
Algorithms for Location-Independent

Communication between Mobile Agents

PaweÃl T. Wojciechowski
Swiss Federal Institute of Technology (EPFL)

Operating Systems Laboratory
CH-1015 Lausanne

Pawel.Wojciechowski@epfl.ch

Abstract

We study the distributed infrastructures required for location-independent
communication between mobile agents. These infrastructures are prob-
lematic: different applications may have very different patterns of migra-
tion and communication, and require different performance and robustness
properties. Some applications also demand disconnected operation (on lap-
top computers). Algorithms must be designed with these mind. In this
paper we describe simple algorithms and techniques such as central server,
forwarding pointers, broadcast, group communication, and hierarchical lo-
cation directory, and use Nomadic Pict to develop and implement an ex-
ample infrastructure. The infrastructure can tolerate site disconnection; a
user can disconnect the computer from the network, work in a disconnected
mode for extended periods, and later reconnect. All messages that cannot
be delivered to a laptop or sent out from the laptop due to disconnection
will be transparently delivered upon reconnection.

Contents

1 Introduction 2

2 The Design Space 2

3 Example Algorithms 4
3.1 Central Server . 4
3.2 Forwarding Pointers . 5
3.3 Broadcast . 6
3.4 Group Communication . 7
3.5 Hierarchical Location Directory 9
3.6 Arrow Directory . 9

4 The Nomadic Pict Language 10

5 Example Infrastructure 13

1

1 Introduction

Mobile agents, units of executing computation that can migrate between
machines, have been widely argued to be an important enabling technol-
ogy for future distributed systems [CHK97]. They introduce a new prob-
lem, however. To ease application writing one would like to be able to
use high-level location independent communication facilities, allowing the
parts of an application to interact without explicitly tracking each other’s
movements. To provide these above standard network technologies (which
directly support only location-dependent communication) requires some
distributed infrastructure. In [WS00, Woj00a], we argue that the choice or
design of an infrastructure must be somewhat application-specific — any
given algorithm will only have satisfactory performance for some range of
migration and communication behaviour; the algorithms must be matched
to the expected properties (and robustness and security demands) of appli-
cations and the communication medium. Some applications also demand
disconnected operation (on laptops) and a higher level of fault-tolerance.

The goal of this paper is to describe the space of algorithms which might
be useful for building such infrastructures. These are simple, generic ver-
sions of the algorithms which are used in real distributed systems with
object mobility and in mobile networks. In our earlier work [WS00], we
discussed a small application, the Personal Mobile Assistant, and the de-
sign of an infrastructure suited to it. We focused on demonstrating the
Nomadic Pict distributed programming language [SWP99, Woj00b] and
the benefits of a multi-level architecture based on clearly defined levels of
abstraction. In this paper we extend the Query Server with Caching algo-
rithm in [WS00] with support for disconnected operation on laptop com-
puters, so that all messages to and from a temporarily disconnected site
are transparently delivered to mobile agents irrespective of agent migra-
tion and temporal network unavailability. We describe the infrastructure
as a Nomadic Pict encoding, thereby making all the details of concurrency,
synchronisation, and distribution clear and precise.

2 The Design Space

Let us define the space of algorithms for location-independent message de-
livery to migrating agents. The algorithms should support two operations:
“migrate”, facilitating the move of an agent to a new site, and “deliver”,
locating a specified agent and delivering a message. The tasks of minimiz-
ing the communication overhead of these two operations appear to be in
conflict.

Awerbuch and Peleg [AP95] (see also Mullender and Vitányi [MV88])
stated the analogous problem of keeping track of mobile users in a dis-
tributed network (they consider two operations: “move”, facilitating the
move of a user to a new destination, and “find”, enabling one to contact

2

a specified user at its current address). They first examined two extreme
strategies.

The full-information strategy requires every site in the network to
maintain complete up-to-date information on the whereabouts of every
user. This makes the “find” operation cheap. On the other hand, “move”
operations are very expensive, since it is necessary to update information at
every site. In contrast, the no-information approach does not assume any
updates while migrating, thus the “move” operation has got a null cost. On
the other hand, the “find” operation is very expensive because it requires
global searching over the whole network. However, if a network is small
and migrations frequent, the strategy can be useful. In contrary, the full-
information strategy is appropriate for a near-static setting, where agents
migrate relatively rarely, but frequently communicate with each other. Be-
tween these two extreme cases, there is space for designing intermediate
strategies, that will perform well for any or some specific communication to
migration pattern, making the costs of both “find” and “move” operations
relatively cheap.

Awerbuch and Peleg [AP95] describe a distributed directory infras-
tructure for online tracking of mobile users. They introduced the graph-
theoretic concept of regional matching, and demonstrated how finding a
regional matching with certain parameters enables efficient tracking of
mobile users in a distributed network. The communication overhead of
maintaining the distributed directory is within a polylogarithmic factor of
the lower bound. This result is important in the case of mobile telephony
and infrastructures which support mobile devices, where the infrastructure
should perform well, considering all mobile users and their potential com-
munication to migration patterns. These patterns can vary, depending
on people, and can only be estimated probabilistically. The infrastruc-
ture should therefore support all migration and communication scenar-
ios, and optimise those scenarios which are likely to happen more often
(preferably it should adapt to any changes in behaviour of mobile users
dynamically). An analytical comparison of pointer-based, centralised and
distributed simple location management schemas for mobile computing can
be found in [Kri96]. In mobile agent applications, however, the commu-
nication to migration pattern of mobile agents usually can be predicted
precisely [Woj00a]. Therefore we can design algorithms which are optimal
for these special cases and simpler than the directory server mentioned
above.

The task of deciding on an infrastructure may involve many criteria. In
our study, we expand the space for interesting algorithms to many dimen-
sions, considering not only the communication cost but also other factors,
such as scalability and the cost of fault-tolerance. An infrastructure is
scalable if adding new sites or agents, or expanding the system to wide-
area networks does not severely degrade overall system performance (in
these terms, we consider two different kinds of scalability which explore

3

either the numerical or geographical dimensions). The semantics of failure
depends on the failure model, e.g. we may assume that if a site fails then
all agents on this site are lost (Crash/no Recovery model) or they can be
recovered upon site recovery (under the same name). Fault-tolerance is
costly; the level of fault-tolerance and methods which can be used will
depend on the target network and application demands.

3 Example Algorithms

Below, we describe example algorithms and give some hints about the in-
frastructure scalability and fault-tolerance, where possible. We are not
giving a quantitative theoretical or empirical view of the algorithms, how-
ever, because it would be too hard to take under consideration all the
factors which exist in real systems.

3.1 Central Server

Central Forwarding Server The server records the current site of
every agent. Before migration an agent A informs the server and waits for
ACK (containing the number of messages sent from the server to A). It
then waits for all the messages due to arrive. After migration it tells the
server it has finished moving. If B wants to send a message to A, B sends
the message to the server, which forwards it. During migrations (after
sending the ACK) the server suspends forwarding.

Central Query Server The server records the current site of every
agent. If B wants to send a message to A, B sends a query (containing the
message ID) to the server asking for the current site of A, gets the current
site s of A and sends the message to s. The name s can be used again for
direct communication with A. If a message arrives at a site that does not
have the recipient then a message is returned saying ‘you have to ask the
name server again’. Migration support is similar as above.

Home Server Each site s has a server (one of the above) that records
the current site of some agents — usually the agents which were created
on s. Agent names contain an address of the server which maintains their
locations. On every migration agent A synchronises with the server whose
name is part of A’s name. If B wants to send a message to A, B resolves
A’s name and contacts A’s server. Other details are as above.

Discussion If migrations are rare and also in the case of stream com-
munication or large messages, the Query Server seems the better choice.
However, Central Forwarding and Query Servers do not scale. If the num-
ber of agents is growing and communication and migration are frequent,

4

the server can be a bottleneck. Home Servers can improve the situation.
The infrastructure can work fine for small-to-medium systems, where the
number of agents is small.

The algorithms do not support locality of agent migration and commu-
nication, i.e. migration and communication involve the cost of contacting
the server which can be far away. If agents are close to the server, the cost
of migration, search, and update is relatively low.

The server is a single-point of failure. In this and other algorithms
we can use some of the classical techniques of fault-tolerance, e.g. state
checkpointing, message logging and recovery. We can also replicate the
server on different sites to enhance system availability and fault-tolerance.
Group communication can provide adequate multicast primitives for im-
plementing either primary-backup or active replication [GS96].

Mechanisms similar to Home Servers have been used in many systems
which support process migration, e.g. in Sprite [DO91]. Caching has been
used, e.g. in LOCUS [PW85], and V [Che88], allowing operations to be
sent directly to a remote process without passing through another site.
If the cached address is wrong a home site of the process is contacted
(LOCUS) or multicasting is performed (V).

3.2 Forwarding Pointers

Algorithm There is a forwarding daemon on each site. The daemon on
site s maintains a current guess about the site of agents which migrated
from s. Every agent knows the initial home site of every agent (the address
is part of an agent’s name). If A wants to migrate from s1 to s2 it leaves
a forwarding pointer at the local daemon. Communications follow all the
forwarding pointers. If there is no pointer to agent A, A’s home site is
contacted. Forwarding pointers are left around forever.

Discussion There is no synchronisation between migration and com-
munication as there was in centralised algorithms. A message may follow
an agent which frequently migrates, leading to a race condition. The For-
warding Pointers algorithm is not practical for a large number of migra-
tions to distinct sites (a chain of pointers is growing, increasing the cost of
search). Some “compaction” methods can be used to collapse the chain,
e.g. movement-based and search-based. In the former case, an agent would
send backward a location update after performing a number of migrations;
in the latter case, after receiving a number of messages (i.e. after a fixed
number of “find” operations occurred).

Some heuristics can be further used such as search-update. A plau-
sible algorithm can be as follows. On each site there is a daemon which
maintains forwarding addresses (additionally to forwarding pointers) for
all agents which ever visited this site. A forwarding address is a tuple
(timestamp, site) in which the site is the last known location of the agent

5

and timestamp specifies the age of the forwarding address. Every message
sent from agent B to A along the chain of forwarding pointers contains
the latest available forwarding address of A. The receiving site may then
update its forwarding address (and/or forwarding pointer) for the refer-
enced agent, if required. Given conflicting guesses for the same agent, it is
simple to determine which one is most recent using timestamps. When the
message is eventually delivered to the current site of the agent, the daemon
on this site will send an ACK to the daemon on the sender site, containing
the current forwarding address. The address received replaces any older
forwarding address but not the forwarding pointer (to allow updating the
chain of pointers during any subsequent communication). A similar al-
gorithm has been used in Emerald [JLHB88], where the new forwarding
address is piggybacked onto the reply message in the object invocation.
It is sufficient to maintain the timestamp as a counter, incremented every
time the object moves.

A single site fail-stop in a chain of forwarding pointers breaks the chain.
A solution is to replicate the location information in the chain on k con-
secutive sites, so that the algorithm is tolerant of a failure of up to k − 1
adjoint sites. Stale pointers should be eventually removed, either after
waiting a sufficiently long time, or purged as a result of a distributed
garbage collection. Distributed garbage collection would require detecting
global termination of all agents that might ever use the pointer, therefore
the technique may not always be practically useful. Alternatively, some
weaker assumptions could be made and the agents decide arbitrarily about
termination, purging the pointers beforehand.

3.3 Broadcast

Data Broadcast Sites know about the agents that are currently
present. An agent notifies a site on leaving and a forwarding pointer is
left over until agent migration is finished. If agent B wants to send a mes-
sage to A, B sends the message to all sites in a network. A site s discards
or forwards the message if A is not at s (we omit details).

Query Broadcast As above but if agent B wants to send a message to
A, B sends a query to all sites in a network asking for the current location
of A. If site s receives the query and A is present at site s, then s suspends
any migration of A until A receives the message from B. A site s discards
or forwards the query if A is not at s.

Notification Broadcast Every site in a network maintains a current
guess about agent locations. After migration an agent distributes in the
network information about its new location. Location information is time-
stamped. Messages with stale location information are discarded. If site
s receives a message whose recipient is not at s (because it has already

6

migrated or the initial guess was wrong), it waits for information about
the agent’s new location. Then s forwards the message.

Discussion The cost of communication in Query and Data Broadcasts
is high (packets are broadcast in the network) but the cost of migration
is low. Query Broadcast saves bandwidth if messages are large or in the
case of stream communication. Notification Broadcast has a high cost of
migration (the location message is broadcast to all sites) but the commu-
nication cost is low and similar to forwarding pointers with pointer chain
compaction. In Data and Notification Broadcasts, migration can be fast
because there is no synchronisation involved (in Query Broadcast migra-
tion is synchronised with communication); the drawback is a potential for
race conditions if migrations are frequent. Site failures do not disturb the
algorithms.

Although we usually assume that the number of sites is too large to
broadcast anything, we may allow occasional broadcasts within, e.g. a lo-
cal Internet domain, or local Ethernet. Broadcasts can be accomplished
efficiently in bus-based multiprocessor systems. They are also used in ra-
dio networks. A realistic variant is to broadcast within a group of sites
which belong to the itinerary of mobile agents known in advance. Broad-
cast has also been used in Emerald to find an object, if a node specified by
a forwarding pointer is unreachable or has stale data. To reduce message
traffic, only a site which has the specified object responds to the broad-
cast. If the searching daemon receives no response within a time limit,
it sends a second broadcast requesting a positive or negative reply from
all other sites. All sites not responding within a short time are sent a
reliable, point-to-point message with the request. The Jini lookup and
connection infrastructure [AWO+99] uses multicast in the discovery pro-
tocol. A client wishing to find a Lookup Service sends out a known packet
via multicast. Any Lookup Service receiving this packet will reply (to an
address contained in the packet) with an implementation of the interface
to the Lookup Service itself.

3.4 Group Communication

Algorithm The agents forming a group maintain a current record about
the site of every agent in the group. Agent names form a totally ordered
set. We assume communication which takes place within a group only.

Before migration an agent A informs the other agents in the group
about its intention and waits for ACKs (containing the number of mes-
sages sent to A). It then waits for all the messages due to arrive and
migrates. After migration it tells the agents it has finished moving. Mul-
ticast messages to each agent within a group are delivered in the order
sent (using a first-in-first-out multicast). If B wants to send a message to
A, B sends the message to site s which is A’s current location. During

7

A’s migrations (i.e. after sending the ACK to A) B suspends sending any
messages to A. If two (or more) agents want to migrate at the same time
there is a conflict which can be resolved as follows. Suppose A and C want
to migrate. If B receives migration requests from A and C, it sends ACKs
to both of them and suspends sending any messages to agents A and C (in
particular any migration requests). If A receives a migration request from
C after it has sent its own migration request it can either grant ACK to
C (and C can migrate) or postpone the ACK until it has finished moving
to a new site. The choice is made possible by ordering agent names.

Discussion The advantage of this algorithm is that sites can be state-
less (the location data are part of agent state). However, in a system with
failures the algorithm is more complicated than above. Agents are organ-
ised into groups, corresponding to multicast delivery lists, that cooperate
to perform a reliable multicast (i.e. if one agent on the delivery list receives
a reliable multicast message, every agent on the delivery list receives the
message). A precise meaning to the notion of delivery list can be given by
using virtual synchrony defined for non-movable groups [BJ87]. The cur-
rent list of agents to receive a multicast is called the group view. The group
view is consistent among all agents in the group. Processes are added to
and deleted from the group via view changes. If agent A is removed from
the view, the agents remaining in the view would assume that A has failed.
Virtual synchrony guarantees that no messages from A will be delivered in
the future (if A has not failed it must rejoin the group explicitly under a
new name).

A problem is how agents can dynamically join the group, which can
change sites. One solution is to leave forwarding pointers, such that agents
which want to join (or rejoin) the group can follow them and “catch up”
with at least one group member. Another solution is to have one agent
within a group (a coordinator or manager) which never migrates. The
algorithm for inter-group communication could then use the pointers or
coordination agent for delivering messages that cross group boundaries.

The algorithm is suitable for frequent messages (or stream communica-
tion) between mobile agents and when migrations are rare. Agent failures
and network partitions will not disturb agents which are alive; however,
there are detailed subtleties which depend on the semantics of the algo-
rithm implementing virtual synchrony. The group service algorithms for
non-movable processes which have been originally proposed, e.g. in ISIS,
are costly in terms of control messages and hard to use in networks larger
than a LAN. However, they are also examples of scalable group mem-
bership and communication services implementing the virtual synchrony
semantics, designed for wide-area networks [KSMD99].

8

3.5 Hierarchical Location Directory

Algorithm A tree-like hierarchy of servers forms a location directory
(similar to DNS). Each server in the directory maintains a current guess
about the site of some agents. Sites belong to regions, each region corre-
sponds to a sub-tree in the directory (in the extreme cases the sub-tree
is simply a leaf-server for the smallest region, or the whole tree for the
entire network). The algorithm maintains an invariant that for each agent
there is a unique path of forwarding pointers which forms a single branch
in the directory; the branch starts from the root and finishes at the server
which knows the actual site of the agent (we call this server the “nearest”).
Before migration an agent A informs the “nearest” server X1 and waits for
ACK. After migration it registers at a new “nearest” server X2, tells X1

it has finished moving and waits for ACK. When it gets the ACK there is
already a new path installed in the tree (this may require installing new
and purging old pointers within the smallest sub-tree which contains X1

and X2). Messages to agents are forwarded along the tree branches. If B
wants to send a message to A, B sends the message to the B’s “nearest”
server, which forwards it in the directory. If there is no pointer the server
will send the message to its parent.

Discussion Certain optimisations are plausible, e.g. if an agent mi-
grates very often within some sub-tree, only the root of the sub-tree would
contain the current location of the agent (the cost of a “move” operation
would be cheaper). In [Mor99], Moreau describes an algorithm for routing
messages to migrating agents which is also based on distributed directory
service. A proposition of Globe uses a hierarchical location service for
worldwide distributed objects [vSHBT98]. The Hierarchical Location Di-
rectory scales better than Forwarding Pointers and Central Servers. Also,
some kinds of fault can be handled more easily (see [AP95], and there is
also a lightweight crash recovery in the Globe system [BvST99]).

3.6 Arrow Directory

Some algorithms can be devised for a particular communication pattern.
For example, if agents do not require instant messaging, a mail-box infras-
tructure can be used, where senders send messages to static mailboxes and
all agents periodically check mailboxes for incoming messages. Demmer
and Herlihy [DH98] describe the Arrow Distributed Directory protocol for
distributed shared object systems, which is devised for a particular ob-
ject migration pattern; it assumes that the whole object is always sent to
the object requester. The arrow directory imposes an optimal distributed
queue of object requests, with no point of bottleneck.

The protocol was motivated by emerging active network technology, in
which programmable network switches are used to implement customized
protocols, such as application-specific packet routing.

9

Algorithm The arrow directory is given by a minimum spanning tree
for a network, where the network is modelled as a connected graph. Each
vertex models a node (site), and each edge a reliable communication link.
A node can send messages directly to its neighbours, and indirectly to non-
neighbours along a path. The directory tree is initialised so that following
arrows (pointers) from any node leads to the node where the object resides.

When a node wants to acquire exclusive access to the object, it sends
a message find which is forwarded via arrows and sets its own arrow to
itself. When the other node receives the message, it immediately “flips”
the arrow to point back to the immediate neighbour who forwarded the
message. If the node does not hold the object, it forwards the message.
Otherwise, it buffers the message find until it is ready to release the object
to the object requester. The node releases the object by sending it directly
to the requester, without further interaction with the directory.

If two find messages are issued at about the same time, one will even-
tually cross the other’s path and be “diverted” away from the object, fol-
lowing arrows towards the node (say v) where the other find message was
issued. Then, the message will be blocked at v until the object reaches v,
is accessed and eventually released.

4 The Nomadic Pict Language

In this section we introduce enough of the Nomadic Pict language for the
example infrastructure following (see [Woj00b] for details).

We have designed and implemented Nomadic Pict as a vehicle for
exploring distributed infrastructure for mobile computation [SWP99,
Woj00a]. It builds on the Pict language of Pierce and Turner [PT00],
a concurrent (but not distributed) language based on the asynchronous
π-calculus [MPW92, HT91]. Low-Level Nomadic Pict supports agent cre-
ation, the migration of agents between sites, fine-grain concurrency and the
communication of asynchronous messages between agents. The high-level
language adds location-independent communication; an arbitrary infras-
tructure can be expressed as a user-defined translation into the low-level
language.

We begin with an example. Below is a program in the high-level lan-
guage showing how an applet server can be expressed. It can receive (on
the channel named getApplet) requests for an applet; the requests contain
a pair (bound to a and s) consisting of the name of the requesting agent
and the name of its site.

getApplet ?* [a s] =
agentagentagent b =

migratemigratemigrate tototo s (ack@a!b | B)
ininin

()

10

When a request is received the server creates an applet agent with a new
name bound to b. This agent immediately migrates to site s. It then
sends an acknowledgement to the requesting agent a containing its name.
In parallel, the body B of the applet commences execution.

The example illustrates the main entities of the language: sites, agents
and channels. Sites should be thought of as physical machines or, more
accurately, as instantiations of the Nomadic Pict runtime system on ma-
chines; each site has a unique name. Agents are units of executing code;
an agent has a unique name and a body consisting of some Nomadic Pict
process; at any moment it is located at a particular site. Channels sup-
port communication within agents, and also provide targets for inter-agent
communication—an inter-agent message will be sent to a particular chan-
nel within the destination agent. The messages can be received out of
order. Channels also have unique names. The language is built above asyn-
chronous messaging, both within and between sites; in our implementation
inter-site messages are sent on TCP connections, created on demand, but
they could use instead some leyer which provides reliable communication
on top of UDP. Our algorithms do not depend on the message ordering
that could be provided by TCP.

The language inherits a rich type system from Pict, including higher-
order polymorphism, simple recursive types and subtyping. It has a partial
type inference algorithm. It adds new base types Site and Agent of site
and agent names, and a type Dynamic for implementing traders. In this
paper we make most use of Site, Agent, the base type String of strings,
the type ^T of channel names that can carry values of type T, tuples [T1 ..
Tn], and existential polymorphic types such as [#X T1 .. Tn] in which
the type variable X may occur in the field types T1 .. Tn. We also use
variants and a type operator Map from the libraries, taking two types and
giving the type of maps, or lookup tables, from one to the other.

Low-Level Language The main syntactic category is that of processes
(we confuse processes and declarations for brevity). We will introduce the
main low-level primitives in groups.

agentagentagent a=P ininin Q agent creation
migratemigratemigrate tototo s P agent migration

The execution of the construct agentagentagent a=P ininin Q spawns a new agent on
the current site, with body P. After the creation, Q commences execution,
in parallel with the rest of the body of the spawning agent. The new
agent has a unique name which may be referred to both in its body and in
the spawning agent (i.e. a is binding in P and Q). Agents can migrate to
named sites — the execution of migratemigratemigrate tototo s P as part of an agent results
in the whole agent migrating to site s. After the migration, P commences

11

execution in parallel with the rest of the body of the agent.

P | Q parallel composition
() nil

The body of an agent may consist of many process terms in parallel, i.e.
essentially of many lightweight threads. They will interact only by message
passing.

newnewnew c:T P new channel name creation
c!v output v on c in the current agent
c?p = P input from channel c
c?*p = P replicated input from channel c

To express computation within an agent, while keeping a lightweight im-
plementation and semantics, we include π-calculus-style interaction prim-
itives. Execution of newnewnew c:^T P creates a new unique channel name for
carrying values of type T; c is binding in P. An output c!v (of value v
on channel c) and an input c?p=P in the same agent may synchronise, re-
sulting in P with the appropriate parts of the value v bound to the formal
parameters in the pattern p. A replicated input c?*p=P behaves similarly
except that it persists after the synchronisation, and so may receive an-
other value. In both c?p=P and c?*p=P the names in p are binding in
P.

We require a clear relationship between the semantics of the low-level
language and the inter-machine messages that are sent in the implementa-
tion. To achieve this we allow direct communication between outputs and
inputs on a channel only if they are in the same agent. Intuitively, there is
a distinct π-calculus-style channel for each channel name in every agent.

iflocaliflocaliflocal <a>c!v thenthenthen P elseelseelse Q test-and-send
<a>c!v send to agent a on this site
<a@s>c!v send to agent a on site s

Finally, the low-level language includes primitives for interaction between
agents. The execution of iflocaliflocaliflocal <a>c!v thenthenthen P elseelseelse Q in the body
of an agent b has two possible outcomes. If agent a is on the same site
as b, then the message c!v will be delivered to a (where it may later
interact with an input) and P will commence execution in parallel with the
rest of the body of b; otherwise the message will be discarded, and Q will
execute as part of b. The construct is analogous to test-and-set operations
in shared memory systems — delivering the message and starting P, or
discarding it and starting Q, atomically. It can greatly simplify algorithms
that involve communication with agents that may migrate away at any
time, yet is still implementable locally, by the runtime system on each site.
Two other useful constructs can be expressed in the language introduced
so far: <a>c!v and <a@s>c!v attempt to deliver c!v to agent a, on the

12

current site and on s respectively. They fail silently if a is not where
expected and so are usually used only where a is predictable.

Note that the language primitives are almost entirely asynchronous
— only migratemigratemigrate and <a@s>c!v can involve network communication; they
require at most one message to be sent between machines.

waitwaitwait c?p=P timeouttimeouttimeout n -> Q input with timeout

The low-level language includes a single timed input as above, with timeout
value n. If a message on channel c is received within n seconds then P
will be started as in a normal input, otherwise Q will be. The timing is
approximate, as the runtime system may introduce some delays.

High-Level Language The high-level language is obtained by extend-
ing the low-level with a single location-independent communication prim-
itive:

c@a!v location-independent output to agent a

The intended semantics of an output c@a!v is that its execution will reli-
ably deliver the message c!v to agent a, irrespective of the current site of
a and of any migrations.

Expressing Encodings The language for expressing encodings allows
the translation of each interesting phrase (all those involving agents or
communication) to be specified; the translation of a whole program can be
expressed using this compositional translation. A translation of types can
also be specified, and parameters can be passed through the translation.
The concrete syntax is described in [Woj00b]; the example infrastructure
in below should give the idea.

5 Example Infrastructure

In this section we describe the QSCD (Query Server with Caching and
Disconnected Operation) infrastructure, expressed in Nomadic Pict. We
give the key parts of the infrastructure encoding, providing an executable
description of the algorithm. We included almost complete executable
code.

The algorithm implements disconnection-aware daemons (which are
spawned on each site) and defines two high-level agent operations
"disconnect" ininin P and "connect to" s:Site ininin P to handle discon-
nection. An agent can use the operations and disconnect a current site
from the network and later reconnect, so that all messages to and from
a site are transparently delivered irrespective of agent migration and site
disconnection. No messages are ever lost. No duplicate messages are ever

13

received by agents. However, agent migration is not transparent – a pro-
gram exception is raised in a high-level agent if the agent tries to migrate
out from a disconnected site; migration to a site which has been discon-
nected is blocked until the site is back in the network.

The algorithm is, however, still somewhat idealised – due to lack of
space we made a few simplifications. Firstly, a site disconnection will block
all agent migrations and all communications which need to be forwarded
through the query server. Secondly, each time the operation agentagentagent or
migratemigratemigrate fails due to a timeout, an exception is invoked in the application
(in a more practical algorithm, the infrastructure should rather try to
repeat the operation with a slightly longer timeout before finally signalling
problems). Therefore, the algorithms that are applicable to actual systems
with mobile computers would have to be yet more delicate and complex. In
the end of the section, we discuss some of these refinements and extensions
informally.

An encoding consists of three parts, a top-level translation (applied
to whole programs), an auxiliary compositional translation [[P]] of subpro-
grams P, defined phrase-by-phrase as below, and an encoding of types. The
QSCD encoding involves three main classes of agents: the query server Q
itself (on a single site), the daemons (one on each site), and the translations
of high-level application agents (which may migrate). The top-level (not
given here) of program P launches the query server and all the daemons
before executing [[P]]. The precise definition of the query server and dae-
mon in Nomadic Pict is given in Figures 1 and 2; the interesting clauses of
the compositional translation are in the text below.

Each class of agent maintains some explicit state as an output on a
lock channel. The query server maintains a map from each agent name
to the site (and daemon) where the agent is currently located (SiteTy =
[Site Agent]). This is kept accurate when agents are created or migrate.
Each daemon maintains a map from some agent names to the site (and
daemon) that they guess the agent is located at. This is updated only when
a message delivery fails. The encoding of each high-level agent records its
current site (and daemon) as an output on currentloc.

To send a location-independent message the translation of a high-level
agent first tries to send the message locally. If that fails, the message is
forwarded to the local daemon. The composition translation of c@b!v,
‘send v to channel c in agent b’, is below.

[[c @ b ! v]]
def
=

iflocaliflocaliflocal c!v thenthenthen ()
elseelseelse currentloc?[S DS]=
iflocaliflocaliflocal <DS>try_message![b c v] thenthenthen

currentloc![S DS]
elseelseelse ()

The local output (in the 2nd line) allows adjacent agents (on the same site)
to communicate even if the local daemon will be blocked in the case of site

14

disconnection. We return later to the process of delivery of the message
which is sent to the local daemon.

agentagentagent Q = (* the query server *)
(migratemigratemigrate to SQ
newnewnew lock : ^(Map Agent SiteTy)
(<toplevel@firstSite>nd![SQ Q]
| lock!(map.make ==)
| register?*[a [S DS]]=

lock?m=
(lock!(map.add m a [S DS])
| <a@S>ack![])

| migrating?*[a:Agent ack:^[]] =
lock?m= switchswitchswitch (map.lookup m a) ofofof (
Found> [S : Site DS : Agent] ->
(<a@S>ack![]
| migrated?[S’ DS’] =
(lock!(map.add m a [S’ DS’])
| <a@S’>ack![]))

NotFound> _ -> ())
| message?*[#X DU U a:Agent c:^X v:X

dack:^SiteTy]=
lock?m= switchswitchswitch (map.lookup m a) ofofof (
Found> [R : Site DR : Agent] ->
(<DU @ U>dack![R DR]
| <DR @ R>message![Q SQ a c v dack]
| dack?_ = lock!(map.add m a [R DR]))
NotFound> _ -> ())

| block?*[a:Agent S:Site]=
lock?m= (<a@S>ack![] | buffer!m)

| unblock?*[a:Agent S:Site]=
buffer?m= (lock!m | <a@S>ack![])

))

Figure 1: Parts of the Top Level – the Query Server

To migrate while keeping the query server’s map accurate, the transla-
tion of a migratemigratemigrate in a high-level agent a synchronises with the query server
[Q SQ] before and after actually migrating, with migrating, migrated,
and mack messages. We have used explicit acknowledgements instead of
piggybacking control information (as in 3) in order to improve readability
(the resulting algorithm is, however, less asynchronous). For example, the
server simply does not acknowledge A’s migration until it has received con-
firmation that all messages to A have been delivered. We also deal with
a case when the current site is disconnected. If the query server does not

15

daemondaemon?*S:Site=
(agentagentagent D =
(migratemigratemigrate tototo S
newnewnew lock : ^(Map Agent SiteTy)
defdefdef sendmsg [#X Q:Agent SQ:Site

D:Agent S:Site a:Agent c:^X v:X
m:(Map Agent SiteTy) dack:^SiteTy]=
(<Q @ SQ>message![D S a c v dack]
| dack?s= lock!(map.add m a s))

(<toplevel@firstSite>nd![S D]
| lock!(map.make ==)
| try_message?*[#X a:Agent c:^X v:X]=

lock?m= switchswitchswitch (map.lookup m a) ofofof (
Found> [R : Site DR : Agent] ->
(newnewnew dack : ^SiteTy
(<DR @ R>message![D S a c v dack]
| waitwaitwait

dack?s= lock!(map.add m a s)
timeouttimeouttimeout t ->

sendmsg![Q SQ D S a c v m dack]))
NotFound> _ -> sendmsg![Q SQ D S

a c v m (newnewnew dack : ^SiteTy)])
| message?*[#X DU:Agent U:Site a:Agent

c:^X v:X dack:^SiteTy]=
iflocaliflocaliflocal <a>msg![dack c v] thenthenthen

<DU @ U>dack![S D]
elseelseelse lock?m=

(<Q @ SQ>message![D S a c v dack]
| dack?s= (lock!(map.add m a s)

| <DU @ U>dack!s))
| disconnect?*a = lock?m=

(buffer!m | <Q @ SQ>block![a S])
| connect?*[a _ _] = buffer?m=

(<Q @ SQ>unblock![a S] | lock!m)))
())

Figure 2: Parts of the Top Level – the Daemon Daemon

respond within a certain period of time t (i.e. the current site is discon-
nected or the communication link is slow), migration will be abandoned
(with an exception message err). Alternatively, we could ask the local
daemon for more accurate information (the daemon always knows about
the connection/reconnection status) but due to the lack of space we omit
details here.

16

[[migratemigratemigrate tototo u P]][a Q SQ t err]
def
=

currentloc?[S DS]= valvalval [U:Site DU:Agent] = u
newnewnew mack : ^[]
(<Q @ SQ>migrating![a mack]
| waitwaitwait mack?_ = (migratemigratemigrate tototo U

(<Q @ SQ>migrated![U DU]
| mack?_ = (currentloc![U DU]

| [[P]][a Q SQ t err])))
timeouttimeouttimeout t ->

(currentloc![S DS]
| mack?_ = <Q @ SQ>migrated![S DS]
| err!"No connection."
| [[P]][a Q SQ t]))

This first creates a fresh private channel mack, then sends [a mack] on the
channel migrating to the query server, in parallel with a timed input on
the channel mack. If the reply on mack is received within t seconds (ap-
proximately), the migration can proceed. Otherwise, the timeout clause
is triggered and the migration is abandoned. However, if in fact the con-
nection to the server was made possible (e.g. a timeout was simply too
short) then the message migrating would be delivered to the server and
the server would send to the agent a reply message mack. The query server
blocks any disconnection requests after receiving a message migrating and
can only release the lock after receiving an acknowledgement that migra-
tion is finished. Therefore, although migration failed the agent may still
have to send a message migrated in the timeout clause and release the
lock in the query server; the message will then contain an address [S DS]
of the current site. The agent’s own record of its current site and daemon
must also be updated with the new data [U DU] (or restored from the old
data if the migration failed) when the agent’s lock is released. The query
server’s lock is kept during migration. This lock will protect the current
and target sites from being disconnected by other agents while migration
is in progress.

Site names in the high-level program are encoded by pairs of a site
name and the associated daemon name; there is a translation of types

[[Agent]]
def
= Agent

[[Site]]
def
= [Site Agent]

Similarly, a high-level agent a must synchronise with the query server while
creating a new agent b, with messages on register and ack. If the query
server is not accessible, the creation fails.

[[agentagentagent b = P ininin P’]][a Q SQ t err]
def
=

currentloc?[S DS]=
agentagentagent b =

17

(newnewnew msglog : ^(Map Id [])
(<Q @ SQ>register![b [S DS]]
| waitwaitwait ack?_= iflocaliflocaliflocal <a>ack![] thenthenthen

(currentloc![S DS] | [[P]][b Q SQ t err])
elseelseelse ()

timeouttimeouttimeout t ->
(<a>ack![] | err!"No connection.")

| msglog!(map.make ==)
| msg?*[#X id c v]= msglog?m=
switchswitchswitch (map.lookup m id) ofofof (
NotFound>_ -> (c!v

| msglog!(map.add m id []))
Found>_ -> msglog!m)))

ininin
ack?_= (currentloc![S DS]

| [[P’]][a Q SQ t err])

The current site/daemon data for the new agent must be initialised to [S
DS]; the creating agent is prevented from migrating away until registration
has taken place by keeping its currentloc lock until an ack is received from
b. The connection with the query server is tested by a timeout mechanism.
If connection is suspected of being broken, the ack is sent immediately to
the creating agent. The last two clauses of the body of b are responsible for
ignoring duplicate messages received by the agent. A message log msglog is
created to store unique identifiers of all messages received on the channel
msg. Messages whose identifiers are not found in the log are registered
with the log and sent to proper local channels, or discarded as duplicates
otherwise.

Returning to the process of message delivery, there are three basic cases
(see Figure 3). Consider the implementation of c@b!v in agent a on site
S, where the daemon is D. Suppose b is on site R, where the daemon is DR.
Either D has the correct site/daemon of b cached, or D has no cache data
for b, or it has incorrect cache data. In the first case D sends a message
message to DR which delivers the message to b using iflocaliflocaliflocal and sends
an acknowledge message dack. For the PA application this should be the
common case; it requires only two network messages. If dack is not received
within a certain time (which means that either site R is disconnected or the
communication link to site R is slow), D sends a message message to the
query server which delivers it correctly as in the cache-miss case, described
below. Each message is augmented with a unique name dack of a freshly
created acknowledge channel. This name is later used by agent b to look
up the message log and discard the message if it has already been delivered
(when the timeout was caused by a slow link between S and R). Agents DR
and Q use dack to sent back acknowledgments and location updates, which
are delivered unambiguously.

In the cache-miss case D sends a message message to the query server,

18

The best scenario: good guess in the D cache. This should be the common case.

a@S D@S Q@SQ DR@R b@R

-try message![b c v]
XXXXXXXXXXXXXXXXXXz

![..dack] XXXXXXXXXz

![D S b c v dack]

���������9
dack!

XXXXXXXXXz

![Q SQ..dack] ���������

-msg![dack c v]

���������9
dack!

���������9
dack!

-msg![dack c v]

No guess in the D cache.

a@S D@S Q@SQ DR@R b@R

-try message![b c v]
XXXXXXXXXz

![D S b c v dack]

���������9
dack!

XXXXXXXXXz

![Q SQ b c v dack]

���������9
dack!

-msg![dack c v]

The worst scenario: wrong guess in the D cache.

a@S D@S DU@U Q@SQ DR@R b@R

-try message![b c v]
XXXXXXXXXz

![D S b c v dack]

XXXXXXXXX

![..dack] XXXXXXXXXz

![DU U b c v dack]

XXXXXXXXXz

���������9dack!
XXXXXXXXXz

![Q SQ b c v dack]

���������9
dack!

���������9
dack!

-msg![dack c v]

���������

XXXXXXXXXz

![Q SQ b c v dack]

���������9
dack!

���������9
dack!

-msg![dack c v]

The communication in grey colour is executed only if there is a timeout. Abbre-
viations: ![..] for message![..], and dack! for dack![R DR]

Figure 3: The Delivery of Location-Independent Message c@b!v from a to b in
the QSCD Algorithm

19

which both sends a message message to DR (which then delivers success-
fully) and a dack message back to D (which updates its cache). The query
server’s lock is kept until the message is delivered, thus preventing b from
migrating until then.

Finally, the incorrect-cache-hit case. Suppose D has a mistaken pointer
to DU@U. It will send a message message to DU which will be unable to
deliver the message. DU will then send a message to the query server,
much as before (the cache update messages are sent first to DU which then
forwards it to D). If D has not received the cache update acknowledgement
for a long enough time, it suspects that something went wrong, and sends
a message (with a dack) to the query server, as in the cache-miss case.

To disconnect a site while not missing messages sent between the site
and a stable part of the network, a high-level agent a can use an operation
"disconnect"

[["disconnect" foo ininin P]][a Q SQ t err]
def
=

currentloc?[S DS]=
iflocaliflocaliflocal <DS>disconnect!a thenthenthen

ack?_= (currentloc![S DS]
| print!"Ready to disconnect."
| [[P]][a Q SQ t err])

elseelseelse ()

This synchronises with the local daemon and the query server, so that
messages sent from the stable network to the disconnected site will be
blocked in the query server until the site reconnects. In the opposite di-
rection, cross-network messages sent by agents on the disconnected site
will be blocked in the local daemon. No messages are ever lost. Similarly,
the composition translation of "connect" to s ininin P, ’connect to a query
server which is on site s’, is below.

[["connect to" s ininin P]][a Q SQ t err]
def
=

currentloc?[S DS]= valvalval [SQ:Site Q:Agent]=s
iflocaliflocaliflocal <DS>connect![a SQ Q] thenthenthen

ack?_=(currentloc![S DS] | [[P]][a Q SQ t err])
elseelseelse ()

Here, the parameter s is actually not used by the encoding since the algo-
rithm assumes only one query server (it is useful in the scalable algorithm
which assumes many query servers). Note that the name s of server’s site
in the high-level program (of type Site) is encoded by a pair of a site name
and the associated daemon (i.e. query server) name. Typical executions
are illustrated in Figure 4.

Refinements and Extensions If the timeout mechanism is set up
correctly (e.g. using some stabilising failure detector) then the algorithm
should behave well in a local-area network, with most application-level

20

Disconnect a site from the network.

a@S D@S Q@SQ

-disconnect!a
XXXXXXXXXz

block![a S]

������������������9
ack!

Reconnect a site to the network.

a@S D@S Q@SQ

-connect![a R DR]
XXXXXXXXXz

unblock![a S]

������������������9
ack!

Figure 4: The Disconnection and Reconnection Requests in the QSCD Algorithm

21

messages delivered in a single hop and none taking more than three hops
(though 6 messages). The query server is involved only between migra-
tion and the time at which all relevant daemons receive a cache update;
this should be a short interval. Messages to a disconnected site cannot be
delivered and so they are buffered in the query server which will deliver
them upon site reconnection. However, the algorithm described above is
not very practical, since the query server uses a global lock during discon-
nected operation, i.e. the QS blocks high-level messages to all sites if at
least one site is disconnected. Also, an operation “create a new agent”
fails with a program exception raised in a spawning agent, each time the
operation is invoked from a disconnected site.

A refined version of this algorithm which is free from the problems
stated above may be designed as follows. Many sites should be able to
disconnect and reconnect at the same time, and the query server should
block communication and migration only to a site which is currently dis-
connected. This requires that a query server maintains a separate map
from sites to status information (“connected” or “disconnected”). A map
of agents must contain little locks (each per agent entry) so that only mes-
sages to agents in disconnected sites are buffered. A local daemon has
exact knowledge whether there is connection to the query server or not, so
we can improve the algorithm by synchronising agent migrations with the
local daemon. Also, only minor refinements are required to be able to re-
install daemons after a site crash (making a query server fault-tolerant is
much more difficult). In the protocol presented here, it is only possible to
reboot a machine when a query server does not have an active communica-
tion link to it. Actually, each computer which can be disconnected should
have installed its own query server to allow for non-blocking agent creation
(since the agent registration messages would be sent to the local server,
and thus do not depend on the network availability). Further improve-
ments of the disconnected mode are plausible, e.g. operations connect
and disconnect might be implicit if the operating system could provide
a flag or an interrupt every time the local network connection goes up or
down (though it might still be useful to have the operation “connect” in a
high-level language).

In [Woj00a] we also describe a scalable version of the algorithm which
assumes many LANs interconnected by a wide-area network, and exten-
sions required for ad-hoc networks.

Acknowledgements We would like to thank Peter Sewell, Ken
Moody, and André Schiper for discussion and comments.

References

[AP95] Baruch Awerbuch and David Peleg. Online tracking of mobile
users. Journal of the ACM, 42(5):1021–1058, September 1995.

22

[AWO+99] Ken Arnold, Ann Wollrath, Bryan O’Sullivan, Robert Schei-
fler, and Jim Waldo. The Jini specification. Addison-Wesley,
1999.

[BJ87] K. P. Birman and T. A. Joseph. Exploiting virtual synchrony
in distributed systems. In Proc 11th ACM Symposium on OS
Principles. ACM, November 1987.

[BvST99] G. Ballintijn, M. van Steen, and A.S. Tanenbaum. Lightweight
crash recovery in a wide-area location service. In Proc 12th
Conference on Parallel and Distributed Computing Systems,
August 1999.

[Che88] David Cheriton. The V distributed system. Communications
of the ACM, 31(3):314–333, March 1988.

[CHK97] D. Chess, C. Harrison, and A. Kershenbaum. Mobile agents:
Are they a good idea? In J. Vitek and C. Tschudin, editors,
Mobile Object Systems – Towards the Programmable Internet,
volume LNCS 1222, 1997.

[DH98] M. J. Demmer and M. P. Herlihy. The arrow distributed direc-
tory protocol. In Proc 12th Symposium on Distributed Com-
puting, volume LNCS 1499, 1998.

[DO91] Fred Douglis and John Ousterhout. Transparent process migra-
tion: Design alternatives and the Sprite implementation. Soft-
ware – Practice and Experience, 21(8):757–785, August 1991.

[GS96] R. Guerraoui and A. Schiper. Fault-tolerance by replication in
distributed systems. In Reliable Software Technologies - Ada-
Europe ’96, LNCS 1088, June 1996.

[HT91] Kohei Honda and Mario Tokoro. An object calculus for asyn-
chronous communication. In Proc of ECOOP’91, LNCS 512,
1991.

[JLHB88] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black.
Fine-grained mobility in the Emerald system. ACM Transac-
tions on Computer Systems, 6(1):109–133, February 1988.

[Kri96] P. Krishna. Performance Issues in Mobile Wireless Networks.
PhD thesis, Texas A&M University, 1996.

[KSMD99] Idit Keidar, Jeremy Sussman, Keith Marzullo, and Danny
Dolev. A client-server oriented algorithm for virtually syn-
chronous group membership in WANs. Technical Report
CS1999-0623, University of California, San Diego, 1999.

[Mor99] Luc Moreau. Distributed directory service and message router
for mobile agents. Technical Report ECSTR M99/3, University
of Southampton, 1999.

23

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile pro-
cesses, Parts I and II. Information and Computation, 100(1):1–
77, 1992.

[MV88] Sape J. Mullender and Paul M. B. Vitányi. Distributed match-
making. Algorithmica, 3:367–391, 1988.

[PT00] Benjamin C. Pierce and David N. Turner. Pict: A program-
ming language based on the pi-calculus. In Gordon Plotkin,
Colin Stirling, and Mads Tofte, editors, Proof, Language and
Interaction: Essays in Honour of Robin Milner. MIT Press,
2000.

[PW85] G. J. Popek and B. J. Walker. The Locus Distributed System
Architecture. MIT Press, 1985.

[SWP99] Peter Sewell, PaweÃl T. Wojciechowski, and Benjamin C.
Pierce. Location-independent communication for mobile
agents: A two-level architecture. In Henri E. Bal, Boumedi-
ene Belkhouche, and Luca Cardelli, editors, Internet Program-
ming Languages, LNCS 1686, 1999. Also appeared as Technical
Report 462, Computer Laboratory, University of Cambridge,
April 1999.

[vSHBT98] Maarten van Steen, Franz J. Hauck, Gerco Ballintijn, and An-
drew S. Tanenbaum. Algorithmic design of the Globe wide-area
location service. The Computer Journal, 41(5):297–310, 1998.

[Woj00a] PaweÃl T. Wojciechowski. Nomadic Pict: Language and Infras-
tructure Design for Mobile Computation. PhD thesis, Univer-
sity of Cambridge, 2000. Also appeared as Technical Report
492, Computer Laboratory, University of Cambridge, June
2000.

[Woj00b] PaweÃl T. Wojciechowski. The Nomadic Pict System, 2000.
Available electronically as part of the Nomadic Pict distribu-
tion. http://lsewww.epfl.ch/˜pawel/nomadicpict.html.

[WS00] PaweÃl T. Wojciechowski and Peter Sewell. Nomadic Pict: Lan-
guage and infrastructure design for mobile agents. IEEE Con-
currency, 8(2):42–52, April-June 2000.

24

