are overcome by the combination of algorithms.

In particular, in the 2-algorithm, increasing the apparent scatter likelihood with MLGA

updates of the attenuation often decreases the true-activity scatter likelihood, limiting

the number of repeated MLGA updates that can be concatenated. This observation is

one reason for choosing only a single update of each algorithm in each iteration of the

4-algorithm (Algorithm 1).

Limitations

This study has several limitations in the simplicity of the simulations: in particular, in

neglecting detector scatter, multiple scatter, and energy-measurement uncertainties; in

using the same forward model for the simulation as for the reconstruction; and in using

low-dimensional objects and scanners.

In reality, the use of scattered photons is complicated by the fact that the detected signal

of a nonscattered 511 keV photon, when it deposits only part of its energy in the detec-

tor, resembles that of a lower-energy, object-scattered photon [34]. One solution may be

the use of an object-scatter energy window above the Compton edge (at 341 keV) and

below the photopeak, which is virtually free of detector-scattered photons ([40], Fig. 1).

This highest-possible energy window also has a lower contribution of multiply scattered

photons [34].

Furthermore, photon energy measurements suffer from uncertainties in the range of

10% FWHM in state-of-the-art PET scanners. This uncertainty leads to blurred esti-

mation of potential scattering locations in the object. So far, it is unclear exactly which

energy resolution is required to successfully use this approach in practice, although

some comparisons have been made for S2A reconstruction ([17], Fig. 11). In joint n-

algorithms, separation of scattered and unscattered photons will be of importance in all

sub-algorithms. New detector materials, such as LaBr3 [41] or cadmium zinc telluride

[42], might be needed.

Another limitation is that specific findings may not be generalizable to arbitrary scan-

ner geometries; for example, 3-D geometries may exhibit different, presumably much

sparser system quantities Aλ and K . We expect that this increasing sparsity partially off-

sets the (otherwise unmanageable) size increase of these quantities with growing number

of voxels, detectors, and energy bins.

It should be noted that due to computational complexity, 2-D considerations are not

uncommon in recent studies regarding image reconstruction from scattered photons [20,

26, 43]. Furthermore, a more sophisticated imaging model that offers more realistic sys-

tem matrix components Aλ and K would be subject to the same measurement equations

and lead to the same derivation of MLGA. So while specific convergence rates may vary
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with the density and condition number of those quantities, we expect the overall conclu-

sions to prevail in more realistic settings. Finally, noise will have to be considered in future

studies; currently, it is challenging to determine realistic noise levels for these nonrealistic

types of objects and scanners.

Outlook

In this paper, we have used MLGA as a S2A building block in the context of joint estima-

tion. It might be possible to find improved algorithms: for example, one might pursue one

of themany paths that lead to theMLEMupdate equation for an algorithmwhich features

more of the well-known properties of MLEM. This may include the minorize/maximize

(MM) algorithm [44], of which regular MLEM is one special case. Following earlier

incomplete-data formulations [32], one might define complete data that involve not only

the emission location, but also the scattering location of every coincidence; this may

result in a formulation similar to that for joint estimation from nonscattered data [45].

Algorithms that use the formulation of the Hessian of the log-likelihood may also be of

value without requiring inversion of the full Hessian during image reconstruction, as has

been shown recently [25, 26].

TOF information might improve S2A reconstruction by increasing the sparsity of K

(as some scattering locations on the surface of the football may not be compatible

with the emission locations indicated by a TOF measurement) and further improving

the condition of Aλ (by reducing the number of emission voxels over which to com-

pute
∑

e b
i
s,eλ

e). Our study does not simulate, or incorporate, TOF measurements, as

the amount of additional information from TOF is nonetheless limited in attenuation

reconstruction compared to activity reconstruction: even with perfect TOF informa-

tion, the surface of potential scattering locations (and hence the density of K ) will

hardly be reduced by more than a few times, on average, as most broken LORs com-

patible with a non-TOF coincidence will also be compatible with the TOF coincidence.

Therefore, the primary way for TOF information to find its way into this problem

may be through activity-reconstruction building blocks (TOF-trues-MLEM and TOF-

scatter-MLEM) and the estimate of the activity distribution they provide—similar to

how TOF-MLAA benefits from TOF information without the MLTR algorithm using it

explicitly.

Regarding the impact of the results outside of PET imaging, we have achieved a def-

inition of data being more or less compatible with a linearization of the measurement

equation that may be applied in external Compton scatter imaging, in which a number of

ways have been tried to solve a structurally similar measurement equation [28]—compare

in particular (2) to ([46], Eq. 3) or ([47], Eq. 1). Furthermore, full knowledge of the “source”

distribution is given in CT and other transmission imaging modalities, where scattered

radiation could be similarly exploited if discerned by energy measurements, such as in

multi-energy (spectral) CT [48].

Conclusion

In reconstruction of attenuation information from scattered PET coincidences,

maximum-likelihood gradient-ascent algorithms provide faster convergence and con-

vergence in more diverse setups than MLEM-OSL, for which we have presented both

analytic and experimental evidence: MLGA converges across all spatial scales, while
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MLEM-OSL may only converge with smaller objects. Nonetheless, MLEM-OSL can be a

lower-complexity alternative to MLGA. We have defined a numerical criterion to deter-

mine when the simpler and more efficient MLEM-OSL can be used and described how

its performance can be improved by reducing data based on said criterion. Finally, joint

estimation of activity and attenuation from scattered and nonscattered coincidences has

been presented using either MLGA or MLEM-OSL, in particular, in an example where

MLAA fails to converge to the correct solution.

Appendix

Derivation of discrete measurement equations

In the previous notation of themeasurement equation ([17], Eq. 5) and its derivation ([49],

Eq. 11), the continuous measurement equation is:

N̄S(d1,E1, d2) ≈ T · �E1 ·

(
b

2

)3

·
(cos θ1 − 2)2

E0 · sin θ1
·
d2σKN

d2


∣
∣
∣
∣
θ1

·

∫ +θ1

−θ1

dωS

∫ 2π

0
dϕS

[
(cosωS − cos θ1)

2

sin4 θ1
· ρe(�xS) ·

∫

L(�xS ,�x2)
λ(�xλ)dr

S
λ · 
1(�xS) · 
2(�xS)

· exp

(

−

∫

L(�x2,�xS)
μ(ρe(�x))dx −

∫

L(�xS ,�x1)
μE1(ρe(�x))dx

)

· E(d1,E1, �x1 − �xS) · E(d2,E0, �x2 − �xS)

]

.

(23)

We refer to the original publications for more context of this equation: N̄S(d1,E1, d2),

number of scattered coincidences detected in detectors d1 (with energy E1) and d2; T,

acquisition time; �E1, energy bin width; b, length of baseline connecting d1 and d2; θ1,

scattering angle associated with E1;E0, 511 keV; σKN, Klein-Nishina scattering cross-

section; ωS,ϕS, angles parameterizing the surface of scattering locations �xS; ρe, electron

density; λ, radiotracer density; L, a line segment connecting two points; 
1, 
2, detector

solid angles seen from �xS;μ,μE1 , linear attenuation coefficient at E0 and E1; E , pho-

ton detection sensitivity as a function of detector element, photon energy, and angle of

incidence. While most terms have direct physical interpretations:

(
b

2

)3

·
(cosωS − cos θ1)

2

sin4 θ1
and

(cos θ1 − 2)2

E0 · sin θ1
(24)

arise from the Jabobian determinant of the coordinate transformation from Cartesian

coordinates to surface parameter angles and account for a change of variables from polar

scatter angle to photon energy, respectively [49].
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In discretizing and changing notation, we apply the following mapping:

i = (ds, dn,E) ←− (d1,E1, d2) (25)

ȳ ←− N̄S (26)

ci ←− T · �E1 ·

(
b

2

)3

·
(cos θ1 − 2)2

E0 · sin θ1
·
d2σKN

d2


∣
∣
∣
∣
θ1

(27)

∑

s

ĉis ←−

∫ +θ1

−θ1

dωS

∫ 2π

0
dϕS (28)

ĉis ←−
(cosωS − cos θ1)

2

sin4 θ1
· 
1(�xS) · 
2(�xS)

· E(d1,E1, �x1 − �xS) · E(d2,E0, �x2 − �xS) (29)

ρs ←− ρe(�xS) (30)

∑

e

c̃is,e ←−

∫

L(�xS ,�x2)
drSλ (31)

λe ←− λ(�xλ) (32)

∑

t

lis,t ←−

∫

L(�x2,�xS)
dx +

∫

L(�xS ,�x1)

(

μE1(ρe(�x))
/

μ(ρe(�x))
)

dx (33)

μt ←− μ(ρe(�x)) (34)

Two remarks are in order. First, ĉis serves a double purpose of both defining the domain

of summation over potential scattering locations �xs (28) and including weighting factors

(29). Due to the former, it can be stored efficiently as a sparse matrix; this holds true for

cis,e and lis,t as well. Second, in the mapping (33), lis,t represents an effective attenuation

length by encoding the differences in attenuation coefficients seen by scattered photons

of different energies (μE at lower energy E) compared to nonscattered photons (μ =

μ511keV). In other words, a voxel can have different lengths along different broken LORs.

This eliminates the need to store different attenuation coefficients for the same voxel,

assuming that μE/μ is known. If one has μ ∝ ρ, that is, μE(ρ) = α(E) · ρ, one finds

μE

μ
=

α(E)

α(511 keV)
, (35)

which can be determined knowing only E. Since i comprises the scattered photon energy

E (25), and each broken LOR (i, s) defines which voxels t are part of the respective lower-

energy section (Fig. 15a), the effective attenuation lengths lis,t can be computed. While

this reasoning confirms that the shape of (2) does not impede taking into account energy-

dependent attenuation, we did not do so here.

Compression and simplification

In the above way, fully accounting for all terms and operators in (23), we obtain:

ȳi = ci
∑

s

ĉis · ρs ·

(

∑

e

c̃is,e · λe

)

· exp

(

−
∑

t

lis,t · μt

)

. (36)
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While in terms of computational complexity, it may be beneficial to compute ci, ĉis, and

c̃is,e separately; with regard to storage and algorithmic simplicity, one may prefer com-

bining all these terms into bis,e = ci · ĉis · c̃is,e. Continuing to assume that μ ∝ ρ, we set

kis,t := lis,t · μt/ρt = lis,t · α(511 keV) (37)

to find

ȳi =
∑

s

ρs ·

(

∑

e

bis,e · λe

)

· exp

(

−
∑

t

kis,t · ρt

)

. (38)

This equation forms the basis of both activity and attenuation reconstruction.

Activity reconstruction

For the simpler case of activity reconstruction [34], we consider �ρ as a parameter for

attenuation correction. Then, changing the order of summation in (38):

ȳi =
∑

e

λe ·

(

∑

s

ρs · bis,e · exp

(

−
∑

t

kis,t · ρt

))

, (39)

we recognize that (39) can be written as a matrix-vector product:

�̄y = Ãρ
�λ, (40)

where Ãρ is the matrix with entries ãie :=
∑

s ρ
s · bis,e · exp

(

−
∑

t k
i
s,t · ρt

)

. Knowing (an

estimate of) ρ, the linear nature of (40) allows application of the regular MLEM algorithm

[32] to reconstruct or update λ, as has been described by [34].

Attenuation reconstruction

Focusing on attenuation reconstruction, we consider �λ as a parameter instead. Then, bis,e
and λe can be combined into Aλ with entries ais :=

∑

e b
i
s,e · λe, yielding

ȳi =
∑

s

ρs · ais · exp

(

−
∑

t

kis,t · ρt

)

. (41)

By using element-wise operations (⊙ and
◦

exp) and by defining 3rd-order tensors B and K

and the matrix Aλ := B�λ, (38) and (41) can also be written as:

�̄y =
((

B�λ
)

⊙
◦

exp
(

−K �ρ
)
)

�ρ =
(

Aλ ⊙
◦

exp
(

−K �ρ
)
)

�ρ, (42)

respectively, where the latter is (2) as was to show.

Unscattered coincidences

For (mostly) unscattered data, where the one value of E represents the photopeak energy

window, an SOR reduces to an LOR, and ãie is replaced by ũlj for activity reconstruction;

similarly, in attenuation reconstruction, ais is replaced by ulj .

Implementation using sparsematrices

K and Aλ are highly sparse, and so is K �ρ. However, since exp 0 = 1, exp(−K �ρ) is

not sparse, which impedes storage of intermediate results as sparse matrices. Hence, we

rewrite:

Aλ ⊙
◦

exp
(

−K �ρ
)

= Aλ ⊙
(

◦
exp

(

−K �ρ
)

− �1[i] ⊗ �1[s]

)

+ Aλ (43)
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and use the expm1 function [50] to compute the sparse S :=
◦

exp(−K �ρ) − �1[i] ⊗ �1[s],

followed by Aλ ⊙ S +Aλ. This maintains the sparsity in all intermediate results along the

memory-efficient evaluation of (42).

Multi-voxel interpretations of high attenuation

Motivated by the 1-D results around (17), we are interested in the sign of the gradient of

the expected data. In component-wise notation, (12) reads:

∂ ȳi/∂ρ j =
∑

s

(

δsj − ρskis,j

)

ais exp

(

−
∑

t

kis,tρ
t

)

, (44)

with δsj the Kronecker delta. Based on the sign of this expression, we can identify dis-

tinct regions of the football-shaped SOR in Fig. 1. Figure 15a shows half a cross-sectional

plane through the football,8 determined by ds, s, and dn. On the inside and outside of the

football, the sign is determined mainly by the quantities aij and kis,j, which represent the

scattering contributions of a voxel j along an SOR i and the attenuating contributions of a

voxel j along broken LORs (i, s), respectively.

Outside When both aij = 0 and
∑

s k
i
s,j = 0 (⇔ kis,j = 0 ∀s), we find ∂ ȳi/∂ρ j = 0.

The voxel j does not contribute to a measurement along i, neither through scattering

nor through attenuation; in Fig. 15a, this region of voxels j corresponds to the violet area

outside the football. Changing ρ j does not influence ȳi.

Inside The football’s strict inside contributes to ameasurement along SOR i only through

attenuation. We have aij = 0 (voxel j not contributing scatter to this SOR), but
∑

s k
i
s,j > 0

(voxel j attenuating on at least one broken LOR of this SOR). These are red and blue areas

in Fig. 15a: red highlights where kis,j > 0 for one particular s; blue areas where kis,j = 0, but

kis′,j > 0 for at least one other s′ �= s. The result is ∂ ȳi/∂ρ j < 0: increasing ρ in j decreases

the expected number of coincidences on i.

Thus, when taking these attenuating effects into account, e.g., in an iterative update, it

would be more appropriate to speak of a volume rather than a surface of response; we still

hold on to the term SOR here.

Surface Defined by aij > 0 and marked green in Fig. 15a, the football’s hull is the most

interesting segment. These voxels are the only ones with scattering contributions, with

potentially additional attenuating contributions (overlap between green and red regions).

If we had
∑

s ρ
skis,j = 0, then ∂ ȳi/∂ρ j ≥ 0 since j would only contribute through scat-

tering. However, with aij > 0, we certainly have kij,j > 0: a scattering voxel is always on

the broken LOR through it, and hence attenuating. Thus, if ρ j > 0 (which means j

lies within the object), the sign of ∂ ȳi/∂ρ j is more complex to determine. Besides that,

we have only little general information about kis,j for s �= j; this greatly depends on the

object (low vs. high attenuation), the geometry of i and (i, s), as well as the discretization

strategy.

8This segmentation of the image space offers a geometric interpretation of the different back-projection kernels in the
two branches of the 2BP update ([24], Eq. 17): the positive branch distributes an excess of measured coincidences
(compared to expected ones) on SOR i by increasing ρ on the surface of the football (in voxels j where aij > 0) and by
decreasing ρ there for a lack of measured coincidences. By contrast, the negative branch decreases ρ (and hence μ) on
the inside of the football (where

∑

s k
i
s,j > 0) for an excess of measured coincidences, and vice versa.
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Fig. 15 a Classification of image-space voxels j contributing to a measurement on SOR i; in terms of aij
(contribution through scattering),

∑

s k
i
s,j (contribution through attenuation) and kis,j (contribution through

attenuation specifically along broken LOR (i, s)). b Comparison of different slices of K : ki169,t as a function of t

(top) and kis,169 as a function of s (bottom) for i = (ds , dn , E) = (24, 8, 5). Top: with the endpoints of the SOR i

at the bottom left (detector 8) and bottom right (detector 24), and a scattering location in a central voxel

(index 169, see Fig. 4), ki169,t represents the attenuation weights of voxels t along the (one) broken LOR

(i, s = 169). Bottom: by contrast, kis,169 shows the attenuation weights of the (one) voxel t = 169 along

various, different broken LORs (i, s) with the same endpoints, but different scattering locations s

We therefore aim for a definition of “high attenuation.” For now, we will therefore ignore

differences between voxels that are both inside the object (ρ j > 0) and on the surface of

SOR i (aij > 0), and refer to them by their number n and averages ā, k̄, and ρ̄. This way,

we simplify (44) to:

∂ ȳi/∂ρ j ≈ ā exp(−nk̄ρ̄)
∑

s : ais>0

(

δsj − ρskis,j

)

. (45)

By setting kis,j = 0 ∀j when ais = 0 (no attenuation along broken LORs through scattering

voxels s geometrically incompatible with an SOR i), we simplify the sum over s: on the

hull (aij > 0), the expression determining the sign of (44) is then:

1 −
∑

s

ρskis,j ⇐⇒ �1[i] ⊗ �1[t] − �ρ⊤
K , (46)

the multidimensional (size of a system matrix) analog of 1 − kρ.

Note that K �ρ (or
∑

t k
i
j,tρ

t ; used in (2) and the attenuation-factor expressions of (11

and 12)) is a matrix of radiological paths, so in terms of units of measurement, so is

�ρ⊤
K (or

∑

s ρ
skis,j; used in (11) and, in the following, (20)). However, there are funda-

mental differences: the former is the weighted sum of the red voxels in Fig. 15a [over

all voxels t that attenuate for one specific broken LOR (i, s), weighted by ρt], and as

such,is the line integral of the (discrete) attenuation coefficient along the broken LOR.

By contrast, the latter has a more complex geometrical interpretation (see Fig. 15b,

bottom): it is the sum of the attenuating contributions of the same voxel t to all pos-

sible broken LORs (i, s), weighted by ρs, the electron density in each broken LOR’s

scattering voxel s. Low attenuation, in this case, corresponds to a small number of scat-

tering voxels which are impacted by one attenuating voxel j, and thus a small overlap
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between scattering (green) and attenuating (red, blue) voxels across all broken LORs of

an SOR.

In the minimal overlap case depicted in Fig. 15a, a voxel j on the football’s surface can

have attenuating contributions to one of only three locations of each broken LOR (i, s),

namely at ds, s, and dn (where ds and dn will be outside of the unknown object). How-

ever, significant additional overlap may be the result of a number of factors: SORs with

low curvature, that is, small scattering angle θ and large SOR radius R = b/(2 sin θ); scat-

tering points s close to ds or dn; consideration of energy uncertainty in Aλ; large subjects;

and nonrectangular grids and large voxel sizes. An extreme example is a barely scattered

coincidence (E ≈ 511 keV, θ ≈ 0,R → ∞) on an LOR-like SOR i, along which, when

aij > 0, we find that ais > 0 implies kis,j > 0. So each voxel j attenuates (with its full

effective length, kis,j ≈ kij,j) contributions from every scattering voxel; in other words,

contributions from any scattering voxel s are attenuated by a voxel j. In this case, (46)

reads:

1 − kij,j

∑

s : ais>0

ρs = 1 − lij,j

∑

s : ais>0

μs = 1 − lij,jniμ̄, (47)

where ni is the number of object voxels part of SOR i. With lij,j on the order of the voxel

size and μ̄ ≈ 0.1/cm in water, (47) has the same sign as (10cm − Li), where Li is the

path length through the object. So for very tight SORs, the interpretations of �ρ⊤
K and

K �ρ are similar, and the SOR through a water-like body of more than 10-cm thickness has

∂ ȳi/∂ρ j < 0; this is where the linear approximation underlying MLEM-OSL fails. The

situation is more complex for other SORs.

Added value of combining nonscattered and scattered data

We focus on an artificial single-voxel/single-detector-pair problem, with the expected

true and scattered data:

z̄ = (uλ) exp(−uρ) and ȳ = (bλ) exp(−kρ)ρ, (48)

respectively (compare (4) and (2) for multi-voxel variants). For a set of (λ, ρ) candidates,

we plot the log-likelihood of trues and scatter as well as the joint log-likelihood, using

system values b = k = u = 1 and true values λ true = 1 and ρ true ∈ {0.2, 2} (low and

high attenuation, respectively), chosen such that 0.2 exp(− 0.2) ≈ 0.16 is in the range of

2 exp(− 2) ≈ 0.27.

Figure 16 illustrates the added value of combining nonscattered (true) and scat-

tered data, as compared to using only trues (MLAA) or only scatter (MLGA and

scatter-MLEM). In both the low and the high attenuation example, the likelihood

of trues exhibits the well-known scaling issue that can be appreciated in the form

of an extended nonunique maximum; a similar effect is seen with the likelihood

of scatter9. In this single-voxel example, the likelihood of scatter exhibits an addi-

tional nonuniqueness: for each value of λ, two values of ρ yield the same scatter

likelihood, in line with two solutions of the 1-D scatter measurement equation (see

Fig. 2); however, this nonuniqueness is more difficult to characterize with multiple

voxels.

9Note that the scatter log-likelihoods are different between low and high attenuation; they appear similar to each other
due to the choice of ρ true values.
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Fig. 16 Log-likelihoods (individually normalized to [− 1, 0]) in a single-voxel example for true and scattered

coincidences, their maximum, and the joint likelihood of trues and scatter. a Low attenuation, ρ true = 0.2.

b High attenuation, ρ true = 2. Red asterisks mark true maxima, respectively, while blue contour lines trace

other maxima

The intersection of the curves that follow the maxima features a unique intersection,

which coincides with the maximum of the joint likelihood of trues and scatter data. The

peak around this maximum is broader for high attenuation, in line with the lower angle

of intersection between the maxima of the individual likelihoods.
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