
 Open access  Journal Article  DOI:10.1109/JCN.2017.000081

Algorithms for network-aware application component placement for cloud resource
allocation — Source link 

Maryam Barshan, Hendrik Moens, Steven Latre, Bruno Volckaert ...+1 more authors

Institutions: Ghent University, University of Antwerp

Published on: 01 Dec 2017 - Journal of Communications and Networks (������)

Topics: Cloud management, Cloud computing, Server, Resource allocation and Scalability

Related papers:

 Multi-objective Optimizations during Parallel Processing in a Dynamic Heterogeneous Cloud Environment

 A Parallel Heuristic Scheduler for Cloud Computing Environment

 Efficient heuristics for placing large-scale distributed applications on multiple clouds

 Compact, Popularity-Aware and Adaptive Hybrid Data Placement Schemes for Heterogeneous Cloud Storage

 A Heuristic Load Balancing Algorithm for Cloud Computing in Heterogeneous Resource Environment

Share this paper:    

View more about this paper here: https://typeset.io/papers/algorithms-for-network-aware-application-component-placement-
4v239ot4nm

https://typeset.io/
https://www.doi.org/10.1109/JCN.2017.000081
https://typeset.io/papers/algorithms-for-network-aware-application-component-placement-4v239ot4nm
https://typeset.io/authors/maryam-barshan-5180rur9eo
https://typeset.io/authors/hendrik-moens-iyl86mtg3n
https://typeset.io/authors/steven-latre-rfdytlqfpp
https://typeset.io/authors/bruno-volckaert-3irzhhctxn
https://typeset.io/institutions/ghent-university-14limu0t
https://typeset.io/institutions/university-of-antwerp-2gqodjhv
https://typeset.io/journals/journal-of-communications-and-networks-rcnp2lh7
https://typeset.io/topics/cloud-management-sfeatv3p
https://typeset.io/topics/cloud-computing-23j8n0mk
https://typeset.io/topics/server-10sn6dgt
https://typeset.io/topics/resource-allocation-3696qy02
https://typeset.io/topics/scalability-239v0xhx
https://typeset.io/papers/multi-objective-optimizations-during-parallel-processing-in-493i518y95
https://typeset.io/papers/a-parallel-heuristic-scheduler-for-cloud-computing-u5ndp69ymy
https://typeset.io/papers/efficient-heuristics-for-placing-large-scale-distributed-83eytl0oza
https://typeset.io/papers/compact-popularity-aware-and-adaptive-hybrid-data-placement-4psgfkgdt8
https://typeset.io/papers/a-heuristic-load-balancing-algorithm-for-cloud-computing-in-3p4jii7775
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/algorithms-for-network-aware-application-component-placement-4v239ot4nm
https://twitter.com/intent/tweet?text=Algorithms%20for%20network-aware%20application%20component%20placement%20for%20cloud%20resource%20allocation&url=https://typeset.io/papers/algorithms-for-network-aware-application-component-placement-4v239ot4nm
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/algorithms-for-network-aware-application-component-placement-4v239ot4nm
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/algorithms-for-network-aware-application-component-placement-4v239ot4nm
https://typeset.io/papers/algorithms-for-network-aware-application-component-placement-4v239ot4nm


Algorithms for Network-Aware Application

Component Placement for Cloud Resource

Allocation

Maryam Barshan1, Hendrik Moens1, Steven Latré2, Bruno Volckaert1 and Filip De Turck1

1Department of Information Technology, Ghent University – iMinds

Gaston Crommenlaan 8/201, B-9050 Gent, Belgium
2Department of Mathematics and Computer Science, University of Antwerp – iMinds

Middelheimlaan 1, 2020 Antwerpen, Belgium

Email: maryam.barshan@intec.ugent.be

Abstract—Due to the soaring popularity of cloud-based services
over the last years, the size and the complexity of cloud
environments has been growing quickly. In the context of
cloud systems, mapping a number of application components
to a set of physical servers and assigning cloud resources to
those components is challenging. Traditional resource allocation
systems which rely on a centralized management paradigm suffer
from scalability issues, making them inappropriate for large-scale
cloud environments. Therefore, there is a need for providing
new management solutions that scale well to large size cloud
systems. In this article, we present optimal and heuristic solutions
for network-aware placement of multi-component applications
with differing component characteristics. The optimal ILP-based
solution minimizes the application rejection rate and the cost of
mapping while respecting application component requirements
and physical network limitations. As the execution time of the op-
timal model scales exponentially, we also offer scalable heuristic
solutions for centralized and hierarchical application placement,
which are thoroughly explained and evaluated and compared
to the optimal solution. Our evaluations show that while the
proposed centralized heuristic is near-optimal, the hierarchical
approach is much faster and offers higher scalability compared
to a centralized approach, e.g. mapping 2.7 million application
components onto 512k servers. Moreover, the percentage of
servers used and fully placed applications remain close to that
of the centralized and optimal solutions.

Index Terms—cloud management, application placement, op-
timization, hierarchical management system, scalability.

I. INTRODUCTION

Cloud computing has emerged as a powerful paradigm

which has revolutionized the way in which computing in-

frastructures are used. Elasticity and on demand services are

the main characteristics which make these computing infras-

tructures appealing. Nowadays many companies make use of

cloud technologies to reduce costs, increase flexibility and to

respond faster to customer needs. Although the benefits of

cloud systems are considerable, numerous challenges remain,

among them, effective supervision of resource usage, scala-

bility and in particular resource allocation to the applications.

The application placement refers to the act of deciding where

on the clusters of servers, applications are placed [1].

The initial placement policy used to map applications onto

physical servers has important effects in terms of application

performance and resource efficiency, and making a suitable

initial decision is essential to reduce the future need for

migrations. In literature, most efforts have been directed

towards optimizing the usage of CPU, memory and disk

resources, and reducing the energy consumption of physical

servers. According to [2], however, there has been a drastic

increase in the amount of data generated and consumed by

each application. Thus, resource allocation methods have to

expand and take into account this growing focus on data.

Inappropriate placement of application components with heavy

communication requirements could lead to the saturation of

certain network links, with subsequent negative impact on

applications, e.g. slow response or execution times.

Cloud-based applications often consist of multiple interact-

ing components with differing requirements. While some com-

ponents may consist of high CPU intensive tasks, requiring

powerful computational servers, others may deal with large

volumes of data, making servers tailored to data-throughput

more appropriate for such components. In order to offer an

efficient placement service, different requirements of applica-

tion components should be taken into account in deciding on

where to deploy application components.

In order to address this problem of network-aware ap-

plication placement in cloud environments, in this article,

we first introduce a centralized ILP-based optimal model.

The main objective is maximizing the percentage of mapped

applications while taking the cost of application mapping

into account. In our proposed approach, we deal with multi-

component applications with multiple component types. The

interdependence among application components implies that

either the entire application or none of the application com-

ponents are mapped. This is known as the full deployment

placement constraint [3]. Therefore, a mapped application is

an application for which all components are successfully allo-

cated. Moreover, due to the characteristics of our applications,

in order to have deterministic performance and for security

reasons we have made a distinction between different types of

application components. Each pair of application components
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Fig. 1: The process of application component placement with

the anti-collection placement requirement. Redundant compo-

nents are not allowed to be allocated on the same host as

non-redundant components.

may either be allowed to share a hardware resource or not.

This isolation of component types can be modeled as an

anti-collocation placement constraint [3]. In our approach, the

anti-collocation constraint implies that different component

types are not allowed to be placed onto the same servers.

We achieve this by ensuring that each server is only allowed

to place one type of application component. It should be

noted that these constraints can be applied to a wider range

of generic problems, such as multi-tenant applications with a

strong focus on data security (banking, insurance, etc.) or anti-

collocation of redundant components for increased reliability

and fault tolerance purposes. Figure 1 shows an example of a

reliable application component placement onto a small cluster

of cloud servers. As illustrated in this figure, each application

component and its redundant version must be mapped onto

two different physical servers.

Due to the NP-hardness of the problem [4], [5], [6] and

limited scalability of the optimal model, we also propose

an approximate centralized heuristic as well as a hierarchi-

cal approach for large-scale cloud environments with the

following design goals: scalability and performance. While

centralized approaches are omniscient in nature and can make

better placement decisions, our hierarchical solution has been

designed in such a way that component placement optimality

is nearing that of the centralized heuristic approach. Also,

the proposed hierarchical algorithm executes faster as each

management cluster maintains a partial view of the network.

In this article, we will prove that the resource allocation

process is scalable both in number of cloud servers (e.g.

512k servers) and the number of application components (2.7

million application components) needing to be placed onto the

cloud servers. Furthermore, as part of our presented approach

an application placement policy, prioritizing local deployment

is taken into account for each administrative domain. This

partial solution also tries to minimize the number of servers

used within each administrative domain. This feature, known

as server consolidation, is mostly effective in reducing the

power consumption of large-scale datacenters [7].

In the context of modern cloud platforms, the application

placement process consists of placing the application’s compo-

nents in a set of VMs (Virtual Machines) and deploying these

to the physical infrastructure [8], [9], [10], [11]. In this article,

we assume that the components are already encapsulated

in VMs or (micro-service) containers, and the application

component placement decides on where to place these VMs

on the available physical servers, taking network demands

between the VMs into account.

The rest of the article is organized as follows. In Sec-

tion II, the related work is discussed. Section III describes

the architecture for our distributed approach to network-

aware application placement for large-scale cloud datacenters.

In Section IV, the formulation of the ILP-based model is

presented in detail. In Section V the proposed algorithms

are extensively discussed, followed by an evaluation of the

proposed algorithms in Section VI. Finally in Section VII, we

sum up our contribution and conclude the article.

II. RELATED WORK

Recently many different approaches for application place-

ment and cloud resource allocation have been proposed [12],

each focusing on different aspects of the problem. While many

approaches such as [10], [13], [14], [15] and [16] rely on

centralized approaches which suffer in term of scalability, [17]

offers a distributed protocol in order to design a resource

management middleware. However, their solution is different

as interaction between application components is ignored

and there is no global overview of system states for the

network administrators. Authors in [18] also focus on resource

allocation in IaaS clouds. Nevertheless, the main contribution

of this paper is maximizing resource utilization and request

acceptance rate. Another work, [19], clarifies the definition of

distributed cloud and the challenges of resource allocation on

distributed clouds.

The authors in [20] have made a discussion and categorized

the VM placement schemes into resource-aware, power-aware,

cost-aware and network-aware. Network-aware approaches,

such as [21], [22], [23], [24], [25], try to reduce traffic related

issues or avoid congestion and in general, VMs make use of

network either to communicate with each other or to access

the required data from storage components. However, none of

these approaches take into consideration the anti-collocation

requirement of VMs. On the other hand, deployment of VMs

under placement constraints have been investigated in [3], [26]

and [27]. Shi et. al. [3], [26] focus on different VM placement

constraints, e.g. full deployment, anti-collocation, security, etc.

and Breitgand et. al. [27] study SLA compliant placement of

multi-VM elastic services under the anti-collocation placement

constraints. However, these approaches do not take network

demands between the VMs into account.

The model defined in this article has similarity with [4] that

describes a linear application placement model and [28] which

offers a cost-aware algorithm. Nevertheless, these approaches

work at the application level, contrary to our component-

level application modeling policy where we make a distinction



between different component types. In addition, based on the

definition of “the best-fit placement” in [4], our centralized

heuristic solution follows the same rule, which is finding

a feasible server whose residual capacity is minimal. Nev-

ertheless, it differs from our approach as it is centralized

and not network-aware. Many other application placement

approaches [29], [13], [30], [31] also focus on placing a set

of independent applications, and do not take the underlying

network into account. These approaches do not provide a

guaranteed quality of communication between individual in-

teracting components due to potential contention of network

resources [12]. In order to mitigate the effect of this risk,

network-aware solutions have recently been proposed. Authors

in [32] pay special attention to time varying nature of traffic

demand and dynamic routing capabilities for medium size

data centers. Jiang et al. [33] focus on a multi-path routing

scheme and live migration. Incorporation of various network

functions has been studied in [34]. While these network-aware

approaches only focus on network congestion or minimizing

network traffic, we explicitly take both network capacity and

delay requirements of applications into account in our for-

mulation as QoS constraints. Among the other network-aware

approaches which also take both requirements into account, we

refer to [10], [35], [36], [37], [38] that are centralized and [39]

which specifically focus on geo-distributed clouds.

According to [12], while most of the existing application

mapping solutions focus on centralized systems, only 11.5%

of approaches, including [40], [41], [42], [43] and [44], use

hierarchical control schemes and one of those approaches [45]

takes network constraints into account. However, their hierar-

chical approach is not related to their management system but

instead it is related to their placement process.

This article is related to our previous work on hierarchical

cloud resource management [46], [47]. In [46] the underlying

network was however not taken into account, while this work

specifically focuses on network-aware management of multi-

tier interactive applications. [47] does take the underlying

network into account, but does not make a distinction between

different component types. In this article we however make

a distinction between multiple component types, taking their

requirements and characteristics into account during the place-

ment decision. In addition, this article presents much larger

scale evaluations.

This work is the extension of our previous work [48]

and [49]. In [48], we presented an optimal ILP-based solution

which offers limited scalability, making it only suitable for

small datacenters. This optimal solution is also useful for

benchmarking real-time heuristic algorithms. In [49], a de-

centralized algorithm was designed and evaluated which can

be applied to large-scale cloud environments. In this article,

we have updated the ILP-based model in 3 ways. First, the

model has been generalized to support arbitrary numbers of

component types as it was previously limited to two different

component types. Secondly, in the previous version, a feasible

solution was reached only when all the applications have been

mapped. The model has now been extended to incorporate

an application mapping failure rate, which penalizes failures

of mapping applications, but allows finding solutions when

otherwise no feasible solution would be possible. Finally, the

main objective has been altered to minimize the application

mapping failure rate in addition to the cost of application

mapping. Our evaluations have also been extended to be more

comprehensive.

Generally, what distinguishes our method from other

approaches is the combination of the following: 1) our solution

is network-aware, decentralized and scalable; 2) application

modeling is component-based with different types, and

interaction between those components affects the placement

process; 3) SLA agreements and the properties of underlying

network, bandwidth and delay, are respected; 4) anti-

collocation placement constraints are defined, based on which

multiple but same-type components can be placed onto a

single physical node; and 5) our method minimizes the number

of servers used while respecting application requirements.

III. MODELING OF A LARGE-SCALE CLOUD ENVIRONMENT

The model for the proposed large-scale algorithm can be

divided into three parts: the physical cloud system, the man-

agement plane model and the application model.

Physical cloud system model: In literature, several new

topologies have been proposed for future cloud-based envi-

ronments, such as Jellyfish [50], Dcell [51], etc. Nevertheless,

tree-based topologies are still dominant in the existing oper-

ational cloud datacenters [52], [53]. Although our proposed

approach is not limited to the type of network topologies, in

this work the physical cloud system is considered a hierarchi-

cal tree topology, which is common in modern data centers. As

application components of different types can not be mapped

onto the same server in our proposed approach, each server

has different responsibility and provides specific functionality.

Management plane model: The management plane relies

on multi-layered hierarchical architecture in which three types

of managers are defined: LLM (Low Level Manager), MLM

(Mid Level Manager) and RLM (Root Level Manager). The

LLMs are located in the lowest level of the management

hierarchy, the RLM in the top level and MLMs in middle ones.

LLMs directly deal with physical servers and are responsible

for mapping application components onto physical servers.

MLMs manage several LLMs and have the authority to chose

the current active LLM, which has to take the responsibility of

mapping new application components. RLMs have the general

overview of the cloud management systems. In multi-domain

cloud environments, RLMs can communicate with other do-

mains if the need arises. The management plane specifications

are shown in Table I. The number of management levels (|ML|)

and the number of supported servers (|SS|) for each LLM

are taken and the branch factor of each tier (µ) is calculated

for each management domain. In addition, the number of

supported servers and the number of levels determine the

number of LLMs. By calculating the level branch factor the

number of MLMs can be achieved as follows.



TABLE I: The Management plane parameters.

Parameter Description

|LLM | ∈ N
+ Number of LLMs.

|MLM | ∈ N
0 Number of MLMs.

|RLM | ∈ N
0 Number of RLMs.

|SS| ∈ N
+ Number of supported servers for each LLM.

|ML| ∈ N
+ Number of management levels.

µ ∈ N
+ Management level branch factor.

µ = |ML|−1

√

|LLM | (1)

|LLM | = ⌈|S|/|SS|⌉ (2)

|MLM | =

|ML|−2
∑

level=1

µ((|ML|−1)−level) (3)

An example of a physical cloud system and how this maps

to its management plane is illustrated in Figure 2. In each

administrative domain different servers are chosen as default

servers for different component types.
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Fig. 2: The architecture of physical infrastructure and the

management plane (LLM: Low Level Manager, MLM: Mid

Level Manager, RLM: Root Level Manager).

Application model: In this article, the architecture of the

applications is service oriented, meaning applications can be

represented as a service graph and the application topology

is a graph. Although an arbitrary number of application

component types can be supported by our approach, we focus

on two component types in our evaluations: database (e.g.

data sources, data stores) and computational (e.g. application

business logic or user interfaces) components. Database com-

ponents store and manage data and are more storage intensive,

whereas computational components are more CPU intensive.

The application database and computational components are

the nodes and connections between these components form

the directed links of the application graph. Each application

component requires a specific number of data sources, CPU

power, memory and storage, etc. and the storage demand of

database components is much higher than their CPU/memory

demand, whereas for logic components, power of CPU is of

the highest demand. In our model,maximum allowed delay

and bandwidth requirements are defined for application links,

which need to be satisfied as well.

IV. FORMAL ILP-BASED PROBLEM FORMULATION

A. Introduction to the model

We first present a formal model for application component

placement for cloud resource allocation. In this model the

substrate network is considered as an undirected graph and

the application network as a directed graph due to inter-

dependencies between different components. The parameters

of the physical network graph and application network and

their descriptions are listed in Table II. Both infrastructures

consist of nodes (N) and links (L). In this context, application

links refer to the connections between application components

with certain demands that need to be met. Nodes in substrate

graph (u ∈ Nph) have specific properties such as data storage

capacity (Su), CPU power capacity (Cu) and memory capacity

(Mu). Physical links (euv ∈ Lph) can be either LAN or

WAN link and this is determined by a binary variable, typeeuv

in which 0 refers to the LAN and 1 refers to the WAN

links. We made this distinction because WAN links cost more

than LAN links. Each link has delay (Deuv
) and bandwidth

capacity (BWeuv
) properties. It has to be noted that the

physical network resource capacities are residual capacities,

considering the previous mappings. As we aim to minimize

the cost of mapping applications onto cloud resources, the

general cost of physical nodes and links as well as cost of

using each unit of CPU, memory, storage and link capacity

has been taken into account.

Similarly, each application has been considered as a work-

flow, consisting of multiple components and links between

those components form a directed weighted graph. In the

application network, ai refers to the component i of appli-

cation a with specific computational (cai), storage (sai) and

memory (mai) requirements and eaij refers to the link between

component i and j of application a with specified bandwidth

(bweaij
) and maximum allowed delay (deaij

) demands. Differ-

ent component types are collected in Stype and γt
ai is a binary

input variable which indicates whether or not ai is of type t.

B. Decision variables

Seven decision variables have been defined in this ILP

model and all variables are binary. First, xai
u shows the

accomplished mapping between component i of application

a and physical node u, regardless of the type of component.

It has to be noted that this variable is equal to 0 in two states,

either when due to limitations there is no possibility to have

a mapping between nodes or when physical node x is not

chosen for the mapping although it was possible. Next, f
eaij
euv



TABLE II: Symbols and notations used in the formal model.

Physical cloud-based infrastructure parameters

Variable Description

Gph Physical Graph, Gph =
(

Nph, Lph

)

Nph Physical nodes set in Gph

Lph Physical links set in Gph

Su ∈ N+ Available storage capacity of physical node u.

Mu ∈ N+ Available memory capacity of physical node u.

Cu ∈ N+ Available CPU capacity of physical node u

Deuv ∈ N+ Delay of physical link euv.

BWeuv ∈ N+ Bandwidth capacity of physical link euv.
typeeuv ∈ {0, 1} whether Phy. link euv is a LAN or WAN link

Ccostu ∈ N+ Cost of each CPU unit of physical node u.

Mcostu ∈ N+ Cost of each memory unit of physical node u.

Scostu ∈ N+ Cost of each storage unit of physical node u.

BWcosteuv ∈ N+ Cost of each BW unit of physical link euv.

fcostu ∈ N+ The fixed cost of using physical node u.

fcosteuv ∈ N+ The fixed cost of using physical link euv.

Component-based application parameters

Variable Description

Gapp Application graph, Gapp = {a|a = (Na, La)}
AppNo Number of applications.
CompNoa Number of components of application a.
Stype Set of types of application components.
ai ∈ Na Component i of application a.

γt
ai ∈ [0, 1] has value 1 if ai is of type t.

cai ∈ N+ Computation demand of application a, comp. i.

sai ∈ N+ Storage demand of application a, comp. i.

mai ∈ N+ Memory demand of application a, comp. i.
eaij ∈ La Link between comp. i and j of application a.

bweaij
∈ N+ Bandwidth demand of link eaij .

deaij
∈ N+ Max. allowed delay of link eaij .

indicates success of mapping between physical link euv and

the link between components i and j of application a (eaij).

As we assume that each physical node is exclusively used

for components of the same type, variable T t
u is defined for

the purpose of determining whether node u is used to host

components of type t. Multiple components of the same type

can be mapped onto the same physical server.

Furthermore, two other variables are defined: Bu is a binary

variable to show whether physical node u is used, either as a

routing node or a used server in the entire mapping. Beuv
is

another binary variable to indicate whether physical link euv
is used in the mapping scheme or not. Finally, Ma has been

defined to indicate whether the application a is fully mapped

or not.

xa,i
u ∈ [0, 1] ∀u ∈ Nph, ∀a ∈ Gapp, ∀i ∈ Na

feaij
euv
∈ [0, 1] ∀euv ∈ Lph, ∀a ∈ Gapp, ∀eaij ∈ La

T t
u ∈ [0, 1] ∀u ∈ Nph, ∀t ∈ Stype

Bu ∈ [0, 1] ∀u ∈ Nph

Beuv
∈ [0, 1] ∀euv ∈ Lph

Ma ∈ [0, 1] ∀a ∈ Gapp

C. Objective function

Guaranteeing the quality of service and taking physical

constraints into account, application placement services have

to be performed with minimum rejection of application place-

ment requests. To achieve this, the sum of Ma variables

should be maximized. Minimizing cost of mapping should

always be considered the second optimization objective. The

cost of physical servers can be determined by combining the

individual costs of using each unit of CPU, memory and

storage and the fixed cost of using each server. Moreover,

since in multi-domain cloud networks the cost of LAN links

are almost zero, for estimating the link cost, only the WAN

links are taken into account.

The optimization objective function minimizes both the

application rejection rate and the cost of mapping with

lower and higher priorities respectively. Given α and β
as higher (e.g. 106) and lower (e.g. 1) priority parameters

respectively, FailureRate as application mapping failure

rate and NodeMapCost as cost of physical node usage and

LinkMapCost as cost of physical links usage, the objective

function is defined as follows:

Minimize:

α× FailureRate+ β × (NodeMapCost+ LinkMapCost)

where:

FailureRate =



AppNo−
∑

∀a∈Gapp

Ma



 /AppNo

NodeMapCost =
∑

∀u∈Nph



fcostu ×Bu +
∑

∀a∈Gapp

∑

∀i∈Na

(cai × Ccostu +mai ×Mcostu + sai × Scostu)× xai
u

)

LinkMapCost =
∑

∀euv∈Lph

(

fcosteuv
×Beuv

× typeeuv
+

∑

∀a∈Gapp

∑

∀eaij∈La

(

bweaij
×BWcosteuv

× typeeuv

)

× feaij
euv

)

As a result of minimizing the cost of mapping, the objective

of the presented model also minimizes the number of nodes

on which the applications can be hosted while satisfying the

following constraints and requirements.

D. Constraints

The defined constraints for application component mapping

in cloud system have been organized into 7 sub-Sections as

follows:

1) Physical node limitations: Constraints (1), (2) and (3)

are considered for physical network nodes and are related to

computational, memory and storage limitations respectively.

For all physical nodes, the common idea is that sum of all

mapped requests’ demand must not exceed their maximum

available capacities.



∑

∀a∈Gapp

∑

∀i∈Na

cai × xai
u ≤ Cu ∀u ∈ Nph (1)

∑

∀a∈Gapp

∑

∀i∈Na

mai × xai
u ≤Mu ∀u ∈ Nph (2)

∑

∀a∈Gapp

∑

∀i∈Na

sai × xai
u ≤ Su ∀u ∈ Nph (3)

2) Physical link limitations: A bandwidth constraint has

to be considered for each physical link, regardless of being

either WAN or LAN link. Constraint (4) represents that for

each physical link, the sum of bandwidth demands of all

applications must not exceed maximum available bandwidth.

∑

∀a∈Gapp

∑

∀eaij∈La

bweaij
× feaij

euv
≤ BWeuv

∀euv ∈ Lph

(4)

3) Quality of service requirements: For delay and band-

width, Constraints (5) and (6) are defined for each application

link eaij . It has to be noted that the bandwidth constraint

can be ignored as it will be satisfied with the physical link

Constraint (4).

∑

∀euv∈Lph

Deuv
× feaij

euv
≤ deaij

∀a ∈ Gapp, ∀eaij ∈ La (5)

BWeuv
× feaij

euv
≥ bweaij

∀euv ∈ Lph, ∀a ∈ Gapp, ∀eaij ∈ La

(6)

4) Well-connected mapping Constraints: Constraint (7)

makes sure that when 2 adjacent application components

cannot be physically mapped next to each other, a chain of

continuous physical links is used to map each application

link. This assures that a closed path is considered to map

an application link. As can be observed from this equation,

for each physical node u, the subtraction of the sum of

all incoming and outgoing f values should be equal to the

subtracts of X values between target and source of each

application link eaij .

∑

∀u∈Nph

feaij
euv
−

∑

∀u∈Nph

feaij
euv

= xaj
u − xai

u (7)

∀a ∈ Gapp, ∀eaij ∈ La, ∀euv ∈ Lph, ∀u ∈ Nph

5) Full deployment constraints: The statements below,

Constraints (8) and (9), ensure that if an application is mapped

each individual component of application a has to reside in

exactly one server in order to have a successful mapping.

Constraint (10) indicates that either all or none of application

components have to be mapped.

∑

∀u∈Nph

xai
u = Ma ∀a ∈ Gapp, ∀i ∈ Na (8)

∑

∀u∈Nph

xai
u ≤ 1 ∀a ∈ Gapp, ∀i ∈ Na (9)

∑

∀i∈Na

∑

∀u∈Nph

xai
u = CompNoa ×Ma ∀a ∈ Gapp (10)

6) Anti-collocation constraints: We also need other con-

straints between X and T values to ensure that each

physical node is only used for components of the same

type.Constraint (11) and (12) are defined to ensure that the

type of the application component and the physical node on

which this component is mapped are identical. Since mapping

of components of different types is not feasible in the proposed

approach, Constraint (13) ensures that for each physical node

sum of all T t
u values for all component types should be less

than or equal to 1.

γt
ai × xai

u ≤ T t
u ∀u ∈ Nph, ∀a ∈ Gapp, ∀i ∈ Na, ∀t ∈ Stype

(11)

xai
u ≤

∑

∀t∈Stype

T t
u ∀u ∈ Nph, ∀a ∈ Gapp, ∀i ∈ Na (12)

∑

∀t∈Stype

T t
u ≤ 1 ∀u ∈ Nph (13)

7) Additional constraints: Constraints (14) and (15) are

needed to make logical correlations between physical re-

sources and their usage. K in both constraints is a large

number. In Constraint (14) its value has to be larger than the

sum of all possible X values and in a same way larger than

all possible f values in Constraint (15). In Constraint (16), Bu

for each physical node shows that whether node u is used to

host any type of component or not.

∑

∀a∈Gapp

∑

∀i∈Na

xai
u ≤ K ×Bu ∀u ∈ Nph (14)

∑

∀a∈Gapp

∑

∀eaij∈la

feaij
euv
≤ K ×Beuv

∀euv ∈ Lph (15)

Bu =
∑

∀t∈Stype

T t
u ∀u ∈ Nph (16)

V. ALGORITHM DESCRIPTIONS

A. ILP-based algorithm

This algorithm implements the optimal ILP-based model

which was extensively explained in Section III. This ILP-based

algorithm is solved using IBM ILOG CPLEX Optimization

Studio [54] which is a tool to build efficient optimization

models. The objective function minimizes both the application

mapping failure rate and the cost of mapping, taking the

constraints into account.



B. Heuristic algorithm

As has been shown in [4], [5] and [6], the problem of appli-

cation placement onto a network with bandwidth constrained

links is NP-hard. Based on computational complexity theory,

in large scale environments, an optimal solution for an NP-

hard problem is too expensive to be used in practice; instead

a near-optimal solution is desired.

In this section a centralized and a hierarchical approach is

discussed which we refer to as the Centralized Cloud Mapping

Algorithm (CCMA) and the Hierarchical Cloud Mapping Al-

gorithm (HCMA) respectively. These algorithms are executed

within the management plane.

The centralized CCMA algorithm is proposed as a near-

optimal alternative to the centralized ILP based approach.

This centralized approach can be deployed independently and

efficiently up to the scale of medium-size networks. We will

show that the centralized approach always outperforms the

hierarchical solution in terms of number of fully mapped

applications. Comparing the quality and complexity, the use

of the hierarchical approach is only recommended for large

scale environments, where the CCMA can not be practically

used due to high complexity. The HCMA has made use of the

CCMA algorithm, in combination to the GCMA. The GCMA

is introduced to have interactions between different managers

within the hierarchical management plane.

1) Centralized Cloud Mapping Algorithm (CCMA): This

algorithm first arbitrarily chooses different nodes as the default

servers for different component types. For each application

the algorithm, shown in Algorithm 1, goes through all the

components and tries to allocate resources to each component.

An illustrative example of this placement for two types of

components is shown in Figure 3. In order to have minimal

bandwidth overhead, the algorithm uses the Dijkstra shortest

path algorithm [55] for mapping the application links. How-

ever, there are two situations in which the application compo-

nent cannot be placed onto the default server, either because

of physical node limitations or due to physical link limitations.

Node limitation occurs when there is not enough residual

CPU, memory or storage capacity in one of default servers.

In the latter case, again, there are two situations in which

the link limitation leads to unsuccessful placement. First, the

application components cannot be connected because there are

no physical links to connect application components located

on different servers. Second, placement can be unsuccessful if

bandwidth or delay requirements cannot be resolved.

No matter what is causing unsuccessful application com-

ponent placements and what the type of component is, the

Next Server Selection (NSS) process should be followed to

choose another server as a default server. In the NSS process,

a Breadth First Search (BFS) algorithm [55] is run with the

current default server as the start vertex to initialize the next

server selection. We use the BFS because this algorithm finds

the nearest server with minimal path length which ensures

there is a minimal communication overhead between the

new and the previous servers. However, when link limitation
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Fig. 3: The process of application component placement onto a

cluster of cloud servers for two types of components (database

server and computational server).

occurs, first another server is chosen temporarily by the NSS

process and then the algorithm checks the path availability and

SLA fulfillment, and sets it as a default server provided that

choosing this server satisfies both conditions. Otherwise, the

placement is not successful. In this case the algorithm must

remove all placed components of the application and backtrack

to the state before the placement. This state is saved before

placement of each application in order to backtrack when the

need arises. After backtracking, the placement starts again with

new default servers. This process will be continued until the

NSS process is unable to find a new server. If this occurs,

placement of the application is not possible.

2) Hierarchical Cloud Mapping Algorithm (HCMA): The

HCMA algorithm is shown in Algorithm 2. Based on this

algorithm, all placement requests are sent to the current active

LLM, using the GCMA algorithm. The GCMA (Global Cloud

Mapping Algorithm) is designed in order to have interactions

between different managers within the management plane.

The GCMA is run on every manager. In the management

hierarchy, each LLM is in charge of its own administrative

domain and the current active LLM is the one which is active

in mapping the application components. The current active

LLM is determined arbitrarily when the algorithm starts. Each

manager has two states: “full” and “not full”. A manager is

“full” when all its managed servers get fully occupied. The

active LLM will be replaced when its state changes to “full”.

The next active LLM is chosen by the parent of the current

active LLM, i.e. an MLM or the RLM. For each newly arriving

application, the HCMA invokes the GCMA with the current

active LLM and a “new request” message. In the GCMA

three types of messages are defined: “new request”, “from the

parent node” and “full”. This is illustrated in Figure 4. Next,

the GCMA sends the application request to the current active

LLM by calling the CCMA, which was presented earlier. In

hierarchical approach the CCMA is run on every LLM. If this

default administrative domain is not able to place the entire

application components, the status of the current active LLM

changes to “full”. Afterward, this LLM calls the GCMA with



input: applications

for (c ∈ application components) do

while (Map (c, defaultServer) = false) do

if (Due to node limitations) then
New defaultServer ← NSS(default

Server);

if (New defaultServer = Null) then

Mappedapp ← false;

return false;
end

else if (Due to link limitations) then

Temp Server ← NSS (defaultServer);

if (CheckLinks (Temp Server)) then

New defaultServer ←Temp Server;

else

Mappedapp ← false;

end

end

if (one of default servers = null) then

Mappedapp ← false;

return false;
end

end

end
Algorithm 1: The Centralized Cloud Mapping Algorithm

(CCMA), run on the management plane in the centralized

approach and on each LLM in the hierarchical approach.

a “full” message to its parent, indicating that the application

cannot be placed onto this cluster. In this step, interaction

between different management entities starts.

Global Cloud Mapping Algorithm (GCMA): The GCMA

is a hierarchical algorithm, listed in Algorithm 3. Based on

this algorithm when a request is received, three cases can be

distinguished:

1) A request is received by the highest level manager

(RLM): The request will be forwarded to the next un-

visited domain with a “from the parent node” message.

If all domains are full and the request is rejected the

cloud system is not able to place this application.

2) A request is received by the mid-level manager (MLM):

The request will be forwarded by applying the same

policy to one dedicated lower-level manager with a

“from the parent node” message until the target LLM

located at the lowest level is reached. Provided that all

domains are full, the status of this manager turns to

“full” and the request with a “full” message will be

forwarded to the parent which can be either another

MLM or the RLM.

3) A request is received by the lowest level manager

(LLM): At this level all request messages will be either

“new request” or “from the parent node”. No matter who

is the request sender, the manager executes the CCMA

algorithm. In a saturation case when placement of new

applications is not possible, the LLM has to send the
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Fig. 4: Different messages for interacting between the man-

agers in GCMA (GCMA: Global Cloud Mapping Algorithm,

CCMA: Centralized Cloud Mapping Algorithm).

input: Applications,

Physical Infrastructure (Servers, Links),

Management Plane (|S|, |SS|, |ML|);

for (app ∈ applications) do

manager← Current active LLM ;

GCMA(app, manager, null, "new request");

end
Algorithm 2: The Hierarchical Cloud Mapping Algorithm

(HCMA), run on the hierarchical management planes.

newly arriving requests to its parent and introduce itself

as a “full” manager.

VI. EVALUATION DETAILS

The implemented physical cloud system is a tree-based

multi-tier infrastructure, similar to current datacenter topolo-

gies [11], [12], [56], consisting of server nodes and links

which we assume to be homogeneous. This means that all the

servers have similar configuration of CPU, memory, storage

and transmission medium (in terms of bandwidth and delay).

In our evaluations, we make use of two component types.

Each server can be either a database or a computational

server. No backup servers are assumed. Servers are located

in the lowest tier (level = 0) and the other levels consist

of intermediate devices such as switches. In order to design

the physical infrastructure, the number of server nodes (|S|)

and the number of levels (|L|) are taken as inputs. In order

to have the desired scale, these variables can be tuned. This

physical cloud environment is a complete N-ary tree in which

the N is the calculated branch factor (β). In addition, the

number of switch ports and the number of tiers determine the

number of network switches. The branch factor of each tier

and the number of intermediate switches (|IS|) are calculated

as follows. The variables defined to describe physical cloud

system are listed in Table III.

β = |L|−1

√

|S| (1)

|IS| =

|L|−1
∑

level=1

β((|L|−1)−level) (2)

In our evaluations, three types of applications, shown in

Table VI, are implemented. Type 1 refers to the 5-component

applications with 3 database and 2 computational components,

Type 2 refers to the 10-component applications with 7 database



input: application a, manager m, requestSender

r, message s
Impossibilitya ← false;

Currentstate ← Save the current system state;

while (Mappeda = false & Impossibilitya = false)

do

Set current system state to CurrentState;

if (mtype = LLM & s=("new request" OR

"from the parent node")) then

if (one of the default servers=null) then

fullm ← true;

GCMA(a, parentm, m, "full");

else

CCMA(m,a);

end

end

if (mtype 6= LLM & s = ("full" OR "from the

parent node" )) then

for (ch ∈ childrenm) do

if (fullch =false & ch6=r) then
GCMA( a, ch, m, "from the parent

node");

return;

end

end

fullm ← true;

if (mtype = MLM) then

GCMA (a,parentm, m, "full") ;

else

Impossibilitya ←true;

end

end

if (Impossibilitya =true) then

Set current system state to CurrentState;

end

end
Algorithm 3: The Global Cloud Mapping Algorithm

(GCMA), run on every manager in the hierarchical ap-

proach.

TABLE III: The physical network parameters.

Variable Description

|S| ∈ N
+ Number of physical servers.

|IS| ∈ N
+ Number of intermediate switches.

|L| ∈ N
+ Number of physical switching levels.

β ∈ N
+ physical level branch factor.

and 3 computational components and Type 3 refers to 20-

component applications that consisting of 14 database and 6

computational components. These types of applications have

been provided by our industrial partners based on realistic ap-

plications with deterministic characteristics, which implies that

the structure of the applications is always known beforehand.

To illustrate the used applications, a 20-component application

is shown as a sample in Figure 5. Throughout this section, the

TABLE IV: The Physical Infrastructure Specifications.

Physical Infrastructure Specifications

Case study |S| |IS| |L| |SP|
1 1000 111 4 10
2 4096 273 4 16

Physical Server Specifications Physical Link Specifications

CPU Storage Memory bandwidth Delay
3GHZ 200GB 16GB 400Mbps 3ms

TABLE V: Management plane infrastructure.

Case study type |ML| |SS| |LLM| |MLM| |RLM| µ

1 CCMA 1 1000 1 0 0 -

HCMA 3 10 100 10 1 10
HCMA 3 40 25 5 1 5
HCMA 2 100 10 0 1 10

2 CCMA 1 4096 1 0 0 -

HCMA 3 16 256 10 1 16
HCMA 3 64 64 5 1 8
HCMA 2 256 16 0 1 16

TABLE VI: Application specifications.

Type # component # link # database # computational

1 5 4 3 2

2 10 9 7 3

3 20 19 14 6

Type Component demands(Random) Link demands(Random)

CPU Storage Memory Delay BW

1 (1-1000)MHZ (1-20000)MB (1-2000)MB 1s (1-50)Mbps

2 (100-500)MHZ (100-20000)MB (100-1000)MB 1s (1-50)Mbps

3 (1-200)MHZ (1-10000)MB (1-300)MB 1s (1-20)Mbps

number of X-component applications refer to the number of

applications, submitted for a possible placement to the cloud

network management system. We assume that the application

are either rejected or placed in full with all X components.

This section is divided into four parts. Our proposed CCMA

approach combines a set of requirements including network

awareness, anti-collocation and full deployment placement

constraints, which are not supported by the state-of-the-art

solutions presented in literature. This makes it difficult to

accurately compare our results to existing methods as the

alternative network-aware solutions focus on different aspects,

such as migration [25], investigation of traffic pattern [38],

energy efficiency [57], SLA-awareness [58], etc. Therefore,

we compare the performance of CCMA to a generic network-
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Logic Component 

Fig. 5: An illustrative 20−component application (Type 3).



40 

50 

60 

70 

80 

90 

100 

50 60 70 80 90 100 110 120 130 140 150 

P
e

rc
e

n
ta

g
e

 o
f 

se
rv

e
rs

 u
se

d
 

Number of 5-component applications 

ACUNA 

CCMA 

Fig. 6: Comparing the percentage of servers used in the

CCMA and the ACUNA algorithm as a function of number

of application placement requests (20 iterations).

aware method, in which anti-collocation characteristics of

applications is ignored. In the evaluation cases, we refer to

this solution as ACUNA (Anti-Collocation Unaware, Network-

Aware). Then, to provide an accurate validation, an evaluation

of the CCMA is provided by comparing to the ILP-based op-

timal solution which takes all these requirements into account.

Next, we evaluate the HCMA by comparing its performance

with the CCMA. Finally, we will end the section with a large-

scale evaluation of the HCMA.

The simulations are performed using the Stevin Supercom-

puter Infrastructure at Ghent University, containing quad core

Intel Xeon L5420 servers with 16 GB RAM.

A. Comparing CCMA to the state-of-the-art solutions

1) Evaluation Set up: For this evaluation, we consider small

5-component applications and a 3-tier network architecture

consisting of 100 servers and 10 intermediate nodes. The

number of applications varies from 50 up to 150. The experi-

ments are iterated 20 times and the percentages of serves used,

mapped application and anti-collocation constraint fulfillment

are captured.

2) Evaluation Results: Our evaluation in Figures 6, 7 and 8

shows that although generic network-aware approach is able

to map up to 5.75% more applications and up to 4.35%

lower number of servers, at least in 66.8% of evaluation cases

the anti-collocation requirement of mapped applications are

violated.

B. Comparing the CCMA to the ILP-based algorithm

1) Evaluation Set up: The optimal model and the CCMA

are evaluated with a configuration of 6 servers arranged in a

star topology. The specification of servers and links can be

seen in Table IV.

Type 1 and Type 2 applications are used to compare the

performance of the proposed algorithms under light and heavy

network load conditions. The number of scenarios varies from
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Fig. 7: Comparing the percentage of fully mapped applications

in the CCMA and the ACUNA algorithm (20 iterations).
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Fig. 8: Comparing the percentage of anti-collocation appli-

cation placement fulfillment in the CCMA and the ACUNA

algorithm (20 iterations).

1 up to 11. The average percentage of used servers and per-

centage of algorithm success in mapping all the applications

are evaluated.

2) Evaluation Results: In Figure 9 and 10 the CCMA is

compared to the ILP-based optimal approach. The percentage

of servers used are depicted in bars and the percentage of

algorithm success in mapping all the application components

are shown in lines.

As can be seen in both figures, when it comes to the physical

resources usage, the CCMA provides a near-optimal solution

compared to the ILP-based algorithm in this scenario. This

can be clearly observed from Figure 9 as the network is not

saturated. This figure show that in 5 out of 11 experiments

the number of used servers are equal in the CCMA and the

ILP-based approach and the CCMA uses at most 8.33 more

number of servers when the number of applications is 9. In

Figure 10, the percentage of algorithm success in mapping all

the applications is more interesting. This figure reveals that

when the network is saturated the capability of the CCMA

in mapping application components stays within 10.7% of

the optimal approach. This figure also shows that when both
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Fig. 9: Comparing the number of servers used (as bar charts)

and the application mapping success rate (as line charts)

in the CCMA to the ILP-based algorithm for 5-component

applications (20 iterations).
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Fig. 10: Comparing the number of servers used (as bar charts)

and the application mapping success rate (as line charts) in

the CCMA to the ILP-based algorithm for 10-component

applications (20 iterations).

algorithms succeed in mapping all the application components

(from 1 up to 4 number of applications), the CCMA uses

almost the same number of servers as the optimal ILP-based

approach. These results show the performance of the CCMA

is close to that of the optimal algorithm.

The execution times of the CCMA and the ILP-based

approaches are compared in Figure 11 for Type 1 applications.

As can be seen, the execution time of the ILP-based model is

exponentially increasing by adding more applications, which

makes it inappropriate for larger evaluations. As such, the

reminder of this section is devoted to the comparison of the

CCMA and the HCMA algorithms. Throughout the next sub-

sections, the HCMA(XX,YY) refers to a three-tier management

plane of XX LLMs and YY MLMs and the HCMA(XX) refers

to a two-tier management plane of XX LLMs. In a two-tier

management plane no MLM is involved and one RLM is taken

into account in all experiments.

C. Comparing the hierarchical algorithm to the centralized

approach

We study three case studies. In the first case, 5-component

applications are placed on a cloud system with 1000 servers

and the second case considers a larger scenario with 4096

servers and 20-component applications. In the experiments,

we measure the percentage of servers used, the percentage of

mapped applications and the execution times per application.

Afterward, the impact of different physical infrastructures on

the average number of fully mapped applications and the

execution time for 1000 up to 4096 servers are analyzed. Due

to negligible standard errors for the reminder of evaluations,

standard error bars are left out.

1) Evaluation Set up: The configuration of the simulated

network, the management plane and the application structure

are as follows. For the evaluation, the configuration of physical

infrastructure is considered to be a 4-tier hierarchical tree

topology. For the first scenario, the physical cloud system

consists of 1000 servers (respectively 4096 for case study 2)

in the lowest tier. The number of ports in each intermediate

device is 10 (resp. 16) which results in 1+10+100 (resp.

1+16+256) switches in the first three tiers. Consequently,

the number of physical nodes is 1111 (resp. 4369) in the

entire cloud system. The specifications of the physical cloud

resources are shown in Table IV.

To make a better comparison apart from the central manage-

ment system, three different hierarchical management planes

are generated. The hierarchical management planes are defined

as follows and are listed in Table V.

• a 3-tier management plane with 100 (resp. 256) LLMs,

10 (resp. 16) MLMs and 1 RLM. Each LLM supports 10

(resp. 16) servers in this case.

• a 3-tier management plane with 25 (resp. 64) LLMs, 5

(resp. 8) MLMs and 1 RLM. In this scenario 40 (resp.

64) servers are supported by each LLM.

• a 2-tier management plane with 10 (resp. 16) LLMs, no
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Fig. 11: Comparing the execution times of the CCMA to

the ILP-based algorithm for 5-component applications (20

iterations).



MLM and 1 RLM. Each administrative domain consists

of 100 (resp. 256) servers here.

The implemented applications are of Type 1 (resp. Type 3),

the number of which varies from 100 up to 1500 (resp. 400

up to 4000). Each application component has different CPU,

memory, storage and QoS demands which are randomly taken

within a predefined interval, provided in Table VI.

2) Evaluation Results: Figure 12 and Figure 13 show the

percentage of used servers for different management planes.

As can be observed from Figure 12, the number of used

servers grows linearly with the number of applications until

all the resources are completely occupied. Among all, the

CCMA uses the fewest and the HCMA with higher numbers

of LLMs, uses the highest percentage of servers. In the worst

case the hierarchical scenario with 100 LLMs uses 6.7% more

servers. Moreover, the average standard errors is 0.025% for

the CCMA and 0.031% on average for the HCMAs.

In Figure 14, the percentages of placed applications is

depicted. As the results show, the CCMA offers the best

performance and the HCMA with 100 LLMs the worst.

Additionally, application placement failures are expected due

to the fixed number of servers and resource saturation after

1000 applications. Nonetheless, in both figures even in the
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Fig. 12: The percentage of servers used (Case study 1 with

1000 servers and 20 iterations).
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Fig. 13: The relative percentage of used servers, compared to

CCMA (Case study 1 with 1000 servers and 20 iterations).

worst case, the result is within 8% of the best result.

The execution time of the hierarchical approaches is promis-

ing. As can be clearly seen in Figure 15, the time in which

an application is placed in the CCMA is much higher than

the hierarchical approaches, especially in the hierarchical

management plane with more LLMs.

In Figure 16, Figure 17, Figure 18 and Figure 19 the

percentage of servers used, the percentage of mapped ap-

plications, the percentage of mapped applications relative to

the centralized approach and the average execution time per

application are depicted respectively for the second case study.

As can be observed from Figure 16, the percentage of used

servers increases by adding more applications up to when

the servers are fully occupied. Afterwards, the percentage

of mapped applications declines as the newly arriving appli-

cations are immediately rejected due to saturated resources.

Although the CCMA shows better performance, the hierar-

chical management planes use at most 5.6% more resources.

Figure 17 and Figure 18 compare the percentage of mapped

applications in the hierarchical approaches to the centralized

solution. As can be seen, in the worst case the result of the

hierarchical management planes is within 7% of the best result.

Also, Figure 19 indicates that the execution time of the CCMA
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Fig. 14: The percentage of fully placed applications (Case

study 1 with 1000 servers and 20 iterations).
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Fig. 15: Comparing the execution times per application (Case

study 1 with 1000 servers and 20 iterations).
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Fig. 16: The percentage of servers used (Case study 2 with

4096 servers and 20 iterations.)
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Fig. 17: The percentage of fully placed applications (Case

study 2 with 4096 servers and 20 iterations).

is high compared to the hierarchical scenarios.

We also evaluated the execution time and the number of

fully mapped applications in different physical cloud systems

with different numbers of servers and different numbers of

switch ports. The applications are of Type 1 based on Ta-

ble VI. The number of servers and the number of intermediate

switches are provided in Table VII and the implemented

management planes are presented in Table VIII.

In Figure 20 the number of fully mapped applications is

depicted. As the branch factor (β) and consequently the num-

TABLE VII: The number of physical devices based on differ-

ent β values.

β 10 11 12 13 14 ... 25

|S| 1000 1331 1728 2197 2744 ... 15625
|IS| 101 122 145 170 197 ... 626

β 20 30 40 50 60 70 80

|S| 8K 27K 64K 125k 216K 343K 512K
|IS| 401 901 1601 2501 3601 4901 6401
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Fig. 18: The relative percentage of fully placed applications,

compared to CCMA (Case study 2 with 4096 servers).
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Fig. 19: Comparing the execution times per application (Case

study 2 with 4096 servers and 20 iterations).

ber of servers increases, the number of mapped applications

grows. This evaluation shows that the HCMA with β LLMs

is able to achieve the same performance of the CCMA, in

terms of the number of fully mapped applications (with only

9 fewer applications on average). However, comparing to

the HCMA with β2 LLMs, the CCMA is able to map on

average 6.2% more applications. In Figure 21, the execution

time of the different approaches are shown. As can be seen

the execution time of the CCMA dramatically grows when

the number of servers increases which makes the centralized

algorithms inefficient in large scale cloud systems. Due to the

increasing execution duration, we stop executing the CCMA

TABLE VIII: The management plane parameters based on

different β values.

Type |ML| |SS| |LLM| |MLM| |RLM|

CCMA 1 β3 1 0 0
HCMA (β) 3 β2 β 0 1
HCMA (β ∗ β, β) 3 β β2 β 1
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Fig. 20: The percentage of fully placed applications (20

iterations). Number of physical servers = β3.
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Fig. 21: The execution time per application (20 iterations).

Number of physical servers = β3.

once β = 20, indicating that the CCMA approach is not

appropriate for a network larger than 8000 servers. Instead

in this evaluation, the HCMA with β number of low level

managers has made a desired trade-off between the quality of

application mapping and the execution time.

D. Large scale scenarios

In this phase, we focus on the scalability of the presented al-

gorithms. We extend the scale of the experiments up to 512000

servers and more than 540000 5-component applications. In

these experiments, the number of fully mapped applications is

evaluated and the execution time per application is captured.

The results are the average value of 10 experiments.

1) Evaluation Set up: The experiments are conducted for an

increasing number of servers from 1000 up to 512000 servers.

The assumptions of the applications, of the physical networks

and of the management planes are provided in Table VI,

Table VII and Table VIII respectively.

2) Evaluation Results: Figure 22 compares the number

of fully mapped applications for two different hierarchical

management plane architectures. The numbers of successfully

mapped applications are close, but the management plane

10 20 30 40 50 60 70 80 

HCMA (β*β, β) 983.4 8204.59 28057 66913.8 131080 227201 361429 540286 

HCMA (β) 1057.6 8509.6 28750.5 68164.8 133048       
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Fig. 22: The number of fully placed applications (10 itera-

tions). Number of physical servers = β3.
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Fig. 23: The execution time per application (10 iterations).

Number of physical servers = β3.

with a larger number of supported servers in each adminis-

trative domain allocates on average 3.4% more applications.

Nonetheless, while the execution time of this approach grows

exponentially, the HCMA with more LLMs shows better

performance, as can be clearly seen in Figure 23. As a result,

for experiments larger than 125000 servers, only the second

hierarchical architecture is evaluated.

E. Evaluation discussion

We have extensively assessed the CCMA and HCMA

approaches. Our evaluation studies show that the best per-

formance is constantly achieved by the centralized CCMA

approach, compared to the hierarchical management planes,

in terms of percentage of application placement and network

resource usage. However, the execution time of CCMA dra-

matically grows when the number of servers increases. This

makes the centralized algorithms inefficient in large scale

cloud systems. While the CCMA approach is not appropriate

for a network larger than 8k servers ( enough capacity to fully

map 8512 small applications), HCMA with β number of LLMs

has made a desired trade-off between the quality of application

mapping and the execution time. Moreover, a larger scale



evaluation reveals that although the HCMA with β LLMs is

able to achieve the same performance of the CCMA, in terms

of the number of fully mapped applications, this hierarchical

architecture shows limited scalability up to 125k servers with

133k fully mapped applications. Our large-scale evaluation

case studies indicate that the management architecture with

β2 LLMs is the most appropriate management plane for very

large datacenters (512k servers and more than 2.7 million

application components).

VII. CONCLUSIONS

This article focused on the problem of component-level

application placement in large-scale cloud environments. Our

approach takes the characteristic of the underlying network

into account and works with multi-component applications,

taking into account the application workflow with a distinction

between application component types. To offer an optimal

solution, we first presented an ILP-based model and to have

a scalable solution, a near-optimal centralized approach was

proposed and compared to the optimal solution. Due to lim-

ited scalability of the centralized approaches, a hierarchical

heuristic was also designed to be deployed in large-scale cloud

management systems. The experimental results showed that

in large-scale clouds our proposed approach works efficiently

compared to a centralized and optimal management systems in

terms of resource usage and quality of application placement.

The percentage of nodes used and the percentage of mapped

applications remain close to that of the centralized algorithm,

in the worst case within 6.7% and 8% respectively.
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