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Abstract—We are interested in assigning a pre-specified number
of nodes as leaders in order to minimize the mean-square deviation
from consensus in stochastically forced networks. This problem
arises in several applications including control of vehicular for-
mations and localization in sensor networks. For networks with
leaders subject to noise, we show that the Boolean constraints
(which indicate whether a node is a leader) are the only source
of nonconvexity. By relaxing these constraints to their convex hull
we obtain a lower bound on the global optimal value. We also use
a simple but efficient greedy algorithm to identify leaders and to
compute an upper bound. For networks with leaders that perfectly
follow their desired trajectories, we identify an additional source
of nonconvexity in the form of a rank constraint. Removal of the
rank constraint and relaxation of the Boolean constraints yields
a semidefinite program for which we develop a customized algo-
rithm well-suited for large networks. Several examples ranging
from regular lattices to random graphs are provided to illustrate
the effectiveness of the developed algorithms.

Index Terms—Alternating direction method of multipliers
(ADMMs), consensus networks, convex optimization, convex re-
laxations, greedy algorithm, leader selection, performance bounds,
semidefinite programming (SDP), sensor selection, variance
amplification.

I. INTRODUCTION

R EACHING consensus in a decentralized fashion is an im-

portant problem in network science [1]. This problem is

often encountered in social networks where a group of individ-

uals is trying to agree on a certain issue [2], [3]. A related load

balancing problem has been studied extensively in computer

science with the objective of distributing evenly computational

load over a network of processors [4], [5]. Recently, consensus

problems have received considerable attention in the context of

distributed control [6], [7]. For example, in cooperative control

of vehicular formations, it is desired to use local interactions

between vehicles in order to reach agreement on quantities

such as heading angle, velocity, and inter-vehicular spacing.
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Since vehicles have to maintain agreement in the presence of

uncertainty, it is important to study the robustness of consensus.

Several authors have recently used the steady-state variance of

the deviation from consensus to characterize fundamental per-

formance limitations in stochastically forced networks [8]–[14].

In this paper, we consider undirected consensus networks

with two groups of nodes. Ordinary nodes, the so-called fol-

lowers, form their action using relative information exchange

with their neighbors; special nodes, the so-called leaders, also

have access to their own states. This setting may arise in the

control of vehicular formations and in distributed localization

in sensor networks. In vehicular formations, all vehicles are

equipped with ranging devices (that provide information about

relative distances with respect to their neighbors), and the

leaders additionally have GPS devices (that provide information

with respect to a global frame of reference).

We are interested in assigning a pre-specified number of

nodes as leaders in order to minimize the mean-square deviation

from consensus. For undirected networks in which all nodes are

subject to stochastic disturbances, we show that the Boolean

constraints (which indicates whether a node is either a leader or

it is not) are the only source of nonconvexity. The combinatorial

nature of these constraints makes the determination of the

global minimum challenging. Instead, we focus on computing

lower and upper bounds on the global optimal value. A convex

relaxation of Boolean constraints is used to obtain a lower

bound, and a greedy algorithm is used to obtain an upper bound

and to identify leaders. We show that the convex relaxation

can be formulated as a semidefinite program (SDP) which

can be solved efficiently for small networks. We also develop

an efficient customized interior point method that is well-

suited for large-scale problems. Furthermore, we improve the

performance of one-leader-at-a-time (greedy) approach using a

procedure that checks for possible swaps between leaders and

followers. In both steps, algorithmic complexity is significantly

reduced by exploiting the structure of low-rank modifications

to Laplacian matrices. The computational efficiency of our

algorithms makes them well-suited for establishing achiev-

able performance bounds for leader selection problem in large

stochastically forced networks.

Following [15]–[18], we also examine consensus networks

in which leaders follow desired trajectories at all times. For

consensus networks with at least one leader, adding leaders

always improves performance [15]. In view of this, a greedy

algorithm that selects one leader at a time by assigning the node

that leads to the largest performance improvement as a leader

was proposed in [15]. Furthermore, it was proved in [17] that

the mean-square deviation from consensus is a supermodular
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function of the set of noise-free leaders. Thus, the supermodular

optimization framework in conjunction with the greedy algo-

rithm can be used to provide selection of leaders that is within

a provable bound from globally optimal solution [17].

In contrast to [15]–[18], we use convex optimization to

quantify performance bounds for the noise-free leader selection

problem. While we show that the leader selection is additionally

complicated by the presence of a nonconvex rank constraint, we

obtain an SDP relaxation by dropping the rank constraint and by

relaxing the aforementioned Boolean constraints. Furthermore,

we exploit the separable structure of the resulting constraint

set and develop an efficient algorithm based on the alternating

direction method of multipliers (ADMM). As in the noise-

corrupted problem, we use a greedy approach followed by

a swap procedure to compute an upper bound and to select

leaders. In both steps, we exploit the properties of low-rank

modifications to Laplacian matrices to reduce computational

complexity. We have implemented the developed algorithms in

Matlab and made them publicly available at www.ece.umn.edu/

~mihailo/software/leaders.

Several recent efforts have focused on characterizing graph-

theoretic conditions for controllability of networks in which

a pre-specified number of leaders act as control inputs [19]–

[24]. In contrast, our objective is to identify leaders that are

most effective in minimizing the deviation from consensus in

the presence of disturbances. Alternative performance indices

for the selection of leaders have been also recently examined

in [23], [25], and [26]. Other related work on augmenting

topologies of networks to improve their algebraic connectivity

includes [27], [28].

After our original submission, the leader selection problem

has been studied in [29]–[32]. In [29], an information central-

ity measure was employed to provide an ordering of nodes.

Leveraging results from [29], an information-centrality-based

formulation was provided in [30] for the optimal selection

of both noise-corrupted and noise-free leaders. In [31], upper

and lower bounds on the convergence rate to the consensus

value were derived using the maximum distance from leaders

to followers. In [32], the joint problem of choosing a set of

controlling agents and of designing the corresponding control

inputs has been studied.

We finally comment on the necessity of considering two

different problem formulations. The noise-free leader selection

problem, aimed at identifying influential nodes in undirected

networks, was originally formulated in [15] and consequently

studied in [16]–[18], and [33]. To the best of our knowledge,

the noise-corrupted leader selection problem first appeared in

a preliminary version of this work [34]. The noise-corrupted

formulation is introduced for two reasons: First, it is well-suited

for applications where a certain number of nodes are to be

equipped with additional capabilities (e.g., the GPS devices) in

order to improve the network’s performance; for example, this

setup may be encountered in vehicular formation and sensor

localization problems. And, second, in contrast to the noise-

free formulation, the Boolean constraints are the only source of

nonconvexity in the noise-corrupted problem; consequently, a

convex relaxation in this case is readily obtained by enlarging

Boolean constraints to their convex hull. Even though these for-

mulations have close connections in a certain limit, the differ-

ences between them are significant enough to warrant separate

treatment. As we show in Sections III and IV, the structure of

the corresponding optimization problems necessitates separate

convex relaxations and the development of different customized

optimization algorithms. The noise-free and noise-corrupted

setups are thus of independent interest from the application,

problem formulation, and algorithmic points of view.

The paper is organized as follows. In Section II, we formu-

late the problem and establish connections between the leader

selection and the sensor selection problems. In Section III,

we develop efficient algorithms to compute lower and upper

bounds on the global optimal value for the noise-corrupted

leader selection problem. In Section IV, we provide an SDP

relaxation of the noise-free formulation and employ the ADMM

algorithm to deal with large-scale problems. We conclude the

paper with a summary of our contributions in Section V.

II. PROBLEM FORMULATION

In this section, we formulate the noise-corrupted and noise-

free leader selection problems in consensus networks and make

connections to sensor selection in distributed localization prob-

lems. Furthermore, we establish an equivalence between the

two problem formulations when all leaders use arbitrarily large

feedback gains on their own states.

A. Leader Selection in Consensus Networks

We consider networks in which each node updates a scalar

state ψi

ψ̇i = ui + wi, i = 1, . . . , n

where ui is the control input and wi is the white stochastic

disturbance with zero-mean and unit-variance. A node is a

follower if it uses only relative information exchange with its

neighbors to form its control action

ui = −
∑

j∈Ni

(ψi − ψj).

A node is a leader if, in addition to relative information ex-

change with its neighbors, it also has access to its own state

ui = −
∑

j∈Ni

(ψi − ψj)− κiψi.

Here, κi is a positive number and Ni is the set of all nodes that

node i communicates with.

The control objective is to strategically deploy leaders in

order to reduce the variance amplification in stochastically

forced consensus networks. The communication network is

modeled by a connected, undirected graph; thus, the graph

Laplacian L is a symmetric positive semidefinite matrix with

a single eigenvalue at zero and the corresponding eigenvector

1 of all ones [1]. A state-space representation of the leader-

follower consensus network is therefore given by

ψ̇ = −(L+DκDx)ψ + w (1)
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where E(w(t)wT (τ)) = Iδ(t− τ), E(·) is the expectation op-

erator, and

Dκ := diag(κ), Dx := diag(x)

are diagonal matrices formed from the vectors κ = [κ1 · · ·κn]
T

and x = [x1 · · ·xn]
T . Here, x is a Boolean-valued vector with

its ith entry xi ∈ {0, 1}, indicating that node i is a leader if xi =
1 and that node i is a follower if xi = 0. In connected networks

with at least one leader, L+DκDx is a positive definite matrix

[21]. The steady-state covariance matrix of ψ

Σ := lim
t→∞

E
(

ψ(t)ψT (t)
)

can thus be determined from the Lyapunov equation

(L+DκDx)Σ + Σ(L+DκDx) = I

whose unique solution is given by

Σ =
1

2
(L+DκDx)

−1.

Following [10], [13], we use the total steady-state variance

trace(Σ) =
1

2
trace

(

(L+DκDx)
−1
)

(2)

to quantify performance of stochastically forced consensus

networks.

We are interested in identifying Nl leaders that are most

effective in reducing the steady-state variance (2). For an

a priori specified number of leaders Nl < n, the leader selec-

tion problem can thus be formulated as

minimize
x

J(x) = trace
(

(L+DκDx)
−1
)

subject to xi ∈ {0, 1}, i = 1, . . . , n

1
Tx = Nl. (LS1)

In (LS1), the number of leaders Nl as well as the matrices

L and Dκ are the problem data, and the vector x is the

optimization variable. As we show in Section III, for a positive

definite matrix L+DκDx, the objective function J in (LS1)

is a convex function of x. The challenging aspect of (LS1)

comes from the nonconvex Boolean constraints xi ∈ {0, 1}; in

general, finding the solution to (LS1) requires an intractable

combinatorial search.

Since the leaders are subject to stochastic disturbances, we

refer to (LS1) as the noise-corrupted leader selection problem.

We also consider the selection of noise-free leaders which

follow their desired trajectories at all times [15]. Equivalently,

in coordinates that determine deviation from the desired trajec-

tory, the state of every leader is identically equal to zero, and

the network dynamics are thereby governed by the dynamics of

the following:

ψ̇f = −Lfψf + wf .

Here, Lf is obtained from L by eliminating all rows and

columns associated with the leaders. Thus, the problem of

selecting leaders that minimize the steady-state variance of ψf

amounts to

minimize
x

Jf (x) = trace
(

L−1
f

)

subject to xi ∈ {0, 1}, i = 1, . . . , n

1
Tx = Nl. (LS2)

As in (LS1), the Boolean constraints xi ∈ {0, 1} are noncon-

vex. Furthermore, as we demonstrate in Section IV-B, the

objective function Jf in (LS2) is a nonconvex function of x.

We note that the noise-free leader selection problem (LS2)

cannot be uncovered from the noise-corrupted leader selection

problem (LS1) by setting the variance of disturbances (that

act on noise-corrupted leaders) to zero. Even when leaders

are not directly subject to disturbances, their interactions with

followers would prevent them from perfectly following their de-

sired trajectories. In what follows, we establish the equivalence

between the noise-corrupted and noise-free leader selection

problems (LS1) and (LS2) in the situations when all noise-

corrupted leaders use arbitrarily large feedback gains on their

own states. Specifically, for white in time stochastic disturbance

w with unit variance, the variance of noise-corrupted leaders in

(1) decreases to zero as feedback gains on their states increase

to infinity; see Appendix I-A.

B. Connections to the Sensor Selection Problem

The problem of estimating a vector ψ ∈ R
n from m relative

measurements that are corrupted by additive white noise

yij = ψi − ψj + wij

arises in distributed localization in sensor networks. We con-

sider the simplest scenario in which all ψi’s are scalar-valued,

with ψi denoting the position of sensor i; see [8], [9] for

vector-valued localization problems. Let Ir denote the index

set of the m pairs of distinct nodes between which the relative

measurements are taken and let eij belong to R
n with 1 and −1

at its ith and jth elements, respectively, and zero everywhere

else. Then

yij = eTijψ + wij , (i, j) ∈ Ir

or, equivalently in the matrix form

yr = ET
r ψ + wr (3)

where yr is the vector of relative measurements and Er ∈
R

n×m is the matrix whose columns are determined by eij for

(i, j) ∈ Ir. Since ψ + a1 for any scalar a results in the same yr,

use of relative measurements provides estimate of the position

vector ψ only up to an additive constant. This can be also

verified by noting that ET
r 1 = 0.

Suppose that Nl sensors can be equipped with GPS devices

that allow them to measure their absolute positions

ya = ET
a ψ + ET

a wa
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where Ea ∈ R
n×Nl is the matrix whose columns are deter-

mined by ei, the ith unit vector in R
n, for i ∈ Ia, the index set

of absolute measurements. Then the vector of all measurements

is given by
[

yr
ya

]

=

[

ET
r

ET
a

]

ψ +

[

I 0
0 ET

a

] [

wr

wa

]

(4)

where wr and wa are zero-mean white stochastic disturbances

with

E
(

wrw
T
r

)

= Wr, E
(

waw
T
a

)

= Wa, E
(

wrw
T
a

)

= 0.

In Appendix I-B, we show that the problem of choosing Nl

absolute position measurements among n sensors to minimize

the variance of the estimation error is equivalent to the noise-

corrupted leader selection problem (LS1). Furthermore, when

the positions of Nl sensors are known a priori we show that

the problem of assigning Nl sensors to minimize the variance

of the estimation error amounts to solving the noise-free leader

selection problem (LS2).

III. LOWER AND UPPER BOUNDS ON GLOBAL

PERFORMANCE: NOISE-CORRUPTED LEADERS

In this section, we show that the objective function J in

the noise-corrupted leader selection problem (LS1) is convex.

Convexity of J is utilized to develop efficient algorithms for

computation of lower and upper bounds on the global optimal

value (LS1). A lower bound results from convex relaxation of

Boolean constraints in (LS1) which yields an SDP that can

be solved efficiently using a customized interior point method.

On the other hand, an upper bound is obtained using a greedy

algorithm that selects one leader at a time. Since the greedy

algorithm introduces low-rank modifications to Laplacian ma-

trices, we exploit this feature in conjunction with the matrix

inversion lemma to gain computational efficiency. Finally, we

provide two examples to illustrate performance of the devel-

oped approach.

A. Convex Relaxation to Obtain a Lower Bound

Since the objective function J in (LS1) is the composition

of a convex function trace (L̄−1) of a positive definite matrix

L̄ ≻ 0 with an affine function L̄ := L+DκDx, it follows that

J is a convex function of x. By enlarging the Boolean constraint

set xi ∈ {0, 1} to its convex hull xi ∈ [0, 1], we obtain the

following convex relaxation of (LS1):

minimize
x

J(x) = trace
(

(L+DκDx)
−1
)

subject to 1
Tx = Nl, 0 ≤ xi ≤ 1, i = 1, . . . , n.

(CR1)

Since we have enlarged the constraint set, the solution x∗ of

the relaxed problem (CR1) provides a lower bound on Jopt.
However, x∗ may not provide a selection of Nl leaders, as it

may not be Boolean-valued. If x∗ is Boolean-valued, then it is

the global solution of (LS1).

The Schur complement can be used to formulate the opti-

mization problem (CR1) as an SDP

minimize
X,x

trace(X)

subject to

[

X I
I L+DκDx

]

� 0

1
Tx = Nl, 0 ≤ xi ≤ 1, i = 1, . . . , n.

For small networks (e.g., n ≤ 30), this problem can be solved

efficiently using standard SDP solvers. For large networks, we

develop a customized interior point method in Appendix I-C.

B. Greedy Algorithm to Obtain an Upper Bound

With the lower bound on the optimal value Jopt resulting

from the convex relaxation (CR1), we next use a greedy al-

gorithm to compute an upper bound on Jopt. This algorithm

selects one leader at a time by assigning the node that provides

the largest performance improvement as the leader. Once this is

done, an attempt to improve a selection of Nl leaders is made

by checking possible swaps between the leaders and the fol-

lowers. In both steps, we show that substantial improvement in

algorithmic complexity can be achieved by exploiting structure

of the low-rank modifications to Laplacian matrices.

1) One-Leader-at-a-Time Algorithm: As the name suggests,

we select one leader at a time by assigning the node that results

in the largest performance improvement as the leader. For i =
1, . . . , n, we compute

J i
1 = trace

(

(

L+ κieie
T
i

)−1
)

and assign the node, say v1, that achieves the minimum value

of {J i
1} as the first leader. If two or more nodes provide the

optimal performance, we select one of these nodes as a leader.

After choosing s leaders, v1, . . . , vs, we compute

J i
s+1 =trace

(

(

Ls + κieie
T
i

)−1
)

Ls :=L+ κv1
ev1

eTv1
+ · · ·+ κvs

evs
eTvs

for i 	∈ {v1, . . . , vs}, and select node vs+1 that yields the min-

imum value of {J i
s+1} as the (s+ 1)th leader. This procedure

is repeated until all Nl leaders are selected.

Without exploiting structure, the above procedure requires

O(n4Nl) operations. On the other hand, the rank-1 update

formula resulting from the matrix inversion lemma

(

Ls + κieie
T
i

)−1
= L−1

s −
L−1
s κieie

T
i L

−1
s

1 + κieTi L
−1
s ei

(5)

yields

J i
s+1 = trace

(

L−1
s

)

−
κi

∥

∥

(

L−1
s

)

i

∥

∥

2

2

1 + κi (L−1
s )ii

.

Here, (L−1
s )i is the ith column of L−1

s and (L−1
s )ii is the iith

entry of L−1
s . To initiate the algorithm, we use the generalized

rank-1 update [35]

L−1
1 =L†−(L†ei)1

T − 1(L†ei)
T
+

((

1

κi

)

+ eTi L
†ei

)

11
T
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which thereby yields

J i
1 = trace(L†) + n

((

1

κi

)

+ eTi L
†ei

)

where L† denotes the pseudo-inverse of L (e.g., see [36])

L† = (L+ 11
T /n)

−1
− 11

T /n.

Therefore, once L−1
s is determined, the matrix inverse on the

left-hand-side of (5) can be computed using O(n2) operations

and J i
s+1 can be evaluated using O(n) operations. Overall, Nl

rank-1 updates, nNl/2 objective function evaluations, and one

full matrix inverse (for computing L−1
s ) require O(n2Nl + n3)

operations as opposed to O(n4Nl) operations without exploit-

ing the low-rank structure. In large-scale networks, further

computational advantage may be gained by exploiting structure

of the underlying Laplacian matrices; e.g., see [37].

2) Swap Algorithm: After leaders are selected using the

one-leader-at-a-time algorithm, we swap one of the Nl lead-

ers with one of the n−Nl followers, and check if such a

swap leads to a decrease in J . If no decrease occurs for all

(n−Nl)Nl swaps, the algorithm terminates; if a decrease in

J occurs, we update the set of leaders and then check again

the possible (n−Nl)Nl swaps for the new leader selection. A

similar swap procedure has been used as an effective means

for improving performance of combinatorial algorithms en-

countered in graph partitioning [38], sensor selection [39], and

community detection problems [40].

Since a swap between a leader i and a follower j leads to a

rank-2 modification (6) to the matrix L̄ := L+DκDx,we can

exploit this low-rank structure to gain computational efficiency.

Using the matrix inversion lemma, we have

(

L̄− κieie
T
i + κjeje

T
j

)−1

= L̄−1 − L̄−1Ēij

(

I2 + ET
ijL̄

−1Ēij

)−1
ET

ijL̄
−1 (6)

where Eij=[ei ej ], Ēij=[−κiei κjej ], and I2 is the 2×2

identity matrix. Thus, the objective function after the swap

between leader i and follower j is given by

Jij = J − trace
(

(

I2 + ET
ijL̄

−1Ēij

)−1
ET

ijL̄
−2Ēij

)

. (7)

Here, we do not need to form the full matrix L̄−2, since

ET
ijL̄

−2Ēij =

[

−κi(L̄
−2)ii κj(L̄

−2)ij
−κi(L̄

−2)ji κj(L̄
−2)jj

]

and the ijth entry of L̄−2 can be computed by multiplying the

ith row of L̄−1 with the jth column of L̄−1. Thus, evaluation

of Jij takes O(n) operations and computation of the matrix

inverse in (6) requires O(n2) operations. Since the total number

of swaps for large-scale networks can be large, we follow [39]

and limit the maximum number of swaps with a linear function

of the number of nodes n.

Fig. 1. Bounds on the global optimal value for noise-corrupted leader se-
lection (LS1) for the random network example. (a) Upper and lower bounds,
Jup and Jlow, resulting from convex relaxation (CR1) and greedy algorithm,
respectively. (b) Performance gap between upper and lower bounds, in fraction
of lower bounds, 100(Jup − Jlow)/Jlow .

Fig. 2. The random network example: performance obtained using the greedy
algorithm and the degree heuristics in fraction of lower bounds resulting from
convex relaxation (CR1).

C. Example

We next provide two examples to illustrate performance of

developed methods.

1) A Random Network Example: We consider the selection

of noise-corrupted leaders in a network with 100 randomly
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Fig. 3. Selection of leaders ( ) for the random network example using greedy algorithm in (a) and (c) and using degree heuristics in (b) and (d).
(a) Greedy algorithm: Nl = 5, J = 19.0; (b) Degree heuristics: Nl = 5, J = 27.8; (c) Greedy algorithm: Nl = 40, J = 9.5; (d) Degree heuristics: Nl = 40,
J = 15.0.

distributed nodes in a unit square. A pair of nodes communicate

with each other if their distance is not greater than 0.2 units.

This scenario may arise in sensor networks with prescribed

omnidirectional (i.e., disk shape) sensing range [1], [41].

Fig. 1(a) shows lower bounds resulting from the convex

relaxation (CR1) and upper bounds resulting from the greedy

algorithm (i.e., the one-leader-at-a-time algorithm followed by

the swap algorithm). Fig. 1(b) shows performance gap be-

tween upper and lower bounds, in fraction of lower bounds,

100(Jup − Jlow)/Jlow. For Nl = 1, . . . , 40, the number of

swap updates ranges between 1 and 26 and the average number

of swaps is 8.

As shown in Fig. 2, the greedy algorithm significantly outper-

forms the degree-heuristics-based-selection. To gain some in-

sight into the selection of leaders, we compare results obtained

using the greedy method with the degree heuristics. As shown

in Fig. 3(b), the degree heuristics chooses nodes that turn out to

be in the proximity of each other. In contrast, the greedy method

selects leaders that, in addition to having large degrees, are far

from each other; see Fig. 3(a). As a result, the selected leaders

can influence more followers and thus more effectively improve

the performance of the network.

The contrast between degree heuristics and greedy algo-

rithms becomes even more dramatic for large number of lead-

ers. As shown in Fig. 3(c) and 3(d), the leader sets obtained

using the greedy algorithm and degree heuristics are almost

complements of each other. While the degree heuristics clus-

ters the leaders around the center of the network, the greedy

algorithm distributes the leaders around the boundary of the

network.

2) A 2-D Lattice: We next consider the noise-corrupted

leader selection problem (LS1) for a 2-D regular lattice with

81 nodes. Fig. 4(a) shows lower bounds resulting from convex

relaxation (CR1) and upper bounds resulting from the greedy

algorithm. Fig. 4(b) shows the performance gap normalized

by lower bounds, 100(Jup − Jlow)/Jlow. For Nl = 1, . . . , 40,

the number of swap updates ranges between 1 and 19 and the

average number of swaps is 10.

Fig. 5 shows selection of leaders resulting from the greedy

algorithm for different choices of Nl. For Nl = 1, the center

node (5, 5) provides the optimal selection of a single leader. As

Nl increases, nodes away from the center node are selected; for

example, for Nl = 2, nodes {(3, 3), (7, 7)} are selected and for

Nl = 3, nodes {(2, 6), (6, 2), (8, 8)} are selected. Selection of

nodes farther away from the center becomes more significant

for Nl = 4 and Nl = 8.

As shown in Fig. 5, the selection of leaders exhibits sym-

metry with respect to the center of the lattice. In particular,

when Nl is large, almost uniform spacing between the leaders

is observed; see Fig. 5(f) for Nl = 31. This is in contrast to the

random network example where boundary nodes were selected

as leaders; see Fig. 3(c).

IV. LOWER AND UPPER BOUNDS ON GLOBAL

PERFORMANCE: NOISE-FREE LEADERS

We now turn our attention to the noise-free leader selection

problem (LS2). An explicit expression for the objective func-

tion Jf that we develop in (LS2) allows us to identify the

source of nonconvexity and to suggest a convex relaxation.
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Fig. 4. Bounds on the global optimal value for noise-corrupted leader se-
lection (LS1) for a 2-D lattice. (a) Upper and lower bounds, Jup and Jlow,
resulting from convex relaxation (CR1) and greedy algorithm, respectively.
(b) Performance gap between upper and lower bounds, in fraction of lower
bounds, 100(Jup − Jlow)/Jlow.

The resulting convex relaxation, which comes in the form

of a semidefinite program, is used to obtain a lower bound

on the global optimal value of (LS2). In order to increase

computational efficiency, we employ the alternating direction

method of multipliers to decompose the relaxed problem into

a sequence of subproblems that can be solved efficiently. We

also use the greedy algorithm to compute an upper bound and

to identify noise-free leaders. As in the noise-corrupted leader

selection problem, we take advantage of low-rank modifications

to Laplacian matrices to reduce computational complexity. An

example from sensor networks is provided to illustrate perfor-

mance of the developed approach.

A. An Explicit Expression for the Objective

Function Jf in (LS2)

Since the objective function Jf in (LS2) is not expressed

explicitly in terms of the optimization variable x, it is diffi-

cult to examine its basic properties (including convexity). In

Proposition 1, we provide an alternative expression for Jf that

allows us to establish the lack of convexity and to suggest a

convex relaxation of Jf .

Proposition 1: For networks with at least one leader, the

objective function Jf in the noise-free leader selection problem

(LS2) can be written as

Jf = trace
(

(

L ◦
(

(1− x)(1− x)T
)

+ diag(x)
)−1

)

− 1
Tx

(8)

where ◦ denotes the elementwise multiplication of matrices.

Proof: Let the graph Laplacian L be partitioned into 2 × 2

block matrices which, respectively, correspond to the set of

leaders and the set of followers

L =

[

Ll L0

LT
0 Lf

]

. (9)

Furthermore, let the Boolean-valued vector x be partitioned

conformably

x :=
[

1
T
Nl

0TNf

]T

(10)

where 1Nl
is an Nl-vector with all ones, 0Nf

is an Nf -vector

with all zeros, and

Nf := n−Nl

is the number of followers. The elementwise multiplication of

matrices can be used to set the rows and columns of L that

correspond to leaders to zero

L ◦
(

(1− x)(1− x)T
)

=

[

Ll L0

LT
0 Lf

]

◦

[

0Nl×Nl
0Nl×Nf

0Nf×Nl
1Nf×Nf

]

=

[

0Nl×Nl
0Nl×Nf

0Nf×Nl
Lf

]

.

Using this expression and the definition of the vector x in (10)

we obtain

(

L ◦
(

(1−x)(1−x)T
)

+diag(x)
)−1

=

[

INl×Nl
0Nl×Nf

0Nf×Nl
L−1
f

]

.

(11)

Finally, taking trace of (11) and subtracting 1
Tx = Nl yields

the desired result (8).

Thus, the noise-free leader selection problem (LS2) can be

formulated as

minimize
x

Jf (x) = trace
(

(

L ◦
(

(1− x)(1− x)T
)

+ diag(x)
)−1

)

−Nl

subject to xi ∈ {0, 1}, i = 1, . . . , n

1
Tx = Nl (LS2’)

where the constraint 1Tx = Nl is used to obtain the expression

for the objective function Jf in (LS2’). An example can be

provided to demonstrate the lack of convexity of Jf (x). In fact,

it turns out that Jf is not convex even if all xi’s are restricted

to the interval [0, 1]. In Section IV-B, we introduce a change

of variables to show that the lack of convexity of Jf can be

equivalently recast as a rank constraint.
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Fig. 5. Selections of noise-corrupted leaders ( ) obtained using the one-at-a-time algorithm followed by the swap algorithm for a 2-D lattice. (b) The two
selections of two leaders denoted by ( ) and ( ) provide the same objective function J . (c) The four selections of three leaders denoted by ( ), ( ), ( ), and
(◦) provide the same J . (a) Nl = 1, J = 105.5; (b) Nl = 2, J = 75.2; (c) Nl = 3, J = 62.9; (d) Nl = 4, J = 53.9; (e) Nl = 8, J = 42.3; (f) Nl = 31,
J = 24.7.

B. Reformulation and Convex Relaxation of (LS2’)

By introducing a new variable y := 1− x, we can rewrite

(LS2’) as

minimize
Y,y

Jf (Y, y)= trace
(

(L ◦ Y +diag(1−y))−1
)

−Nl

subject to Y = yyT

yi∈{0, 1}, i = 1, . . . , n

1
T y=Nf .

Since Y := yyT , it follows that Y is a Boolean-valued matrix

with 1TY 1 = N2
f . Expressing these implicit constraints as

Yij ∈ {0, 1}, i, j = 1, . . . , n, 1
TY 1 = N2

f

leads to the following equivalent formulation:

minimize
Y,y

Jf (Y, y)= trace
(

(L ◦ Y +diag(1−y))−1
)

−Nl

subject to Y = yyT

yi∈{0, 1}, i = 1, . . . , n

Yij ∈{0, 1}, i, j = 1, . . . , n

1
T y=Nf

1
TY 1=N2

f .

Since

Y = yyT ⇐⇒ {Y � 0, rank (Y ) = 1}

we drop the nonconvex rank constraint and enlarge the Boolean

set {0, 1} to its convex hull [0, 1] to obtain the following convex

relaxation of the leader selection problem (LS2)

minimize
Y,y

Jf (Y, y)= trace
(

(L ◦ Y +diag(1−y))−1
)

−Nl

subject to yi∈ [0, 1], i = 1, . . . , n

Yij ∈ [0, 1], i, j = 1, . . . , n

1
T y=Nf

1
TY 1=N2

f

Y � 0. (CR2)

The objective function in (CR2) is convex because it is

a composition of a convex function trace (W−1) of a posi-

tive definite matrix W with an affine function W := L ◦ Y +
diag(1− y) of Y and y. The constraint set for y is convex

because it is the simplex set defined as

C1 :=
{

y|yi ∈ [0, 1], i = 1, . . . , n, 1
T y = Nf

}

. (C1)

The constraint set for Y is also convex because it is the

intersection of the simplex set

C2 :=
{

Y |Yij ∈ [0, 1], i, j = 1, . . . , n, 1
TY 1 = N2

f

}

(C2)

and the positive semidefinite cone

C3 := {Y |Y � 0}. (C3)
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Following a similar procedure to that in Section III-A, we

use Schur complement to cast (CR2) as an SDP. Furthermore,

since the constraints (C1)–(C3) are decoupled over y and Y , we

exploit this separable structure in Section IV-C and develop an

efficient algorithm to solve (CR2).

C. Solving the Convex Relaxation (CR2) Using ADMM

For small networks (e.g., n ≤ 30), the convex relaxation

(CR2) can be solved using general-purpose SDP solvers, with

computational complexity of order n6. We next exploit the

separable structure of the constraint set (C1)–(C3) and develop

an alternative approach that is well-suited for large problems.

In our approach, we use the alternating direction method of

multipliers (ADMM) to decompose (CR2) into a sequence of

subproblems which can be solved with computational complex-

ity of order n3.

Let φ1(y) be the indicator function of the simplex set in (C1)

φ1(y) :=

{

0, y ∈ C1
∞, y 	∈ C1.

Similarly, let φ2(Y ) and φ3(Y ) be the indicator functions

of the simplex set (C2) and the positive semidefinite cone

(C3), respectively. Then the convex relaxation (CR2) can be

expressed as a sum of convex functions

minimize
Y,y

Jf (Y, y) + φ1(y) + φ2(Y ) + φ3(Y ).

We now introduce additional variables {Z, z} and rewrite

(CR2) as

minimize
Y,y;Z,z

f(Y, y) + g(Z, z)

subject to Z = Y, z = y (12)

where

f(Y, y) := Jf (Y, y) + φ3(Y )

g(Z, z) :=φ1(z) + φ2(Z).

In (12), f and g are two independent functions over two dif-

ferent sets of variables {Y, y} and {Z, z}, respectively. As we

describe below, this separable feature of the objective function

in (12) in conjunction with the separability of the constraint

set (C1)–(C3) is amenable to the application of the ADMM

algorithm.

We form the augmented Lagrangian associated with (12)

Lρ(Y, y;Z, z; Λ, λ) = f(Y, y) + g(Z, z) + 〈Λ, Y − Z〉

+λT (y − z) +
ρ

2
‖Y − Z‖2F +

ρ

2
‖y − z‖22

where Λ and λ are Lagrange multipliers, ρ is a positive

scalar, 〈·, ·〉 is the inner product of two matrices, 〈M1,M2〉 :=
trace(MT

1 M2), and ‖ · ‖F is the Frobenius norm. To find the

solution of (12), the ADMM algorithm uses a sequence of

iterations

(Y, y)k+1 := argmin
Y,y

Lρ(Y, y;Z
k, zk; Λk, λk) (13a)

(Z, z)k+1 := argmin
Z,z

Lρ(Y
k+1, yk+1;Z, z; Λk, λk) (13b)

Λk+1 :=Λk + ρ(Y k+1 − Zk+1) (13c)

λk+1 :=λk + ρ(yk+1 − zk+1) (13d)

until the primal and dual residuals are sufficiently small [42,

Section 3.3]

‖Y k+1 − Zk+1‖F + ‖yk+1 − zk+1‖2 ≤ ǫ

‖Zk+1 − Zk‖F + ‖zk+1 − zk‖2 ≤ ǫ.

The convergence of ADMM for convex problems is guaranteed

under fairly mild conditions [42, Section 3.2]. Furthermore,

for a fixed value of parameter ρ, a linear convergence rate

of ADMM has been established in [43]. In practice, the con-

vergence rate of ADMM can be improved by appropriately

updating ρ to balance the primal and dual residuals; see [42,

Section 3.4.1].

In what follows, we show that the (Y, y)-minimization step

(13a) amounts to the minimization of a smooth convex function

over the positive semidefinite cone C3. We use a gradient

projection method to solve this problem. On the other hand, the

(Z, z)-minimization step (13b) amounts to projections on sim-

plex sets C1 and C2, both of which can be computed efficiently.

1) (Y, y)-Minimization Step: Using completion of squares,

we express the (Y, y)-minimization problem (13a) as

minimize
Y,y

h(Y, y) = trace
(

(L ◦ Y + diag(1− y))−1
)

+
ρ

2
‖Y − Uk‖

2

F +
ρ

2
‖y − uk‖

2

2

subject to Y � 0 (14)

where Uk := Zk − (1/ρ)Λk and uk := zk − (1/ρ)λk. A gra-

dient projection method is used to minimize the smooth convex

function h in (14) over the positive semidefinite cone Y � 0.

This iterative descent scheme guarantees feasibility in each

iteration [44, Section 2.3] by updating Y as follows:

Y r+1 = Y r + sr(Ȳ r − Y r). (15)

Here, the scalar sr is the stepsize of the rth gradient projection

iteration and

Ȳ r := [Y r −∇Y h]
+

(16)

is the projection of the matrix Y r −∇Y h on the positive

semidefinite cone C3. This projection can be obtained from

an eigenvalue decomposition by replacing the negative eigen-

values with zero. On the other hand, since no constraints are

imposed on y, it is updated using standard gradient descent

yr+1 = yr − sr∇yh
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where the stepsize sr is the same as in (15) and it is obtained,

e.g., using the Armijo rule [44, Section 2.3]. Here, we provide

expressions for the gradient direction

∇Y h= −(L ◦ Y + diag(1− y))−2 ◦ L+ ρ(Y − Uk)

∇yh=diag
(

(L ◦ Y +diag(1−y))−2
)

+ρ(y−uk) (17)

and note that the KKT conditions for (14) are given by

Y � 0, ∇Y h � 0, 〈Y,∇Y h〉 = 0, ∇yh = 0.

Thus, the gradient projection method terminates when (Y r, yr)
satisfies

Y r � 0, ∇Y h(Y
r) � 0

〈Y r,∇Y h(Y
r)〉 ≤ ǫ, ‖∇yh(y

r)‖
2
≤ ǫ.

Finally, we note that each iteration of the gradient projection

method takes O(n3) operations. This is because the projection

(16) on the positive semidefinite cone requires an eigenvalue

decomposition and the gradient direction (17) requires compu-

tation of a matrix inverse.

2) (Z, z)-Minimization Step: We now turn to the (Z, z)-
minimization problem (13b), which can be expressed as

minimize
Z,z

ρ

2
‖z − vk‖

2

2 +
ρ

2
‖Z − V k‖

2

F

subject to z ∈ C1, Z ∈ C2 (18)

where V k := Y k+1 + (1/ρ)Λk and vk := yk+1 + (1/ρ)λk.

The separable structure of (18) can be used to decompose it

into two independent problems

minimize
z∈C1

ρ

2
‖z − vk‖

2

2 (19a)

minimize
Z∈C2

ρ

2
‖Z − V k‖

2

2 (19b)

whose solutions are determined by projections of vk and V k on

convex sets C1 and C2, respectively.

In what follows, we focus on the projection on C1; the

projection on C2 can be obtained in a similar fashion. For

Nf = 1, C1 becomes a probability simplex,

C1 =
{

z|zi ∈ [0, 1], i = 1, . . . , n, 1
T z = 1

}

and customized algorithms for projection on probability sim-

plex can be used; e.g., see [45] and [46, Section 6.2.5]. Since

for Nf ≥ 2 these algorithms are not applicable, we view the

simplex C1 as the intersection of the hyperplane {z|1T z =
Nf} and the unit box {z|0 ≤ z ≤ 1} and employ an ADMM-

based alternating projection method in conjunction with sim-

ple analytical expressions developed in [46, Section 6.2]; see

Appendix I-D for details.

D. Greedy Algorithm to Obtain an Upper Bound

Having determined a lower bound on the global optimal

value of (LS2) by solving the convex relaxation (CR2), we next

quantify the performance gap and provide a computationally

attractive way for selecting leaders. As in the noise-corrupted

case, we use the one-leader-at-a-time algorithm followed by the

swap algorithm to compute an upper bound. Rank-2 modifica-

tions to the resulting Laplacian matrices allow us to compute

the inverse of Lf using O(n2) operations.

Let [L]i be the principal submatrix of L obtained by deleting

its ith row and column. To select the first leader, we compute

J i
1 = trace

(

[L]−1
i

)

, i = 1, . . . , n

and assign the node, say v1, that achieves the minimum value

of {J i
1}. After choosing s noise-free leaders ν = {v1, . . . , vs},

we compute

J i
s+1 = trace

(

[L]−1
ν∪i

)

, i 	∈ ν

and choose node vs+1 that achieves the minimum value of

{J i
s+1}. We repeat this procedure until all Nl leaders are

selected.

For Nl ≪ n, the one-at-a-time greedy algorithm that ignores

the low-rank structure requires O(n4Nl) operations. We next

exploit the low-rank structure to reduce complexity to O(n3Nl)
operations. The key observation is that the difference between

two consecutive principal submatrices [L]i and [L]i+1 leads to a

rank-2 matrix. To see this, let us partition the Laplacian matrix as

L =

⎡

⎢

⎣

L1 ci ci+1 L0

cTi ai di bTi
cTi+1 di ai+1 bTi+1

LT
0 bi bi+1 L2

⎤

⎥

⎦

← ith row

← (i+ 1)th row

where the ith column of L consists of {ci, ai, di, bi} and the

(i+ 1)th column consists of {ci+1, di, ai+1, bi+1}. Deleting

the ith row and column and deleting the (i+ 1)th row and

column respectively yields

[L]i =

⎡

⎣

L1 ci+1 L0

cTi+1 ai+1 bTi+1

LT
0 bi+1 L2

⎤

⎦ , [L]i+1 =

⎡

⎣

L1 ci L0

cTi ai bTi
LT
0 bi L2

⎤

⎦ .

(20)

Thus, the difference between two consecutive principal subma-

trices of L can be written as

[L]i+1 − [L]i = eiξ
T
i + ξie

T
i

where ei is the ith unit vector and ξTi := [cTi − cTi+1 (1/2)(ai −
ai+1) b

T
i − bTi+1]. Hence, once [L]−1

i is determined, computing

[L]−1
i+1 via matrix inversion lemma takes O(n2) operations;

cf. (6). The selection of the first leader requires one matrix

inverse and n− 1 times rank-2 updates, resulting in O(n3)
operations. For Nl ≪ n, the total cost of the greedy algorithm

is thus reduced to O(n3Nl) operations.

As in Section III-B2, after selecting Nl leaders using the

one-leader-at-a-time algorithm we employ the swap algorithm

to further improve performance. Similar to the noise-corrupted

case, a swap between a noise-free leader and a follower leads

to a rank-2 modification to the reduced Laplacian Lf . Thus,

after a swap, the evaluation of the objective function Jf can

be carried out with O(n2) operations. If L is partitioned as in

(9), a swap between leader i and follower Nl + j amounts to
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Fig. 6. Bounds on the global optimal value of the noisefree leader selection
problem (LS2) for the network shown in Fig. 7. (a) Upper and lower bounds,
Jup and Jlow, resulting from convex relaxation (CR2) and greedy algorithm,
respectively. (b) Performance gap between upper and lower bounds, in fraction
of lower bounds, 100(Jup − Jlow)/Jlow .

replacing (i) the jth row of Lf with the ith row of L0; and

(ii) the ith column of Lf with the ith column of LT
0 . Thus, a

swap introduces a rank-2 modification to Lf .

E. An Example

We consider a network with 200 randomly distributed nodes

in a C-shaped region within a unit square; see Fig. 7. A pair

of nodes communicates with each other if their distance is not

greater than 0.1 units. This example was used in [41] as a bench-

mark for testing algorithms for the sensor localization problem.

Lower and upper bounds on the global optimal value of the

noise-free leader selection problem (LS2) are computed using

approaches developed in this section. The lower and upper

bounds along with the normalized performance gap are shown

in Fig. 6. For Nl = 1, . . . , 10, the number of the swap updates

ranges from 1 to 16 and the average number of swaps is 8.

The greedy algorithm selects leaders that have large degrees

and that are geographically far from each other; see Fig. 7. Sim-

ilar leader selection strategies have been observed in the noise-

corrupted case of Section III-C. For the C-shaped network, we

note that the noise-free and noise-corrupted formulations lead

to almost identical selection of leaders.

Fig. 7. Selection of noise-free leaders ( ) using the greedy algorithm for the
C-shaped network. (a) Nl = 3, Jf = 92.5; (b) Nl = 9, Jf = 41.2.

V. CONCLUSION

The main contribution of this paper is the development of

efficient algorithms for the selection of leaders in large stochas-

tically forced consensus networks. For both noise-corrupted

and noise-free formulations, we focus on computing lower and

upper bounds on the global optimal value. Lower bounds are

obtained by solving convex relaxations and upper bounds result

from simple but efficient greedy algorithms.

Even though the convex relaxations can be cast as semidef-

inite programs and solved using general-purpose SDP solvers,

we take advantage of the problem structure (such as separability

of constraint sets) and develop customized algorithms for large-

scale networks. We also improve the computational efficiency

of greedy algorithms by exploiting the properties of low-rank

modifications to Laplacian matrices. Several examples ranging

from regular lattices to random networks are provided to illus-

trate the effectiveness of the developed algorithms.

We are currently applying the developed tools for leader

selection in different types of networks, including small-world

and social networks [47], [48]. Furthermore, the flexibility of

our framework makes it well-suited for quantifying perfor-

mance bounds and selecting leaders in problem formulations

with alternative objective functions [23], [25]. An open ques-

tion of theoretical interest is whether leaders can be selected

based on the solutions of the convex relaxations (CR1) and

(CR2). Since our computations suggest that the solution Y ∗ � 0
to (CR2) has a small number of dominant eigenvalues, it

is of interest to quantify the level of conservatism of the

lower bounds that result from these low-rank solutions and to
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investigate scenarios under which (CR2) yields a rank-1 solu-

tion. The use of randomized algorithms [49], [50] may provide

a viable approach to addressing the former question.

APPENDIX I

A. Connection Between Noise-Free and

Noise-Corrupted Formulations

Partitioning ψ into the state of the leader nodes ψl and the

state of the follower nodes ψf brings system (1) to the following

form1

[

ψ̇l

ψ̇f

]

= −

[

Ll +Dκl
L0

LT
0 Lf

] [

ψl

ψf

]

+

[

wl

wf

]

. (21)

Here, Dκl
:= diag(κl) with κl ∈ R

Nl being the vector of feed-

back gains associated with the leaders. Taking the trace of the

inverse of the 2 × 2 block matrix in (21) yields

J = trace
(

L−1
f + L−1

f LT
0 S

−1
κl

L0L
−1
f + S−1

κl

)

where

Sκl
:= Ll +Dκl

− L0L
−1
f LT

0

is the Schur complement of Lf . Since S−1
κl

vanishes as each

component of the vector κl goes to infinity, the variance of

the network in this case is determined by the variance of the

followers, Jf = trace(L−1
f ). Here, Lf denotes the reduced

Laplacian matrix obtained by removing all rows and columns

that correspond to the leaders from L.

B. Equivalence Between Leader Selection and

Sensor Selection Problems

We next show that the problem of choosing Nl absolute po-

sition measurements among n sensors to minimize the variance

of the estimation error in Section II-B is equivalent to the noise-

corrupted leader selection problem (LS1).

Given the measurement vector y in (4), the linear mini-

mum variance unbiased estimate of ψ is determined by [51,

Chapter 4.4]

ψ̂ =
(

ErW
−1
r ET

r + Ea

(

ET
a WaEa

)−1
ET

a

)−1

×
(

ErW
−1
r yr + Ea

(

ET
a WaEa

)−1
ya

)

with the covariance of the estimation error

Σ = E
(

(ψ − ψ̂)(ψ − ψ̂)T
)

=
(

ErW
−1
r ET

r + Ea

(

ET
a WaEa

)−1
ET

a

)−1

.

Furthermore, let us assume that Wr = I and Wa = D−1
κ . The

choice of Wa indicates that a larger value of κi corresponds to

1Since the partition is performed with respect to the indices of the 0 and 1
elements of x, the matrix Dx does not show in (21).

a more accurate absolute measurement of sensor i. Then

(

ET
a WaEa

)−1
=

(

ET
a D

−1
κ Ea

)−1
= ET

a DκEa

and thus

Σ =
(

ErE
T
r + EaE

T
a DκEaE

T
a

)−1
.

Since EaE
T
a is a diagonal matrix with its ith diagonal element

being 1 for i ∈ Ia and ErE
T
r is the Laplacian matrix of the

relative measurement graph, it follows that:

Dx =EaE
T
a , L = ErE

T
r ,

Σ =(L+DxDκDx)
−1 = (L+DκDx)

−1

where DxDκDx = DκDx because Dx and Dκ commute and

DxDx = Dx. Therefore, we have established the equivalence

between the noise-corrupted leader selection problem (LS1)

and the problem of choosing Nl sensors with absolute position

measurements such that the variance of the estimation error is

minimized.

To formulate an estimation problem that is equivalent to the

noise-free leader selection problem (LS2), we follow [8] and

assume that the positions of Nl sensors are known a priori. Let

ψl denote the positions of these reference sensors and let ψf

denote the positions of the other sensors. We can thus write the

relative measurement (3) as

yr = ET
r ψ + wr = ET

l ψl + ET
f ψf + wr

and the linear minimum variance unbiased estimate of ψf is

given by

ψ̂f =
(

EfE
T
f

)−1
EfW

−1
r

(

yr − ET
l ψl

)

with covariance of the estimation error Σf = (EfE
T
f )

−1
. Iden-

tifying EfE
T
f with Lf in the Laplacian matrix

L = ErE
T
r =

[

ElE
T
l ElE

T
f

EfE
T
l EfE

T
f

]

=

[

Ll L0

LT
0 Lf

]

establishes equivalence between problem (LS2) and the prob-

lem of assigning Nl sensors with known reference positions to

minimize the variance of the estimation error of sensor network.

C. Customized Interior Point Method for (CR1)

We begin by augmenting the objective function in (CR1) with

log-barrier functions associated with the inequality constraints

on xi

minimize
x

q(x) = τtrace
(

(L+DκDx)
−1
)

+

n
∑

i=1

(−log(xi)− log(1− xi))

subject to 1
Tx =Nl. (22)

As the positive scalar τ increases to infinity, the solution of

the approximate problem (22) converges to the solution of

the convex relaxation (CR1) [52, Section 11.2]. We solve a
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sequence of problems (22) by gradually increasing τ , and by

starting each minimization using the solution from the previous

value of τ . We use Newton’s method to solve (22) for a fixed τ ,

and the Newton direction is given by

xnt = −(∇2q)−1∇q − δ(∇2q)−1
1

δ := −
1
T (∇2q)−1∇q

1T (∇2q)−11
.

Here, the expressions for the ith entry of the gradient direction

∇q and for the Hessian matrix are given by

(∇q)i = −τκi

(

(L+DκDx)
−2
)

ii
− x−1

i − (xi − 1)−1

∇2q =2τ
(

Dκ(L+DκDx)
−2Dκ

)

◦ (L+DκDx)
−1

+ diag
(

x−2
i + (1− xi)

−2
)

.

We next examine complexity of computing the Newton

direction xnt. The major cost of computing ∇2q is to form

(L+DκDx)
−2, which takes (7/3)n3 operations to form (L+

DκDx)
−1 and n3 operations to form (L+DκDx)

−2. Comput-

ing xnt requires solving two linear equations

(∇2q)y = −∇q, (∇2q)z = −1

which takes (1/3)n3 operations using Cholesky factorization.

Thus, the computation of each Newton step requires (7/3 +
1 + 1/3)n3 = (11/3)n3 operations. Finally, it is worth noting

that better-conditioned linear systems for computing the New-

ton direction in the interior point method can be obtained using

the approach suggested in [53, Chapter 19].

D. Solving (19a) Using ADMM

Since the solution of (19a) does not depend on the value of ρ,

and since the constraint set is the intersection of the hyperplane

and the unit box, we can express (19a) as

minimize
z,w

1

2
‖z − vk‖

2

2 + φ4(z) + φ5(w)

subject to z − w = 0. (23)

Here, φ4 and φ5 are the indicator functions of the hyperplane

{z|1T z = Nf} and the box {w|0 ≤ w ≤ 1}, respectively. The

augmented Lagrangian associated with (23) is given by

L̺(z, w, λ) =
1

2
‖z − vk‖

2

2 + φ4(z) + φ5(w)

+〈λ, z − w〉+
̺

2
‖z − w‖22

and the ADMM algorithm uses the sequence of iterations

zs+1 := argmin
z

(

1

2
‖z − vk‖

2

2 + φ4(z)

+
̺

2
‖z − (ws − λs/̺)‖22

)

(24a)

ws+1 := argmin
w

(

φ5(w)+
̺

2

∥

∥w−(zs+1+λs/̺ )
∥

∥

2

2

)

(24b)

λs+1 :=λs + ̺(zs+1 − ws+1) (24c)

until ‖zs+1 − ws+1‖2 ≤ ǫ and ‖ws+1 − ws‖2 ≤ ǫ. By solving

the KKT conditions for (24a), we obtain an analytical solution

zs+1 =
(̺ws − λs + vk − η1)

(̺+ 1)
(25)

where the scalar η is given by

η =

(

1
T (̺ws − λs + vk)− (̺+ 1)Nf

)

n
.

On the other hand, the solution to (24b) is determined by the

projection of μ = zs+1 + λs/̺ on the box {w|0 ≤ w ≤ 1}

ws+1
i =

{ 1, μi > 1
μi, 0 ≤ μi ≤ 1
0, μi < 0.

(26)

Both the solution (25) and the projection (26) take O(n)
operations.
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