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ABSTRACT 

We present here a learning technique which is 
both s ta t i s t i c and syntactic, by using simultaneous
ly logical operators and counting procedures. I ts 
modular structure makes it usable for creating the 
necessary redundancy for control l ing the generali
zation of the formulas. 

0. INTRODUCTION 

In Data Analysis, a learning problem is gene
ra l l y stated as, either a discrimination problem, 
or a regression one. Some inductive methods [4] 
use metric concepts. But most of the A r t i f i c i a l 
Intell igence methods [2,3] are purely syntact ic, 
i .e . they use concepts of Formal Logic. 

Then a problem arises, which is the generali
zation one [ 5 ] , i . e . how to apply the found logical 
rules to examples which are not in the training set. 
This problem is more and more studied, and interes
t ing solutions have been found, based upon the idea 
of control l ing the generalization [ 6 ,8 ] . 

We describe in th is work a learning technique 
which builds rules to describe a given training 
set. Each of them can be used as an "opinion" about 
the training set. Then a "ru le storming" is perfor
med to complete the generalization. 

1. OUTLINE OF THE METHOD 

We consider a set of objects, called the 
t ra in ing set. This set is described by several 
"describers", which are questions (or binary varia
bles) with a value for every object. 

Let us take one of these describers and cal l 
it the "variable to forecast". The aim of the method 
presented here is to f ind a combination of the 
others describers identical to the variable to 
forecast. 

The method we propose consist on the i te ra t ion 
of an algorithm made of 3 modules : expansion, se
lec t ion , compression. 

Expansion step consist on combining each 
couple of describers with a logical operator, in 
order to obtain a new set of describers. 

Selection consists on eliminating the descri
bers which are not "s imi lar" enough to the variable 
to forecast. 

Compression step then classi f ies the descri
bers according to the i r s im i l a r i t i es , and summarizes 

each class by one(or a few) describer. 
We shall now describe each of these parts. 

2. EXPANSION 

This step consist on combining each couple of 
describers. Then, the operator must be associative, 
so that the combinations of 3 or more describers 
are nothing but successive 2 by 2 combinations. On 
the other hand, the permutation of 0 and 1 ("true" 
and "false") must not disturb the result of 
expansion. 

These constraints suggest two possible opera-
tors : the logical conjunction "and", and the log i 
cal equivalence " i d " . 

With the conjunction, 4 describers are bu i l t 
for each couple of i n i t i a l describers : 

a and b ; (non a) and b ; a and (non b) ; (non 
a) and (non b) . 

After that , we have to check the consistency, 
i . e . if (d) is in on formula, then (non d) is not 
in another one. 

For the logical equivalence, we have the f o l l o 
wing properties : 

a id b = (non a) id (non b) ; 
(non a) id b = a id (non b) = non (a id b) . 
According the remarks made at the beginning of 

this paragraph, it is only necessary to build "a 
id b". 

It is easy to check the f i t t i n g of these opera
tors with the constraints described at the beginning 
of this paragraph. 

3. SELECTION 

The aim of the selection step is to compare a 
describer to the variable to forecast, in order to 
select the describers which can be f ruc fu l l y expan
ded again. The most natural way of comparison 
between 2 binary variables is to look at the l i s t 
(N00 N01 N10 Ni l ) of the co-occurence frequencies 
for the d i f ferent values of the variables, i . e . 
of the describer to be selected and the variable 
to forecast. 

Several c r i t e r i a are then possible for the se
lect ion. We consider here two kinds : overlapping 
c r i t e r i a and information theory c r i t e r i a . 

An overlapping means that the describer has one 
value for at least a part of the objects from one 
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class and the other value fo r at most a par t of 
the objects of the other c lass . The corresponding 
thresholds are given by the user. 

The Informat ion Theory c r i t e r i a are d i f f e r e n t 
of the previous one, in the sense tha t they are not 
used in the same way. They are in format ion measure
ments on the descr ibers , which are then ordered 
according t h i s measure, and the k best ones are 
se lec ted , f o r a value k which is choosen by the 
user. 

Several c r i t e r i a are poss ib le . For ins tance, 
we can use the Kul lback 's divergence, the Mahalano-
bis distance or the cont ingency-khi 2 c r i t e r i o n . 

4. COMPRESSION 

This step consists on summarizing the set of 
the selected descr ibers , regarding t h e i r i n t e r 
c o r r e l a t i o n s , which are measured by a given func
t i o n . 

Then, we have to perform an automatic c l us 
t e r i n g of the descr ibers i n t o k groups. 

4 . 1 . Opt imizat ion of a c l us te r i ng 

In t h i s paragraph, we s ta te the problem of 
o p t i m i z i n g , f o r a given c r i t e r i o n , a k-class c l us 
t e r i n g . As we prev ious ly no t i ced , we suppose tha t 
a distance has been chosen to measure the decorre-
l a t i o n between the descr ibers . 

Then, the c r i t e r i o n to opt imize is the sum 
of the distances of the descr iber i to the d e s c r i 
bers which are in the same c lass . Let D(i j) be 
the sum of distances between descr iber i and the 
descr ibers belonging to class j . Let j ( i ) be the 
class which contains descr iber i. Let us s ta te : 

W(i) = D(i j ( i ) ) - min (D(i j ) j = l , k ) 
W(iO) = max (W(i) i = l , . . . ) 
D(iO jO) = min (D(iO j) j = l , k ) 

Then, the a lgor i thm deletes iO from i t s class 
and appends i t to the class jO. 

This procedure is repeated u n t i l the obtained 
c l a s s i f i c a t i o n i s i n v a r i a n t , i . e . W(i)=0 f o r a l l 
the descr ibers . This a lgor i thm is ac tua l l y a loca l 
op t im iza t i on one, because we can eas i l y proof tha t 
the c r i t e r i o n W(i0) is descreasing at each s tep. 

The i n i t i a l c l u s t e r i n g may be randomly chosen, 
or given by the user. We sha l l now use the l a t e r 
p o s s i b i l i t y to def ine a s t ra tegy fo r compression. 

4 . 2 . The compression a lgor i thm 

An i n t e r e s t i n g aspect of the previous a lgo
r i t hm is t h a t i t works even i f one class is empty. 
This remark suggests a s t ra tegy f o r compression, 
which needs only to input the maximum number of 
c lasses. 

The a lgor i thm s t a r t s w i th a one-class c l us 
t e r i n g . Obviously, the value o f the c r i t e r i o n is 
zero in t h i s case. 

When the best ( k - l ) - c l a s s c l u s t e r i n g has 
been found by the a lgor i thm we described in the 

previous paragraph, an empty class is created and 
we look f o r the best k-c lass c l a s s i f i c a t i o n . 

The a lgor i thm stops when k is the given maximum 
value nmc. We can not ice t h a t , if the sum of i n t r a -
class distances is zero f o r k < nmc, then the 
(nmc-k) other classes w i l l remain empty. 

Once we have obtained the desi red c l a s s i f i c a t i o r 
each class is summarized by one (or a small number) 
of i t s elements. We sha l l descr ibe t h i s po in t in 
the fo l l ow ing paragraph. 

4 .3 . Summary of a compression 

The summary of a compression must depend upon 
the chosen d is tance . The purpose of the d istance 
is to compare 2 descr ibers . Then, i t w i l l be d e f i 
ned w i th the l i s t of co-occurences of values of the 
descr ibers (N00,N01,N10,N11). 

In the case of the equivalence distance min 
(N00+N11,N01+N10), we can choose any element of 
each c l u s t e r , because they are supposed to be l o g i 
c a l l y equ i va len t , except f o r a few ob jec ts . 

In the case of the comparabi l i ty distance min 
(N00,N01,N10,N11), the c h a r a c t e r i s t i c of the e l e 
ments of the same c l u s t e r is to be comparable to 
each o the r , except f o r a small number of ob jec ts . 
This k ind of r e l a t i o n s h i p may be summarized by 
order ing the desc r ibe rs , and then using a d icho
tomic dec is ion t ree to compress. 

Then, t h i s kind of compression can be viewed 
as an "un fo ld ing " (d imens iona l i t y reduct ion) of 
the t r a i n i n g s e t , and we studied i t in some pre
vious works [ 7 ] . 

5. END CRITERION 

As the aim is to f i n d a formula which i s , on 
the t r a i n i n g s e t , l o g i c a l l y comparable to the va
r i a b l e to f o recas t , there are several ways of 
stopping convenient ly the a lgor i thm : 

- maximum number of i t e r a t i o n s ( i t is c a r e f u l ) 
- emptiness of the descr ibers l i s t ( i t may 

happen a f t e r a bad choice of the se lec t i on 
parameters) 

- one (or seve ra l )o f the b u i l t descr ibers is 
s u f f i c i e n t l y co r re la ted to the va r iab le to 
f o recas t . 

These c r i t e r i a are app l ied in the previous 
order . We can add some more, in order to detect 
the case when i t is useless to con t inue . For i n s 
tance, i f the descr ibers l i s t remains i d e n t i c a l 
a f t e r a new expansion, s e l e c t i o n and compression 
( " s t a b i l i t y " c r i t e r i o n ) , i t i s c lea r t ha t f u r t he r 
i t e r a t i o n s w i l l g ive the same r e s u l t . 

6. GENERALIZATION BY "RULE STORMING" 

The gene ra l i za t i on cons is ts on decis ion making 
outs ide the t r a i n i n g s e t . Then, the l og i ca l ru les 
b u i l t w i t h the previous a lgor i thm can be considered 
as "op in ions" about the t r a i n i n g s e t , each onebeing 
re la ted to the choice of a p a r t i c u l a r descr iber as 
va r iab le to f o recas t . 
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The generalization i t s e l f consist on perfor
ming a "ru le storming" on these opinions. Let us 
summarize this idea. According Michalski [ 5 ] , a 
generalization is a f i l t e r ( in the topological sense 
on the space of objects. 

Let w be an object and 0P(i) the i - th opinion 
Then, 0P(i,w) is the new object produced by applying 
the rule 0P(i) to w. Several cases are possible : 

0P(i,w) = w (at least on the t ra in ing set ) . 
0P(i,w) = w\ then OP ( i ,w ' ) = 0P(i,w) 
0P(i,w) = 0 (the rule is not applicable). 
Then, the f i l t e r is : 
V(i) = {w} U (U 0P(i,w) 
V(p) = {w} U (U 0P( i ,V(p- l ) ) ) . 
The rule storming is then made by a vote at 

a given level of this f i l t e r . 
An advantage of this technique is that we 

actually build a topology, then we need not a d is
crimination problem to generalize. 

7. RESULTS AND DISCUSSION 

This technique has been tested on real 
problems : learning of animal behavior, control 
problems on nuclear plants, forecasting earthquakes, 
learning meta-rules for expert systems, decision 
making in psychology. 

In a l l these applications, only a few (3 to 
5) i terat ions of the expansion-selection-compression 
were necessary to f ind the rules. For the generali
zation, the good decision was made at level V(l) or 
V(2), but never more. 

8. CONCLUSION 

The algorithm that we presented in this paper 
in a f i r s t draft of a tool for learning problems. 
We work now on i t s enhancement and integration in a 
complete learning system. We think that the pre
sented results show reasonable eff ic iency and compu
t ing costs. The theoretical background can be found 
in the f i e ld of non classical Logic [ 1 ] , more preci
sely non dist r ibut ive logics. 
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