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Abstract 

We consider the problem of finding association 

rules that make nearly optimal binary segmen- 
tations of huge categorical databases. The op- 

timality of segmentation is defined by an ob- 
jective function suitable for the user’s objec- 
tive. An objective function is usually defined 
in terms of the distribution of a given target 
attribute. Our goal is to find association rules 
that split databases into two subsets, optimiz- 
ing the value of an objective function. 

The problem is intractable for general ob- 
jective functions, because letting N be the 
number of records of a given database, there 
are 2N possible binary segmentations, and 

we may have to exhaustively examine all of 
them. However, when the objective function 
is convex, there are feasible algorithms for 
finding nearly optimal binary segmentations, 

and we prove that typical criteria, such as 

“entropy (mutual information),” “x2 (correla- 
tion) ,” and “gini index (mean squared error) ,” 

are actually convex. 

We propose practical algorithms that use 
computational geometry techniques to handle 
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cases where a target attribute is not binary, 
in which conventional approaches cannot be 
used directly. 

1 Introduction 

In recent years, data mining has made it possible to 
discover unexpected and valuable rules by analyzing 
huge databases. Efficient algorithms for finding asso- 
ciation rules [AIS93, AS94, HF95, PS91, FMMT96c, 
FMMT96b] and classification and regression trees that 
use these rules as branching tests [BFOS84, Qui86, 
Qui93, MFMT97] have been widely studied in both 
database and machine learning literature. 

In this paper, we focus on finding association rules 
that can be used for classifiers such as decision trees. 
Association rules, which make binary segmentations 
for classifying a target attribute, themselves provide us 
with valuable information for understanding the tar- 
get attribute, and can therefore be used for various 

analytical purposes. 

Optimal Binary Segmentation Problem 

In this paper, we consider only databases, which we 
call categorical databases, whose attributes are all cat- 
egorical. When we want to deal with a database with 
numeric attributes, we include a preprocess to dis- 
cretize numeric attributes into categorical ones. 

Let R be a database relation. We treat one attribute 
of the relation as special, and call it a target attribute. 
Other attributes of the relation are called conditional 
attributes. Let A be the target attribute, dam(A) = 

{3,a2,.*. , ak} be the domain of A, and k be the target 
domain size (the number of distinct values). Let Xi(S) 
denote the number of records in S C R for which the 

value of the target attribute A is ai. 
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Table 1: mRNA Sequence 

Nl N2 N3 ..a Amino Acid 

u u u .*a Phe 
C A C a.. His 

G G C e.. GUY 
G G A ..a GUY 
A C A .-. 
G A A a.. 

u u c **. 
. . . . . . . . . . . . 

Thr 
Glu 
Phe 
. . . 

Let Cl,&,..., CM be the conditional attributes. 
We treat these attributes as a single attribute C 
whose domain is the Cartesian product of their do- 
mains (dom(C1) x dom(&) x ... x dom(CM)). If Ci 
(i = 1, . ..) M) has ni distinct values, the conditional 
domain size of C is n = ni ni for 1 5 i 5 M. 

To make a binary segmentation of R, we use a test 
on the conditional attribute C. T g dam(C) is a test 
that divides the database relation R into two segments 
S={tERJt[C]ET}andS={tERJt[C]$T}. We 
say “T splits R into (S; s)“. Our ideal goal is to find, 
among all possible tests, a test T that maximizes (or 

minimizes) an objective criterion f(S; s). 
The objective function should be an information- 

theoretic function such as the “gini index,” “entropy,” 
or rr~2,” which can be calculated from the distribution 
of values of the target attribute. 

We call the following rule “the optimal association 
rule for a binary segmentation” 

IF (T is satisfied) 

THEN (Segmentl) ELSE (Segment2), 

where Segment2 is the complement of Segmentl. 
We remark that, in the data mining litera- 

ture [AIS93, AS94, PCY95, FMMT96c, FMMT96b], 
association rules that are collected on the basis of 
“support” and “confidence” values are also popular. 
However, we focus on association rules that optimize 
an information-theoretic function, since they are eas- 

ier to use as parts of decision systems such as decision 
trees [BFOS84, Qui86, Qui93]. 

A Naive Approach 

An important problem in data mining is how to find 

the optimal association rule for binary segmentations 
of a database. If the conditional domain size is large, 
this problem is highly challenging. 

Table 1 shows an example of a categorical database. 

The table shows the first three substances in an 
“mRNA” sequence and its corresponding amino acid. 

Finding the optimal rule for classifying the amino 
acid gives us a clue to understand the relationship be- 

tween RNA patterns and amino acids. In this exam- 
ple, we can finally find rules such as “if Nl=U and 

N2=U then Phe," “if Nl=G and N2=G then Gly,” 

and SO forth. (Note that these rules are just examples. 
The relationship between RNA patterns and amino 
acids has already been investigated in the biology lit- 
erature.) The “mRNA” sequence is known to consist 
of four types of substance, denoted “U,” “C,” “A,” and 
“G.” Even if we only consider the first three substances, 
there are 43 permutations. Therefore, we have to ex- 

amine 264-1 possible binary segmentations in this case 
to find the optimal rule with respect to the types of 
amino acid. 

In general, if the conditional domain size is n, there 
are 2”-l - 1 possible binary segmentations. Hence, 
a naive exhaustive search for the optimal binary seg- 
mentation requires O(2n) time, which is not practical. 

Related Work 

For the case where the target domain size is two, i.e., 
k = 2, we can order the n values so that the optimal 
splitting is one “cut” of the ordered sequence, if we can 
assume convexity of the objective criterion [BFOS84] 
(and all of the mentioned criteria have such a prop- 

erty). Consequently, we have an O(n log n) algorithm. 
However, this algorithm is not applicable to cases in 

which the target domain size is greater than two. 

For huge categorical databases, in which the con- 
ditional domain size is large and k > 2 , there is no 
practical existing algorithm that can find the optimal 
association rule. Despite the difficulty, there are some 
heuristics for handling the problem [BFOS84, MP91, 
Cen92, Qui93] that are used in practice for construct- 
ing decision trees. 

A heuristics called “two-ing” [BFOS84] divides the 
target domain into two classes (called superclasses), 
and applies the O(n log n) algorithm for k = 2 to cre- 
ate the optimal subdivision for each of the 2”-l possi- 
ble divisions into superclasses, and finds the best one 
among them. This runs in 0(2”-‘n log n) time, which 

is efficient for a small k. 

Another heuristic called “value groups” [Qui93] 
greedily merges two conditional values from the con- 

ditional domain to reduce the conditional domain size 
to n - 1, so that the objective function is maximized 
(or minimized). It repeats this greedy merging process 
until n = 2 and finally returns the final two groups. 
This O(n3) heuristic can be used even if k is large. 

The above heuristics are known to be practical for 

constructing decision trees. However, neither of them 
has a guarantee on the optimality of the result. From 
the data mining point of view, our interest is not bi- 
nary segmentation itself but unexpected and impor- 
tant rules that significantly affect the value of a tar- 
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get attribute. In this sense, we want to find more, 
hopefully the most, significant rules. Therefore, it is 

important to generate the optimal or near-optimal as- 
sociation rules of the form “itemset V itemset V . . -” 

that affect a target attribute. 

Main Results 

In this paper, we propose two algorithms named the 
Random Algorithm and the Probing Algorithm, that 
we designed by using computational geometry tech- 
niques. The algorithms have the following features: 

l Both of the algorithms can feasibly compute 
nearly optimal tests for cases in which k is a small 

constant. The domain size n is allowed to be huge. 

l The Random Algorithm finds nearly optimal 
tests, using random sampling. The time complex- 

ity becomes O(S”-~~), where s(<< n) is the sam- 
ple size. Moreover, this algorithm can run with 
a small working space even if the target domain 
size becomes larger. 

l We can use the same geometrical interpretation of 
all possible tests as we presented in [FMMT96a, 

MFMT97], and translate those tests into points 
in a k-dimensional space. Then, we consider how 

to find a point on convex hull of all points in the 
k-dimensional space. We used the guided branch- 
and-bound search algorithm for finding the opti- 
mal region in [FMMT96a, MFMT97]. The total 

cost of the incremental convex hull maintenance 
and probing of the convex hull in the algorithm is 

O((n+mWI>~ f i we have m points and IPI facets 
on the convex hull. Although m and P can be 

asymptotically as large as nk-’ and ml*] respec- 
tively, in a pathological input, they are known to 
be much smaller in a normal input. Even so, the 
convex hull searching algorithm itself cannot be 

used within a working space of the size available 
in ordinary workstations, if k > 4. If we con- 
sider the binary segmentation problem for huge 
categorical databases, k often becomes larger and 

the number of possible tests may become huge. 
Therefore, we need significant improvement with 
respect to time and working space to make the 
algorithm feasible for the problem. 

The Probing Algorithm improves the hull main- 
tenance so that it works within a limited work- 
ing space, and we improve the searching strate- 
gies so that we can find nearly optimal tests in 

an earlier step of the algorithm. We can report 
the current best solution found so far at every in- 
cremental step of the algorithm, so that the solu- 
tion gradually converges to the optimal. In cases 

where a quick response is required, the Probing 

Algorithm can return the best test found in the’ 

required time, and is suitable for online applica- 
tions. 

We experimentally compare the performance of 
these algorithms. 

2 Optimization Problem of Binary 
Segment at ion 

2.1 Stamp Point 

For a segment S, let z;(S) be the number of data 
records in 5’ for which the value of the target attribute 
is ai. Thus, each segment S of the relation R can be 

mappedtoapointx(S) = (~l(S),z,(S),...,zk(S)) in 
the k-dimensional Euclidean space, which is referred to 
as a stamp point of S. A stamp point represents the 
distribution of the target attribute of interest, and our 
objective functions of binary segmentations, f(S; S), 
are defined in terms of x(S) or x(S). If a test T splits 
R into (S; S), we also refer to the stamp point of S as 
the stamp point of T (i.e., x(T) = x(S)). 

2.2 Criteria for Segmentation 

The significance of discovered rules depends on the 
user’s objective, and hence there is no universal crite- 

rion for measuring the significance of rules. A useful 
segmentation should divide data into segments whose 
target distribution is more skewed than that of the 
data as a whole. Therefore, we often use criteria such 
as the “gini index,” “entropy gain,” and “x2,” which 
indicate the extent to which the divided data distribu- 
tions differ from the original data distribution. 

In this subsection, we describe objective criteria 
commonly used for evaluating data segmentation and 
their corresponding functions, which are defined in 
terms of a stamp point of a binary segmentation. 

Gini Index (Mean Squared Error) 

The implication of this criterion is “how much the 

mean squared error of target values is decreased.” The 

optimal segmentation according to this criterion mini- 

mizes the mean squared error. It is defined as follows, 

where pi(S) = si(S)/lSl. 

Gini(x(S)) = Gini(S; s) 

= (1 - CLzm2) 
-/gj (1 - zL1Pi(s)2) 
-/y (1 - ce,Pi(5)2) 
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Entropy (Mutual Information) 

The entropy gain function compares the mutual infor- 

mation gained by a rule. 

x2 (Correlation) 

A segmentation with a high x2 value is significant, 

since the statistical hypothesis that “5’ and 3 are not 

different from R” is strongly denied. 

Chi(x(S)) = Chi(S; S) 

= 2 ISIMS) - Pow2 + ImPm - Pi(R))2 

i=l pi(R) 

Example 2.1 To illustrate our optimal rule, we con- 
sider binary segmentations of the following data using 
the “gini index.” In these data, a target attribute has 

three values, say al, a2, and as, and each value has 40, 
30, and 30 records, respectively. 

s al a2 a3 

100 40 30 30 

The gini index, Gini( of a certain dataset S with 
respect to a target attribute is defined as 

Gini = 1 - &$, 

j 

where pj is the relative frequency of the j-th target 
value in S. In this example, the gini index value is 

1 - (232 - (30)2 - (30)2 = 0 66 
100 100 100 . * 

Let us consider a binary segmentation that divides S 

into S1 and S2, containing nl and n2 records, respec- 
tively. The gini index value of the binary segmentation 

is defined as 

where 

Gini(S1; S2) = Gini 
- $$$WSl) - nl”;n2 Gi74S2) 

If we assume the following segmentation for the above 
example, the stamp point for the test is a point 
(40,10,10) in three-dimensional space, and the gini 
index value of the segmentation is 0.16. 

Let A = (61,&, . . . . &), Y = (A,x) = C,“=, &xi. 
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SI al a2 a3 S2 al a2 a3 

60 40 10 10 40 0 20 20 

Let us consider another segmentation: 

31 al a2 a3 S2 al a2 a3 

60 20 20 20 40 20 10 10 

In this case, the value of the gini function of the stamp 

point (20,20,20) is only 0.01. 

The optimal association rule for binary segmenta- 
tion with respect to the gini index is the one that splits 
data into two segments, say “Sl” and “S2,” such that 

Gini(S,; SZ) is maximized among all possible segmen- 
tations. 

2.3 Convexity of the objective functions 

If we consider objective functions that are defined in 
terms of a stamp point in k-dimensional Euclidean 
space, the following property can be used in search- 
ing for nearly optimal points and their corresponding 
tests. 

Definition 2.1 f(x) is convex if 

for 0 5 y 5 1 and arbitrary points x1 and x2 in the 
domain of f. 

Lemma 2.1 The gini index, entropy gain, and x2 are 

all convex functions on x. 

Proof: For any vector A # 0, the second derivative 
of the functions along with A is non-negative. 

We have shown this for Ent(x) in [MFMT97]. So let 
us first focus on proving inequality for Chi(S; S). Let 

s = (Sl , . ..sk) be the set of all records to be split, and 

let llxll = Cf=, Q. Let pi(R) = s~/~~s~~ and pi(S) = 
z;/llxll; then Chi(S; 3) is transformed as follows: 

Chi(S; ??) = C(x(S)) + C(x(R) - x(S)), 



and 

C”(X) 

where t = (S;‘, . . . , S,‘). Therefore Chi”(S; 3) 2 0. 

Next, for Gini(S;S), let pi(S) = ~i/llxll. It is 

transformed as follows: 

Gini(S; s) = Constant 

where 

G”(x) = & Cl”=,(f$ - $,” 2 0. 

Therefore, Gini”(S; 3) 2 0. 0 

Thanks to this property, the optimal point that 
gives the maximum value of an objective criterion must 

be on the convex hull of all stamp points in the Ic- 
dimensional space. The problem now becomes how to 
find the optimal points on the convex hull. 

In [FMMT96a, MFMT97], we used the guided 

branch-and-bound search for finding the optimal two- 
dimensional numeric association rule. The proposed 
algorithm efficiently finds the optimal point and its, 

corresponding rule. However, k may become larger, so 
that k > 4, when we consider the problem for huge cat- 
egorical databases like that in the “mRNA” sequence 
example. The space limitation does not permit use of 
the algorithm on ordinary workstations; we therefore 
present two feasible algorithms for finding nearly opti- 

mal rules for huge categorical databases, which present 

such a challenging problem in data mining. 

3 Algorithms 

3.1 Preparation 

Changing T, we will frequently compute stamp points 
x(T). If we scan the database relation R to find each 

stamp point, it will take 0(/R/) every time. To speed 

up this process, we preprocess the relation as follows. 

Among all possible tests, we call tests that consist 
of only one element finest tests and denote a finest 
test Tcnest. We can construct an arbitrary test for the 
categorical conditional attribute by making a union of 
the finest tests. 

We compute a stamp point x(T~,,,~) for each 
finest test beforehand. To find the stamp point of 
T, we simply need to sum up the points x(T) = 

c TfinestET x(T~,,,~), which will take O((TI) time, i.e., 

O(n). We also compute the stamp point of the entire 
relation x(R), since the stamp point of ,!? = R\S (com- 
plement of S) can be easily computed from x(S) = 

x(R) - x(S). 

Example 3.1 Suppose we are given a relation R with 
categorical attributes A and C. Let A be a target at- 
tribute, and C be a conditional attribute. The fol- 
lowing SQL query will count the number of tuples for 
each distinct value of A and value of C to generate the 
stamp points of finest tests: 

SELECT A, C, COUNT(*) FROM R 
GROUP BY A, C. 

-L--J 17 = zk({cn}) 

3.2 Random Algorithm 

To simplify explanation of the Random Algorithm, we 
assume that the target domain size k is 3. Let us 
consider the following data whose conditional domain 
size n is 4: 

1 Zg(A = as) ] 40 10 0 40 1 

For each stamp point x( {ci}) = (x1, x2, 2s) of the 

finest tests in three-dimensional space, we consider a 
projected point in two-dimensional space y = (~1 = 

Z~/(XI + x2 + zs), y2 = x2/(21 + x2 + x3)). Figure 1 
illustrates the two-dimensional space. A straight line 
L in this space splits the projected points y into two 
groups. Let us consider a test defined as the union of 
the finest tests that corresponds to the points in one 
of the two groups. 
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Figure 1: A segmentation in projected space 

Theorem 3.1 Tests defined by a straight line in the 
projected two-dimensional space correspond to stamp 
points that lie on the convex hull of all the stamp 
points in the original three-dimensional space. More- 
over, the optimal test is one of those tests. 

Proof: A straight line L : ayl + byz = c corresponds 

to a plane S : (a-c)zi +(b-c)zz -cc53 = 0 in the orig- 
inal three-dimensional space, which contains the ori- 
gin (O,O, 0). S splits the finest tests into two subsets. 
One subset contains finest tests whose inner products 
with the normal vector of S are non-negative, while 
the other subset contains negative finest tests. Let X 
be the set of all stamp points of tests. Summing up 
the finest tests with non-negative products generates 

a tangential point of the convex hull of X with a plane 
whose normal vector is the same as S’s normal vec- 
tor, i.e., 0 = (a - c, b - c, -c). Therefore, any line 
L has a corresponding point on the convex hull of X. 
Conversely, any point on the convex hull of X has a 
tangential plane S, and hence we can have a corre- 
sponding line L in the projected space. 

A broken line L in the Figure 1, which is 0 . 
yi + 1 . ys = 0.25, corresponds to a plane, say S, 

-0.25~1 + 0.7522 - 0.2523 = 0 in the original three- 
dimensional space. The plane S splits finest tests into 
two groups, {cl, cz, cs} that are non-negative and {cq} 
that is negative. (See also table in Section 3.3.1.) 
Stamp points, (60,50,50) and (30,10,40), that cor- 

respond to these groups are tangential points of the 
convex hull of all stamp points with a plane whose 
normal vector is 0 = (-0.25,0.75, -0.25). 

Theorem 2.1 proves that one of the points on the 
convex hull gives the optimal test. •I 

Therefore, we can concentrate on enumerating all 
the pairs of the projected points in order to find the 
optimal test. 

Algorithm 3.1 

(1) Project all points of finest tests to the two- 
dimensional space x I+ y 

(2) For each pair of projected points (y,, ya), 

(4 

(b) 
(cl 

(4 

Draw a line L = yayb corresponding to x, 
and xb. 

Initialize a stamp point of a test, p = 0 

For each projected point yi, let p = p + xi if 
xi I+ y; is in the upper halfplane associated 
with L. 

Evaluate p by means of an objective func- 
tion. 

Let n be a conditional domain size of C. Since one 
splitting is defined by two projected points of finest 
tests, and we have n points in this 2D space, there are 
O(n”) different pairs, and it will take O(n) time to ob- 
tain the coordinates of a stamp point of a test. There- 
fore, the time complexity of Algorithm 3.1 is O(n3). 
There is a way to improve this complexity to O(n2) 
by using a sophisticated computational geometry al- 
gorithm [AT94]. 

We can extend this approach to cases where the 
stamp points are in space with more than three di- 
mensions. Let lc be the target domain size, i.e., the di- 
mension of stamp points. We project the stamp points 
of finest tests in k-dimensional space to points y = 

h/IIxII~~2/llxIl~ . . . , xk-r/]]x]]) in (Ic-1)-dimensional 

space. The optimal segmentation will then be one of 
the splittings with a (Ic - 2)-dimensional plane in the 
(Ic - 1)-dimensional space. Since Ic - 1 points define one 
splitting and corresponding test, there are O(n”-‘) 
possible tests, and it takes O(n) time to compute a 
stamp point of a test. Hence the overall time com- 
plexity is O(n”), which is too costly for large li’s. 

To reduce the complexity, (1) we take s-sized ran- 

dom sample from n finest tests, (2) project those sam- 
ple stamp points to (Ic - 1)-dimensional space, and 
(3) apply the same algorithm on the sample. Thus, 
the time complexity of this randomized algorithm be- 
comes to O(&‘n), and can be further improved to 
O(ske2n). 

Performance Guarantee for the Random Algo- 

rithm 

As we have shown above, the optimal solution is given 
as a subdivision of stamp points by a hyperplane cut 
in (k - 1)-dimensional space. From the PAC learning 
theory, such a subdivision can be closely approximated 
by using a small number of samples. Let Y be the set of 
points in (k - 1)-dimensional space and 2 be a random 
sample from Y. We say that 2 is an e-net for a region 
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family if ] V n Y ] /]Y ] 5 e holds for every region V of 
the family satisfying V r-12 = 0. 

Suppose that the optimal subdivision S,,t is given 
by a hyperplane H,,,,. Let us consider the family 
of wedges bounded by Hopt and another hyperplane. 
This family of wedges defines at most O(n”) differ- 
ent subdivisions of n points (roughly speaking, the 
Vapnik-Chervonenkis dimension is k), and hence it is 
known [HW87, BEHW89] that a random sample of 
size 

s(e) = e-l max{6klog(16ke-1),410g(26-1)} 

is an c-net with a probability of at least 1 - 6. Note 
that S(E) is independent of n = ]Y]. 

Let us take a sample that is an c-net for our 
wedges, and let Ssample be the segmentation obtained 
by a sample maximizing the objective function (e.g., 
gini) F. There exists a subdivision SL,,,+, obtained 

by the sample such that the edge bounded by HOpt 

and xwnple (the hyperplane associated with S&& 
contains no sample point. Since our sample is an 
c-net, the set difference between the segmentations 

Kwnple and swt contains at most en points. By def- 
inition, F(x(Ssample)) 2 F(x(S~,,,,,)), and hence 

F(~(Ssam~te )) has a guaranteed performance. For ex- 
ample, we can show that 

Gini(x(S,,,)) - Gini(x(S,,+,)) 5 26 + ae2 

where Q: = ]R](]SOrt]-’ + ]$,,t]-‘). Since we do not 
want to find a subdivision with a very large a’, this is 
a good approximation if e is small. We can use the 
theory on e-approximation for k-labeled space given 
by Hasegawa et al [HI1951 to avoid introducing cr into 

the analysis. Theoretically, if we want to make c = 
0.01, ~(0.01) = 600klog(1600k), which is very large. 

However, the theoretical bound is very pessimistic, and 
a much smaller sample is sufficient, as we will show by 

experiment later. 

3.3 Probing Algorithm 

3.3.1 Hand Probing for Categorical Tests 

The Probing Algorithm also searches for stamp points 
(tests) that lie on a convex hull. A method of com- 

puting a point on a convex hull and its corresponding 
test without knowing the coordinates of the point is 

called hand probing in the field of computational ge- 
ometry [DEY86]. Geometrically, hand probing in a k- 
dimensional space means computing a tangential point 
of a (k- 1)-dimensional hyperplane and the convex hull 

of all stamp points. 
A (k- 1)-dimensional hyperplane in a k-dimensional 

space can be characterized by using a normal vector 
0 = (t&,65,.. .,O,) as (0,x) = a, where (0,x) = 

Figure 2: Hand Probing in 3D Space 

4x1 +e2x2 +-.. + 8kxk and a is a constant. A hy- 
perplane with the 0 touches to the convex hull of all 
stamp points. We can compute the tangential point p 
of the hyperplane and the convex hull by maximizing 
(or minimizing) the inner product (0, p). 

Let us consider once again the example used in Sec- 
tion 3.2. The tangential point of a hyperplane with 
a normal vector 0 = (-0.25,0.75, -0.25) maximizes 
(or minimizes) the inner product (0,x) = -0.25~~ + 

0.7522 - 0.25~3. We compute the inner product (0, x) 
for each value of cl, . . . , Q. 

The test corresponding to the hand probing is the 
union of those terms whose inner product is non- 
negative (resp. negative). The coordinates of the 

test (tangential point) can be obtained by summing 
up the coordinates of those terms. In this example, 

C = cl V c2 V c3 (resp. C = cd) is the test, and the 
tangential point is (60,50,50) (resp. (30,10,40)). Fig- 
ure 2 illustrates the hand probing. 

The time complexity of the hand probing used to 

compute the stamp point that maximizes (0,~) is 
O(n), where n is the conditional domain size. 

3.3.2 Convex Hull Searching 

We can compute stamp points on the convex hull by 
hand probing. Now, let us consider how to find nearly 
optimal points by hand probing. 

First of all, we compute k different tests and 2k 
corresponding stamp points by hand probing using 
several vectors. Empirically, a vector Oi,,it satisfy- 
ing (&it, x(R)) = 0 finds a decent point with respect 
to a convex criterion. (The line containing the origin 
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and x(R) is the central line of the convex hull, and 

a hyperplane whose normal vector is Oinit is parallel 
to the line.) Therefore, we include such vectors in the 
initial set of vectors. We can make an initial convex 

polygon, which consists of 2” facets using the initial 
2k points, inside the convex hull of all stamp points. 
(Strictly speaking, we may not be able to find k inde- 

pendent points in a k-dimensional space by any hand 
probing. In this case, we have to projects all points 
into a (k - 1)-dimensional space.) 

The guided branch-and-bound search method 
[FMMT96a, MFMT97] efficiently finds the optimal 
point on the hull from the initial convex polygon inside 
the hull by repeating the following polygon expansion 
procedure, when k is small enough to allow sufficient 
working space. 

Algorithm 3.2 

for each facet in set of valid facets 
on convex polygon 

do { 
(1) Compute a normal vector 0 of the facet. 

(21 Compute a new point x 
by hand probing with 0. 

if(new point x is found outside the facet) 
then{ 

if(the new point exceeds the best) 

;.i; 
then Update the best point. 

Construct new facets by using x. 

(5) Input those new facets 
to the set of valid facets. 

} else { 

(6) Invalidate the facet. 

1 

) 

Throughout the above recursions, we use the 
“beneath-beyond” method [PS85] introduced by 
Kallay, to maintain the convexity of the polygon. 

If we maintain all the tangent planes of each hand 
probing, we can compute the value of the upper bound 

of each facet if the objective criterion is convex. In 
the guided branch-and-bound search, we use the up- 
per bound value to prune facets and also to maintain 
a priority queue of facets to be expanded. The priority 
queue only maintains facets that have not been pruned 
and we call them valid facets. The authors applied this 
strategy to find two-dimensional numeric association 
rules for which the cost of each hand probing is expen- 

sive [MFMT97] and the target domain size is small 
such that lc = 2,3,4. However, the cost, with respect 
to both time and working space, of maintaining facets 
with the priority queue is not affordable for the prob- 
lem of huge categorical databases in which the cost of 

Figure 3: Initial Facets in 3D Space 

each hand probing is low and the target domain size 
may not be small. Therefore, we need to eliminate a 
significant quantity of facets and use another heuristic 
for ordering them. 

In the Probing Algorithm, we predefine the size of 

the working space that is used to maintain facets with 
a queue, and the algorithm maintains only facets that 
can be stored by the limited working space. For the ini- 
tial convex polygon, we maintain only the facets that 
contain the best of k points. Figure 3 shows an ex- 
ample of an initial set of facets in a three-dimensional 
space. If x1 is the best point, four facets, ~1~2x3, 

s, m, and ~1~2x3, are selected as an ini- 
tial set. If the working space does not allow these 
initial facets to be maintained, we randomly choose 

facets to be maintained. 
After obtaining an initial set of facets, the Prob- 

ing Algorithm maintains a facet queue with a skip list 
structure. The skip list is maintained by using the 
following heuristics. 

l Facets that contain the best point so far are ex- 
amined earlier. 

. Facets that contain points that have nearly 
best value so far are also examined earlier. 

the 

We empirically find that stamp points 
whose value of an objective criterion 

exceed the best value tend to lie near 
the best point or near the points that 
have nearly the best value. The above 
heuristics contribute to find (nearly) 
optimal result in an earlier step of the 

algorithm. 

b If the working space available in which to add new 
facets is running out, only facets that satisfy the 
above conditions are added. 
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The Probing Algorithm can run with 
much smaller working space com- 

pared with the guided branch-and- 
bound search by giving up the main- 

tenance of the tangent planes of each 
hand probing. However, for the prob- 
lem of larger target domain size, we 
need some limitations of the working 

space to make the Probing Algorithm 
feasible. Therefore, we prefer facets 

that lie near the best point or near the 
points that have nearly the best value, 

where stamp points that exceed the cur- 
rent best value tend to lie. 

l If the distance between a facet and a new point 
that has been hand probed by the normal vector 

of the facet is smaller than a certain threshold, 
the facet is pruned away. 

For the problem of large target domain 

size, we sometimes suffer from overflow 
and underflow error caused by floating 
point operations. To prevent the prob- 
lem, we should avoid too fine expan- 
sion of the convex polygon using the 
threshold value. This heuristics also 

contribute to speed up the searching. 

Though the running time of the Probing Algorithm 

is still substantial, it can find nearly optimal points 
in a period much shorter than the expected running 
time, and can return the intermediate (but optimal or 
nearly optimal) test interactively. 

Both of the Random and the Probing Algorithm 
search for points on the convex hull of all stamp points. 

The Random Algorithm searches points on the hull 
using sample points corrected at random from stamp 
points of finest tests, while the Probing Algorithm 
maintains facets and points that have been found so 
far and makes the most of those for finding new points. 

4 Experiments 

We implemented the proposed algorithms and per- 
formed several experiments to evaluate their perfor- 
mance. All experiments were performed on an IBM 
RS/SOOO workstation consisting of a POWER2 pro- 
cessor running at 66 MHz with 2 MB of L2 cache and 

256 MB of real memory. 
In this experiment, we generated synthetic data 

with n = 1000 (conditional domain size) and various 
values of k: (target domain size) to simulate a huge 
categorical database. Each type of dataset has 10,000 
tuples and two categorical attributes, C and A. The 
conditional attribute C takes cl, . . . , cn distinct val- 
ues. The target attribute A takes al,. . . , ok distinct 
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Figure 4: Performance of the Random Algorithm 
(n = 1000) 

values. For each tuple of the synthetic data, we ran- 
domly and independently assign a value of C and a 
value of A. For the purposes of comparison, we use 
the “two-ing” method, in addition to our methods, to 
compute a binary segmentation. 

Random Algorithm 

To support our claim that the Random Algorithm can 
find a nearly optimal test by using a small sample, we 
performed the following experiments. 

Figure 4 shows relationship between the execution 
time for a single run and the improvement in the gini 
index gained by a test obtained by the Random Al- 
gorithm for various sample sizes. The conditional do- 

main size n is 1,000, and the target domain size k is 4 
and 6. The numbers in the graph represent the sam- 
ple sizes. Each error-bar (vertical line) indicates the 
range between the best and worst result of 32 runs for 

each sample size. The results of the 32 runs distribute 
in the range, and each point on the range shows the 
average value of these results. 

The “two-ing” method deterministically computes 
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a test for each problem. Each diamond mark in the 
figures indicates the time taken to compute the test 
and the improvement in the gini index by the “two 
ing” method. We draw a horizontal broken line for 
each diamond mark to compare our algorithms with 
the “two-ing” method easily. Though the “two-ing” 
gives the optimal test of a certain superclass obtained 
by grouping k classes, the heuristic is known to find a 
relatively good approximated test. 

From this experiment, we can see that the Random 
Algorithm generates a result of satisfactory quality 

within a practical time when the sample size is around 

20. And notice that the best result of the 32 runs is 
better than the result of the “two-ing” method even if 
we use a small sample size. The CPU time taken for 

a single run is almost proportional to 
( > kL . 

When k: becomes larger, we have to use a small sam- 
ple size s so that the algorithm can terminate in a prac- 
tical amount of time. However, a small sample often 

gives low-quality results. To overcome this problem, 
we run this algorithm with a small sample a number 

of times, and take the best result. Figure 5 shows the 
relationship between the execution time for 32 runs 
and the best improvement in the gini index of 32 runs 
when k = 8 and 10. 

The Random Algorithm achieved better or compa- 
rable results with small sample by 32 runs. Those 
multiple trials can be executed independently. There- 

fore, we can expect more better results if we can use 
parallel environment. 

Probing Algorithm 

To examine the Probing Algorithm, we performed sev- 
eral experiments using the same synthetic data that 
was used for the Random Algorithm. 

Figures 6 show the extent to which the gini index 

value is improved by the Probing Algorithm, along 
with the time taken in seconds. Thanks to the heuris- 
tics for maintaining the skip list, we can observe that 

when the Probing Algorithm find a better result, it 
often find more better result within a short period of 

time. As a result, the Probing Algorithm can find 
nearly optimal tests much earlier than the time of 

its termination. Such nearly optimal tests, which are 
much more better than the result of the “two-ing” 
method’s, are satisfactory for most of applications. So 
the Probing Algorithm returns the intermediate re- 
sults in practical time. 

One defect of the Probing Algorithm is its required 
working space when k becomes large. However, it can 
find satisfactory results by the time when its working 
space becomes large. In the experiment for k = 10, 

working space of the Probing Algorithm is less than 64 
MB when the best result in the graph was obtained. 
In these experiments, we limited the working space of 
the Probing Algorithm to 130 MB. 

The results of the experiments show that both the 

Random Algorithm and the Probing Algorithm find 
a better test than the “two-ing” method in a practical 
time and feasible. 

We consider the binary segmentation problem for 
cases in which the target domain size, A, is a small 
constant. However, k may become large. Both the 
Random and the Probing Algorithm will suffer from 

large k. In such cases, we have to group k values into 
smaller distinct values. 

5 Concluding Remarks 

We propose two geometric algorithms for finding asso- 
ciation rules that make nearly optimal binary segmen- 
tations of a huge categorical database. We can use the 
“gini index,” “entropy,” or “x2” as an objective crite- 

rion, which indicates the extent to which the values of 
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Figure 6: Performance of the Probing Algorithm 
(n = 1000) 

a target attribute are skewed from the original distri- 

bution. Rules that indicate nearly optimal values of 

these criteria provide us with a clue to understanding 
the target attribute. 

Though complexities are O(S”-~~) for the Random 

Algorithm and O((n + m)]P]) for the Probing Algo- 
rithm, we make them practical by randomization and 
strategic facet maintenance. Diverse experiments con- 
firmed that the algorithms could find nearly optimal 

tests within a practical computation time. The quality 
of the results obtained for various samples by the Ran- 

dom Algorithm differs dramatically if we use a smaller 
sample size. Therefore, multiple trials are needed to 

obtain better rules. Those trials are executed indepen- 
dently and in parallel; thus, the Random Algorithm is 
suitable for a parallel environment. On the other hand, 
the quality of the Probing Algorithm becomes stable 
after a certain amount of execution time. However, 
it requires a large working space. Since the available 
memory size is becoming larger and larger, the applica- 
bility of the Probing Algorithm seems to be promising. 

Let us consider once again the “RNA” example, and 
assume that we do not know which subset of the RNA 
sequence most strongly affects a target character of in- 
terest. We can project several subsets of the sequence 
as categorical databases and examine the impact of 
each subset by using the presented algorithms. Then, 

we can find a subset of the sequence that significantly 
affects the target character, and carry out a further 
investigation of the RNA sequence, using the subset. 
In the further investigation, the presented algorithms 
can also be used as powerful mining tools. 
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