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Abstract. This paper presents three novel single-valued neutrosophic soft set (SVNSS) methods. First, we initiate a new

axiomatic definition of single-valued neutrosophic similarity measure, which is expressed by single-valued neutrosophic

number (SVNN) that will reduce the information loss and remain more original information. Then, the objective weights of

various parameters are determined via grey system theory. Moreover, we develop the combined weights, which can show

both the subjective information and the objective information. Later, we propose three algorithms to solve single-valued

neutrosophic soft decision making problem by Evaluation based on Distance from Average Solution (EDAS), similarity

measure and level soft set. Finally, the effectiveness and feasibility of approaches are demonstrated by a numerical example.
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1. Introduction

Soft set theory, initiated by Molodtsov [1], is free

from the inadequacy of the parameterized tools of

those theories such as fuzzy set [2], rough set [3], and

interval mathematics [4]. The study of hybrid models

combing soft sets with other mathematical structures

are an important research topic. Maji et al. [5] firstly

proposed fuzzy soft sets, a more wide notion combin-

ing fuzzy sets and soft sets. Alcantud [6] proposed

a novel algorithm for fuzzy soft set based decision

making from multiobserver input parameter data set.

Feng et al. [7] proposed an adjustable approach to

fuzzy soft set based decision making by level soft

set. Yang et al. [8] developed the concept of interval-

valued fuzzy soft sets. Meanwhile, Peng and Yang

applied interval-valued fuzzy soft sets in clustering
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analysis [9] and decision making [10]. Peng et al.

[11] presented Pythagorean fuzzy soft sets, and dis-

cussed their operations. Yang et al. [12] proposed the

multi-fuzzy soft sets and successfully applied them to

decision making, meanwhile they extended the multi-

fuzzy soft sets to bipolar multi-fuzzy soft sets [13],

which can describe the parameter more precisely.

Wang et al. [14] presented the hesitant fuzzy soft sets

by aggregating hesitant fuzzy set [15] with soft set,

and developed an algorithm to solve decision mak-

ing problems. Peng and Yang [16] further proposed

interval-valued hesitant fuzzy soft set, presented an

algorithm, and discussed its calculation complexity

with others algorithms.

Smarandache [17] initially presented the concept

of a neutrosophic set from a philosophical point of

view. A neutrosophic set is characterized by a truth-

membership degree, an indeterminacy-membership

degree, and a falsity-membership degree. It gener-

alizes the concept of the classic set, fuzzy set [2],

interval-valued fuzzy set [4], paraconsistent set [17],
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and tautological set [17]. From scientific or engi-

neering point of view, the neutrosophic set and

set-theoretic operators need to be specified. Oth-

erwise, it will be difficult to apply in the real

applications. Hence, Smarandache [17] firstly intro-

duced the a single valued neutrosophic set (SVNS).

Wang et al. [18] provided the set-theoretic operators

and various properties of SVNSs. Ye [19, 20] pro-

posed a multi-attribute decision making (MADM)

method using the correlation coefficient under single-

valued neutrosophic environment. Ye [21, 22] further

developed clustering method and decision making

methods by similarity measures of SVNS. Mean-

while, Peng and Dai [23] presented new similarity

measure of SVNS and applied them to decision mak-

ing. Biswas et al. [24] extended the Technique for

Order Preference by Similarity to an Ideal Solution

(TOPSIS) method for multi-attribute single-valued

neutrosophic decision-making problem. Sahin and

Kucuk [25] defined a subsethood measure for SVNS,

and applied to MADM. Yang et al. [26] introduced

single valued neutrosophic relations and discussed

their properties. Huang [27] developed a new distance

measure of SVNSs, and applied them to clustering

analysis and MADM. Liu [28] proposed aggrega-

tion operators based on Archimedean t-conorm and

t-norm for SVNS and also gave an application in

MADM. Wu et al. [29] proposed a cross-entropy

and prioritized aggregation operator with simpli-

fied neutrosophic sets. Single valued neutrosophic

graphs [30–32] and bipolar single valued neutro-

sophic graphs [33, 34] are proposed by Broumi et

al. Peng et al. [35, 36] proposed ELECTRE approach

and qualitative flexible approach based on likelihood

for multi-valued neutrosophic MADM problem,

respectively. Ji et al. [37] introduced a projection-

based TODIM method for multi-valued neutrosophic

MADM problem. Tian et al. [38] presented an

improved MULTIMOORA approach for simpli-

fied neutrosophic linguistic set. Later, Tian et al.

[39] incorporated power aggregation operators and

a TOPSIS-based QUALIFLEX method in order to

solve green product design selection problems using

simplified neutrosophic linguistic information. Tian

et al. [40] proposed a MADM based on generalized

prioritized aggregation operators under simplified

neutrosophic uncertain linguistic environment.

Combining the advantages of the instance of neu-

trosophic set [17] with soft set [1], Maji [41] proposed

the single-valued neutrosophic soft set. Şahin and

Küçük [42] presented the definition of similarity

and entropy in single-valued neutrosophic soft envi-

ronment. Mukherjee and Sarkar [43] defined some

similarity measures of single-valued neutrosophic

soft sets, and applied them to real life problems. Deli

and Broumi [44] defined some new operators and

soft matrix based on single-valued neutrosophic soft

sets. Alkhazaleh [45] introduced time-neutrosophic

soft set and studied some of its properties in detail.

Al-Quran and Hassan [46] presented the neutosophic

vague soft expert set theory and discussed their prop-

erties in detail.

Evaluation based on Distance from Average Solu-

tion (EDAS), originally proposed by Ghorabaee et al.

[47], is a new MADM method for inventory ABC

classification. It is very useful when we have some

conflicting parameters. In the compromise MADM

methods such as TOPSIS and VIKOR [48], the best

alternative is got by computing the distance from

ideal and nadir solutions. The desirable alternative

has lower distance from ideal solution and higher dis-

tance from nadir solution in these MADM methods.

Ghorabaee et al. [49] extended the EDAS method to

supplier selection. As far as we know, however, the

study of the MADM problem based on EDAS method

have not been reported in the existing academic lit-

erature. Hence, it is an interesting research topic to

apply the EDAS in MADM to rank and determine the

best alternative under single-valued neutrosophic soft

environment. Through a comparison analysis of the

given methods, their objective evaluation is carried

out, and the method which maintains consistency of

its results is chosen.

For computing the similarity measure of two

SVNSs, we propose a new axiomatic definition of

similarity measure, which takes in the form of SVNN.

Comparing with the existing literature [21, 22, 42,

43], our similarity measure can remain more original

decision information.

By means of level soft sets, Feng et al. [7] pre-

sented an adjustable approach to fuzzy soft sets based

decision making. By considering different types of

thresholds, it can derive different level soft sets from

the original fuzzy soft set. In general, the final opti-

mal decisions based on different level soft sets could

be different. Thus the newly proposed approach is in

fact an adjustable method which captures an impor-

tant feature for decision making in an imprecise

environment: some of these problems are essentially

humanistic and thus subjective in nature. As far as we

know, however, the study of the single-valued neu-

trosophic soft MADM problem based on level soft

set have not been reported in the existing academic

literature.
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Considering that different attribute weights will

influence the ranking results of alternatives, we

develop a new method to determine the attribute

weights by combining the subjective elements with

the objective ones. This model is different from the

existing methods, which can be divided into two

tactics: one is the subjective weighting evaluation

methods and the other is the objective weighting

determine methods, which can be computed by grey

system theory [50]. The subjective weighting meth-

ods focus on the preference information of the

decision maker [19–21, 27–29], while they ignore

the objective information. The objective weighting

determine methods do not take the preference of the

decision maker into account, that is to say, these meth-

ods fail to take the risk attitude of the decision maker

into account [22, 24]. The feature of our weighting

model can show both the subjective information and

the objective information. Hence, combining objec-

tive weights with subjective weights, a combined

model to obtain attribute weights is proposed.

The remainder of this paper is organized as fol-

lows: In Section 2, we review some fundamental

conceptions of neutrosophic sets, single-valued neu-

trosophic sets, soft set and single-valued neutrosophic

soft sets. In Section 3, a new axiomatic definition of

single-valued neutrosophic similarity measure is pre-

sented. In Section 4, three single-valued neutrosophic

soft decision making approaches based on EDAS,

similarity measure and level soft set are shown. In

Section 5, a numerical example is given to illustrate

the proposed methods. The paper is concluded in

Section 6.

2. Preliminaries

2.1. Neutrosophic set

Neutrosophic set is a portion of neutrosophy, which

researches the origin, and domain of neutralities,

as well as their interactions with diverse ideational

scope [17], and is a convincing general formal frame-

work, which extends the presented sets [2, 4] from

philosophical point. Smarandache [17] introduced

the definition of neutrosophic set as follows:

Definition 1. [17] Let X be a universe of dis-

course, with a class of elements in X denoted

by x. A neutrosophic set B in X is summa-

rized by a truth-membership function TB(x), an

indeterminacy-membership function IB(x), and a

falsity-membership function FB(x). The functions

TB(x), IB(x), and FB(x) are real standard or non-

standard subsets of ]0−, 1+[ . That is TB(x) : X →

]0−, 1+[ , IB(x) : X →]0−, 1+[ , and FB(x) : X →

]0−, 1+[.

There is restriction on the sum of TB(x), IB(x),

and FB(x), so 0− ≤ sup TB(x) + sup IB(x) +

sup FB(x) ≤ 3+.

As mentioned above, it is hard to apply the neu-

trosophic set to solve some real problems. Hence,

Smarandache [17] presented SVNS, which is a sub-

class of the neutrosophic set and mentioned the

definition as follows:

Definition 2. [17] Let X be a universe of dis-

course, with a class of elements in X denoted by

x. A single-valued neutrosophic set N in X is sum-

marized by a truth-membership function TN (x), an

indeterminacy-membership function IN (x), and a

falsity-membership function FN (x). Then a SVNS N

can be denoted as follows:

N = {< x, TN (x), IN (x), FN (x) >| x ∈ X}, (1)

where TN (x), IN (x), FN (x) ∈ [0, 1] for ∀x ∈ X.

Meanwhile, the sum of TN (x), IN (x), and FN (x) ful-

fills the condition 0 ≤ TN (x) + IN (x) + FN (x) ≤ 3.

For a SVNS N in X, the triplet (TN (x), IN (x), FN (x))

is called single-valued neutrosophic number

(SVNN). For convenience, we can simply use

x = (Tx, Ix, Fx) to represent a SVNN as an element

in the SVNS N.

Generally speaking, two special values are taken

into consideration, i.e., SVNN 0 and 1. If we think

about 0 as the worst value and 1 as the best value, we

can set 0 as (0,1,1) and 1 as (1,0,0).

Definition 3. [17, 18] Let x = (Tx, Ix, Fx) and y =

(Ty, Iy, Fy) be two SVNNs, then operations can be

defined as follows:

(1) xc = (Fx, 1 − Ix, Tx);

(2) x
⋃

y = (max{Tx, Ty}, min{Ix, Iy}, min

{Fx, Fy});

(3) x
⋂

y = (min{Tx, Ty}, max{Ix, Iy}, max

{Fx, Fy});

(4) x ⊕ y = (Tx + Ty − Tx ∗ Ty, Ix ∗ Iy, Fx ∗

Fy);

(5) x ⊗ y = (Tx ∗ Ty, Ix + Iy − Ix ∗ Iy, Fx +

Fy − Fx ∗ Fy);

(6) λx = (1 − (1 − Tx)λ, (Ix)λ, (Fx)λ), λ > 0;

(7) xλ = ((Tx)λ, 1 − (1 − Ix)λ, 1 − (1 −

Fx)λ), λ > 0.
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For comparing two SVNNs, Peng et al. [51] intro-

duced a similarity measure method for a SVNN.

Definition 4. [51] Let x = (Tx, Ix, Fx) be a SVNN,

then the score function s(x) is defined as follows:

s(x) =
2

3
+

Tx

3
−

Ix

3
−

Fx

3
. (2)

It measures the hamming similarity between x =

(Tx, Ix, Fx) and the ideal solution (1, 0, 0) for the

comparison of SVNNs.

Definition 5. [28] Let xj(j = 1, 2, · · · , n) be a series

of the SVNNs, and w = (w1, w2, · · · , wn)T be the

weight vector of xj(i = 1, 2, · · · , n), then a single-

valued neutrosophic weighted averaging (SVNWA)

operator is a mapping SVNWA: Xn → X, where

SVNWA(x1, x2, · · · , xn) =

n⊕

j=1

(wjxj)

=

(
1 −

n∏

j=1

(1 − Tj)wj ,

n∏

j=1

(Ij)wj ,

n∏

j=1

(Fj)wj

)
.(3)

Definition 6. [41] A pair (F̃ , A) is called a single-

valued neutrosophic soft set over U, where F̃ is a

mapping given by F̃ : A → P̃(U).

In other words, the single-valued neutrosophic soft

set is not a kind of set, but a parameterized family

of subsets of the set U. For any parameter e ∈ A,

F̃ (e) may be considered as the set of e-approximate

elements of the single-valued neutrosophic soft

set (F̃ , A). Let F̃ (e)(x) denote the membership

value that object x holds parameter e, then F̃ (e)

can be written as a single-valued neutrosophic

set that F̃ (e) = {x/F̃ (e)(x) | x ∈ U} = {x/(T
F̃

(e)(x),

I
F̃

(e)(x), F
F̃

(e)(x)) | x ∈ U}.

Example 1. Let U = {x1, x2, x3} and A = {e1, e2,

e3}. Let (F̃ , A) be a single-valued neutrosophic soft

set over U, defined as follows:

F̃ (e1) = {x1/(0.3, 0.4, 0.7), x2/(0.3, 0.5, 0.6),

x3/(0.4, 0.4, 0.6)},

F̃ (e2) = {x1/(0.7, 0.4, 0.8), x2/(0.6, 0.4, 0.6),

x3/(0.3, 0.5, 0.7)},

F̃ (e3) = {x1/(0.5, 0.4, 0.6), x2/(0.3, 0.6, 0.7),

x3/(0.3, 0.4, 0.8)}.

Then, (F̃ , A) is described by the following Table 1.

Table 1

The single-valued neutrosophic soft set (F̃ , A)

e1 e2 e3

x1 (0.3,0.4,0.7) (0.7,0.4,0.8) (0.5,0.4,0.6)

x2 (0.3,0.5,0.6) (0.6,0.4,0.6) (0.3,0.6,0.7)

x3 (0.4,0.4,0.6) (0.3,0.5,0.7) (0.3,0.4,0.8)

Definition 7. [41] Let (F̃ , A) and (G̃, B) be two

single-valued neutrosophic soft sets over the com-

mon universe U. (F̃ , A) is said to be single-valued

neutrosophic soft subset of (G̃, B) if A ⊂ B,

T
F̃

(e)(x) ≤ T
G̃

(e)(x), I
F̃

(e)(x) ≤ I
G̃

(e)(x), F
F̃

(e)(x)

≥ F
G̃

(e)(x), ∀e ∈ A, x ∈ U. We denote it by

(F̃ , A) ⊆ (G̃, B).

3. A new single-valued neutrosophic

similarity measure

For the existing single-valued neutrosophic simi-

larity measures [21, 22, 42, 43], its similarity result

is a fuzzy number, it may lost some original infor-

mation. In the following, we will propose a new

single-valued neutrosophic similarity measure, its

similarity result is still a single-valued neutrosophic

number, hence it can be remain more original decision

information in some extent.

Definition 8. Let A1, A2 and A3 be three SVNSs

on X. A similarity measure S�(A1, A2) is a mapping

S� : SVNS(X) × SVNS(X) → SVNN, possessing

the following properties:

(1) S�(A1, A2) is a SVNN;

(2) S�(A1, A2) = (1, 0, 0), iff A1 = A2;

(3) S�(A1, A2) = S�(A2, A1);

(4) If A1 ⊆ A2 ⊆ A3, then S�(A1, A2) ⊇ S�

(A1, A3) and S�(A2, A3) ⊇ S�(A1, A3).

Theorem 1. Let Ai and Ak be two SVNSs, then

S�(Ai, Ak) is a similarity measure.

S�(Ai, Ak)

=

(
min{L(Ai, Ak), M(Ai, Ak), R(Ai, Ak)},

min{L(Ai, Ak), W(Ai, Ak), R(Ai, Ak)},

1 − max{L(Ai, Ak), M(Ai, Ak), R(Ai, Ak)}

)
, (4)

where L(Ai, Ak) =

n∑
j=1

wjmin{Tij,Tkj}

n∑
j=1

wjmax{Tij,Tkj}

,
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M(Ai, Ak) =

n∑
j=1

wjmin{1−Iij,1−Ikj}

n∑
j=1

wjmax{1−Iij,1−Ikj}

,

W(Ai, Ak) = 1 −

n∑
j=1

wjmin{1−Iij,1−Ikj}

n∑
j=1

wjmax{1−Iij,1−Ikj}

,

R(Ai, Ak) =

n∑
j=1

wjmin{1−Fij,1−Fkj}

n∑
j=1

wjmax{1−Fij,1−Fkj}

and wj is the

weight of jth SVNN.

Proof. In order for S�(Ai, Ak) to be qualified as a

sensible similarity measure for SVNSs, it must satisfy

the (1)-(4) of axiomatic requirements.

(1) Since 0 ≤ L(Ai, Ak) =

n∑
j=1

wjmin{Tij,Tkj}

n∑
j=1

wjmax{Tij,Tkj}

≤ 1,

0 ≤ M(Ai, Ak) =

n∑
j=1

wjmin{1−Iij,1−Ikj}

n∑
j=1

wjmax{1−Iij,1−Ikj}

≤ 1,

0 ≤ W(Ai, Ak) = 1 −

n∑
j=1

wjmin{1−Iij,1−Ikj}

n∑
j=1

wjmax{1−Iij,1−Ikj}

≤ 1,

0 ≤ R(Ai, Ak) =

n∑
j=1

wjmin{1−Fij,1−Fkj}

n∑
j=1

wjmax{1−Fij,1−Fkj}

≤ 1,

therefore,

0 ≤ min{L(Ai, Ak), M(Ai, Ak), R(Ai, Ak)} ≤ 1,

0 ≤ min{L(Ai, Ak), W(Ai, Ak), R(Ai, Ak)} ≤ 1,

0 ≤ 1 − max{L(Ai, Ak), M(Ai, Ak), R(Ai, Ak)}

≤ 1.

Furthermore,

0 ≤ min{L(Ai, Ak), M(Ai, Ak), R(Ai, Ak)}

+ min{L(Ai, Ak), W(Ai, Ak), R(Ai, Ak)} + 1

− max{L(Ai, Ak), M(Ai, Ak), R(Ai, Ak)} ≤ 3.

Consequently, S�(Ai, Ak) is a SVNN.

(2) ① Necessity:

Since S�(Ai, Ak) = (1, 0, 0), we have

min{L(Ai, Ak), M(Ai, Ak), R(Ai, Ak)} = 1,

min{L(Ai, Ak), W(Ai, Ak), R(Ai, Ak)} = 0,

max{L(Ai, Ak), M(Ai, Ak), R(Ai, Ak)} = 1.

It means that L(Ai, Ak)=M(Ai, Ak)=R(Ai, Ak)

= 1, W(Ai, Ak) = 0.

Furthermore,

L(Ai, Ak) =

n∑
j=1

wjmin{Tij,Tkj}

n∑
j=1

wjmax{Tij,Tkj}

= 1,

M(Ai, Ak) =

n∑
j=1

wjmin{1−Iij,1−Ikj}

n∑
j=1

wjmax{1−Iij,1−Ikj}

= 1,

W(Ai, Ak) = 1 −

n∑
j=1

wjmin{1−Iij,1−Ikj}

n∑
j=1

wjmax{1−Iij,1−Ikj}

= 0,

R(Ai, Ak) =

n∑
j=1

wjmin{1−Fij,1−Fkj}

n∑
j=1

wjmax{1−Fij,1−Fkj}

= 1.

Based on the randomicity of wj , we can have Tij =

Tkj, Iij = Ikj, Fij = Fkj , i.e., Ai = Ak.

② Sufficiency:

Since Ai = Ak, we have Tij = Tkj, Iij = Ikj, Fij =

Fkj .

Furthermore,

n∑

j=1

wjmin{Tij, Tkj} =

n∑

j=1

wjmax{Tij, Tkj},

n∑

j=1

wjmin{1 − Iij, 1 − Ikj}

=

n∑

j=1

wjmax{1 − Iij, 1 − Ikj},

n∑

j=1

wjmin{1 − Fij, 1 − Fkj}

=

n∑

j=1

wjmax{1 − Fij, 1 − Fkj}.

Consequently, S�(Ai, Ak) = (1, 0, 0).

(3) It is obvious.

(4) If A1 ⊆ A2 ⊆ A3, then ∀j, T1j ≤ T2j ≤

T3j, I1j ≥ I2j ≥ I3j and F1j ≥ F2j ≥ F3j .

Hence,

L(A1, A3) =

n∑
j=1

wjmin{T1j, T3j}

n∑
j=1

wjmax{T1j, T3j}
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=

n∑
j=1

wjT1j

n∑
j=1

wjT3j

≤

n∑
j=1

wjT1j

n∑
j=1

wjT2j

=

n∑
j=1

wjmin{T1j, T2j}

n∑
j=1

wjmax{T1j, T2j}

= L(A1, A2),

M(A1, A3) =

n∑
j=1

wjmin{1 − I1j, 1 − I3j}

n∑
j=1

wjmax{1 − I1j, 1 − I3j}

=

n∑
j=1

wj(1 − I1j)

n∑
j=1

wj(1 − I3j)

≤

n∑
j=1

wj(1 − I1j)

n∑
j=1

wj(1 − I2j)

=

n∑
j=1

wjmin{1 − I1j, 1 − I2j}

n∑
j=1

wjmax{1 − I1j, 1 − I2j}

= M(A1, A2),

W(A1, A3) = 1 −

n∑
j=1

wjmin{1 − I1j, 1 − I3j}

n∑
j=1

wjmax{1 − I1j, 1 − I3j}

= 1 −

n∑
j=1

wj(1 − I1j)

n∑
j=1

wj(1 − I3j)

≤ 1 −

n∑
j=1

wj(1 − I1j)

n∑
j=1

wj(1 − I2j)

= 1 −

n∑
j=1

wjmin{1 − I1j, 1 − I2j}

n∑
j=1

wjmax{1 − I1j, 1 − I2j}

= W(A1, A2),

R(A1, A3) =

n∑
j=1

wjmin{1 − F1j, 1 − F3j}

n∑
j=1

wjmax{1 − F1j, 1 − F3j}

=

n∑
j=1

wj(1 − F1j)

n∑
j=1

wj(1 − F3j)

≤

n∑
j=1

wj(1 − F1j)

n∑
j=1

wj(1 − F2j)

=

n∑
j=1

wjmin{1 − F1j, 1 − F2j}

n∑
j=1

wjmax{1 − F1j, 1 − F2j}

= R(A1, A2).

Furthermore,

min{L(A1, A2), M(A1, A2), R(A1, A2)}

≥ min{L(A1, A3), M(A1, A3), R(A1, A3)},

min{L(A1, A2), W(A1, A2), R(A1, A2)}

≥ min{L(A1, A3), W(A1, A3), R(A1, A3)},

1 − max{L(A1, A2), M(A1, A2), R(A1, A2)}

≤ 1 − max{L(A1, A2), M(A1, A2), R(A1, A2)}.

Consequently, S�(A1, A2) ⊇ S�(A1, A3).

Similarly, S�(A2, A3) ⊇ S�(A1, A3). This com-

pletes the proof.

Example 2. [21] Assume that we have the follow-

ing three SVNSs in a universe of discourse X =

{x1, x2}, A ⊆ B ⊆ C, w = {0.5, 0.5}:

A = {< x1, 0.1, 0.5, 0.6 >, < x2, 0.2, 0.5, 0.7 >},

B = {< x1, 0.3, 0.4, 0.5 >, < x2, 0.5, 0.3, 0.4 >},

C = {< x1, 0.6, 0.1, 0.2 >, < x2, 0.8, 0.1, 0.3 >}.

By applying the proposed similarity measure,

S�(A, B) = (0.3750, 0.2308, 0.2308),

S�(B, C) = (0.5714, 0.2778, 0.2778),

S�(A, C) = (0.2143, 0.2143, 0.4444).

Thus, S�(A, C) < S�(A, B) and S�(A, C) <

S�(B, C).

4. Three algorithms for single-valued

neutrosophic soft decision making

4.1. Problem description

Let U = {x1, x2, · · · , xm} be a finite set of m

alternatives, E = {e1, e2, · · · , en} be a set of n
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Table 2

Tabular representation of (F̃ , E)

e1 e2 · · · en

x1 F̃ (e1)(x1) F̃ (e2)(x1) · · · F̃ (en)(x1)

x2 F̃ (e1)(x2) F̃ (e2)(x2) · · · F̃ (en)(x2)

.

.

.
.
.
.

.

.

.
. . .

.

.

.

xm F̃ (e1)(xm) F̃ (e2)(xm) · · · F̃ (en)(xm)

parameters, and the weight of parameter ei is wi, wi ∈

[0, 1],
∑n

i=1 wi = 1. (F̃ , E) is single-valued neutro-

sophic soft set which can be expressed in Table 2.

F̃ (ej)(xi) = (T
F̃

(ej)(xi), IF̃
(ej)(xi), FF̃

(ej)(xi)) rep-

resents the possible SVNN of the ith alternative xi

satisfying the jth parameter ej which is given by the

decision maker.

In the following, we will apply the EDAS, similar-

ity measure and level soft set methods to SVNSS.

4.2. The method of computing the combined

weights

We develop a novel method to obtain the weights

by combining the subjective elements with the objec-

tive ones. This model is different from the existing

methods, which can be divided into two tactics: one

is the subjective weighting determine methods and

the other is the objective weighting methods, which

can be computed by grey system theory [50]. The

feature of our weighting model can show both the

subjective information and the objective information.

Hence, combining subjective weights with objective

weights, we provide a combined model to determine

attribute weights.

4.2.1. Determining the objective weights:

The grey system method

The grey system theory [50] is an excellent tool

to deal with small sample and poor information.

For a decision maker problem, the alternatives and

attributes are generally small which accord with the

condition of grey system theory, so we take the

method of grey system into consideration.

Theoretically, if an attribute information with

respect to other attribute more matches in the aver-

age information of the attribute, the attribute contains

more information for decision making, the greater

the weight. Based on this idea, we propose a grey

relational analysis method to determine the attribute

weights.

Definition 9. Suppose R = (rij)m×n(i = 1, 2, · · · ,

m; j = 1, 2, · · · , n) be a single-valued neutrosophic

matrix. And S = (sij)m×n(i = 1, 2, · · · , m; j =

1, 2, · · · , n) is the score function s (Equation (2)) of

R. Let si = 1
n

∑n
j=1 sij , then the attribute weight ωj

is defined as follows:

ωj =

1 − 1
m

(
m∑

i=1

(o
q
ij)

) 1
q

n − 1
m

n∑
j=1

(
m∑

i=1

(o
q
ij)

) 1
q

, (5)

where oij =
min

i
|sij−si|+ξ max

i
|sij−si|

|sij−si|+ξ max
i

|sij−si|
is grey mean rela-

tional degree, in general, we set ξ = 0.5.

In order to improve the effective resolution, this

paper uses Euclidean distance instead of Hamming

distance, i.e., q = 2.

4.2.2. Determining the combined weights:

The non-linear weighted comprehensive

method

Suppose that the vector of the subjective weight,

given by the decision makers directly, is w =

{w1, w2, · · · , wn}, where
∑n

j=1 wj = 1, 0 ≤ wj ≤

1. The vector of the objective weight, computed

by Equation (11) directly, is ω = {ω1, ω2, · · · , ωn},

where
∑n

j=1 ωj = 1, 0 ≤ ωj ≤ 1.

Therefore, the vector of the combined weight ̟ =

{̟1, ̟2, · · · , ̟n} can be defined as follows:

̟j =
wj ∗ ωj

n∑
j=1

wj ∗ ωj

, (6)

where
∑n

j=1 ̟j = 1, 0 ≤ ̟j ≤ 1.

The objective weight and subjective weight are

aggregated by non-linear weighted comprehensive

method. According to the multiplier effect, the larger

the value of the subjective weight and objective

weight are, the larger the combined weight is, or vice

versa. At the same time, we can obtain that the Equa-

tion (6) overcomes the limitation of only considering

either subjective or objective factor influence. The

advantage of Equation (6) is that the attribute weights

and rankings of alternatives can show both the sub-

jective information and the objective information.

4.3. The method of EDAS

In this section, an extended version of the EDAS

method is proposed to deal with decision mak-

ing problems in the single-valued neutrosophic soft

environment. Therefore, the concepts and arithmetic
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operations of the SVNN are utilized for extending the

EDAS method.

Algorithm 1: EDAS

Step 1. Identify the alternatives and parameters, and

obtain the single-valued neutrosophic soft set (F̃ , E)

which is shown in Table 2.

Step 2. Normalize the single-valued neutrosophic

soft set (F̃ , E) into (F̃ ′, E) by Equation (7).

F̃ ′(ej)(xi)

=

⎧
⎪⎨
⎪⎩

(
T

F̃
(ej)(xi), IF̃

(ej)(xi), FF̃
(ej)(xi)

)
, ej ∈ B,

(
F

F̃
(ej)(xi), 1 − I

F̃
(ej)(xi), TF̃

(ej)(xi)

)
, ej ∈ C,

(7)

where B is benefit parameter set and C is cost param-

eter set.

Step 3. Compute the combined weights by Equa-

tion (6).

Step 4. Determine the average solution according to

all parameters, shown as follows:

AV = (AVj)1×n, (8)

where

AVj =
1

m

m⊕

i=1

F̃ (ej)(xi)

=
1

m

(
1 −

m∏

i=1

(1 − T
F̃

(ej)(xi)),

m∏

i=1

I
F̃

(ej)(xi),

m∏

i=1

F
F̃

(ej)(xi)

)

=

(
1 −

( m∏

i=1

(1 − T
F̃

(ej)(xi))

) 1
m

,

( m∏

i=1

I
F̃

(ej)(xi)

) 1
m

, (

m∏

i=1

F
F̃

(ej)(xi))
1
m

)
.

(9)

Step 5. Calculate the positive distance from average

(PDA) with PDA = (Pij)m×n and the negative dis-

tance from average (NDA) with NDA = (Nij)m×n

matrixes according to the type of parameters, shown

as follows:

Pij =

⎧
⎪⎨
⎪⎩

max{0,s(F̃ (ej)(xi))−s(AVj)}

s(AVj) , ej ∈ B,

max{0,s(AVj)−s(F̃ (ej)(xi))}

s(AVj) , ej ∈ C,
(10)

Nij =

⎧
⎪⎨
⎪⎩

max{0,s(AVj)−s(F̃ (ej)(xi))}

s(AVj) , ej ∈ B,

max{0,s(F̃ (ej)(xi))−s(AVj)}

s(AVj) , ej ∈ C,
(11)

where s(AVj) and s(F̃ (ej)(xi)) are score function of

AVj and F̃ (ej)(xi), respectively.

Step 6. Determine the weighted sum of PDA and

NDA for all alternatives, shown as follows:

SPi =

n∑

j=1

wjPij, (12)

SNi =

n∑

j=1

wjNij. (13)

Step 7. Normalize the values of SPi and SNi for all

alternatives, shown as follows:

NSPi =
SPi

max
i

{SPi}
(14)

NSNi = 1 −
SNi

max
i

{SNi}
(15)

Step 8. Calculate the appraisal score ASi(i =

1, 2, · · · , m) for all alternatives, shown as follows:

ASi =
1

2
(NSPi + NSNi), (16)

where 0 ≤ ASi ≤ 1.

Step 9. Rank the alternatives by means of the decreas-

ing values ofASi. The alternative with the highestASi

is the best choice among the candidate alternatives.

4.4. The method of similarity measure

In this section, we introduce a method for the

decision making problem by the proposed similarity

measure between SVNSs. The concept of ideal point

has been applied to help determine the best alternative

in the decision process. Although the ideal alternative

does not exist in practical problems, it does offer a

useful theoretical construct against which to appraise

alternatives. Therefore, we define the ideal alternative

x∗ as the SVNN x∗
j = (T ∗, I∗, F∗) = (1, 0, 0) for ∀j.
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Hence, by applying Equation (3), the proposed

similarity measure S� between an alternative xi and

the ideal alternative x∗ represented by the SVNSs is

defined by

S�(xi, x
∗)

=

(
min{L(xi, x

∗), M(xi, x
∗), R(xi, x

∗)},

min{L(xi, x
∗), W(xi, x

∗), R(xi, x
∗)},

1 − max{L(xi, x
∗), M(xi, x

∗), R(xi, x
∗)}

)
, (17)

where

L(xi, x
∗) =

n∑
j=1

̟jmin{T
F̃

(ej)(xi), 1}

n∑
j=1

̟jmax{T
F̃

(ej)(xi), 1}

=

n∑

j=1

̟jTF̃
(ej)(xi),

M(xi, x
∗) =

n∑
j=1

̟jmin{1 − I
F̃

(ej)(xi), 1}

n∑
j=1

̟jmax{1 − I
F̃

(ej)(xi), 1}

= 1 −

n∑

j=1

̟jIF̃
(ej)(xi),

W(xi, x
∗) = 1 −

n∑
j=1

̟jmin{1 − I
F̃

(ej)(xi), 1}

n∑
j=1

̟jmax{1 − I
F̃

(ej)(xi), 1}

=

n∑

j=1

̟jIF̃
(ej)(xi),

R(xi, x
∗) =

n∑
j=1

̟jmin{1 − F
F̃

(ej)(xi), 1}

n∑
j=1

̟jmax{1 − F
F̃

(ej)(xi), 1}

= 1 −

n∑

j=1

̟jFF̃
(ej)(xi).

Algorithm 2: Similarity measure

Steps 1-3. Similarly to Steps 1-3 in Algorithm 1.

Step 4. Calculate the similarity measure S(xi, x
∗)

(i = 1, 2, · · · , m) by Equation (17).

Step 5. Compute the each alternative of score func-

tion s(S(xi, x
∗)) by Equation (2).

Step 6. Rank the alternatives by s(S(xi, x
∗)) (i =

1, 2, · · · , m). The most desired alternative is the one

with the biggest value of xi.

4.5. The method of level soft set

We present an adjustable approach to single-valued

neutrosophic soft set based decision making prob-

lems. This proposal is based on the following novel

concept called level soft sets.

Definition 10. Let Ŵ = (F̃ , E) be a SVNSS over

U. Let λ : E → [0, 1] be a function, i.e. ∀ej ∈ E,

λ(ej) = (r(ej), k(ej), t(ej)), and r(ej), k(ej), t(ej) ∈

[0, 1]. The level soft set of Ŵ with respect to λ is

a crisp soft set L(Ŵ; λ) =< F̃λ, E > defined by

F̃λ(ej) = L(F (ej); λ(ej)) = {xi ∈ U|T
F̃

(ej)(xi) ≥

r(ej), I
F̃

(ej)(xi) ≥ k(ej), F
F̃

(ej)(xi) ≤ t(ej)}, for all

ej ∈ E(j = 1, 2, · · · , n), xi ∈ U(i = 1, 2, · · · , m).

Remark 1. In the above definition, the function

λ : E → [0, 1]3 is not restricted to be SVNS, it is

only a function, r(ej) ∈ [0, 1] can be viewed as a

given least threshold (the parameter ej on the degree

of truth-membership, k(ej) ∈ [0, 1] can be viewed

as a given least threshold (the parameter ej on the

degree of indeterminacy-membership), and t(ej) ∈

[0, 1] can be viewed as a given greatest threshold (the

parameter ej on the degree of falsity-membership).

Maybe some SVNNs may not strictly follow

the Definition 10 (T
F̃

(ej)(xi) ≥ r(ej), I
F̃

(ej)(xi) ≥

k(ej), F
F̃

(ej)(xi) ≤ t(ej)). For solving this situation,

we can continue to compute the two SVNNs by score

function defined in Equation (2).

For convenience, we choose mid-level threshold

function midŴE → [0, 1]3, i.e.,

midŴ(ej) = (rmidŴ (ej), kmidŴ (ej), tmidŴ (ej)) for all

ej ∈ E, where

rmidŴ (ej) =
1

m

m∑

i=1

T
F̃

(ej)(xi),

kmidŴ (ej) =
1

m

m∑

i=1

I
F̃

(ej)(xi),

tmidŴ (ej) =
1

m

m∑

i=1

F
F̃

(ej)(xi).
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The function midŴ is called the mid-threshold of

Ŵ = (F̃ , E), the level soft set w.r.t. midŴ, namely

L(Ŵ,midŴ) is called the mid-level soft set of Ŵ.

Algorithm 3: Level soft set

Steps 1-3. Similarly to Steps 1-3 in Algorithm 1.

Step 4. Compute the mid-level soft set L(Ŵ; midŴ).

Step 5. Present the mid-level soft set L(Ŵ; midŴ) in

tabular form and compute the weighted choice value

ci of xi by Equation (18).

ci =

n∑

j=1

̟iL(ej)(xi). (18)

Step 6. The optimal decision is to select xk if ck =
m

max
i=1

ci.

5. A numerical example

An internet company wants to select a software

development project to invest. Assume that there

are four software projects: e-commerce develop-

ment project, game development project, browser

development project and web development project.

The company selects three parameters to evaluate

the four software development projects. Let U =

{x1, x2, x3, x4} be the set of software projects, E =

{e1, e2, e3} be the set of parameters, e1 stands for

economic feasibility, e2 stands for technological fea-

sibility, e3 stands for staff feasibility. e1 and e2

are benefit parameters, e3 is cost parameter. The

weight vector of the parameters is given as w =

(0.4, 0.1, 0.5)T . The decision tabular given by expert

is presented in Table 3.

In what follows, we utilize the algorithms proposed

above to select software development projects under

single-valued neutrosophic soft information.

Algorithm 1: EDAS

Step 1. Identify the alternatives and parameters, and

obtain the single-valued neutrosophic soft set (F̃ , E)

which is shown in Table 3.

Table 3

Tabular representation of (F̃ , E)

e1 e2 e3

x1 (0.5, 0.4, 0.7) (0.7, 0.5, 0.1) (0.6, 0.6, 0.3)

x2 (0.6, 0.5, 0.6) (0.6, 0.2, 0.2) (0.5, 0.4, 0.4)

x3 (0.7, 0.3, 0.5) (0.7, 0.2, 0.1) (0.7, 0.5, 0.4)

x4 (0.6, 0.4, 0.5) (0.7, 0.4, 0.2) (0.5, 0.6, 0.4)

Table 4

The normalized single-valued neutrosophic soft set (F̃ ′, E)

e1 e2 e3

x1 (0.5, 0.4, 0.7) (0.7, 0.5, 0.1) (0.3, 0.4, 0.6)

x2 (0.6, 0.5, 0.6) (0.6, 0.2, 0.2) (0.4, 0.6, 0.5)

x3 (0.7, 0.3, 0.5) (0.7, 0.2, 0.1) (0.4, 0.5, 0.7)

x4 (0.6, 0.4, 0.5) (0.7, 0.4, 0.2) (0.4, 0.4, 0.5)

Step 2. Normalize the single-valued neutrosophic

soft set (F̃ , E) into (F̃ ′, E) by Equation (7), which

is shown in Table 4.

Step 3. Compute the combined weights by Equation

(6) as follows:

̟1 = 0.4078, ̟2 = 0.1017, ̟3 = 0.4905.

Step 4. Determine the average solution according to

all parameters by Equation (9), shown as follows:

AV1 = (0.6064, 0.3936, 0.5692),

AV2 = (0.6776, 0.2991, 0.1414),

AV3 = (0.5838, 0.5180, 0.3722).

Step 5. Calculate the positive distance from average

PDA = (Pij)4×3 and the negative distance from aver-

age NDA = (Nij)4×3 matrixes by Equations (10) and

(11), shown as follows:

PDA = (Pij)4×3

⎛
⎜⎜⎜⎜⎝

0.0000 0.0000 0.0038

0.0000 0.0000 0.0038

0.1560 0.0728 0.0628

0.0343 0.0000 0.0000

⎞
⎟⎟⎟⎟⎠

,

NDA = (Nij)4×3

⎛
⎜⎜⎜⎜⎝

0.1482 0.0613 0.0000

0.0873 0.0166 0.0000

0.0000 0.0000 0.0000

0.0000 0.0613 0.1143

⎞
⎟⎟⎟⎟⎠

.

Step 6. Determine the weighted sum of PDA and

NDA for all alternatives by Equations (12) and (13),

respectively, shown as follows:

SP1 = 0.0019, SP2 = 0.0019,

SP3 = 0.1019, SP4 = 0.0140,

NP1 = 0.0667, NP2 = 0.0373,

NP3 = 0.0000, NP4 = 0.0623.

Step 7. Normalize the values of SPi and SNi for all

alternatives by Equations (14) and (15), respectively,

shown as follows:
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NSP1 = 0.0183, NSP2 = 0.0183,

NSP3 = 1.0000, NSP4 = 0.1375,

NSN1 = −0.0702, NSN2 = 0.4011,

NSN3 = 1.0000, NSN4 = 0.0000.

Step 8. Calculate the appraisal score ASi (i =

1, 2, 3, 4) for all alternatives by Equation (16), shown

as follows:

AS1 = −0.0260, AS2 = 0.2097,

AS3 = 1.0000, AS4 = 0.0687.

Step 9. Rank the software development projects xi

according to the decreasing values of ASi as follows:

x3 ≻ x2 ≻ x4 ≻ x1.

Obviously, amongst them x3 is the best software

development project.

Algorithm 2: Similarity measure

Steps 1-3. Similarly to Steps 1-3 in Algorithm 1.

Step 4. Calculate the similarity measure S(xi, x
∗)

(i = 1, 2, 3, 4) by Equation (17), shown as follows:

S(x1, x
∗) = (0.4223, 0.4102, 0.4101),

S(x2, x
∗) = (0.4815, 0.5019, 0.4897),

S(x3, x
∗) = (0.5529, 0.3879, 0.3879),

S(x4, x
∗) = (0.4695, 0.4000, 0.4000).

Step 5. Compute the each alternative of score func-

tion s(S(Ai, A
∗)) by Equation (2), shown as follows:

s(S(x1, x
∗)) = 0.533993,

s(S(x2, x
∗)) = 0.496602,

s(S(x3, x
∗)) = 0.592335,

s(S(x4, x
∗)) = 0.556487.

Step 6. Rank the software development projects by

s(S(xi, x
∗))(i = 1, 2, 3, 4) as follows:

x3 ≻ x4 ≻ x1 ≻ x2.

Obviously, amongst them x3 is the best software

development project.

Algorithm 3: Level soft set

Steps 1-3. Similarly to Steps 1-3 in Algorithm 1.

Step 4. Compute the mid-level soft set L(Ŵ; midŴ) by

Definition 10. midŴ = {< e1, (0.6, 0.4, 0.575) >,

Table 5

Tabular representation of the level soft set L(Ŵ; midŴ) with

weighted choice values

e1 e2 e3 weighted choice value ci

x1 0 1 0 0.1017

x2 0 0 1 0.4905

x3 1 1 1 1

x4 1 0 1 0.8983

< e2, (0.675, 0.325, 0.15) >, < e3, (0.375, 0.475,

0.575) >}.

Step 5. Present the mid-level soft set L(Ŵ; midŴ) in

tabular form and compute the weighted choice value

ci of xi by Equation (18), which is shown in Table 5.

Step 6. The optimal decision is to select software

development project x3.

According to Algorithms 1, 2 and 3, we can con-

clude that the final decision results are the same, i.e.,

x3 is the most desirable investment software develop-

ment project. Hence, the three approaches proposed

above are effective and available.

In the following, some comparisons of Algorithm

1, Algorithm 2 and Algorithm 3 are shown.

(1) Comparison of computational complexity

We know that Algorithm 1 will consume more

computational complexity than Algorithm 2 and

Algorithm 3, especially in Step 4. So if we take

the computational complexity into consideration, the

Algorithm 2 and Algorithm 3 are given priority to

make decision.

(2) Comparison of discrimination

Comparing the results in Algorithm 1, Algorithm

2 with Algorithm 3, we can find that the results of

Algorithm 2 are quite close and vary from 0.496602

to 0.592335. These result of decision values can-

not clearly distinguish, in other words, the results

obtained from Algorithm 2 are not very convinc-

ing (or at least not applicable). That is to say, the

Algorithm 1 has a clearly distinguish. So if we

take the discrimination into consideration, the Algo-

rithm 1 and Algorithm 3 is given priority to make

decision.

In order to further verify the practicability of the

proposed SVNSS MADM approaches based on the

EDAS, similarity measure and level soft set, a com-

parison study with some existing methods is now

conducted in Table 6.

From the above results shown in Table 6, we can

know that the optimal alternative of our proposed

three methods is in agreement with the existing meth-

ods. That is to say, it is effective and feasible.



966 X. Peng and C. Liu / Algorithms for neutrosophic soft decision making based on EDAS

Table 6

A comparison study with some existing methods

Method The final ranking The optimal

alternative

Deli and Broumi [44] x3 ≻ x4 ≻ x1 ≻ x2 x3

Maji [53] x3 ≻ x4 ≻ x1 ≻ x2 x3

Karaaslan [54] x3 ≻ x4 ≻ x1 ≻ x2 x3

Deli and Broumi [55] x3 ≻ x4 ≻ x1 ≻ x2 x3

Algorithm 1 x3 ≻ x2 ≻ x4 ≻ x1 x3

Algorithm 2 x3 ≻ x4 ≻ x1 ≻ x2 x3

Algorithm 3 x3 ≻ x4 ≻ x2 ≻ x1 x3

6. Conclusion and remarks

The major contributions in this paper can be sum-

marized as follows:

(1) We construct a new axiomatic definition of

single-valued neutrosophic similarity measure

and give a similarity formula. Comparing with

the existing literature [21, 22, 42, 43], it can

reduce the information miss and remain more

original information.

(2) A novel single-valued neutrosophic soft deci-

sion making approach based on EDAS is

explored, which has not been reported in the

existing literature. The approach doesn’t need

to calculate the ideal and the nadir solution.

(3) A novel single-valued neutrosophic soft deci-

sion making approach based on similarity

measure is proposed, which can reduce the

information loss and remain more original

information.

(4) A novel single-valued neutrosophic soft deci-

sion making approach based on level soft set

is proposed.

(5) The subjective weighting methods pay much

attention to the preference information of

the decision maker [19–21, 27], while they

neglect the objective information. The objec-

tive weighting methods do not take into

account the preference of the decision maker,

in particular, these methods fail to take into

account the risk attitude of the decision maker

[22, 24]. The characteristic of our weighting

model can reflect both the subjective consider-

ations of the decision maker and the objective

information.

In the future, we shall apply more advanced theo-

ries [52] into single-valued neutrosophic soft set and

solve more decision making problems.
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